1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
47 #include "typeprint.h"
49 #include "gdb_obstack.h"
51 #include "dictionary.h"
53 #include <sys/types.h>
58 #include "cp-support.h"
59 #include "observable.h"
62 #include "macroscope.h"
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "common/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
71 #include "common/pathstuff.h"
73 /* Forward declarations for local functions. */
75 static void rbreak_command (const char *, int);
77 static int find_line_common (struct linetable *, int, int *, int);
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
96 const char *name, const domain_enum domain);
99 const struct block_symbol null_block_symbol = { NULL, NULL };
101 /* Program space key for finding name and language of "main". */
103 static const struct program_space_data *main_progspace_key;
105 /* Type of the data stored on the program space. */
109 /* Name of "main". */
113 /* Language of "main". */
115 enum language language_of_main;
118 /* Program space key for finding its symbol cache. */
120 static const struct program_space_data *symbol_cache_key;
122 /* The default symbol cache size.
123 There is no extra cpu cost for large N (except when flushing the cache,
124 which is rare). The value here is just a first attempt. A better default
125 value may be higher or lower. A prime number can make up for a bad hash
126 computation, so that's why the number is what it is. */
127 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
129 /* The maximum symbol cache size.
130 There's no method to the decision of what value to use here, other than
131 there's no point in allowing a user typo to make gdb consume all memory. */
132 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
134 /* symbol_cache_lookup returns this if a previous lookup failed to find the
135 symbol in any objfile. */
136 #define SYMBOL_LOOKUP_FAILED \
137 ((struct block_symbol) {(struct symbol *) 1, NULL})
138 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
140 /* Recording lookups that don't find the symbol is just as important, if not
141 more so, than recording found symbols. */
143 enum symbol_cache_slot_state
146 SYMBOL_SLOT_NOT_FOUND,
150 struct symbol_cache_slot
152 enum symbol_cache_slot_state state;
154 /* The objfile that was current when the symbol was looked up.
155 This is only needed for global blocks, but for simplicity's sake
156 we allocate the space for both. If data shows the extra space used
157 for static blocks is a problem, we can split things up then.
159 Global blocks need cache lookup to include the objfile context because
160 we need to account for gdbarch_iterate_over_objfiles_in_search_order
161 which can traverse objfiles in, effectively, any order, depending on
162 the current objfile, thus affecting which symbol is found. Normally,
163 only the current objfile is searched first, and then the rest are
164 searched in recorded order; but putting cache lookup inside
165 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
166 Instead we just make the current objfile part of the context of
167 cache lookup. This means we can record the same symbol multiple times,
168 each with a different "current objfile" that was in effect when the
169 lookup was saved in the cache, but cache space is pretty cheap. */
170 const struct objfile *objfile_context;
174 struct block_symbol found;
183 /* Symbols don't specify global vs static block.
184 So keep them in separate caches. */
186 struct block_symbol_cache
190 unsigned int collisions;
192 /* SYMBOLS is a variable length array of this size.
193 One can imagine that in general one cache (global/static) should be a
194 fraction of the size of the other, but there's no data at the moment
195 on which to decide. */
198 struct symbol_cache_slot symbols[1];
203 Searching for symbols in the static and global blocks over multiple objfiles
204 again and again can be slow, as can searching very big objfiles. This is a
205 simple cache to improve symbol lookup performance, which is critical to
206 overall gdb performance.
208 Symbols are hashed on the name, its domain, and block.
209 They are also hashed on their objfile for objfile-specific lookups. */
213 struct block_symbol_cache *global_symbols;
214 struct block_symbol_cache *static_symbols;
217 /* When non-zero, print debugging messages related to symtab creation. */
218 unsigned int symtab_create_debug = 0;
220 /* When non-zero, print debugging messages related to symbol lookup. */
221 unsigned int symbol_lookup_debug = 0;
223 /* The size of the cache is staged here. */
224 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
226 /* The current value of the symbol cache size.
227 This is saved so that if the user enters a value too big we can restore
228 the original value from here. */
229 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
231 /* Non-zero if a file may be known by two different basenames.
