1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
53 #include "gdb_string.h"
57 #include "cp-support.h"
59 #include "gdb_assert.h"
62 #include "macroscope.h"
65 #include "parser-defs.h"
67 /* Prototypes for local functions */
69 static void rbreak_command (char *, int);
71 static void types_info (char *, int);
73 static void functions_info (char *, int);
75 static void variables_info (char *, int);
77 static void sources_info (char *, int);
79 static int find_line_common (struct linetable *, int, int *, int);
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
96 const domain_enum domain);
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
102 const domain_enum domain);
104 static void print_msymbol_info (struct minimal_symbol *);
106 void _initialize_symtab (void);
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
132 static const char *multiple_symbols_mode = multiple_symbols_all;
134 /* Read-only accessor to AUTO_SELECT_MODE. */
137 multiple_symbols_select_mode (void)
139 return multiple_symbols_mode;
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
146 const struct block *block_found;
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). Returns true if they match, false
154 compare_filenames_for_search (const char *filename, const char *search_name)
156 int len = strlen (filename);
157 size_t search_len = strlen (search_name);
159 if (len < search_len)
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
170 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
171 cannot match FILENAME "/path//dir/file.c" - as user has requested
172 absolute path. The sama applies for "c:\file.c" possibly
173 incorrectly hypothetically matching "d:\dir\c:\file.c".
175 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
176 compatible with SEARCH_NAME "file.c". In such case a compiler had
177 to put the "c:file.c" name into debug info. Such compatibility
178 works only on GDB built for DOS host. */
179 return (len == search_len
180 || (!IS_ABSOLUTE_PATH (search_name)
181 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
182 || (HAS_DRIVE_SPEC (filename)
183 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
186 /* Check for a symtab of a specific name by searching some symtabs.
187 This is a helper function for callbacks of iterate_over_symtabs.
189 The return value, NAME, REAL_PATH, CALLBACK, and DATA
190 are identical to the `map_symtabs_matching_filename' method of
191 quick_symbol_functions.
193 FIRST and AFTER_LAST indicate the range of symtabs to search.
194 AFTER_LAST is one past the last symtab to search; NULL means to
195 search until the end of the list. */
198 iterate_over_some_symtabs (const char *name,
199 const char *real_path,
200 int (*callback) (struct symtab *symtab,
203 struct symtab *first,
204 struct symtab *after_last)
206 struct symtab *s = NULL;
207 const char* base_name = lbasename (name);
209 for (s = first; s != NULL && s != after_last; s = s->next)
211 if (compare_filenames_for_search (s->filename, name))
213 if (callback (s, data))
218 /* Before we invoke realpath, which can get expensive when many
219 files are involved, do a quick comparison of the basenames. */
220 if (! basenames_may_differ
221 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
224 if (compare_filenames_for_search (symtab_to_fullname (s), name))
226 if (callback (s, data))
231 /* If the user gave us an absolute path, try to find the file in
232 this symtab and use its absolute path. */
234 if (real_path != NULL)
236 const char *fullname = symtab_to_fullname (s);
238 gdb_assert (IS_ABSOLUTE_PATH (real_path));
239 gdb_assert (IS_ABSOLUTE_PATH (name));
240 if (FILENAME_CMP (real_path, fullname) == 0)
242 if (callback (s, data))
252 /* Check for a symtab of a specific name; first in symtabs, then in
253 psymtabs. *If* there is no '/' in the name, a match after a '/'
254 in the symtab filename will also work.
256 Calls CALLBACK with each symtab that is found and with the supplied
257 DATA. If CALLBACK returns true, the search stops. */
260 iterate_over_symtabs (const char *name,
261 int (*callback) (struct symtab *symtab,
265 struct objfile *objfile;
266 char *real_path = NULL;
267 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
269 /* Here we are interested in canonicalizing an absolute path, not
270 absolutizing a relative path. */
271 if (IS_ABSOLUTE_PATH (name))
273 real_path = gdb_realpath (name);
274 make_cleanup (xfree, real_path);
275 gdb_assert (IS_ABSOLUTE_PATH (real_path));
278 ALL_OBJFILES (objfile)
280 if (iterate_over_some_symtabs (name, real_path, callback, data,
281 objfile->symtabs, NULL))
283 do_cleanups (cleanups);
288 /* Same search rules as above apply here, but now we look thru the
291 ALL_OBJFILES (objfile)
294 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
300 do_cleanups (cleanups);
305 do_cleanups (cleanups);
308 /* The callback function used by lookup_symtab. */
311 lookup_symtab_callback (struct symtab *symtab, void *data)
313 struct symtab **result_ptr = data;
315 *result_ptr = symtab;
319 /* A wrapper for iterate_over_symtabs that returns the first matching
323 lookup_symtab (const char *name)
325 struct symtab *result = NULL;
327 iterate_over_symtabs (name, lookup_symtab_callback, &result);
332 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
333 full method name, which consist of the class name (from T), the unadorned
334 method name from METHOD_ID, and the signature for the specific overload,
335 specified by SIGNATURE_ID. Note that this function is g++ specific. */
338 gdb_mangle_name (struct type *type, int method_id, int signature_id)
340 int mangled_name_len;
342 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
343 struct fn_field *method = &f[signature_id];
344 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
345 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
346 const char *newname = type_name_no_tag (type);
348 /* Does the form of physname indicate that it is the full mangled name
349 of a constructor (not just the args)? */
350 int is_full_physname_constructor;
353 int is_destructor = is_destructor_name (physname);
354 /* Need a new type prefix. */
355 char *const_prefix = method->is_const ? "C" : "";
356 char *volatile_prefix = method->is_volatile ? "V" : "";
358 int len = (newname == NULL ? 0 : strlen (newname));
360 /* Nothing to do if physname already contains a fully mangled v3 abi name
361 or an operator name. */
362 if ((physname[0] == '_' && physname[1] == 'Z')
363 || is_operator_name (field_name))
364 return xstrdup (physname);
366 is_full_physname_constructor = is_constructor_name (physname);
368 is_constructor = is_full_physname_constructor
369 || (newname && strcmp (field_name, newname) == 0);
372 is_destructor = (strncmp (physname, "__dt", 4) == 0);
374 if (is_destructor || is_full_physname_constructor)
376 mangled_name = (char *) xmalloc (strlen (physname) + 1);
377 strcpy (mangled_name, physname);
383 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
385 else if (physname[0] == 't' || physname[0] == 'Q')
387 /* The physname for template and qualified methods already includes
389 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
395 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
396 volatile_prefix, len);
398 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
399 + strlen (buf) + len + strlen (physname) + 1);
401 mangled_name = (char *) xmalloc (mangled_name_len);
403 mangled_name[0] = '\0';
405 strcpy (mangled_name, field_name);
407 strcat (mangled_name, buf);
408 /* If the class doesn't have a name, i.e. newname NULL, then we just
409 mangle it using 0 for the length of the class. Thus it gets mangled
410 as something starting with `::' rather than `classname::'. */
412 strcat (mangled_name, newname);
414 strcat (mangled_name, physname);
415 return (mangled_name);
418 /* Initialize the cplus_specific structure. 'cplus_specific' should
419 only be allocated for use with cplus symbols. */
422 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
423 struct obstack *obstack)
425 /* A language_specific structure should not have been previously
427 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
428 gdb_assert (obstack != NULL);
430 gsymbol->language_specific.cplus_specific =
431 OBSTACK_ZALLOC (obstack, struct cplus_specific);
434 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
435 correctly allocated. For C++ symbols a cplus_specific struct is
436 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
437 OBJFILE can be NULL. */
440 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
442 struct obstack *obstack)
444 if (gsymbol->language == language_cplus)
446 if (gsymbol->language_specific.cplus_specific == NULL)
447 symbol_init_cplus_specific (gsymbol, obstack);
449 gsymbol->language_specific.cplus_specific->demangled_name = name;
451 else if (gsymbol->language == language_ada)
455 gsymbol->ada_mangled = 0;
456 gsymbol->language_specific.obstack = obstack;
460 gsymbol->ada_mangled = 1;
461 gsymbol->language_specific.mangled_lang.demangled_name = name;
465 gsymbol->language_specific.mangled_lang.demangled_name = name;
468 /* Return the demangled name of GSYMBOL. */
471 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
473 if (gsymbol->language == language_cplus)
475 if (gsymbol->language_specific.cplus_specific != NULL)
476 return gsymbol->language_specific.cplus_specific->demangled_name;
480 else if (gsymbol->language == language_ada)
482 if (!gsymbol->ada_mangled)
487 return gsymbol->language_specific.mangled_lang.demangled_name;
491 /* Initialize the language dependent portion of a symbol
492 depending upon the language for the symbol. */
495 symbol_set_language (struct general_symbol_info *gsymbol,
496 enum language language,
497 struct obstack *obstack)
499 gsymbol->language = language;
500 if (gsymbol->language == language_d
501 || gsymbol->language == language_go
502 || gsymbol->language == language_java
503 || gsymbol->language == language_objc
504 || gsymbol->language == language_fortran)
506 symbol_set_demangled_name (gsymbol, NULL, obstack);
508 else if (gsymbol->language == language_ada)
510 gdb_assert (gsymbol->ada_mangled == 0);
511 gsymbol->language_specific.obstack = obstack;
513 else if (gsymbol->language == language_cplus)
514 gsymbol->language_specific.cplus_specific = NULL;
517 memset (&gsymbol->language_specific, 0,
518 sizeof (gsymbol->language_specific));
522 /* Functions to initialize a symbol's mangled name. */
524 /* Objects of this type are stored in the demangled name hash table. */
525 struct demangled_name_entry
531 /* Hash function for the demangled name hash. */
534 hash_demangled_name_entry (const void *data)
536 const struct demangled_name_entry *e = data;
538 return htab_hash_string (e->mangled);
541 /* Equality function for the demangled name hash. */
544 eq_demangled_name_entry (const void *a, const void *b)
546 const struct demangled_name_entry *da = a;
547 const struct demangled_name_entry *db = b;
549 return strcmp (da->mangled, db->mangled) == 0;
552 /* Create the hash table used for demangled names. Each hash entry is
553 a pair of strings; one for the mangled name and one for the demangled
554 name. The entry is hashed via just the mangled name. */
557 create_demangled_names_hash (struct objfile *objfile)
559 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
560 The hash table code will round this up to the next prime number.
561 Choosing a much larger table size wastes memory, and saves only about
562 1% in symbol reading. */
564 objfile->demangled_names_hash = htab_create_alloc
565 (256, hash_demangled_name_entry, eq_demangled_name_entry,
566 NULL, xcalloc, xfree);
569 /* Try to determine the demangled name for a symbol, based on the
570 language of that symbol. If the language is set to language_auto,
571 it will attempt to find any demangling algorithm that works and
572 then set the language appropriately. The returned name is allocated
573 by the demangler and should be xfree'd. */
576 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
579 char *demangled = NULL;
581 if (gsymbol->language == language_unknown)
582 gsymbol->language = language_auto;
584 if (gsymbol->language == language_objc
585 || gsymbol->language == language_auto)
588 objc_demangle (mangled, 0);
589 if (demangled != NULL)
591 gsymbol->language = language_objc;
595 if (gsymbol->language == language_cplus
596 || gsymbol->language == language_auto)
599 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
600 if (demangled != NULL)
602 gsymbol->language = language_cplus;
606 if (gsymbol->language == language_java)
609 gdb_demangle (mangled,
610 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
611 if (demangled != NULL)
613 gsymbol->language = language_java;
617 if (gsymbol->language == language_d
618 || gsymbol->language == language_auto)
620 demangled = d_demangle(mangled, 0);
621 if (demangled != NULL)
623 gsymbol->language = language_d;
627 /* FIXME(dje): Continually adding languages here is clumsy.
628 Better to just call la_demangle if !auto, and if auto then call
629 a utility routine that tries successive languages in turn and reports
630 which one it finds. I realize the la_demangle options may be different
631 for different languages but there's already a FIXME for that. */
632 if (gsymbol->language == language_go
633 || gsymbol->language == language_auto)
635 demangled = go_demangle (mangled, 0);
636 if (demangled != NULL)
638 gsymbol->language = language_go;
643 /* We could support `gsymbol->language == language_fortran' here to provide
644 module namespaces also for inferiors with only minimal symbol table (ELF
645 symbols). Just the mangling standard is not standardized across compilers
646 and there is no DW_AT_producer available for inferiors with only the ELF
647 symbols to check the mangling kind. */
651 /* Set both the mangled and demangled (if any) names for GSYMBOL based
652 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
653 objfile's obstack; but if COPY_NAME is 0 and if NAME is
654 NUL-terminated, then this function assumes that NAME is already
655 correctly saved (either permanently or with a lifetime tied to the
656 objfile), and it will not be copied.
658 The hash table corresponding to OBJFILE is used, and the memory
659 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
660 so the pointer can be discarded after calling this function. */
662 /* We have to be careful when dealing with Java names: when we run
663 into a Java minimal symbol, we don't know it's a Java symbol, so it
664 gets demangled as a C++ name. This is unfortunate, but there's not
665 much we can do about it: but when demangling partial symbols and
666 regular symbols, we'd better not reuse the wrong demangled name.
667 (See PR gdb/1039.) We solve this by putting a distinctive prefix
668 on Java names when storing them in the hash table. */
670 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
671 don't mind the Java prefix so much: different languages have
672 different demangling requirements, so it's only natural that we
673 need to keep language data around in our demangling cache. But
674 it's not good that the minimal symbol has the wrong demangled name.
675 Unfortunately, I can't think of any easy solution to that
678 #define JAVA_PREFIX "##JAVA$$"
679 #define JAVA_PREFIX_LEN 8
682 symbol_set_names (struct general_symbol_info *gsymbol,
683 const char *linkage_name, int len, int copy_name,
684 struct objfile *objfile)
686 struct demangled_name_entry **slot;
687 /* A 0-terminated copy of the linkage name. */
688 const char *linkage_name_copy;
689 /* A copy of the linkage name that might have a special Java prefix
690 added to it, for use when looking names up in the hash table. */
691 const char *lookup_name;
692 /* The length of lookup_name. */
694 struct demangled_name_entry entry;
696 if (gsymbol->language == language_ada)
698 /* In Ada, we do the symbol lookups using the mangled name, so
699 we can save some space by not storing the demangled name.