232 This is the uncommon case, and significantly slows down gdb.
233 Default set to "off" to not slow down the common case. */
234 int basenames_may_differ = 0;
236 /* Allow the user to configure the debugger behavior with respect
237 to multiple-choice menus when more than one symbol matches during
240 const char multiple_symbols_ask[] = "ask";
241 const char multiple_symbols_all[] = "all";
242 const char multiple_symbols_cancel[] = "cancel";
243 static const char *const multiple_symbols_modes[] =
245 multiple_symbols_ask,
246 multiple_symbols_all,
247 multiple_symbols_cancel,
250 static const char *multiple_symbols_mode = multiple_symbols_all;
252 /* Read-only accessor to AUTO_SELECT_MODE. */
255 multiple_symbols_select_mode (void)
257 return multiple_symbols_mode;
260 /* Return the name of a domain_enum. */
263 domain_name (domain_enum e)
267 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
268 case VAR_DOMAIN: return "VAR_DOMAIN";
269 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
270 case MODULE_DOMAIN: return "MODULE_DOMAIN";
271 case LABEL_DOMAIN: return "LABEL_DOMAIN";
272 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
273 default: gdb_assert_not_reached ("bad domain_enum");
277 /* Return the name of a search_domain . */
280 search_domain_name (enum search_domain e)
284 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
285 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
286 case TYPES_DOMAIN: return "TYPES_DOMAIN";
287 case ALL_DOMAIN: return "ALL_DOMAIN";
288 default: gdb_assert_not_reached ("bad search_domain");
295 compunit_primary_filetab (const struct compunit_symtab *cust)
297 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
299 /* The primary file symtab is the first one in the list. */
300 return COMPUNIT_FILETABS (cust);
306 compunit_language (const struct compunit_symtab *cust)
308 struct symtab *symtab = compunit_primary_filetab (cust);
310 /* The language of the compunit symtab is the language of its primary
312 return SYMTAB_LANGUAGE (symtab);
318 minimal_symbol::data_p () const
320 return type == mst_data
323 || type == mst_file_data
324 || type == mst_file_bss;
330 minimal_symbol::text_p () const
332 return type == mst_text
333 || type == mst_text_gnu_ifunc
334 || type == mst_data_gnu_ifunc
335 || type == mst_slot_got_plt
336 || type == mst_solib_trampoline
337 || type == mst_file_text;
340 /* See whether FILENAME matches SEARCH_NAME using the rule that we
341 advertise to the user. (The manual's description of linespecs
342 describes what we advertise). Returns true if they match, false
346 compare_filenames_for_search (const char *filename, const char *search_name)
348 int len = strlen (filename);
349 size_t search_len = strlen (search_name);
351 if (len < search_len)
354 /* The tail of FILENAME must match. */
355 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
358 /* Either the names must completely match, or the character
359 preceding the trailing SEARCH_NAME segment of FILENAME must be a
362 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
363 cannot match FILENAME "/path//dir/file.c" - as user has requested
364 absolute path. The sama applies for "c:\file.c" possibly
365 incorrectly hypothetically matching "d:\dir\c:\file.c".
367 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
368 compatible with SEARCH_NAME "file.c". In such case a compiler had
369 to put the "c:file.c" name into debug info. Such compatibility
370 works only on GDB built for DOS host. */
371 return (len == search_len
372 || (!IS_ABSOLUTE_PATH (search_name)
373 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
374 || (HAS_DRIVE_SPEC (filename)
375 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
378 /* Same as compare_filenames_for_search, but for glob-style patterns.
379 Heads up on the order of the arguments. They match the order of
380 compare_filenames_for_search, but it's the opposite of the order of
381 arguments to gdb_filename_fnmatch. */
384 compare_glob_filenames_for_search (const char *filename,
385 const char *search_name)
387 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
388 all /s have to be explicitly specified. */
389 int file_path_elements = count_path_elements (filename);
390 int search_path_elements = count_path_elements (search_name);
392 if (search_path_elements > file_path_elements)
395 if (IS_ABSOLUTE_PATH (search_name))
397 return (search_path_elements == file_path_elements
398 && gdb_filename_fnmatch (search_name, filename,
399 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
403 const char *file_to_compare
404 = strip_leading_path_elements (filename,
405 file_path_elements - search_path_elements);
407 return gdb_filename_fnmatch (search_name, file_to_compare,
408 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
412 /* Check for a symtab of a specific name by searching some symtabs.
413 This is a helper function for callbacks of iterate_over_symtabs.
415 If NAME is not absolute, then REAL_PATH is NULL
416 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
418 The return value, NAME, REAL_PATH and CALLBACK are identical to the
419 `map_symtabs_matching_filename' method of quick_symbol_functions.