701 As a side note, we have also observed some overlap between
702 the C++ mangling and Ada mangling, similarly to what has
703 been observed with Java. Because we don't store the demangled
704 name with the symbol, we don't need to use the same trick
707 gsymbol->name = linkage_name;
710 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
712 memcpy (name, linkage_name, len);
714 gsymbol->name = name;
716 symbol_set_demangled_name (gsymbol, NULL, &objfile->objfile_obstack);
721 if (objfile->demangled_names_hash == NULL)
722 create_demangled_names_hash (objfile);
724 /* The stabs reader generally provides names that are not
725 NUL-terminated; most of the other readers don't do this, so we
726 can just use the given copy, unless we're in the Java case. */
727 if (gsymbol->language == language_java)
731 lookup_len = len + JAVA_PREFIX_LEN;
732 alloc_name = alloca (lookup_len + 1);
733 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
734 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
735 alloc_name[lookup_len] = '\0';
737 lookup_name = alloc_name;
738 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
740 else if (linkage_name[len] != '\0')
745 alloc_name = alloca (lookup_len + 1);
746 memcpy (alloc_name, linkage_name, len);
747 alloc_name[lookup_len] = '\0';
749 lookup_name = alloc_name;
750 linkage_name_copy = alloc_name;
755 lookup_name = linkage_name;
756 linkage_name_copy = linkage_name;
759 entry.mangled = lookup_name;
760 slot = ((struct demangled_name_entry **)
761 htab_find_slot (objfile->demangled_names_hash,
764 /* If this name is not in the hash table, add it. */
766 /* A C version of the symbol may have already snuck into the table.
767 This happens to, e.g., main.init (__go_init_main). Cope. */
768 || (gsymbol->language == language_go
769 && (*slot)->demangled[0] == '\0'))
771 char *demangled_name = symbol_find_demangled_name (gsymbol,
773 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
775 /* Suppose we have demangled_name==NULL, copy_name==0, and
776 lookup_name==linkage_name. In this case, we already have the
777 mangled name saved, and we don't have a demangled name. So,
778 you might think we could save a little space by not recording
779 this in the hash table at all.
781 It turns out that it is actually important to still save such
782 an entry in the hash table, because storing this name gives
783 us better bcache hit rates for partial symbols. */
784 if (!copy_name && lookup_name == linkage_name)
786 *slot = obstack_alloc (&objfile->objfile_obstack,
787 offsetof (struct demangled_name_entry,
789 + demangled_len + 1);
790 (*slot)->mangled = lookup_name;
796 /* If we must copy the mangled name, put it directly after
797 the demangled name so we can have a single
799 *slot = obstack_alloc (&objfile->objfile_obstack,
800 offsetof (struct demangled_name_entry,
802 + lookup_len + demangled_len + 2);
803 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
804 strcpy (mangled_ptr, lookup_name);
805 (*slot)->mangled = mangled_ptr;
808 if (demangled_name != NULL)
810 strcpy ((*slot)->demangled, demangled_name);
811 xfree (demangled_name);
814 (*slot)->demangled[0] = '\0';
817 gsymbol->name = (*slot)->mangled + lookup_len - len;
818 if ((*slot)->demangled[0] != '\0')
819 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
820 &objfile->objfile_obstack);
822 symbol_set_demangled_name (gsymbol, NULL, &objfile->objfile_obstack);
825 /* Return the source code name of a symbol. In languages where
826 demangling is necessary, this is the demangled name. */
829 symbol_natural_name (const struct general_symbol_info *gsymbol)
831 switch (gsymbol->language)
838 case language_fortran:
839 if (symbol_get_demangled_name (gsymbol) != NULL)
840 return symbol_get_demangled_name (gsymbol);
843 return ada_decode_symbol (gsymbol);
847 return gsymbol->name;
850 /* Return the demangled name for a symbol based on the language for
851 that symbol. If no demangled name exists, return NULL. */
854 symbol_demangled_name (const struct general_symbol_info *gsymbol)
856 const char *dem_name = NULL;
858 switch (gsymbol->language)
865 case language_fortran:
866 dem_name = symbol_get_demangled_name (gsymbol);
869 dem_name = ada_decode_symbol (gsymbol);
877 /* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
883 symbol_search_name (const struct general_symbol_info *gsymbol)
885 if (gsymbol->language == language_ada)
886 return gsymbol->name;
888 return symbol_natural_name (gsymbol);
891 /* Initialize the structure fields to zero values. */
894 init_sal (struct symtab_and_line *sal)
902 sal->explicit_pc = 0;
903 sal->explicit_line = 0;
908 /* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
913 matching_obj_sections (struct obj_section *obj_first,
914 struct obj_section *obj_second)
916 asection *first = obj_first? obj_first->the_bfd_section : NULL;
917 asection *second = obj_second? obj_second->the_bfd_section : NULL;
920 /* If they're the same section, then they match. */
924 /* If either is NULL, give up. */
925 if (first == NULL || second == NULL)
928 /* This doesn't apply to absolute symbols. */
929 if (first->owner == NULL || second->owner == NULL)
932 /* If they're in the same object file, they must be different sections. */
933 if (first->owner == second->owner)
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
940 if (bfd_get_section_size (first) != bfd_get_section_size (second))
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first->owner, first)
945 - bfd_get_start_address (first->owner)
946 != bfd_get_section_vma (second->owner, second)
947 - bfd_get_start_address (second->owner))
950 if (bfd_get_section_name (first->owner, first) == NULL
951 || bfd_get_section_name (second->owner, second) == NULL
952 || strcmp (bfd_get_section_name (first->owner, first),
953 bfd_get_section_name (second->owner, second)) != 0)
956 /* Otherwise check that they are in corresponding objfiles. */
959 if (obj->obfd == first->owner)
961 gdb_assert (obj != NULL);
963 if (obj->separate_debug_objfile != NULL
964 && obj->separate_debug_objfile->obfd == second->owner)
966 if (obj->separate_debug_objfile_backlink != NULL
967 && obj->separate_debug_objfile_backlink->obfd == second->owner)
974 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
976 struct objfile *objfile;
977 struct minimal_symbol *msymbol;
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
984 && (MSYMBOL_TYPE (msymbol) == mst_data
985 || MSYMBOL_TYPE (msymbol) == mst_bss
986 || MSYMBOL_TYPE (msymbol) == mst_abs
987 || MSYMBOL_TYPE (msymbol) == mst_file_data
988 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
991 ALL_OBJFILES (objfile)
993 struct symtab *result = NULL;
996 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1005 /* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1009 fixup_section (struct general_symbol_info *ginfo,
1010 CORE_ADDR addr, struct objfile *objfile)
1012 struct minimal_symbol *msym;
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1021 ginfo->section = SYMBOL_SECTION (msym);
1024 /* Static, function-local variables do appear in the linker
1025 (minimal) symbols, but are frequently given names that won't
1026 be found via lookup_minimal_symbol(). E.g., it has been
1027 observed in frv-uclinux (ELF) executables that a static,
1028 function-local variable named "foo" might appear in the
1029 linker symbols as "foo.6" or "foo.3". Thus, there is no
1030 point in attempting to extend the lookup-by-name mechanism to
1031 handle this case due to the fact that there can be multiple
1034 So, instead, search the section table when lookup by name has
1035 failed. The ``addr'' and ``endaddr'' fields may have already
1036 been relocated. If so, the relocation offset (i.e. the
1037 ANOFFSET value) needs to be subtracted from these values when
1038 performing the comparison. We unconditionally subtract it,
1039 because, when no relocation has been performed, the ANOFFSET
1040 value will simply be zero.
1042 The address of the symbol whose section we're fixing up HAS
1043 NOT BEEN adjusted (relocated) yet. It can't have been since
1044 the section isn't yet known and knowing the section is
1045 necessary in order to add the correct relocation value. In
1046 other words, we wouldn't even be in this function (attempting
1047 to compute the section) if it were already known.
1049 Note that it is possible to search the minimal symbols
1050 (subtracting the relocation value if necessary) to find the
1051 matching minimal symbol, but this is overkill and much less
1052 efficient. It is not necessary to find the matching minimal
1053 symbol, only its section.
1055 Note that this technique (of doing a section table search)
1056 can fail when unrelocated section addresses overlap. For
1057 this reason, we still attempt a lookup by name prior to doing
1058 a search of the section table. */
1060 struct obj_section *s;
1063 ALL_OBJFILE_OSECTIONS (objfile, s)
1065 int idx = s - objfile->sections;
1066 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1071 if (obj_section_addr (s) - offset <= addr
1072 && addr < obj_section_endaddr (s) - offset)
1074 ginfo->section = idx;
1079 /* If we didn't find the section, assume it is in the first
1080 section. If there is no allocated section, then it hardly
1081 matters what we pick, so just pick zero. */
1085 ginfo->section = fallback;
1090 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1097 /* We either have an OBJFILE, or we can get at it from the sym's
1098 symtab. Anything else is a bug. */
1099 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1101 if (objfile == NULL)
1102 objfile = SYMBOL_SYMTAB (sym)->objfile;
1104 if (SYMBOL_OBJ_SECTION (objfile, sym))
1107 /* We should have an objfile by now. */
1108 gdb_assert (objfile);
1110 switch (SYMBOL_CLASS (sym))
1114 addr = SYMBOL_VALUE_ADDRESS (sym);
1117 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1121 /* Nothing else will be listed in the minsyms -- no use looking
1126 fixup_section (&sym->ginfo, addr, objfile);
1131 /* Compute the demangled form of NAME as used by the various symbol
1132 lookup functions. The result is stored in *RESULT_NAME. Returns a
1133 cleanup which can be used to clean up the result.
1135 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1136 Normally, Ada symbol lookups are performed using the encoded name
1137 rather than the demangled name, and so it might seem to make sense
1138 for this function to return an encoded version of NAME.
1139 Unfortunately, we cannot do this, because this function is used in
1140 circumstances where it is not appropriate to try to encode NAME.
1141 For instance, when displaying the frame info, we demangle the name
1142 of each parameter, and then perform a symbol lookup inside our
1143 function using that demangled name. In Ada, certain functions
1144 have internally-generated parameters whose name contain uppercase
1145 characters. Encoding those name would result in those uppercase
1146 characters to become lowercase, and thus cause the symbol lookup
1150 demangle_for_lookup (const char *name, enum language lang,
1151 const char **result_name)
1153 char *demangled_name = NULL;
1154 const char *modified_name = NULL;
1155 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1157 modified_name = name;
1159 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1160 lookup, so we can always binary search. */
1161 if (lang == language_cplus)
1163 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1166 modified_name = demangled_name;
1167 make_cleanup (xfree, demangled_name);
1171 /* If we were given a non-mangled name, canonicalize it
1172 according to the language (so far only for C++). */
1173 demangled_name = cp_canonicalize_string (name);
1176 modified_name = demangled_name;
1177 make_cleanup (xfree, demangled_name);
1181 else if (lang == language_java)
1183 demangled_name = gdb_demangle (name,
1184 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1187 modified_name = demangled_name;
1188 make_cleanup (xfree, demangled_name);
1191 else if (lang == language_d)
1193 demangled_name = d_demangle (name, 0);
1196 modified_name = demangled_name;
1197 make_cleanup (xfree, demangled_name);
1200 else if (lang == language_go)
1202 demangled_name = go_demangle (name, 0);
1205 modified_name = demangled_name;
1206 make_cleanup (xfree, demangled_name);
1210 *result_name = modified_name;
1214 /* Find the definition for a specified symbol name NAME
1215 in domain DOMAIN, visible from lexical block BLOCK.
1216 Returns the struct symbol pointer, or zero if no symbol is found.
1217 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1218 NAME is a field of the current implied argument `this'. If so set
1219 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1220 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1221 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1223 /* This function (or rather its subordinates) have a bunch of loops and
1224 it would seem to be attractive to put in some QUIT's (though I'm not really
1225 sure whether it can run long enough to be really important). But there
1226 are a few calls for which it would appear to be bad news to quit
1227 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1228 that there is C++ code below which can error(), but that probably
1229 doesn't affect these calls since they are looking for a known
1230 variable and thus can probably assume it will never hit the C++
1234 lookup_symbol_in_language (const char *name, const struct block *block,
1235 const domain_enum domain, enum language lang,
1236 struct field_of_this_result *is_a_field_of_this)
1238 const char *modified_name;
1239 struct symbol *returnval;
1240 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1242 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1243 is_a_field_of_this);
1244 do_cleanups (cleanup);
1249 /* Behave like lookup_symbol_in_language, but performed with the
1250 current language. */
1253 lookup_symbol (const char *name, const struct block *block,
1255 struct field_of_this_result *is_a_field_of_this)
1257 return lookup_symbol_in_language (name, block, domain,
1258 current_language->la_language,
1259 is_a_field_of_this);
1262 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1263 found, or NULL if not found. */
1266 lookup_language_this (const struct language_defn *lang,
1267 const struct block *block)
1269 if (lang->la_name_of_this == NULL || block == NULL)
1276 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1279 block_found = block;
1282 if (BLOCK_FUNCTION (block))
1284 block = BLOCK_SUPERBLOCK (block);
1290 /* Given TYPE, a structure/union,
1291 return 1 if the component named NAME from the ultimate target
1292 structure/union is defined, otherwise, return 0. */
1295 check_field (struct type *type, const char *name,
1296 struct field_of_this_result *is_a_field_of_this)
1300 /* The type may be a stub. */
1301 CHECK_TYPEDEF (type);
1303 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1305 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1307 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1309 is_a_field_of_this->type = type;
1310 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1315 /* C++: If it was not found as a data field, then try to return it
1316 as a pointer to a method. */
1318 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1320 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1322 is_a_field_of_this->type = type;
1323 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1328 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1329 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1335 /* Behave like lookup_symbol except that NAME is the natural name
1336 (e.g., demangled name) of the symbol that we're looking for. */
1338 static struct symbol *
1339 lookup_symbol_aux (const char *name, const struct block *block,
1340 const domain_enum domain, enum language language,
1341 struct field_of_this_result *is_a_field_of_this)
1344 const struct language_defn *langdef;
1346 /* Make sure we do something sensible with is_a_field_of_this, since
1347 the callers that set this parameter to some non-null value will
1348 certainly use it later. If we don't set it, the contents of
1349 is_a_field_of_this are undefined. */
1350 if (is_a_field_of_this != NULL)
1351 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1353 /* Search specified block and its superiors. Don't search
1354 STATIC_BLOCK or GLOBAL_BLOCK. */
1356 sym = lookup_symbol_aux_local (name, block, domain, language);
1360 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1361 check to see if NAME is a field of `this'. */
1363 langdef = language_def (language);
1365 /* Don't do this check if we are searching for a struct. It will
1366 not be found by check_field, but will be found by other
1368 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1370 struct symbol *sym = lookup_language_this (langdef, block);
1374 struct type *t = sym->type;
1376 /* I'm not really sure that type of this can ever
1377 be typedefed; just be safe. */
1379 if (TYPE_CODE (t) == TYPE_CODE_PTR
1380 || TYPE_CODE (t) == TYPE_CODE_REF)
1381 t = TYPE_TARGET_TYPE (t);
1383 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1384 && TYPE_CODE (t) != TYPE_CODE_UNION)
1385 error (_("Internal error: `%s' is not an aggregate"),
1386 langdef->la_name_of_this);
1388 if (check_field (t, name, is_a_field_of_this))
1393 /* Now do whatever is appropriate for LANGUAGE to look
1394 up static and global variables. */
1396 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1400 /* Now search all static file-level symbols. Not strictly correct,
1401 but more useful than an error. */
1403 return lookup_static_symbol_aux (name, domain);
1406 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1407 first, then check the psymtabs. If a psymtab indicates the existence of the
1408 desired name as a file-level static, then do psymtab-to-symtab conversion on
1409 the fly and return the found symbol. */
1412 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1414 struct objfile *objfile;
1417 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1421 ALL_OBJFILES (objfile)
1423 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1431 /* Check to see if the symbol is defined in BLOCK or its superiors.
1432 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1434 static struct symbol *
1435 lookup_symbol_aux_local (const char *name, const struct block *block,
1436 const domain_enum domain,
1437 enum language language)
1440 const struct block *static_block = block_static_block (block);
1441 const char *scope = block_scope (block);
1443 /* Check if either no block is specified or it's a global block. */
1445 if (static_block == NULL)
1448 while (block != static_block)
1450 sym = lookup_symbol_aux_block (name, block, domain);
1454 if (language == language_cplus || language == language_fortran)
1456 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1462 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1464 block = BLOCK_SUPERBLOCK (block);
1467 /* We've reached the edge of the function without finding a result. */
1472 /* Look up OBJFILE to BLOCK. */
1475 lookup_objfile_from_block (const struct block *block)
1477 struct objfile *obj;
1483 block = block_global_block (block);
1484 /* Go through SYMTABS. */
1485 ALL_SYMTABS (obj, s)
1486 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1488 if (obj->separate_debug_objfile_backlink)
1489 obj = obj->separate_debug_objfile_backlink;
1497 /* Look up a symbol in a block; if found, fixup the symbol, and set
1498 block_found appropriately. */
1501 lookup_symbol_aux_block (const char *name, const struct block *block,
1502 const domain_enum domain)
1506 sym = lookup_block_symbol (block, name, domain);
1509 block_found = block;
1510 return fixup_symbol_section (sym, NULL);
1516 /* Check all global symbols in OBJFILE in symtabs and
1520 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1522 const domain_enum domain)
1524 const struct objfile *objfile;
1526 struct blockvector *bv;
1527 const struct block *block;
1530 for (objfile = main_objfile;
1532 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1534 /* Go through symtabs. */
1535 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1537 bv = BLOCKVECTOR (s);
1538 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1539 sym = lookup_block_symbol (block, name, domain);
1542 block_found = block;
1543 return fixup_symbol_section (sym, (struct objfile *)objfile);
1547 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1556 /* Check to see if the symbol is defined in one of the OBJFILE's
1557 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1558 depending on whether or not we want to search global symbols or
1561 static struct symbol *
1562 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1563 const char *name, const domain_enum domain)
1565 struct symbol *sym = NULL;
1566 struct blockvector *bv;
1567 const struct block *block;
1570 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1572 bv = BLOCKVECTOR (s);
1573 block = BLOCKVECTOR_BLOCK (bv, block_index);
1574 sym = lookup_block_symbol (block, name, domain);
1577 block_found = block;
1578 return fixup_symbol_section (sym, objfile);
1585 /* Same as lookup_symbol_aux_objfile, except that it searches all
1586 objfiles. Return the first match found. */
1588 static struct symbol *
1589 lookup_symbol_aux_symtabs (int block_index, const char *name,
1590 const domain_enum domain)
1593 struct objfile *objfile;
1595 ALL_OBJFILES (objfile)
1597 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1605 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1606 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1607 and all related objfiles. */
1609 static struct symbol *
1610 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1611 const char *linkage_name,
1614 enum language lang = current_language->la_language;
1615 const char *modified_name;
1616 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1618 struct objfile *main_objfile, *cur_objfile;
1620 if (objfile->separate_debug_objfile_backlink)
1621 main_objfile = objfile->separate_debug_objfile_backlink;
1623 main_objfile = objfile;
1625 for (cur_objfile = main_objfile;
1627 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1631 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1632 modified_name, domain);
1634 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1635 modified_name, domain);
1638 do_cleanups (cleanup);
1643 do_cleanups (cleanup);
1647 /* A helper function that throws an exception when a symbol was found
1648 in a psymtab but not in a symtab. */
1650 static void ATTRIBUTE_NORETURN
1651 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1654 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1655 %s may be an inlined function, or may be a template function\n \
1656 (if a template, try specifying an instantiation: %s<type>)."),
1657 kind == GLOBAL_BLOCK ? "global" : "static",
1658 name, symtab_to_filename_for_display (symtab), name, name);
1661 /* A helper function for lookup_symbol_aux that interfaces with the
1662 "quick" symbol table functions. */
1664 static struct symbol *
1665 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1666 const char *name, const domain_enum domain)
1668 struct symtab *symtab;
1669 struct blockvector *bv;
1670 const struct block *block;
1675 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1679 bv = BLOCKVECTOR (symtab);
1680 block = BLOCKVECTOR_BLOCK (bv, kind);
1681 sym = lookup_block_symbol (block, name, domain);
1683 error_in_psymtab_expansion (kind, name, symtab);
1684 return fixup_symbol_section (sym, objfile);
1687 /* A default version of lookup_symbol_nonlocal for use by languages
1688 that can't think of anything better to do. This implements the C
1692 basic_lookup_symbol_nonlocal (const char *name,
1693 const struct block *block,
1694 const domain_enum domain)
1698 /* NOTE: carlton/2003-05-19: The comments below were written when
1699 this (or what turned into this) was part of lookup_symbol_aux;
1700 I'm much less worried about these questions now, since these
1701 decisions have turned out well, but I leave these comments here
1704 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1705 not it would be appropriate to search the current global block
1706 here as well. (That's what this code used to do before the
1707 is_a_field_of_this check was moved up.) On the one hand, it's
1708 redundant with the lookup_symbol_aux_symtabs search that happens
1709 next. On the other hand, if decode_line_1 is passed an argument
1710 like filename:var, then the user presumably wants 'var' to be
1711 searched for in filename. On the third hand, there shouldn't be
1712 multiple global variables all of which are named 'var', and it's
1713 not like decode_line_1 has ever restricted its search to only
1714 global variables in a single filename. All in all, only
1715 searching the static block here seems best: it's correct and it's
1718 /* NOTE: carlton/2002-12-05: There's also a possible performance
1719 issue here: if you usually search for global symbols in the
1720 current file, then it would be slightly better to search the
1721 current global block before searching all the symtabs. But there
1722 are other factors that have a much greater effect on performance
1723 than that one, so I don't think we should worry about that for
1726 sym = lookup_symbol_static (name, block, domain);
1730 return lookup_symbol_global (name, block, domain);
1733 /* Lookup a symbol in the static block associated to BLOCK, if there
1734 is one; do nothing if BLOCK is NULL or a global block. */
1737 lookup_symbol_static (const char *name,
1738 const struct block *block,
1739 const domain_enum domain)
1741 const struct block *static_block = block_static_block (block);
1743 if (static_block != NULL)
1744 return lookup_symbol_aux_block (name, static_block, domain);
1749 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1751 struct global_sym_lookup_data
1753 /* The name of the symbol we are searching for. */
1756 /* The domain to use for our search. */
1759 /* The field where the callback should store the symbol if found.
1760 It should be initialized to NULL before the search is started. */
1761 struct symbol *result;
1764 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1765 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1766 OBJFILE. The arguments for the search are passed via CB_DATA,
1767 which in reality is a pointer to struct global_sym_lookup_data. */
1770 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1773 struct global_sym_lookup_data *data =
1774 (struct global_sym_lookup_data *) cb_data;
1776 gdb_assert (data->result == NULL);
1778 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1779 data->name, data->domain);
1780 if (data->result == NULL)
1781 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1782 data->name, data->domain);
1784 /* If we found a match, tell the iterator to stop. Otherwise,
1786 return (data->result != NULL);
1789 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1793 lookup_symbol_global (const char *name,
1794 const struct block *block,
1795 const domain_enum domain)
1797 struct symbol *sym = NULL;
1798 struct objfile *objfile = NULL;
1799 struct global_sym_lookup_data lookup_data;
1801 /* Call library-specific lookup procedure. */
1802 objfile = lookup_objfile_from_block (block);
1803 if (objfile != NULL)
1804 sym = solib_global_lookup (objfile, name, domain);
1808 memset (&lookup_data, 0, sizeof (lookup_data));
1809 lookup_data.name = name;
1810 lookup_data.domain = domain;
1811 gdbarch_iterate_over_objfiles_in_search_order
1812 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1813 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1815 return lookup_data.result;
1819 symbol_matches_domain (enum language symbol_language,
1820 domain_enum symbol_domain,
1823 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1824 A Java class declaration also defines a typedef for the class.
1825 Similarly, any Ada type declaration implicitly defines a typedef. */
1826 if (symbol_language == language_cplus
1827 || symbol_language == language_d
1828 || symbol_language == language_java
1829 || symbol_language == language_ada)
1831 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1832 && symbol_domain == STRUCT_DOMAIN)
1835 /* For all other languages, strict match is required. */
1836 return (symbol_domain == domain);
1839 /* Look up a type named NAME in the struct_domain. The type returned
1840 must not be opaque -- i.e., must have at least one field
1844 lookup_transparent_type (const char *name)
1846 return current_language->la_lookup_transparent_type (name);
1849 /* A helper for basic_lookup_transparent_type that interfaces with the
1850 "quick" symbol table functions. */
1852 static struct type *
1853 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1856 struct symtab *symtab;
1857 struct blockvector *bv;
1858 struct block *block;
1863 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1867 bv = BLOCKVECTOR (symtab);
1868 block = BLOCKVECTOR_BLOCK (bv, kind);
1869 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1871 error_in_psymtab_expansion (kind, name, symtab);
1873 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1874 return SYMBOL_TYPE (sym);
1879 /* The standard implementation of lookup_transparent_type. This code
1880 was modeled on lookup_symbol -- the parts not relevant to looking
1881 up types were just left out. In particular it's assumed here that
1882 types are available in struct_domain and only at file-static or
1886 basic_lookup_transparent_type (const char *name)
1889 struct symtab *s = NULL;
1890 struct blockvector *bv;
1891 struct objfile *objfile;
1892 struct block *block;
1895 /* Now search all the global symbols. Do the symtab's first, then
1896 check the psymtab's. If a psymtab indicates the existence
1897 of the desired name as a global, then do psymtab-to-symtab
1898 conversion on the fly and return the found symbol. */
1900 ALL_OBJFILES (objfile)
1902 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1904 bv = BLOCKVECTOR (s);
1905 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1906 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1907 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1909 return SYMBOL_TYPE (sym);
1914 ALL_OBJFILES (objfile)
1916 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1921 /* Now search the static file-level symbols.
1922 Not strictly correct, but more useful than an error.
1923 Do the symtab's first, then
1924 check the psymtab's. If a psymtab indicates the existence
1925 of the desired name as a file-level static, then do psymtab-to-symtab
1926 conversion on the fly and return the found symbol. */
1928 ALL_OBJFILES (objfile)
1930 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1932 bv = BLOCKVECTOR (s);
1933 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1934 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1935 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1937 return SYMBOL_TYPE (sym);
1942 ALL_OBJFILES (objfile)
1944 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1949 return (struct type *) 0;
1952 /* Find the name of the file containing main(). */
1953 /* FIXME: What about languages without main() or specially linked
1954 executables that have no main() ? */
1957 find_main_filename (void)
1959 struct objfile *objfile;
1960 char *name = main_name ();
1962 ALL_OBJFILES (objfile)
1968 result = objfile->sf->qf->find_symbol_file (objfile, name);
1975 /* Search BLOCK for symbol NAME in DOMAIN.
1977 Note that if NAME is the demangled form of a C++ symbol, we will fail
1978 to find a match during the binary search of the non-encoded names, but
1979 for now we don't worry about the slight inefficiency of looking for
1980 a match we'll never find, since it will go pretty quick. Once the
1981 binary search terminates, we drop through and do a straight linear
1982 search on the symbols. Each symbol which is marked as being a ObjC/C++
1983 symbol (language_cplus or language_objc set) has both the encoded and
1984 non-encoded names tested for a match. */
1987 lookup_block_symbol (const struct block *block, const char *name,
1988 const domain_enum domain)
1990 struct block_iterator iter;
1993 if (!BLOCK_FUNCTION (block))
1995 for (sym = block_iter_name_first (block, name, &iter);
1997 sym = block_iter_name_next (name, &iter))
1999 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2000 SYMBOL_DOMAIN (sym), domain))
2007 /* Note that parameter symbols do not always show up last in the
2008 list; this loop makes sure to take anything else other than
2009 parameter symbols first; it only uses parameter symbols as a
2010 last resort. Note that this only takes up extra computation
2013 struct symbol *sym_found = NULL;
2015 for (sym = block_iter_name_first (block, name, &iter);
2017 sym = block_iter_name_next (name, &iter))
2019 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2020 SYMBOL_DOMAIN (sym), domain))
2023 if (!SYMBOL_IS_ARGUMENT (sym))
2029 return (sym_found); /* Will be NULL if not found. */
2033 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2035 For each symbol that matches, CALLBACK is called. The symbol and
2036 DATA are passed to the callback.
2038 If CALLBACK returns zero, the iteration ends. Otherwise, the
2039 search continues. */
2042 iterate_over_symbols (const struct block *block, const char *name,
2043 const domain_enum domain,
2044 symbol_found_callback_ftype *callback,
2047 struct block_iterator iter;
2050 for (sym = block_iter_name_first (block, name, &iter);
2052 sym = block_iter_name_next (name, &iter))
2054 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2055 SYMBOL_DOMAIN (sym), domain))
2057 if (!callback (sym, data))
2063 /* Find the symtab associated with PC and SECTION. Look through the
2064 psymtabs and read in another symtab if necessary. */
2067 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2070 struct blockvector *bv;
2071 struct symtab *s = NULL;
2072 struct symtab *best_s = NULL;
2073 struct objfile *objfile;
2074 CORE_ADDR distance = 0;
2075 struct minimal_symbol *msymbol;
2077 /* If we know that this is not a text address, return failure. This is
2078 necessary because we loop based on the block's high and low code
2079 addresses, which do not include the data ranges, and because
2080 we call find_pc_sect_psymtab which has a similar restriction based
2081 on the partial_symtab's texthigh and textlow. */
2082 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
2084 && (MSYMBOL_TYPE (msymbol) == mst_data
2085 || MSYMBOL_TYPE (msymbol) == mst_bss
2086 || MSYMBOL_TYPE (msymbol) == mst_abs
2087 || MSYMBOL_TYPE (msymbol) == mst_file_data
2088 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2091 /* Search all symtabs for the one whose file contains our address, and which
2092 is the smallest of all the ones containing the address. This is designed
2093 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2094 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2095 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2097 This happens for native ecoff format, where code from included files
2098 gets its own symtab. The symtab for the included file should have
2099 been read in already via the dependency mechanism.