421 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
422 Each symtab within the specified compunit symtab is also searched.
423 AFTER_LAST is one past the last compunit symtab to search; NULL means to
424 search until the end of the list. */
427 iterate_over_some_symtabs (const char *name,
428 const char *real_path,
429 struct compunit_symtab *first,
430 struct compunit_symtab *after_last,
431 gdb::function_view<bool (symtab *)> callback)
433 struct compunit_symtab *cust;
434 const char* base_name = lbasename (name);
436 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
438 for (symtab *s : compunit_filetabs (cust))
440 if (compare_filenames_for_search (s->filename, name))
447 /* Before we invoke realpath, which can get expensive when many
448 files are involved, do a quick comparison of the basenames. */
449 if (! basenames_may_differ
450 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
453 if (compare_filenames_for_search (symtab_to_fullname (s), name))
460 /* If the user gave us an absolute path, try to find the file in
461 this symtab and use its absolute path. */
462 if (real_path != NULL)
464 const char *fullname = symtab_to_fullname (s);
466 gdb_assert (IS_ABSOLUTE_PATH (real_path));
467 gdb_assert (IS_ABSOLUTE_PATH (name));
468 if (FILENAME_CMP (real_path, fullname) == 0)
481 /* Check for a symtab of a specific name; first in symtabs, then in
482 psymtabs. *If* there is no '/' in the name, a match after a '/'
483 in the symtab filename will also work.
485 Calls CALLBACK with each symtab that is found. If CALLBACK returns
486 true, the search stops. */
489 iterate_over_symtabs (const char *name,
490 gdb::function_view<bool (symtab *)> callback)
492 gdb::unique_xmalloc_ptr<char> real_path;
494 /* Here we are interested in canonicalizing an absolute path, not
495 absolutizing a relative path. */
496 if (IS_ABSOLUTE_PATH (name))
498 real_path = gdb_realpath (name);
499 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
502 for (objfile *objfile : current_program_space->objfiles ())
504 if (iterate_over_some_symtabs (name, real_path.get (),
505 objfile->compunit_symtabs, NULL,
510 /* Same search rules as above apply here, but now we look thru the
513 for (objfile *objfile : current_program_space->objfiles ())
516 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
524 /* A wrapper for iterate_over_symtabs that returns the first matching
528 lookup_symtab (const char *name)
530 struct symtab *result = NULL;
532 iterate_over_symtabs (name, [&] (symtab *symtab)
542 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
543 full method name, which consist of the class name (from T), the unadorned
544 method name from METHOD_ID, and the signature for the specific overload,
545 specified by SIGNATURE_ID. Note that this function is g++ specific. */
548 gdb_mangle_name (struct type *type, int method_id, int signature_id)
550 int mangled_name_len;
552 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
553 struct fn_field *method = &f[signature_id];
554 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
555 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
556 const char *newname = TYPE_NAME (type);
558 /* Does the form of physname indicate that it is the full mangled name
559 of a constructor (not just the args)? */
560 int is_full_physname_constructor;
563 int is_destructor = is_destructor_name (physname);
564 /* Need a new type prefix. */
565 const char *const_prefix = method->is_const ? "C" : "";
566 const char *volatile_prefix = method->is_volatile ? "V" : "";
568 int len = (newname == NULL ? 0 : strlen (newname));
570 /* Nothing to do if physname already contains a fully mangled v3 abi name
571 or an operator name. */
572 if ((physname[0] == '_' && physname[1] == 'Z')
573 || is_operator_name (field_name))
574 return xstrdup (physname);
576 is_full_physname_constructor = is_constructor_name (physname);
578 is_constructor = is_full_physname_constructor
579 || (newname && strcmp (field_name, newname) == 0);
582 is_destructor = (startswith (physname, "__dt"));
584 if (is_destructor || is_full_physname_constructor)
586 mangled_name = (char *) xmalloc (strlen (physname) + 1);
587 strcpy (mangled_name, physname);
593 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
595 else if (physname[0] == 't' || physname[0] == 'Q')
597 /* The physname for template and qualified methods already includes
599 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
605 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
606 volatile_prefix, len);
608 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
609 + strlen (buf) + len + strlen (physname) + 1);
611 mangled_name = (char *) xmalloc (mangled_name_len);
613 mangled_name[0] = '\0';
615 strcpy (mangled_name, field_name);
617 strcat (mangled_name, buf);
618 /* If the class doesn't have a name, i.e. newname NULL, then we just
619 mangle it using 0 for the length of the class. Thus it gets mangled
620 as something starting with `::' rather than `classname::'. */
622 strcat (mangled_name, newname);
624 strcat (mangled_name, physname);
625 return (mangled_name);
628 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
629 correctly allocated. */
632 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
634 struct obstack *obstack)
636 if (gsymbol->language == language_ada)
640 gsymbol->ada_mangled = 0;
641 gsymbol->language_specific.obstack = obstack;
645 gsymbol->ada_mangled = 1;
646 gsymbol->language_specific.demangled_name = name;
650 gsymbol->language_specific.demangled_name = name;
653 /* Return the demangled name of GSYMBOL. */
656 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
658 if (gsymbol->language == language_ada)
660 if (!gsymbol->ada_mangled)
665 return gsymbol->language_specific.demangled_name;
669 /* Initialize the language dependent portion of a symbol
670 depending upon the language for the symbol. */
673 symbol_set_language (struct general_symbol_info *gsymbol,
674 enum language language,
675 struct obstack *obstack)
677 gsymbol->language = language;
678 if (gsymbol->language == language_cplus
679 || gsymbol->language == language_d
680 || gsymbol->language == language_go
681 || gsymbol->language == language_objc
682 || gsymbol->language == language_fortran)
684 symbol_set_demangled_name (gsymbol, NULL, obstack);
686 else if (gsymbol->language == language_ada)
688 gdb_assert (gsymbol->ada_mangled == 0);
689 gsymbol->language_specific.obstack = obstack;
693 memset (&gsymbol->language_specific, 0,
694 sizeof (gsymbol->language_specific));
698 /* Functions to initialize a symbol's mangled name. */
700 /* Objects of this type are stored in the demangled name hash table. */
701 struct demangled_name_entry
704 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
708 /* Hash function for the demangled name hash. */
711 hash_demangled_name_entry (const void *data)
713 const struct demangled_name_entry *e
714 = (const struct demangled_name_entry *) data;
716 return htab_hash_string (e->mangled);
719 /* Equality function for the demangled name hash. */
722 eq_demangled_name_entry (const void *a, const void *b)
724 const struct demangled_name_entry *da
725 = (const struct demangled_name_entry *) a;
726 const struct demangled_name_entry *db
727 = (const struct demangled_name_entry *) b;
729 return strcmp (da->mangled, db->mangled) == 0;
732 /* Create the hash table used for demangled names. Each hash entry is
733 a pair of strings; one for the mangled name and one for the demangled
734 name. The entry is hashed via just the mangled name. */
737 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
739 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
740 The hash table code will round this up to the next prime number.
741 Choosing a much larger table size wastes memory, and saves only about
742 1% in symbol reading. */
744 per_bfd->demangled_names_hash = htab_create_alloc
745 (256, hash_demangled_name_entry, eq_demangled_name_entry,
746 NULL, xcalloc, xfree);
749 /* Try to determine the demangled name for a symbol, based on the
750 language of that symbol. If the language is set to language_auto,
751 it will attempt to find any demangling algorithm that works and
752 then set the language appropriately. The returned name is allocated
753 by the demangler and should be xfree'd. */
756 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
759 char *demangled = NULL;
762 if (gsymbol->language == language_unknown)
763 gsymbol->language = language_auto;
765 if (gsymbol->language != language_auto)
767 const struct language_defn *lang = language_def (gsymbol->language);
769 language_sniff_from_mangled_name (lang, mangled, &demangled);
773 for (i = language_unknown; i < nr_languages; ++i)
775 enum language l = (enum language) i;
776 const struct language_defn *lang = language_def (l);
778 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
780 gsymbol->language = l;
788 /* Set both the mangled and demangled (if any) names for GSYMBOL based
789 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
790 objfile's obstack; but if COPY_NAME is 0 and if NAME is
791 NUL-terminated, then this function assumes that NAME is already
792 correctly saved (either permanently or with a lifetime tied to the
793 objfile), and it will not be copied.
795 The hash table corresponding to OBJFILE is used, and the memory
796 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
797 so the pointer can be discarded after calling this function. */
800 symbol_set_names (struct general_symbol_info *gsymbol,
801 const char *linkage_name, int len, int copy_name,
802 struct objfile_per_bfd_storage *per_bfd)
804 struct demangled_name_entry **slot;
805 /* A 0-terminated copy of the linkage name. */
806 const char *linkage_name_copy;
807 struct demangled_name_entry entry;
809 if (gsymbol->language == language_ada)
811 /* In Ada, we do the symbol lookups using the mangled name, so
812 we can save some space by not storing the demangled name. */
814 gsymbol->name = linkage_name;
817 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
820 memcpy (name, linkage_name, len);
822 gsymbol->name = name;
824 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
829 if (per_bfd->demangled_names_hash == NULL)
830 create_demangled_names_hash (per_bfd);
832 if (linkage_name[len] != '\0')
836 alloc_name = (char *) alloca (len + 1);
837 memcpy (alloc_name, linkage_name, len);
838 alloc_name[len] = '\0';
840 linkage_name_copy = alloc_name;
843 linkage_name_copy = linkage_name;
845 entry.mangled = linkage_name_copy;
846 slot = ((struct demangled_name_entry **)
847 htab_find_slot (per_bfd->demangled_names_hash,
850 /* If this name is not in the hash table, add it. */
852 /* A C version of the symbol may have already snuck into the table.