2100 It might be swifter to create several symtabs with the same name
2101 like xcoff does (I'm not sure).
2103 It also happens for objfiles that have their functions reordered.
2104 For these, the symtab we are looking for is not necessarily read in. */
2106 ALL_PRIMARY_SYMTABS (objfile, s)
2108 bv = BLOCKVECTOR (s);
2109 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2111 if (BLOCK_START (b) <= pc
2112 && BLOCK_END (b) > pc
2114 || BLOCK_END (b) - BLOCK_START (b) < distance))
2116 /* For an objfile that has its functions reordered,
2117 find_pc_psymtab will find the proper partial symbol table
2118 and we simply return its corresponding symtab. */
2119 /* In order to better support objfiles that contain both
2120 stabs and coff debugging info, we continue on if a psymtab
2122 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2124 struct symtab *result;
2127 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2136 struct block_iterator iter;
2137 struct symbol *sym = NULL;
2139 ALL_BLOCK_SYMBOLS (b, iter, sym)
2141 fixup_symbol_section (sym, objfile);
2142 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2147 continue; /* No symbol in this symtab matches
2150 distance = BLOCK_END (b) - BLOCK_START (b);
2158 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2160 ALL_OBJFILES (objfile)
2162 struct symtab *result;
2166 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2177 /* Find the symtab associated with PC. Look through the psymtabs and read
2178 in another symtab if necessary. Backward compatibility, no section. */
2181 find_pc_symtab (CORE_ADDR pc)
2183 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2187 /* Find the source file and line number for a given PC value and SECTION.
2188 Return a structure containing a symtab pointer, a line number,
2189 and a pc range for the entire source line.
2190 The value's .pc field is NOT the specified pc.
2191 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2192 use the line that ends there. Otherwise, in that case, the line
2193 that begins there is used. */
2195 /* The big complication here is that a line may start in one file, and end just
2196 before the start of another file. This usually occurs when you #include
2197 code in the middle of a subroutine. To properly find the end of a line's PC
2198 range, we must search all symtabs associated with this compilation unit, and
2199 find the one whose first PC is closer than that of the next line in this
2202 /* If it's worth the effort, we could be using a binary search. */
2204 struct symtab_and_line
2205 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2208 struct linetable *l;
2211 struct linetable_entry *item;
2212 struct symtab_and_line val;
2213 struct blockvector *bv;
2214 struct bound_minimal_symbol msymbol;
2215 struct minimal_symbol *mfunsym;
2216 struct objfile *objfile;
2218 /* Info on best line seen so far, and where it starts, and its file. */
2220 struct linetable_entry *best = NULL;
2221 CORE_ADDR best_end = 0;
2222 struct symtab *best_symtab = 0;
2224 /* Store here the first line number
2225 of a file which contains the line at the smallest pc after PC.
2226 If we don't find a line whose range contains PC,
2227 we will use a line one less than this,
2228 with a range from the start of that file to the first line's pc. */
2229 struct linetable_entry *alt = NULL;
2231 /* Info on best line seen in this file. */
2233 struct linetable_entry *prev;
2235 /* If this pc is not from the current frame,
2236 it is the address of the end of a call instruction.
2237 Quite likely that is the start of the following statement.
2238 But what we want is the statement containing the instruction.
2239 Fudge the pc to make sure we get that. */
2241 init_sal (&val); /* initialize to zeroes */
2243 val.pspace = current_program_space;
2245 /* It's tempting to assume that, if we can't find debugging info for
2246 any function enclosing PC, that we shouldn't search for line
2247 number info, either. However, GAS can emit line number info for
2248 assembly files --- very helpful when debugging hand-written
2249 assembly code. In such a case, we'd have no debug info for the
2250 function, but we would have line info. */
2255 /* elz: added this because this function returned the wrong
2256 information if the pc belongs to a stub (import/export)
2257 to call a shlib function. This stub would be anywhere between
2258 two functions in the target, and the line info was erroneously
2259 taken to be the one of the line before the pc. */
2261 /* RT: Further explanation:
2263 * We have stubs (trampolines) inserted between procedures.
2265 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2266 * exists in the main image.
2268 * In the minimal symbol table, we have a bunch of symbols
2269 * sorted by start address. The stubs are marked as "trampoline",
2270 * the others appear as text. E.g.:
2272 * Minimal symbol table for main image
2273 * main: code for main (text symbol)
2274 * shr1: stub (trampoline symbol)
2275 * foo: code for foo (text symbol)
2277 * Minimal symbol table for "shr1" image:
2279 * shr1: code for shr1 (text symbol)
2282 * So the code below is trying to detect if we are in the stub
2283 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2284 * and if found, do the symbolization from the real-code address
2285 * rather than the stub address.
2287 * Assumptions being made about the minimal symbol table:
2288 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2289 * if we're really in the trampoline.s If we're beyond it (say
2290 * we're in "foo" in the above example), it'll have a closer
2291 * symbol (the "foo" text symbol for example) and will not
2292 * return the trampoline.
2293 * 2. lookup_minimal_symbol_text() will find a real text symbol
2294 * corresponding to the trampoline, and whose address will
2295 * be different than the trampoline address. I put in a sanity
2296 * check for the address being the same, to avoid an
2297 * infinite recursion.
2299 msymbol = lookup_minimal_symbol_by_pc (pc);
2300 if (msymbol.minsym != NULL)
2301 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2304 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym),
2306 if (mfunsym == NULL)
2307 /* I eliminated this warning since it is coming out
2308 * in the following situation:
2309 * gdb shmain // test program with shared libraries
2310 * (gdb) break shr1 // function in shared lib
2311 * Warning: In stub for ...
2312 * In the above situation, the shared lib is not loaded yet,
2313 * so of course we can't find the real func/line info,
2314 * but the "break" still works, and the warning is annoying.
2315 * So I commented out the warning. RT */
2316 /* warning ("In stub for %s; unable to find real function/line info",
2317 SYMBOL_LINKAGE_NAME (msymbol)); */
2320 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2321 == SYMBOL_VALUE_ADDRESS (msymbol.minsym))
2322 /* Avoid infinite recursion */
2323 /* See above comment about why warning is commented out. */
2324 /* warning ("In stub for %s; unable to find real function/line info",
2325 SYMBOL_LINKAGE_NAME (msymbol)); */
2329 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2333 s = find_pc_sect_symtab (pc, section);
2336 /* If no symbol information, return previous pc. */
2343 bv = BLOCKVECTOR (s);
2344 objfile = s->objfile;
2346 /* Look at all the symtabs that share this blockvector.
2347 They all have the same apriori range, that we found was right;
2348 but they have different line tables. */
2350 ALL_OBJFILE_SYMTABS (objfile, s)
2352 if (BLOCKVECTOR (s) != bv)
2355 /* Find the best line in this symtab. */
2362 /* I think len can be zero if the symtab lacks line numbers
2363 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2364 I'm not sure which, and maybe it depends on the symbol
2370 item = l->item; /* Get first line info. */
2372 /* Is this file's first line closer than the first lines of other files?
2373 If so, record this file, and its first line, as best alternate. */
2374 if (item->pc > pc && (!alt || item->pc < alt->pc))
2377 for (i = 0; i < len; i++, item++)
2379 /* Leave prev pointing to the linetable entry for the last line
2380 that started at or before PC. */
2387 /* At this point, prev points at the line whose start addr is <= pc, and
2388 item points at the next line. If we ran off the end of the linetable
2389 (pc >= start of the last line), then prev == item. If pc < start of
2390 the first line, prev will not be set. */
2392 /* Is this file's best line closer than the best in the other files?
2393 If so, record this file, and its best line, as best so far. Don't
2394 save prev if it represents the end of a function (i.e. line number
2395 0) instead of a real line. */
2397 if (prev && prev->line && (!best || prev->pc > best->pc))
2402 /* Discard BEST_END if it's before the PC of the current BEST. */
2403 if (best_end <= best->pc)
2407 /* If another line (denoted by ITEM) is in the linetable and its
2408 PC is after BEST's PC, but before the current BEST_END, then
2409 use ITEM's PC as the new best_end. */
2410 if (best && i < len && item->pc > best->pc
2411 && (best_end == 0 || best_end > item->pc))
2412 best_end = item->pc;
2417 /* If we didn't find any line number info, just return zeros.
2418 We used to return alt->line - 1 here, but that could be
2419 anywhere; if we don't have line number info for this PC,
2420 don't make some up. */
2423 else if (best->line == 0)
2425 /* If our best fit is in a range of PC's for which no line
2426 number info is available (line number is zero) then we didn't
2427 find any valid line information. */
2432 val.symtab = best_symtab;
2433 val.line = best->line;
2435 if (best_end && (!alt || best_end < alt->pc))
2440 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2442 val.section = section;
2446 /* Backward compatibility (no section). */
2448 struct symtab_and_line
2449 find_pc_line (CORE_ADDR pc, int notcurrent)
2451 struct obj_section *section;
2453 section = find_pc_overlay (pc);
2454 if (pc_in_unmapped_range (pc, section))
2455 pc = overlay_mapped_address (pc, section);
2456 return find_pc_sect_line (pc, section, notcurrent);
2459 /* Find line number LINE in any symtab whose name is the same as
2462 If found, return the symtab that contains the linetable in which it was
2463 found, set *INDEX to the index in the linetable of the best entry
2464 found, and set *EXACT_MATCH nonzero if the value returned is an
2467 If not found, return NULL. */
2470 find_line_symtab (struct symtab *symtab, int line,
2471 int *index, int *exact_match)
2473 int exact = 0; /* Initialized here to avoid a compiler warning. */
2475 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2479 struct linetable *best_linetable;
2480 struct symtab *best_symtab;
2482 /* First try looking it up in the given symtab. */
2483 best_linetable = LINETABLE (symtab);
2484 best_symtab = symtab;
2485 best_index = find_line_common (best_linetable, line, &exact, 0);
2486 if (best_index < 0 || !exact)
2488 /* Didn't find an exact match. So we better keep looking for
2489 another symtab with the same name. In the case of xcoff,
2490 multiple csects for one source file (produced by IBM's FORTRAN
2491 compiler) produce multiple symtabs (this is unavoidable
2492 assuming csects can be at arbitrary places in memory and that
2493 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2495 /* BEST is the smallest linenumber > LINE so far seen,
2496 or 0 if none has been seen so far.
2497 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2500 struct objfile *objfile;
2503 if (best_index >= 0)
2504 best = best_linetable->item[best_index].line;
2508 ALL_OBJFILES (objfile)
2511 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2512 symtab_to_fullname (symtab));
2515 ALL_SYMTABS (objfile, s)
2517 struct linetable *l;
2520 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2522 if (FILENAME_CMP (symtab_to_fullname (symtab),
2523 symtab_to_fullname (s)) != 0)
2526 ind = find_line_common (l, line, &exact, 0);
2536 if (best == 0 || l->item[ind].line < best)
2538 best = l->item[ind].line;
2551 *index = best_index;
2553 *exact_match = exact;
2558 /* Given SYMTAB, returns all the PCs function in the symtab that
2559 exactly match LINE. Returns NULL if there are no exact matches,
2560 but updates BEST_ITEM in this case. */
2563 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2564 struct linetable_entry **best_item)
2567 VEC (CORE_ADDR) *result = NULL;
2569 /* First, collect all the PCs that are at this line. */
2575 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2581 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2583 if (*best_item == NULL || item->line < (*best_item)->line)
2589 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2597 /* Set the PC value for a given source file and line number and return true.
2598 Returns zero for invalid line number (and sets the PC to 0).
2599 The source file is specified with a struct symtab. */
2602 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2604 struct linetable *l;
2611 symtab = find_line_symtab (symtab, line, &ind, NULL);
2614 l = LINETABLE (symtab);
2615 *pc = l->item[ind].pc;
2622 /* Find the range of pc values in a line.
2623 Store the starting pc of the line into *STARTPTR
2624 and the ending pc (start of next line) into *ENDPTR.
2625 Returns 1 to indicate success.
2626 Returns 0 if could not find the specified line. */
2629 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2632 CORE_ADDR startaddr;
2633 struct symtab_and_line found_sal;
2636 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2639 /* This whole function is based on address. For example, if line 10 has
2640 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2641 "info line *0x123" should say the line goes from 0x100 to 0x200
2642 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2643 This also insures that we never give a range like "starts at 0x134
2644 and ends at 0x12c". */
2646 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2647 if (found_sal.line != sal.line)
2649 /* The specified line (sal) has zero bytes. */
2650 *startptr = found_sal.pc;
2651 *endptr = found_sal.pc;
2655 *startptr = found_sal.pc;
2656 *endptr = found_sal.end;
2661 /* Given a line table and a line number, return the index into the line
2662 table for the pc of the nearest line whose number is >= the specified one.
2663 Return -1 if none is found. The value is >= 0 if it is an index.
2664 START is the index at which to start searching the line table.
2666 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2669 find_line_common (struct linetable *l, int lineno,
2670 int *exact_match, int start)
2675 /* BEST is the smallest linenumber > LINENO so far seen,
2676 or 0 if none has been seen so far.