853 This happens to, e.g., main.init (__go_init_main). Cope. */
854 || (gsymbol->language == language_go
855 && (*slot)->demangled[0] == '\0'))
857 char *demangled_name_ptr
858 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
859 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
860 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
862 /* Suppose we have demangled_name==NULL, copy_name==0, and
863 linkage_name_copy==linkage_name. In this case, we already have the
864 mangled name saved, and we don't have a demangled name. So,
865 you might think we could save a little space by not recording
866 this in the hash table at all.
868 It turns out that it is actually important to still save such
869 an entry in the hash table, because storing this name gives
870 us better bcache hit rates for partial symbols. */
871 if (!copy_name && linkage_name_copy == linkage_name)
874 = ((struct demangled_name_entry *)
875 obstack_alloc (&per_bfd->storage_obstack,
876 offsetof (struct demangled_name_entry, demangled)
877 + demangled_len + 1));
878 (*slot)->mangled = linkage_name;
884 /* If we must copy the mangled name, put it directly after
885 the demangled name so we can have a single
888 = ((struct demangled_name_entry *)
889 obstack_alloc (&per_bfd->storage_obstack,
890 offsetof (struct demangled_name_entry, demangled)
891 + len + demangled_len + 2));
892 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
893 strcpy (mangled_ptr, linkage_name_copy);
894 (*slot)->mangled = mangled_ptr;
896 (*slot)->language = gsymbol->language;
898 if (demangled_name != NULL)
899 strcpy ((*slot)->demangled, demangled_name.get ());
901 (*slot)->demangled[0] = '\0';
903 else if (gsymbol->language == language_unknown
904 || gsymbol->language == language_auto)
905 gsymbol->language = (*slot)->language;
907 gsymbol->name = (*slot)->mangled;
908 if ((*slot)->demangled[0] != '\0')
909 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
910 &per_bfd->storage_obstack);
912 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
915 /* Return the source code name of a symbol. In languages where
916 demangling is necessary, this is the demangled name. */
919 symbol_natural_name (const struct general_symbol_info *gsymbol)
921 switch (gsymbol->language)
927 case language_fortran:
928 if (symbol_get_demangled_name (gsymbol) != NULL)
929 return symbol_get_demangled_name (gsymbol);
932 return ada_decode_symbol (gsymbol);
936 return gsymbol->name;
939 /* Return the demangled name for a symbol based on the language for
940 that symbol. If no demangled name exists, return NULL. */
943 symbol_demangled_name (const struct general_symbol_info *gsymbol)
945 const char *dem_name = NULL;
947 switch (gsymbol->language)
953 case language_fortran:
954 dem_name = symbol_get_demangled_name (gsymbol);
957 dem_name = ada_decode_symbol (gsymbol);
965 /* Return the search name of a symbol---generally the demangled or
966 linkage name of the symbol, depending on how it will be searched for.
967 If there is no distinct demangled name, then returns the same value
968 (same pointer) as SYMBOL_LINKAGE_NAME. */
971 symbol_search_name (const struct general_symbol_info *gsymbol)
973 if (gsymbol->language == language_ada)
974 return gsymbol->name;
976 return symbol_natural_name (gsymbol);
982 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
983 const lookup_name_info &name)
985 symbol_name_matcher_ftype *name_match
986 = get_symbol_name_matcher (language_def (gsymbol->language), name);
987 return name_match (symbol_search_name (gsymbol), name, NULL);
992 /* Return 1 if the two sections are the same, or if they could
993 plausibly be copies of each other, one in an original object
994 file and another in a separated debug file. */
997 matching_obj_sections (struct obj_section *obj_first,
998 struct obj_section *obj_second)
1000 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1001 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1003 /* If they're the same section, then they match. */
1004 if (first == second)
1007 /* If either is NULL, give up. */
1008 if (first == NULL || second == NULL)
1011 /* This doesn't apply to absolute symbols. */
1012 if (first->owner == NULL || second->owner == NULL)
1015 /* If they're in the same object file, they must be different sections. */
1016 if (first->owner == second->owner)
1019 /* Check whether the two sections are potentially corresponding. They must
1020 have the same size, address, and name. We can't compare section indexes,
1021 which would be more reliable, because some sections may have been
1023 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1026 /* In-memory addresses may start at a different offset, relativize them. */
1027 if (bfd_get_section_vma (first->owner, first)
1028 - bfd_get_start_address (first->owner)
1029 != bfd_get_section_vma (second->owner, second)
1030 - bfd_get_start_address (second->owner))
1033 if (bfd_get_section_name (first->owner, first) == NULL
1034 || bfd_get_section_name (second->owner, second) == NULL
1035 || strcmp (bfd_get_section_name (first->owner, first),
1036 bfd_get_section_name (second->owner, second)) != 0)
1039 /* Otherwise check that they are in corresponding objfiles. */
1041 struct objfile *obj = NULL;
1042 for (objfile *objfile : current_program_space->objfiles ())
1043 if (objfile->obfd == first->owner)
1048 gdb_assert (obj != NULL);
1050 if (obj->separate_debug_objfile != NULL
1051 && obj->separate_debug_objfile->obfd == second->owner)
1053 if (obj->separate_debug_objfile_backlink != NULL
1054 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1063 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1065 struct bound_minimal_symbol msymbol;
1067 /* If we know that this is not a text address, return failure. This is
1068 necessary because we loop based on texthigh and textlow, which do
1069 not include the data ranges. */
1070 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1071 if (msymbol.minsym && msymbol.minsym->data_p ())
1074 for (objfile *objfile : current_program_space->objfiles ())
1076 struct compunit_symtab *cust = NULL;
1079 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1086 /* Hash function for the symbol cache. */
1089 hash_symbol_entry (const struct objfile *objfile_context,
1090 const char *name, domain_enum domain)
1092 unsigned int hash = (uintptr_t) objfile_context;
1095 hash += htab_hash_string (name);
1097 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1098 to map to the same slot. */
1099 if (domain == STRUCT_DOMAIN)
1100 hash += VAR_DOMAIN * 7;
1107 /* Equality function for the symbol cache. */
1110 eq_symbol_entry (const struct symbol_cache_slot *slot,
1111 const struct objfile *objfile_context,
1112 const char *name, domain_enum domain)
1114 const char *slot_name;
1115 domain_enum slot_domain;
1117 if (slot->state == SYMBOL_SLOT_UNUSED)
1120 if (slot->objfile_context != objfile_context)
1123 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1125 slot_name = slot->value.not_found.name;
1126 slot_domain = slot->value.not_found.domain;
1130 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1131 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1134 /* NULL names match. */
1135 if (slot_name == NULL && name == NULL)
1137 /* But there's no point in calling symbol_matches_domain in the
1138 SYMBOL_SLOT_FOUND case. */
1139 if (slot_domain != domain)
1142 else if (slot_name != NULL && name != NULL)
1144 /* It's important that we use the same comparison that was done
1145 the first time through. If the slot records a found symbol,
1146 then this means using the symbol name comparison function of
1147 the symbol's language with SYMBOL_SEARCH_NAME. See
1148 dictionary.c. It also means using symbol_matches_domain for
1149 found symbols. See block.c.
1151 If the slot records a not-found symbol, then require a precise match.
1152 We could still be lax with whitespace like strcmp_iw though. */
1154 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1156 if (strcmp (slot_name, name) != 0)
1158 if (slot_domain != domain)
1163 struct symbol *sym = slot->value.found.symbol;
1164 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1166 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1169 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1170 slot_domain, domain))
1176 /* Only one name is NULL. */
1183 /* Given a cache of size SIZE, return the size of the struct (with variable
1184 length array) in bytes. */
1187 symbol_cache_byte_size (unsigned int size)
1189 return (sizeof (struct block_symbol_cache)
1190 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1196 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1198 /* If there's no change in size, don't do anything.
1199 All caches have the same size, so we can just compare with the size
1200 of the global symbols cache. */
1201 if ((cache->global_symbols != NULL
1202 && cache->global_symbols->size == new_size)
1203 || (cache->global_symbols == NULL
1207 xfree (cache->global_symbols);
1208 xfree (cache->static_symbols);
1212 cache->global_symbols = NULL;
1213 cache->static_symbols = NULL;
1217 size_t total_size = symbol_cache_byte_size (new_size);
1219 cache->global_symbols
1220 = (struct block_symbol_cache *) xcalloc (1, total_size);
1221 cache->static_symbols
1222 = (struct block_symbol_cache *) xcalloc (1, total_size);
1223 cache->global_symbols->size = new_size;
1224 cache->static_symbols->size = new_size;
1228 /* Make a symbol cache of size SIZE. */
1230 static struct symbol_cache *
1231 make_symbol_cache (unsigned int size)
1233 struct symbol_cache *cache;
1235 cache = XCNEW (struct symbol_cache);
1236 resize_symbol_cache (cache, symbol_cache_size);
1240 /* Free the space used by CACHE. */
1243 free_symbol_cache (struct symbol_cache *cache)
1245 xfree (cache->global_symbols);
1246 xfree (cache->static_symbols);
1250 /* Return the symbol cache of PSPACE.