2677 BEST_INDEX identifies the item for it. */
2679 int best_index = -1;
2690 for (i = start; i < len; i++)
2692 struct linetable_entry *item = &(l->item[i]);
2694 if (item->line == lineno)
2696 /* Return the first (lowest address) entry which matches. */
2701 if (item->line > lineno && (best == 0 || item->line < best))
2708 /* If we got here, we didn't get an exact match. */
2713 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2715 struct symtab_and_line sal;
2717 sal = find_pc_line (pc, 0);
2720 return sal.symtab != 0;
2723 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2724 address for that function that has an entry in SYMTAB's line info
2725 table. If such an entry cannot be found, return FUNC_ADDR
2729 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2731 CORE_ADDR func_start, func_end;
2732 struct linetable *l;
2735 /* Give up if this symbol has no lineinfo table. */
2736 l = LINETABLE (symtab);
2740 /* Get the range for the function's PC values, or give up if we
2741 cannot, for some reason. */
2742 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2745 /* Linetable entries are ordered by PC values, see the commentary in
2746 symtab.h where `struct linetable' is defined. Thus, the first
2747 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2748 address we are looking for. */
2749 for (i = 0; i < l->nitems; i++)
2751 struct linetable_entry *item = &(l->item[i]);
2753 /* Don't use line numbers of zero, they mark special entries in
2754 the table. See the commentary on symtab.h before the
2755 definition of struct linetable. */
2756 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2763 /* Given a function symbol SYM, find the symtab and line for the start
2765 If the argument FUNFIRSTLINE is nonzero, we want the first line
2766 of real code inside the function. */
2768 struct symtab_and_line
2769 find_function_start_sal (struct symbol *sym, int funfirstline)
2771 struct symtab_and_line sal;
2773 fixup_symbol_section (sym, NULL);
2774 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2775 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2777 /* We always should have a line for the function start address.
2778 If we don't, something is odd. Create a plain SAL refering
2779 just the PC and hope that skip_prologue_sal (if requested)
2780 can find a line number for after the prologue. */
2781 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2784 sal.pspace = current_program_space;
2785 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2786 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2790 skip_prologue_sal (&sal);
2795 /* Adjust SAL to the first instruction past the function prologue.
2796 If the PC was explicitly specified, the SAL is not changed.
2797 If the line number was explicitly specified, at most the SAL's PC
2798 is updated. If SAL is already past the prologue, then do nothing. */
2801 skip_prologue_sal (struct symtab_and_line *sal)
2804 struct symtab_and_line start_sal;
2805 struct cleanup *old_chain;
2806 CORE_ADDR pc, saved_pc;
2807 struct obj_section *section;
2809 struct objfile *objfile;
2810 struct gdbarch *gdbarch;
2811 struct block *b, *function_block;
2812 int force_skip, skip;
2814 /* Do not change the SAL if PC was specified explicitly. */
2815 if (sal->explicit_pc)
2818 old_chain = save_current_space_and_thread ();
2819 switch_to_program_space_and_thread (sal->pspace);
2821 sym = find_pc_sect_function (sal->pc, sal->section);
2824 fixup_symbol_section (sym, NULL);
2826 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2827 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2828 name = SYMBOL_LINKAGE_NAME (sym);
2829 objfile = SYMBOL_SYMTAB (sym)->objfile;
2833 struct minimal_symbol *msymbol
2834 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section).minsym;
2836 if (msymbol == NULL)
2838 do_cleanups (old_chain);
2842 objfile = msymbol_objfile (msymbol);
2843 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2844 section = SYMBOL_OBJ_SECTION (objfile, msymbol);
2845 name = SYMBOL_LINKAGE_NAME (msymbol);
2848 gdbarch = get_objfile_arch (objfile);
2850 /* Process the prologue in two passes. In the first pass try to skip the
2851 prologue (SKIP is true) and verify there is a real need for it (indicated
2852 by FORCE_SKIP). If no such reason was found run a second pass where the
2853 prologue is not skipped (SKIP is false). */
2858 /* Be conservative - allow direct PC (without skipping prologue) only if we
2859 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2860 have to be set by the caller so we use SYM instead. */
2861 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2869 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2870 so that gdbarch_skip_prologue has something unique to work on. */
2871 if (section_is_overlay (section) && !section_is_mapped (section))
2872 pc = overlay_unmapped_address (pc, section);
2874 /* Skip "first line" of function (which is actually its prologue). */
2875 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2877 pc = gdbarch_skip_prologue (gdbarch, pc);
2879 /* For overlays, map pc back into its mapped VMA range. */
2880 pc = overlay_mapped_address (pc, section);
2882 /* Calculate line number. */
2883 start_sal = find_pc_sect_line (pc, section, 0);
2885 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2886 line is still part of the same function. */
2887 if (skip && start_sal.pc != pc
2888 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2889 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2890 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2891 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2893 /* First pc of next line */
2895 /* Recalculate the line number (might not be N+1). */
2896 start_sal = find_pc_sect_line (pc, section, 0);
2899 /* On targets with executable formats that don't have a concept of
2900 constructors (ELF with .init has, PE doesn't), gcc emits a call
2901 to `__main' in `main' between the prologue and before user
2903 if (gdbarch_skip_main_prologue_p (gdbarch)
2904 && name && strcmp_iw (name, "main") == 0)
2906 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2907 /* Recalculate the line number (might not be N+1). */
2908 start_sal = find_pc_sect_line (pc, section, 0);
2912 while (!force_skip && skip--);
2914 /* If we still don't have a valid source line, try to find the first
2915 PC in the lineinfo table that belongs to the same function. This
2916 happens with COFF debug info, which does not seem to have an
2917 entry in lineinfo table for the code after the prologue which has
2918 no direct relation to source. For example, this was found to be
2919 the case with the DJGPP target using "gcc -gcoff" when the
2920 compiler inserted code after the prologue to make sure the stack
2922 if (!force_skip && sym && start_sal.symtab == NULL)
2924 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2925 /* Recalculate the line number. */
2926 start_sal = find_pc_sect_line (pc, section, 0);
2929 do_cleanups (old_chain);
2931 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2932 forward SAL to the end of the prologue. */
2937 sal->section = section;
2939 /* Unless the explicit_line flag was set, update the SAL line
2940 and symtab to correspond to the modified PC location. */
2941 if (sal->explicit_line)
2944 sal->symtab = start_sal.symtab;
2945 sal->line = start_sal.line;
2946 sal->end = start_sal.end;
2948 /* Check if we are now inside an inlined function. If we can,
2949 use the call site of the function instead. */
2950 b = block_for_pc_sect (sal->pc, sal->section);
2951 function_block = NULL;
2954 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2956 else if (BLOCK_FUNCTION (b) != NULL)
2958 b = BLOCK_SUPERBLOCK (b);
2960 if (function_block != NULL
2961 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2963 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2964 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2968 /* If P is of the form "operator[ \t]+..." where `...' is
2969 some legitimate operator text, return a pointer to the
2970 beginning of the substring of the operator text.
2971 Otherwise, return "". */
2974 operator_chars (char *p, char **end)
2977 if (strncmp (p, "operator", 8))
2981 /* Don't get faked out by `operator' being part of a longer
2983 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2986 /* Allow some whitespace between `operator' and the operator symbol. */
2987 while (*p == ' ' || *p == '\t')
2990 /* Recognize 'operator TYPENAME'. */
2992 if (isalpha (*p) || *p == '_' || *p == '$')
2996 while (isalnum (*q) || *q == '_' || *q == '$')
3005 case '\\': /* regexp quoting */
3008 if (p[2] == '=') /* 'operator\*=' */
3010 else /* 'operator\*' */
3014 else if (p[1] == '[')
3017 error (_("mismatched quoting on brackets, "
3018 "try 'operator\\[\\]'"));
3019 else if (p[2] == '\\' && p[3] == ']')
3021 *end = p + 4; /* 'operator\[\]' */
3025 error (_("nothing is allowed between '[' and ']'"));
3029 /* Gratuitous qoute: skip it and move on. */
3051 if (p[0] == '-' && p[1] == '>')
3053 /* Struct pointer member operator 'operator->'. */
3056 *end = p + 3; /* 'operator->*' */
3059 else if (p[2] == '\\')
3061 *end = p + 4; /* Hopefully 'operator->\*' */
3066 *end = p + 2; /* 'operator->' */
3070 if (p[1] == '=' || p[1] == p[0])
3081 error (_("`operator ()' must be specified "
3082 "without whitespace in `()'"));
3087 error (_("`operator ?:' must be specified "
3088 "without whitespace in `?:'"));
3093 error (_("`operator []' must be specified "
3094 "without whitespace in `[]'"));
3098 error (_("`operator %s' not supported"), p);
3107 /* Cache to watch for file names already seen by filename_seen. */
3109 struct filename_seen_cache
3111 /* Table of files seen so far. */
3113 /* Initial size of the table. It automagically grows from here. */
3114 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3117 /* filename_seen_cache constructor. */
3119 static struct filename_seen_cache *
3120 create_filename_seen_cache (void)
3122 struct filename_seen_cache *cache;
3124 cache = XNEW (struct filename_seen_cache);
3125 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3126 filename_hash, filename_eq,
3127 NULL, xcalloc, xfree);
3132 /* Empty the cache, but do not delete it. */
3135 clear_filename_seen_cache (struct filename_seen_cache *cache)
3137 htab_empty (cache->tab);
3140 /* filename_seen_cache destructor.
3141 This takes a void * argument as it is generally used as a cleanup. */
3144 delete_filename_seen_cache (void *ptr)
3146 struct filename_seen_cache *cache = ptr;
3148 htab_delete (cache->tab);
3152 /* If FILE is not already in the table of files in CACHE, return zero;
3153 otherwise return non-zero. Optionally add FILE to the table if ADD
3156 NOTE: We don't manage space for FILE, we assume FILE lives as long
3157 as the caller needs. */
3160 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3164 /* Is FILE in tab? */
3165 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3169 /* No; maybe add it to tab. */
3171 *slot = (char *) file;
3176 /* Data structure to maintain printing state for output_source_filename. */
3178 struct output_source_filename_data
3180 /* Cache of what we've seen so far. */
3181 struct filename_seen_cache *filename_seen_cache;
3183 /* Flag of whether we're printing the first one. */
3187 /* Slave routine for sources_info. Force line breaks at ,'s.
3188 NAME is the name to print.
3189 DATA contains the state for printing and watching for duplicates. */
3192 output_source_filename (const char *name,
3193 struct output_source_filename_data *data)
3195 /* Since a single source file can result in several partial symbol
3196 tables, we need to avoid printing it more than once. Note: if
3197 some of the psymtabs are read in and some are not, it gets
3198 printed both under "Source files for which symbols have been
3199 read" and "Source files for which symbols will be read in on
3200 demand". I consider this a reasonable way to deal with the
3201 situation. I'm not sure whether this can also happen for
3202 symtabs; it doesn't hurt to check. */
3204 /* Was NAME already seen? */
3205 if (filename_seen (data->filename_seen_cache, name, 1))
3207 /* Yes; don't print it again. */
3211 /* No; print it and reset *FIRST. */
3213 printf_filtered (", ");
3217 fputs_filtered (name, gdb_stdout);
3220 /* A callback for map_partial_symbol_filenames. */
3223 output_partial_symbol_filename (const char *filename, const char *fullname,
3226 output_source_filename (fullname ? fullname : filename, data);
3230 sources_info (char *ignore, int from_tty)
3233 struct objfile *objfile;
3234 struct output_source_filename_data data;
3235 struct cleanup *cleanups;
3237 if (!have_full_symbols () && !have_partial_symbols ())
3239 error (_("No symbol table is loaded. Use the \"file\" command."));
3242 data.filename_seen_cache = create_filename_seen_cache ();
3243 cleanups = make_cleanup (delete_filename_seen_cache,
3244 data.filename_seen_cache);
3246 printf_filtered ("Source files for which symbols have been read in:\n\n");
3249 ALL_SYMTABS (objfile, s)
3251 const char *fullname = symtab_to_fullname (s);
3253 output_source_filename (fullname, &data);
3255 printf_filtered ("\n\n");
3257 printf_filtered ("Source files for which symbols "
3258 "will be read in on demand:\n\n");
3260 clear_filename_seen_cache (data.filename_seen_cache);
3262 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3263 1 /*need_fullname*/);
3264 printf_filtered ("\n");
3266 do_cleanups (cleanups);
3269 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3270 non-zero compare only lbasename of FILES. */
3273 file_matches (const char *file, char *files[], int nfiles, int basenames)
3277 if (file != NULL && nfiles != 0)
3279 for (i = 0; i < nfiles; i++)
3281 if (compare_filenames_for_search (file, (basenames
3282 ? lbasename (files[i])
3287 else if (nfiles == 0)
3292 /* Free any memory associated with a search. */
3295 free_search_symbols (struct symbol_search *symbols)
3297 struct symbol_search *p;
3298 struct symbol_search *next;
3300 for (p = symbols; p != NULL; p = next)
3308 do_free_search_symbols_cleanup (void *symbols)
3310 free_search_symbols (symbols);
3314 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3316 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3319 /* Helper function for sort_search_symbols and qsort. Can only
3320 sort symbols, not minimal symbols. */
3323 compare_search_syms (const void *sa, const void *sb)
3325 struct symbol_search **sym_a = (struct symbol_search **) sa;
3326 struct symbol_search **sym_b = (struct symbol_search **) sb;
3328 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3329 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3332 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3333 prevtail where it is, but update its next pointer to point to
3334 the first of the sorted symbols. */
3336 static struct symbol_search *
3337 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3339 struct symbol_search **symbols, *symp, *old_next;
3342 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3344 symp = prevtail->next;
3345 for (i = 0; i < nfound; i++)
3350 /* Generally NULL. */
3353 qsort (symbols, nfound, sizeof (struct symbol_search *),
3354 compare_search_syms);
3357 for (i = 0; i < nfound; i++)
3359 symp->next = symbols[i];
3362 symp->next = old_next;
3368 /* An object of this type is passed as the user_data to the
3369 expand_symtabs_matching method. */
3370 struct search_symbols_data
3375 /* It is true if PREG contains valid data, false otherwise. */
3376 unsigned preg_p : 1;
3380 /* A callback for expand_symtabs_matching. */
3383 search_symbols_file_matches (const char *filename, void *user_data,
3386 struct search_symbols_data *data = user_data;
3388 return file_matches (filename, data->files, data->nfiles, basenames);
3391 /* A callback for expand_symtabs_matching. */
3394 search_symbols_name_matches (const char *symname, void *user_data)
3396 struct search_symbols_data *data = user_data;
3398 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3401 /* Search the symbol table for matches to the regular expression REGEXP,
3402 returning the results in *MATCHES.