1251 Create one if it doesn't exist yet. */
1253 static struct symbol_cache *
1254 get_symbol_cache (struct program_space *pspace)
1256 struct symbol_cache *cache
1257 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1261 cache = make_symbol_cache (symbol_cache_size);
1262 set_program_space_data (pspace, symbol_cache_key, cache);
1268 /* Delete the symbol cache of PSPACE.
1269 Called when PSPACE is destroyed. */
1272 symbol_cache_cleanup (struct program_space *pspace, void *data)
1274 struct symbol_cache *cache = (struct symbol_cache *) data;
1276 free_symbol_cache (cache);
1279 /* Set the size of the symbol cache in all program spaces. */
1282 set_symbol_cache_size (unsigned int new_size)
1284 struct program_space *pspace;
1286 ALL_PSPACES (pspace)
1288 struct symbol_cache *cache
1289 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1291 /* The pspace could have been created but not have a cache yet. */
1293 resize_symbol_cache (cache, new_size);
1297 /* Called when symbol-cache-size is set. */
1300 set_symbol_cache_size_handler (const char *args, int from_tty,
1301 struct cmd_list_element *c)
1303 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1305 /* Restore the previous value.
1306 This is the value the "show" command prints. */
1307 new_symbol_cache_size = symbol_cache_size;
1309 error (_("Symbol cache size is too large, max is %u."),
1310 MAX_SYMBOL_CACHE_SIZE);
1312 symbol_cache_size = new_symbol_cache_size;
1314 set_symbol_cache_size (symbol_cache_size);
1317 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1318 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1319 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1320 failed (and thus this one will too), or NULL if the symbol is not present
1322 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1323 set to the cache and slot of the symbol to save the result of a full lookup
1326 static struct block_symbol
1327 symbol_cache_lookup (struct symbol_cache *cache,
1328 struct objfile *objfile_context, int block,
1329 const char *name, domain_enum domain,
1330 struct block_symbol_cache **bsc_ptr,
1331 struct symbol_cache_slot **slot_ptr)
1333 struct block_symbol_cache *bsc;
1335 struct symbol_cache_slot *slot;
1337 if (block == GLOBAL_BLOCK)
1338 bsc = cache->global_symbols;
1340 bsc = cache->static_symbols;
1345 return (struct block_symbol) {NULL, NULL};
1348 hash = hash_symbol_entry (objfile_context, name, domain);
1349 slot = bsc->symbols + hash % bsc->size;
1351 if (eq_symbol_entry (slot, objfile_context, name, domain))
1353 if (symbol_lookup_debug)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "%s block symbol cache hit%s for %s, %s\n",
1356 block == GLOBAL_BLOCK ? "Global" : "Static",
1357 slot->state == SYMBOL_SLOT_NOT_FOUND
1358 ? " (not found)" : "",
1359 name, domain_name (domain));
1361 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1362 return SYMBOL_LOOKUP_FAILED;
1363 return slot->value.found;
1366 /* Symbol is not present in the cache. */
1371 if (symbol_lookup_debug)
1373 fprintf_unfiltered (gdb_stdlog,
1374 "%s block symbol cache miss for %s, %s\n",
1375 block == GLOBAL_BLOCK ? "Global" : "Static",
1376 name, domain_name (domain));
1379 return (struct block_symbol) {NULL, NULL};
1382 /* Clear out SLOT. */
1385 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1387 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1388 xfree (slot->value.not_found.name);
1389 slot->state = SYMBOL_SLOT_UNUSED;
1392 /* Mark SYMBOL as found in SLOT.