3404 Only symbols of KIND are searched:
3405 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3406 and constants (enums)
3407 FUNCTIONS_DOMAIN - search all functions
3408 TYPES_DOMAIN - search all type names
3409 ALL_DOMAIN - an internal error for this function
3411 free_search_symbols should be called when *MATCHES is no longer needed.
3413 The results are sorted locally; each symtab's global and static blocks are
3414 separately alphabetized. */
3417 search_symbols (char *regexp, enum search_domain kind,
3418 int nfiles, char *files[],
3419 struct symbol_search **matches)
3422 struct blockvector *bv;
3425 struct block_iterator iter;
3427 struct objfile *objfile;
3428 struct minimal_symbol *msymbol;
3430 static const enum minimal_symbol_type types[]
3431 = {mst_data, mst_text, mst_abs};
3432 static const enum minimal_symbol_type types2[]
3433 = {mst_bss, mst_file_text, mst_abs};
3434 static const enum minimal_symbol_type types3[]
3435 = {mst_file_data, mst_solib_trampoline, mst_abs};
3436 static const enum minimal_symbol_type types4[]
3437 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3438 enum minimal_symbol_type ourtype;
3439 enum minimal_symbol_type ourtype2;
3440 enum minimal_symbol_type ourtype3;
3441 enum minimal_symbol_type ourtype4;
3442 struct symbol_search *sr;
3443 struct symbol_search *psr;
3444 struct symbol_search *tail;
3445 struct search_symbols_data datum;
3447 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3448 CLEANUP_CHAIN is freed only in the case of an error. */
3449 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3450 struct cleanup *retval_chain;
3452 gdb_assert (kind <= TYPES_DOMAIN);
3454 ourtype = types[kind];
3455 ourtype2 = types2[kind];
3456 ourtype3 = types3[kind];
3457 ourtype4 = types4[kind];
3459 sr = *matches = NULL;
3465 /* Make sure spacing is right for C++ operators.
3466 This is just a courtesy to make the matching less sensitive
3467 to how many spaces the user leaves between 'operator'
3468 and <TYPENAME> or <OPERATOR>. */
3470 char *opname = operator_chars (regexp, &opend);
3475 int fix = -1; /* -1 means ok; otherwise number of
3478 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3480 /* There should 1 space between 'operator' and 'TYPENAME'. */
3481 if (opname[-1] != ' ' || opname[-2] == ' ')
3486 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3487 if (opname[-1] == ' ')
3490 /* If wrong number of spaces, fix it. */
3493 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3495 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3500 errcode = regcomp (&datum.preg, regexp,
3501 REG_NOSUB | (case_sensitivity == case_sensitive_off
3505 char *err = get_regcomp_error (errcode, &datum.preg);
3507 make_cleanup (xfree, err);
3508 error (_("Invalid regexp (%s): %s"), err, regexp);
3511 make_regfree_cleanup (&datum.preg);
3514 /* Search through the partial symtabs *first* for all symbols
3515 matching the regexp. That way we don't have to reproduce all of
3516 the machinery below. */
3518 datum.nfiles = nfiles;
3519 datum.files = files;
3520 ALL_OBJFILES (objfile)
3523 objfile->sf->qf->expand_symtabs_matching (objfile,
3526 : search_symbols_file_matches),
3527 search_symbols_name_matches,
3532 retval_chain = make_cleanup (null_cleanup, NULL);
3534 /* Here, we search through the minimal symbol tables for functions
3535 and variables that match, and force their symbols to be read.
3536 This is in particular necessary for demangled variable names,
3537 which are no longer put into the partial symbol tables.
3538 The symbol will then be found during the scan of symtabs below.
3540 For functions, find_pc_symtab should succeed if we have debug info
3541 for the function, for variables we have to call
3542 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3544 If the lookup fails, set found_misc so that we will rescan to print
3545 any matching symbols without debug info.
3546 We only search the objfile the msymbol came from, we no longer search
3547 all objfiles. In large programs (1000s of shared libs) searching all
3548 objfiles is not worth the pain. */
3550 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3552 ALL_MSYMBOLS (objfile, msymbol)
3556 if (msymbol->created_by_gdb)
3559 if (MSYMBOL_TYPE (msymbol) == ourtype
3560 || MSYMBOL_TYPE (msymbol) == ourtype2
3561 || MSYMBOL_TYPE (msymbol) == ourtype3
3562 || MSYMBOL_TYPE (msymbol) == ourtype4)
3565 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3568 /* Note: An important side-effect of these lookup functions
3569 is to expand the symbol table if msymbol is found, for the
3570 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3571 if (kind == FUNCTIONS_DOMAIN
3572 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3573 : (lookup_symbol_in_objfile_from_linkage_name
3574 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3582 ALL_PRIMARY_SYMTABS (objfile, s)
3584 bv = BLOCKVECTOR (s);
3585 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3587 struct symbol_search *prevtail = tail;
3590 b = BLOCKVECTOR_BLOCK (bv, i);
3591 ALL_BLOCK_SYMBOLS (b, iter, sym)
3593 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3597 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3598 a substring of symtab_to_fullname as it may contain "./" etc. */
3599 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3600 || ((basenames_may_differ
3601 || file_matches (lbasename (real_symtab->filename),
3603 && file_matches (symtab_to_fullname (real_symtab),
3606 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3608 && ((kind == VARIABLES_DOMAIN
3609 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3610 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3611 && SYMBOL_CLASS (sym) != LOC_BLOCK
3612 /* LOC_CONST can be used for more than just enums,
3613 e.g., c++ static const members.
3614 We only want to skip enums here. */
3615 && !(SYMBOL_CLASS (sym) == LOC_CONST
3616 && TYPE_CODE (SYMBOL_TYPE (sym))
3618 || (kind == FUNCTIONS_DOMAIN
3619 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3620 || (kind == TYPES_DOMAIN
3621 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3624 psr = (struct symbol_search *)
3625 xmalloc (sizeof (struct symbol_search));
3627 psr->symtab = real_symtab;
3629 psr->msymbol = NULL;
3641 if (prevtail == NULL)
3643 struct symbol_search dummy;
3646 tail = sort_search_symbols (&dummy, nfound);
3649 make_cleanup_free_search_symbols (sr);
3652 tail = sort_search_symbols (prevtail, nfound);
3657 /* If there are no eyes, avoid all contact. I mean, if there are
3658 no debug symbols, then print directly from the msymbol_vector. */
3660 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3662 ALL_MSYMBOLS (objfile, msymbol)
3666 if (msymbol->created_by_gdb)
3669 if (MSYMBOL_TYPE (msymbol) == ourtype
3670 || MSYMBOL_TYPE (msymbol) == ourtype2
3671 || MSYMBOL_TYPE (msymbol) == ourtype3
3672 || MSYMBOL_TYPE (msymbol) == ourtype4)
3675 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3678 /* For functions we can do a quick check of whether the
3679 symbol might be found via find_pc_symtab. */
3680 if (kind != FUNCTIONS_DOMAIN
3681 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3683 if (lookup_symbol_in_objfile_from_linkage_name
3684 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3688 psr = (struct symbol_search *)
3689 xmalloc (sizeof (struct symbol_search));
3691 psr->msymbol = msymbol;
3698 make_cleanup_free_search_symbols (sr);
3710 discard_cleanups (retval_chain);
3711 do_cleanups (old_chain);
3715 /* Helper function for symtab_symbol_info, this function uses
3716 the data returned from search_symbols() to print information
3717 regarding the match to gdb_stdout. */
3720 print_symbol_info (enum search_domain kind,
3721 struct symtab *s, struct symbol *sym,
3722 int block, const char *last)
3724 const char *s_filename = symtab_to_filename_for_display (s);
3726 if (last == NULL || filename_cmp (last, s_filename) != 0)
3728 fputs_filtered ("\nFile ", gdb_stdout);
3729 fputs_filtered (s_filename, gdb_stdout);
3730 fputs_filtered (":\n", gdb_stdout);
3733 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3734 printf_filtered ("static ");
3736 /* Typedef that is not a C++ class. */
3737 if (kind == TYPES_DOMAIN
3738 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3739 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3740 /* variable, func, or typedef-that-is-c++-class. */
3741 else if (kind < TYPES_DOMAIN
3742 || (kind == TYPES_DOMAIN
3743 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3745 type_print (SYMBOL_TYPE (sym),
3746 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3747 ? "" : SYMBOL_PRINT_NAME (sym)),
3750 printf_filtered (";\n");
3754 /* This help function for symtab_symbol_info() prints information
3755 for non-debugging symbols to gdb_stdout. */
3758 print_msymbol_info (struct minimal_symbol *msymbol)
3760 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3763 if (gdbarch_addr_bit (gdbarch) <= 32)
3764 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3765 & (CORE_ADDR) 0xffffffff,
3768 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3770 printf_filtered ("%s %s\n",
3771 tmp, SYMBOL_PRINT_NAME (msymbol));
3774 /* This is the guts of the commands "info functions", "info types", and
3775 "info variables". It calls search_symbols to find all matches and then
3776 print_[m]symbol_info to print out some useful information about the
3780 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3782 static const char * const classnames[] =
3783 {"variable", "function", "type"};
3784 struct symbol_search *symbols;
3785 struct symbol_search *p;
3786 struct cleanup *old_chain;
3787 const char *last_filename = NULL;
3790 gdb_assert (kind <= TYPES_DOMAIN);
3792 /* Must make sure that if we're interrupted, symbols gets freed. */
3793 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3794 old_chain = make_cleanup_free_search_symbols (symbols);
3797 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3798 classnames[kind], regexp);
3800 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3802 for (p = symbols; p != NULL; p = p->next)
3806 if (p->msymbol != NULL)
3810 printf_filtered (_("\nNon-debugging symbols:\n"));
3813 print_msymbol_info (p->msymbol);
3817 print_symbol_info (kind,
3822 last_filename = symtab_to_filename_for_display (p->symtab);
3826 do_cleanups (old_chain);
3830 variables_info (char *regexp, int from_tty)
3832 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3836 functions_info (char *regexp, int from_tty)
3838 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3843 types_info (char *regexp, int from_tty)
3845 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3848 /* Breakpoint all functions matching regular expression. */
3851 rbreak_command_wrapper (char *regexp, int from_tty)
3853 rbreak_command (regexp, from_tty);
3856 /* A cleanup function that calls end_rbreak_breakpoints. */
3859 do_end_rbreak_breakpoints (void *ignore)
3861 end_rbreak_breakpoints ();
3865 rbreak_command (char *regexp, int from_tty)
3867 struct symbol_search *ss;
3868 struct symbol_search *p;
3869 struct cleanup *old_chain;
3870 char *string = NULL;
3872 char **files = NULL, *file_name;
3877 char *colon = strchr (regexp, ':');
3879 if (colon && *(colon + 1) != ':')
3883 colon_index = colon - regexp;
3884 file_name = alloca (colon_index + 1);
3885 memcpy (file_name, regexp, colon_index);
3886 file_name[colon_index--] = 0;
3887 while (isspace (file_name[colon_index]))
3888 file_name[colon_index--] = 0;
3891 regexp = skip_spaces (colon + 1);
3895 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3896 old_chain = make_cleanup_free_search_symbols (ss);
3897 make_cleanup (free_current_contents, &string);
3899 start_rbreak_breakpoints ();
3900 make_cleanup (do_end_rbreak_breakpoints, NULL);
3901 for (p = ss; p != NULL; p = p->next)
3903 if (p->msymbol == NULL)
3905 const char *fullname = symtab_to_fullname (p->symtab);
3907 int newlen = (strlen (fullname)
3908 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3913 string = xrealloc (string, newlen);
3916 strcpy (string, fullname);
3917 strcat (string, ":'");
3918 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3919 strcat (string, "'");
3920 break_command (string, from_tty);
3921 print_symbol_info (FUNCTIONS_DOMAIN,
3925 symtab_to_filename_for_display (p->symtab));
3929 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3933 string = xrealloc (string, newlen);
3936 strcpy (string, "'");
3937 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3938 strcat (string, "'");
3940 break_command (string, from_tty);
3941 printf_filtered ("<function, no debug info> %s;\n",
3942 SYMBOL_PRINT_NAME (p->msymbol));
3946 do_cleanups (old_chain);
3950 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3952 Either sym_text[sym_text_len] != '(' and then we search for any
3953 symbol starting with SYM_TEXT text.
3955 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3956 be terminated at that point. Partial symbol tables do not have parameters
3960 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3962 int (*ncmp) (const char *, const char *, size_t);
3964 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3966 if (ncmp (name, sym_text, sym_text_len) != 0)
3969 if (sym_text[sym_text_len] == '(')
3971 /* User searches for `name(someth...'. Require NAME to be terminated.
3972 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3973 present but accept even parameters presence. In this case this
3974 function is in fact strcmp_iw but whitespace skipping is not supported
3975 for tab completion. */
3977 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3984 /* Free any memory associated with a completion list. */
3987 free_completion_list (VEC (char_ptr) **list_ptr)
3992 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3994 VEC_free (char_ptr, *list_ptr);
3997 /* Callback for make_cleanup. */
4000 do_free_completion_list (void *list)
4002 free_completion_list (list);
4005 /* Helper routine for make_symbol_completion_list. */
4007 static VEC (char_ptr) *return_val;
4009 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4010 completion_list_add_name \
4011 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4013 /* Test to see if the symbol specified by SYMNAME (which is already
4014 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4015 characters. If so, add it to the current completion list. */
4018 completion_list_add_name (const char *symname,
4019 const char *sym_text, int sym_text_len,
4020 const char *text, const char *word)
4022 /* Clip symbols that cannot match. */
4023 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4026 /* We have a match for a completion, so add SYMNAME to the current list
4027 of matches. Note that the name is moved to freshly malloc'd space. */
4032 if (word == sym_text)
4034 new = xmalloc (strlen (symname) + 5);
4035 strcpy (new, symname);
4037 else if (word > sym_text)
4039 /* Return some portion of symname. */
4040 new = xmalloc (strlen (symname) + 5);
4041 strcpy (new, symname + (word - sym_text));
4045 /* Return some of SYM_TEXT plus symname. */
4046 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4047 strncpy (new, word, sym_text - word);
4048 new[sym_text - word] = '\0';
4049 strcat (new, symname);
4052 VEC_safe_push (char_ptr, return_val, new);
4056 /* ObjC: In case we are completing on a selector, look as the msymbol
4057 again and feed all the selectors into the mill. */
4060 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4061 const char *sym_text, int sym_text_len,
4062 const char *text, const char *word)
4064 static char *tmp = NULL;
4065 static unsigned int tmplen = 0;
4067 const char *method, *category, *selector;
4070 method = SYMBOL_NATURAL_NAME (msymbol);
4072 /* Is it a method? */
4073 if ((method[0] != '-') && (method[0] != '+'))
4076 if (sym_text[0] == '[')
4077 /* Complete on shortened method method. */
4078 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4080 while ((strlen (method) + 1) >= tmplen)
4086 tmp = xrealloc (tmp, tmplen);
4088 selector = strchr (method, ' ');
4089 if (selector != NULL)
4092 category = strchr (method, '(');
4094 if ((category != NULL) && (selector != NULL))
4096 memcpy (tmp, method, (category - method));
4097 tmp[category - method] = ' ';
4098 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4099 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4100 if (sym_text[0] == '[')
4101 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4104 if (selector != NULL)
4106 /* Complete on selector only. */
4107 strcpy (tmp, selector);
4108 tmp2 = strchr (tmp, ']');
4112 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4116 /* Break the non-quoted text based on the characters which are in
4117 symbols. FIXME: This should probably be language-specific. */
4120 language_search_unquoted_string (const char *text, const char *p)
4122 for (; p > text; --p)
4124 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4128 if ((current_language->la_language == language_objc))
4130 if (p[-1] == ':') /* Might be part of a method name. */
4132 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4133 p -= 2; /* Beginning of a method name. */
4134 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4135 { /* Might be part of a method name. */
4138 /* Seeing a ' ' or a '(' is not conclusive evidence
4139 that we are in the middle of a method name. However,
4140 finding "-[" or "+[" should be pretty un-ambiguous.
4141 Unfortunately we have to find it now to decide. */
4144 if (isalnum (t[-1]) || t[-1] == '_' ||
4145 t[-1] == ' ' || t[-1] == ':' ||
4146 t[-1] == '(' || t[-1] == ')')
4151 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4152 p = t - 2; /* Method name detected. */
4153 /* Else we leave with p unchanged. */
4163 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4164 int sym_text_len, const char *text,
4167 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4169 struct type *t = SYMBOL_TYPE (sym);
4170 enum type_code c = TYPE_CODE (t);
4173 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4174 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4175 if (TYPE_FIELD_NAME (t, j))
4176 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4177 sym_text, sym_text_len, text, word);
4181 /* Type of the user_data argument passed to add_macro_name or
4182 expand_partial_symbol_name. The contents are simply whatever is
4183 needed by completion_list_add_name. */
4184 struct add_name_data
4186 const char *sym_text;
4192 /* A callback used with macro_for_each and macro_for_each_in_scope.
4193 This adds a macro's name to the current completion list. */
4196 add_macro_name (const char *name, const struct macro_definition *ignore,
4197 struct macro_source_file *ignore2, int ignore3,
4200 struct add_name_data *datum = (struct add_name_data *) user_data;
4202 completion_list_add_name ((char *) name,
4203 datum->sym_text, datum->sym_text_len,
4204 datum->text, datum->word);
4207 /* A callback for expand_partial_symbol_names. */
4210 expand_partial_symbol_name (const char *name, void *user_data)
4212 struct add_name_data *datum = (struct add_name_data *) user_data;
4214 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4218 default_make_symbol_completion_list_break_on (const char *text,
4220 const char *break_on,
4221 enum type_code code)
4223 /* Problem: All of the symbols have to be copied because readline
4224 frees them. I'm not going to worry about this; hopefully there
4225 won't be that many. */
4229 struct minimal_symbol *msymbol;
4230 struct objfile *objfile;
4232 const struct block *surrounding_static_block, *surrounding_global_block;
4233 struct block_iterator iter;
4234 /* The symbol we are completing on. Points in same buffer as text. */
4235 const char *sym_text;
4236 /* Length of sym_text. */
4238 struct add_name_data datum;
4239 struct cleanup *back_to;
4241 /* Now look for the symbol we are supposed to complete on. */
4245 const char *quote_pos = NULL;
4247 /* First see if this is a quoted string. */
4249 for (p = text; *p != '\0'; ++p)
4251 if (quote_found != '\0')
4253 if (*p == quote_found)
4254 /* Found close quote. */
4256 else if (*p == '\\' && p[1] == quote_found)
4257 /* A backslash followed by the quote character
4258 doesn't end the string. */
4261 else if (*p == '\'' || *p == '"')
4267 if (quote_found == '\'')
4268 /* A string within single quotes can be a symbol, so complete on it. */
4269 sym_text = quote_pos + 1;
4270 else if (quote_found == '"')
4271 /* A double-quoted string is never a symbol, nor does it make sense
4272 to complete it any other way. */
4278 /* It is not a quoted string. Break it based on the characters
4279 which are in symbols. */
4282 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4283 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4292 sym_text_len = strlen (sym_text);
4294 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4296 if (current_language->la_language == language_cplus
4297 || current_language->la_language == language_java
4298 || current_language->la_language == language_fortran)
4300 /* These languages may have parameters entered by user but they are never
4301 present in the partial symbol tables. */
4303 const char *cs = memchr (sym_text, '(', sym_text_len);
4306 sym_text_len = cs - sym_text;
4308 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4311 back_to = make_cleanup (do_free_completion_list, &return_val);
4313 datum.sym_text = sym_text;
4314 datum.sym_text_len = sym_text_len;
4318 /* Look through the partial symtabs for all symbols which begin
4319 by matching SYM_TEXT. Expand all CUs that you find to the list.
4320 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4321 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4323 /* At this point scan through the misc symbol vectors and add each
4324 symbol you find to the list. Eventually we want to ignore
4325 anything that isn't a text symbol (everything else will be
4326 handled by the psymtab code above). */
4328 if (code == TYPE_CODE_UNDEF)
4330 ALL_MSYMBOLS (objfile, msymbol)
4333 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4336 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4341 /* Search upwards from currently selected frame (so that we can
4342 complete on local vars). Also catch fields of types defined in
4343 this places which match our text string. Only complete on types
4344 visible from current context. */
4346 b = get_selected_block (0);
4347 surrounding_static_block = block_static_block (b);
4348 surrounding_global_block = block_global_block (b);
4349 if (surrounding_static_block != NULL)
4350 while (b != surrounding_static_block)
4354 ALL_BLOCK_SYMBOLS (b, iter, sym)
4356 if (code == TYPE_CODE_UNDEF)
4358 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4360 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4363 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4364 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4365 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4369 /* Stop when we encounter an enclosing function. Do not stop for
4370 non-inlined functions - the locals of the enclosing function
4371 are in scope for a nested function. */
4372 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4374 b = BLOCK_SUPERBLOCK (b);
4377 /* Add fields from the file's types; symbols will be added below. */
4379 if (code == TYPE_CODE_UNDEF)
4381 if (surrounding_static_block != NULL)
4382 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4383 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4385 if (surrounding_global_block != NULL)
4386 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4387 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4390 /* Go through the symtabs and check the externs and statics for
4391 symbols which match. */
4393 ALL_PRIMARY_SYMTABS (objfile, s)
4396 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4397 ALL_BLOCK_SYMBOLS (b, iter, sym)
4399 if (code == TYPE_CODE_UNDEF
4400 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4401 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4402 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4406 ALL_PRIMARY_SYMTABS (objfile, s)
4409 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4410 ALL_BLOCK_SYMBOLS (b, iter, sym)
4412 if (code == TYPE_CODE_UNDEF
4413 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4414 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4415 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4419 /* Skip macros if we are completing a struct tag -- arguable but
4420 usually what is expected. */
4421 if (current_language->la_macro_expansion == macro_expansion_c
4422 && code == TYPE_CODE_UNDEF)
4424 struct macro_scope *scope;
4426 /* Add any macros visible in the default scope. Note that this
4427 may yield the occasional wrong result, because an expression
4428 might be evaluated in a scope other than the default. For
4429 example, if the user types "break file:line if <TAB>", the
4430 resulting expression will be evaluated at "file:line" -- but
4431 at there does not seem to be a way to detect this at
4433 scope = default_macro_scope ();
4436 macro_for_each_in_scope (scope->file, scope->line,
4437 add_macro_name, &datum);
4441 /* User-defined macros are always visible. */
4442 macro_for_each (macro_user_macros, add_macro_name, &datum);
4445 discard_cleanups (back_to);
4446 return (return_val);
4450 default_make_symbol_completion_list (const char *text, const char *word,
4451 enum type_code code)
4453 return default_make_symbol_completion_list_break_on (text, word, "", code);
4456 /* Return a vector of all symbols (regardless of class) which begin by
4457 matching TEXT. If the answer is no symbols, then the return value
4461 make_symbol_completion_list (const char *text, const char *word)
4463 return current_language->la_make_symbol_completion_list (text, word,
4467 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4468 symbols whose type code is CODE. */
4471 make_symbol_completion_type (const char *text, const char *word,
4472 enum type_code code)
4474 gdb_assert (code == TYPE_CODE_UNION
4475 || code == TYPE_CODE_STRUCT
4476 || code == TYPE_CODE_CLASS
4477 || code == TYPE_CODE_ENUM);
4478 return current_language->la_make_symbol_completion_list (text, word, code);
4481 /* Like make_symbol_completion_list, but suitable for use as a
4482 completion function. */
4485 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4486 const char *text, const char *word)
4488 return make_symbol_completion_list (text, word);
4491 /* Like make_symbol_completion_list, but returns a list of symbols
4492 defined in a source file FILE. */
4495 make_file_symbol_completion_list (const char *text, const char *word,
4496 const char *srcfile)
4501 struct block_iterator iter;
4502 /* The symbol we are completing on. Points in same buffer as text. */
4503 const char *sym_text;
4504 /* Length of sym_text. */
4507 /* Now look for the symbol we are supposed to complete on.
4508 FIXME: This should be language-specific. */
4512 const char *quote_pos = NULL;
4514 /* First see if this is a quoted string. */
4516 for (p = text; *p != '\0'; ++p)
4518 if (quote_found != '\0')
4520 if (*p == quote_found)
4521 /* Found close quote. */
4523 else if (*p == '\\' && p[1] == quote_found)
4524 /* A backslash followed by the quote character
4525 doesn't end the string. */
4528 else if (*p == '\'' || *p == '"')
4534 if (quote_found == '\'')
4535 /* A string within single quotes can be a symbol, so complete on it. */
4536 sym_text = quote_pos + 1;
4537 else if (quote_found == '"')
4538 /* A double-quoted string is never a symbol, nor does it make sense
4539 to complete it any other way. */
4545 /* Not a quoted string. */
4546 sym_text = language_search_unquoted_string (text, p);
4550 sym_text_len = strlen (sym_text);
4554 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4556 s = lookup_symtab (srcfile);
4559 /* Maybe they typed the file with leading directories, while the
4560 symbol tables record only its basename. */
4561 const char *tail = lbasename (srcfile);
4564 s = lookup_symtab (tail);
4567 /* If we have no symtab for that file, return an empty list. */
4569 return (return_val);
4571 /* Go through this symtab and check the externs and statics for
4572 symbols which match. */
4574 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4575 ALL_BLOCK_SYMBOLS (b, iter, sym)
4577 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4580 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4581 ALL_BLOCK_SYMBOLS (b, iter, sym)
4583 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4586 return (return_val);
4589 /* A helper function for make_source_files_completion_list. It adds
4590 another file name to a list of possible completions, growing the
4591 list as necessary. */
4594 add_filename_to_list (const char *fname, const char *text, const char *word,
4595 VEC (char_ptr) **list)
4598 size_t fnlen = strlen (fname);
4602 /* Return exactly fname. */
4603 new = xmalloc (fnlen + 5);
4604 strcpy (new, fname);
4606 else if (word > text)
4608 /* Return some portion of fname. */
4609 new = xmalloc (fnlen + 5);
4610 strcpy (new, fname + (word - text));
4614 /* Return some of TEXT plus fname. */
4615 new = xmalloc (fnlen + (text - word) + 5);
4616 strncpy (new, word, text - word);
4617 new[text - word] = '\0';
4618 strcat (new, fname);
4620 VEC_safe_push (char_ptr, *list, new);
4624 not_interesting_fname (const char *fname)
4626 static const char *illegal_aliens[] = {
4627 "_globals_", /* inserted by coff_symtab_read */
4632 for (i = 0; illegal_aliens[i]; i++)
4634 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4640 /* An object of this type is passed as the user_data argument to
4641 map_partial_symbol_filenames. */
4642 struct add_partial_filename_data
4644 struct filename_seen_cache *filename_seen_cache;
4648 VEC (char_ptr) **list;
4651 /* A callback for map_partial_symbol_filenames. */
4654 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4657 struct add_partial_filename_data *data = user_data;
4659 if (not_interesting_fname (filename))
4661 if (!filename_seen (data->filename_seen_cache, filename, 1)
4662 && filename_ncmp (filename, data->text, data->text_len) == 0)
4664 /* This file matches for a completion; add it to the
4665 current list of matches. */
4666 add_filename_to_list (filename, data->text, data->word, data->list);
4670 const char *base_name = lbasename (filename);
4672 if (base_name != filename
4673 && !filename_seen (data->filename_seen_cache, base_name, 1)
4674 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4675 add_filename_to_list (base_name, data->text, data->word, data->list);
4679 /* Return a vector of all source files whose names begin with matching
4680 TEXT. The file names are looked up in the symbol tables of this
4681 program. If the answer is no matchess, then the return value is
4685 make_source_files_completion_list (const char *text, const char *word)
4688 struct objfile *objfile;
4689 size_t text_len = strlen (text);
4690 VEC (char_ptr) *list = NULL;
4691 const char *base_name;
4692 struct add_partial_filename_data datum;
4693 struct filename_seen_cache *filename_seen_cache;
4694 struct cleanup *back_to, *cache_cleanup;
4696 if (!have_full_symbols () && !have_partial_symbols ())
4699 back_to = make_cleanup (do_free_completion_list, &list);
4701 filename_seen_cache = create_filename_seen_cache ();
4702 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4703 filename_seen_cache);
4705 ALL_SYMTABS (objfile, s)
4707 if (not_interesting_fname (s->filename))
4709 if (!filename_seen (filename_seen_cache, s->filename, 1)
4710 && filename_ncmp (s->filename, text, text_len) == 0)
4712 /* This file matches for a completion; add it to the current
4714 add_filename_to_list (s->filename, text, word, &list);
4718 /* NOTE: We allow the user to type a base name when the
4719 debug info records leading directories, but not the other
4720 way around. This is what subroutines of breakpoint
4721 command do when they parse file names. */
4722 base_name = lbasename (s->filename);
4723 if (base_name != s->filename
4724 && !filename_seen (filename_seen_cache, base_name, 1)
4725 && filename_ncmp (base_name, text, text_len) == 0)
4726 add_filename_to_list (base_name, text, word, &list);
4730 datum.filename_seen_cache = filename_seen_cache;
4733 datum.text_len = text_len;
4735 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4736 0 /*need_fullname*/);
4738 do_cleanups (cache_cleanup);
4739 discard_cleanups (back_to);
4744 /* Determine if PC is in the prologue of a function. The prologue is the area
4745 between the first instruction of a function, and the first executable line.
4746 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4748 If non-zero, func_start is where we think the prologue starts, possibly
4749 by previous examination of symbol table information. */
4752 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4754 struct symtab_and_line sal;
4755 CORE_ADDR func_addr, func_end;
4757 /* We have several sources of information we can consult to figure
4759 - Compilers usually emit line number info that marks the prologue
4760 as its own "source line". So the ending address of that "line"
4761 is the end of the prologue. If available, this is the most
4763 - The minimal symbols and partial symbols, which can usually tell
4764 us the starting and ending addresses of a function.
4765 - If we know the function's start address, we can call the
4766 architecture-defined gdbarch_skip_prologue function to analyze the
4767 instruction stream and guess where the prologue ends.
4768 - Our `func_start' argument; if non-zero, this is the caller's
4769 best guess as to the function's entry point. At the time of
4770 this writing, handle_inferior_event doesn't get this right, so
4771 it should be our last resort. */
4773 /* Consult the partial symbol table, to find which function
4775 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4777 CORE_ADDR prologue_end;
4779 /* We don't even have minsym information, so fall back to using
4780 func_start, if given. */
4782 return 1; /* We *might* be in a prologue. */
4784 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4786 return func_start <= pc && pc < prologue_end;
4789 /* If we have line number information for the function, that's
4790 usually pretty reliable. */
4791 sal = find_pc_line (func_addr, 0);
4793 /* Now sal describes the source line at the function's entry point,
4794 which (by convention) is the prologue. The end of that "line",
4795 sal.end, is the end of the prologue.
4797 Note that, for functions whose source code is all on a single
4798 line, the line number information doesn't always end up this way.
4799 So we must verify that our purported end-of-prologue address is
4800 *within* the function, not at its start or end. */
4802 || sal.end <= func_addr
4803 || func_end <= sal.end)
4805 /* We don't have any good line number info, so use the minsym
4806 information, together with the architecture-specific prologue
4808 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4810 return func_addr <= pc && pc < prologue_end;
4813 /* We have line number info, and it looks good. */
4814 return func_addr <= pc && pc < sal.end;
4817 /* Given PC at the function's start address, attempt to find the
4818 prologue end using SAL information. Return zero if the skip fails.
4820 A non-optimized prologue traditionally has one SAL for the function
4821 and a second for the function body. A single line function has
4822 them both pointing at the same line.
4824 An optimized prologue is similar but the prologue may contain
4825 instructions (SALs) from the instruction body. Need to skip those
4826 while not getting into the function body.
4828 The functions end point and an increasing SAL line are used as
4829 indicators of the prologue's endpoint.
4831 This code is based on the function refine_prologue_limit
4835 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4837 struct symtab_and_line prologue_sal;
4842 /* Get an initial range for the function. */
4843 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4844 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4846 prologue_sal = find_pc_line (start_pc, 0);
4847 if (prologue_sal.line != 0)
4849 /* For languages other than assembly, treat two consecutive line
4850 entries at the same address as a zero-instruction prologue.
4851 The GNU assembler emits separate line notes for each instruction
4852 in a multi-instruction macro, but compilers generally will not
4854 if (prologue_sal.symtab->language != language_asm)
4856 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4859 /* Skip any earlier lines, and any end-of-sequence marker
4860 from a previous function. */
4861 while (linetable->item[idx].pc != prologue_sal.pc
4862 || linetable->item[idx].line == 0)
4865 if (idx+1 < linetable->nitems
4866 && linetable->item[idx+1].line != 0
4867 && linetable->item[idx+1].pc == start_pc)
4871 /* If there is only one sal that covers the entire function,
4872 then it is probably a single line function, like
4874 if (prologue_sal.end >= end_pc)
4877 while (prologue_sal.end < end_pc)
4879 struct symtab_and_line sal;
4881 sal = find_pc_line (prologue_sal.end, 0);
4884 /* Assume that a consecutive SAL for the same (or larger)
4885 line mark the prologue -> body transition. */
4886 if (sal.line >= prologue_sal.line)
4888 /* Likewise if we are in a different symtab altogether
4889 (e.g. within a file included via #include). */
4890 if (sal.symtab != prologue_sal.symtab)
4893 /* The line number is smaller. Check that it's from the
4894 same function, not something inlined. If it's inlined,
4895 then there is no point comparing the line numbers. */
4896 bl = block_for_pc (prologue_sal.end);
4899 if (block_inlined_p (bl))
4901 if (BLOCK_FUNCTION (bl))
4906 bl = BLOCK_SUPERBLOCK (bl);
4911 /* The case in which compiler's optimizer/scheduler has
4912 moved instructions into the prologue. We look ahead in
4913 the function looking for address ranges whose
4914 corresponding line number is less the first one that we
4915 found for the function. This is more conservative then
4916 refine_prologue_limit which scans a large number of SALs
4917 looking for any in the prologue. */
4922 if (prologue_sal.end < end_pc)
4923 /* Return the end of this line, or zero if we could not find a
4925 return prologue_sal.end;
4927 /* Don't return END_PC, which is past the end of the function. */
4928 return prologue_sal.pc;
4932 static char *name_of_main;
4933 enum language language_of_main = language_unknown;
4936 set_main_name (const char *name)
4938 if (name_of_main != NULL)
4940 xfree (name_of_main);
4941 name_of_main = NULL;
4942 language_of_main = language_unknown;
4946 name_of_main = xstrdup (name);
4947 language_of_main = language_unknown;
4951 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4955 find_main_name (void)
4957 const char *new_main_name;
4959 /* Try to see if the main procedure is in Ada. */
4960 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4961 be to add a new method in the language vector, and call this
4962 method for each language until one of them returns a non-empty
4963 name. This would allow us to remove this hard-coded call to
4964 an Ada function. It is not clear that this is a better approach
4965 at this point, because all methods need to be written in a way
4966 such that false positives never be returned. For instance, it is
4967 important that a method does not return a wrong name for the main
4968 procedure if the main procedure is actually written in a different
4969 language. It is easy to guaranty this with Ada, since we use a
4970 special symbol generated only when the main in Ada to find the name
4971 of the main procedure. It is difficult however to see how this can
4972 be guarantied for languages such as C, for instance. This suggests
4973 that order of call for these methods becomes important, which means
4974 a more complicated approach. */
4975 new_main_name = ada_main_name ();
4976 if (new_main_name != NULL)
4978 set_main_name (new_main_name);
4982 new_main_name = go_main_name ();
4983 if (new_main_name != NULL)
4985 set_main_name (new_main_name);
4989 new_main_name = pascal_main_name ();
4990 if (new_main_name != NULL)
4992 set_main_name (new_main_name);
4996 /* The languages above didn't identify the name of the main procedure.
4997 Fallback to "main". */
4998 set_main_name ("main");
5004 if (name_of_main == NULL)
5007 return name_of_main;
5010 /* Handle ``executable_changed'' events for the symtab module. */
5013 symtab_observer_executable_changed (void)
5015 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5016 set_main_name (NULL);
5019 /* Return 1 if the supplied producer string matches the ARM RealView
5020 compiler (armcc). */
5023 producer_is_realview (const char *producer)
5025 static const char *const arm_idents[] = {
5026 "ARM C Compiler, ADS",
5027 "Thumb C Compiler, ADS",
5028 "ARM C++ Compiler, ADS",
5029 "Thumb C++ Compiler, ADS",
5030 "ARM/Thumb C/C++ Compiler, RVCT",
5031 "ARM C/C++ Compiler, RVCT"
5035 if (producer == NULL)
5038 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5039 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5047 /* The next index to hand out in response to a registration request. */
5049 static int next_aclass_value = LOC_FINAL_VALUE;
5051 /* The maximum number of "aclass" registrations we support. This is
5052 constant for convenience. */
5053 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5055 /* The objects representing the various "aclass" values. The elements
5056 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5057 elements are those registered at gdb initialization time. */
5059 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5061 /* The globally visible pointer. This is separate from 'symbol_impl'
5062 so that it can be const. */
5064 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5066 /* Make sure we saved enough room in struct symbol. */
5068 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5070 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5071 is the ops vector associated with this index. This returns the new
5072 index, which should be used as the aclass_index field for symbols
5076 register_symbol_computed_impl (enum address_class aclass,
5077 const struct symbol_computed_ops *ops)
5079 int result = next_aclass_value++;
5081 gdb_assert (aclass == LOC_COMPUTED);
5082 gdb_assert (result < MAX_SYMBOL_IMPLS);
5083 symbol_impl[result].aclass = aclass;
5084 symbol_impl[result].ops_computed = ops;
5086 /* Sanity check OPS. */
5087 gdb_assert (ops != NULL);
5088 gdb_assert (ops->tracepoint_var_ref != NULL);
5089 gdb_assert (ops->describe_location != NULL);
5090 gdb_assert (ops->read_needs_frame != NULL);
5091 gdb_assert (ops->read_variable != NULL);
5096 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5097 OPS is the ops vector associated with this index. This returns the
5098 new index, which should be used as the aclass_index field for symbols
5102 register_symbol_block_impl (enum address_class aclass,
5103 const struct symbol_block_ops *ops)
5105 int result = next_aclass_value++;
5107 gdb_assert (aclass == LOC_BLOCK);
5108 gdb_assert (result < MAX_SYMBOL_IMPLS);
5109 symbol_impl[result].aclass = aclass;
5110 symbol_impl[result].ops_block = ops;
5112 /* Sanity check OPS. */
5113 gdb_assert (ops != NULL);
5114 gdb_assert (ops->find_frame_base_location != NULL);
5119 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5120 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5121 this index. This returns the new index, which should be used as
5122 the aclass_index field for symbols of this type. */
5125 register_symbol_register_impl (enum address_class aclass,
5126 const struct symbol_register_ops *ops)
5128 int result = next_aclass_value++;
5130 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5131 gdb_assert (result < MAX_SYMBOL_IMPLS);
5132 symbol_impl[result].aclass = aclass;
5133 symbol_impl[result].ops_register = ops;
5138 /* Initialize elements of 'symbol_impl' for the constants in enum
5142 initialize_ordinary_address_classes (void)
5146 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5147 symbol_impl[i].aclass = i;
5152 /* Initialize the symbol SYM. */
5155 initialize_symbol (struct symbol *sym)
5157 memset (sym, 0, sizeof (*sym));
5158 SYMBOL_SECTION (sym) = -1;
5161 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5165 allocate_symbol (struct objfile *objfile)
5167 struct symbol *result;
5169 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5170 SYMBOL_SECTION (result) = -1;
5175 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5178 struct template_symbol *
5179 allocate_template_symbol (struct objfile *objfile)
5181 struct template_symbol *result;
5183 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5184 SYMBOL_SECTION (&result->base) = -1;
5192 _initialize_symtab (void)
5194 initialize_ordinary_address_classes ();
5196 add_info ("variables", variables_info, _("\
5197 All global and static variable names, or those matching REGEXP."));
5199 add_com ("whereis", class_info, variables_info, _("\
5200 All global and static variable names, or those matching REGEXP."));
5202 add_info ("functions", functions_info,
5203 _("All function names, or those matching REGEXP."));
5205 /* FIXME: This command has at least the following problems:
5206 1. It prints builtin types (in a very strange and confusing fashion).
5207 2. It doesn't print right, e.g. with
5208 typedef struct foo *FOO
5209 type_print prints "FOO" when we want to make it (in this situation)
5210 print "struct foo *".
5211 I also think "ptype" or "whatis" is more likely to be useful (but if
5212 there is much disagreement "info types" can be fixed). */
5213 add_info ("types", types_info,
5214 _("All type names, or those matching REGEXP."));
5216 add_info ("sources", sources_info,
5217 _("Source files in the program."));
5219 add_com ("rbreak", class_breakpoint, rbreak_command,
5220 _("Set a breakpoint for all functions matching REGEXP."));
5224 add_com ("lf", class_info, sources_info,
5225 _("Source files in the program"));
5226 add_com ("lg", class_info, variables_info, _("\
5227 All global and static variable names, or those matching REGEXP."));
5230 add_setshow_enum_cmd ("multiple-symbols", no_class,
5231 multiple_symbols_modes, &multiple_symbols_mode,
5233 Set the debugger behavior when more than one symbol are possible matches\n\
5234 in an expression."), _("\
5235 Show how the debugger handles ambiguities in expressions."), _("\
5236 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5237 NULL, NULL, &setlist, &showlist);
5239 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5240 &basenames_may_differ, _("\
5241 Set whether a source file may have multiple base names."), _("\
5242 Show whether a source file may have multiple base names."), _("\
5243 (A \"base name\" is the name of a file with the directory part removed.\n\
5244 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5245 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5246 before comparing them. Canonicalization is an expensive operation,\n\
5247 but it allows the same file be known by more than one base name.\n\
5248 If not set (the default), all source files are assumed to have just\n\
5249 one base name, and gdb will do file name comparisons more efficiently."),
5251 &setlist, &showlist);
5253 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5254 _("Set debugging of symbol table creation."),
5255 _("Show debugging of symbol table creation."), _("\
5256 When enabled, debugging messages are printed when building symbol tables."),
5259 &setdebuglist, &showdebuglist);
5261 observer_attach_executable_changed (symtab_observer_executable_changed);