1393 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1394 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1395 necessarily the objfile the symbol was found in. */
1398 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1399 struct symbol_cache_slot *slot,
1400 struct objfile *objfile_context,
1401 struct symbol *symbol,
1402 const struct block *block)
1406 if (slot->state != SYMBOL_SLOT_UNUSED)
1409 symbol_cache_clear_slot (slot);
1411 slot->state = SYMBOL_SLOT_FOUND;
1412 slot->objfile_context = objfile_context;
1413 slot->value.found.symbol = symbol;
1414 slot->value.found.block = block;
1417 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1418 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1419 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1422 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1423 struct symbol_cache_slot *slot,
1424 struct objfile *objfile_context,
1425 const char *name, domain_enum domain)
1429 if (slot->state != SYMBOL_SLOT_UNUSED)
1432 symbol_cache_clear_slot (slot);
1434 slot->state = SYMBOL_SLOT_NOT_FOUND;
1435 slot->objfile_context = objfile_context;
1436 slot->value.not_found.name = xstrdup (name);
1437 slot->value.not_found.domain = domain;
1440 /* Flush the symbol cache of PSPACE. */
1443 symbol_cache_flush (struct program_space *pspace)
1445 struct symbol_cache *cache
1446 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1451 if (cache->global_symbols == NULL)
1453 gdb_assert (symbol_cache_size == 0);
1454 gdb_assert (cache->static_symbols == NULL);
1458 /* If the cache is untouched since the last flush, early exit.
1459 This is important for performance during the startup of a program linked
1460 with 100s (or 1000s) of shared libraries. */
1461 if (cache->global_symbols->misses == 0
1462 && cache->static_symbols->misses == 0)
1465 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1466 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1468 for (pass = 0; pass < 2; ++pass)
1470 struct block_symbol_cache *bsc
1471 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1474 for (i = 0; i < bsc->size; ++i)
1475 symbol_cache_clear_slot (&bsc->symbols[i]);
1478 cache->global_symbols->hits = 0;
1479 cache->global_symbols->misses = 0;
1480 cache->global_symbols->collisions = 0;
1481 cache->static_symbols->hits = 0;
1482 cache->static_symbols->misses = 0;
1483 cache->static_symbols->collisions = 0;
1489 symbol_cache_dump (const struct symbol_cache *cache)
1493 if (cache->global_symbols == NULL)
1495 printf_filtered (" <disabled>\n");
1499 for (pass = 0; pass < 2; ++pass)
1501 const struct block_symbol_cache *bsc
1502 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1506 printf_filtered ("Global symbols:\n");
1508 printf_filtered ("Static symbols:\n");
1510 for (i = 0; i < bsc->size; ++i)
1512 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1516 switch (slot->state)
1518 case SYMBOL_SLOT_UNUSED:
1520 case SYMBOL_SLOT_NOT_FOUND:
1521 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1522 host_address_to_string (slot->objfile_context),
1523 slot->value.not_found.name,
1524 domain_name (slot->value.not_found.domain));
1526 case SYMBOL_SLOT_FOUND:
1528 struct symbol *found = slot->value.found.symbol;
1529 const struct objfile *context = slot->objfile_context;
1531 printf_filtered (" [%4u] = %s, %s %s\n", i,
1532 host_address_to_string (context),
1533 SYMBOL_PRINT_NAME (found),
1534 domain_name (SYMBOL_DOMAIN (found)));
1542 /* The "mt print symbol-cache" command. */
1545 maintenance_print_symbol_cache (const char *args, int from_tty)
1547 struct program_space *pspace;
1549 ALL_PSPACES (pspace)
1551 struct symbol_cache *cache;
1553 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1555 pspace->symfile_object_file != NULL
1556 ? objfile_name (pspace->symfile_object_file)
1557 : "(no object file)");
1559 /* If the cache hasn't been created yet, avoid creating one. */
1561 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1563 printf_filtered (" <empty>\n");
1565 symbol_cache_dump (cache);
1569 /* The "mt flush-symbol-cache" command. */
1572 maintenance_flush_symbol_cache (const char *args, int from_tty)
1574 struct program_space *pspace;
1576 ALL_PSPACES (pspace)
1578 symbol_cache_flush (pspace);
1582 /* Print usage statistics of CACHE. */
1585 symbol_cache_stats (struct symbol_cache *cache)
1589 if (cache->global_symbols == NULL)
1591 printf_filtered (" <disabled>\n");
1595 for (pass = 0; pass < 2; ++pass)
1597 const struct block_symbol_cache *bsc
1598 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1603 printf_filtered ("Global block cache stats:\n");
1605 printf_filtered ("Static block cache stats:\n");
1607 printf_filtered (" size: %u\n", bsc->size);
1608 printf_filtered (" hits: %u\n", bsc->hits);
1609 printf_filtered (" misses: %u\n", bsc->misses);
1610 printf_filtered (" collisions: %u\n", bsc->collisions);
1614 /* The "mt print symbol-cache-statistics" command. */
1617 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1619 struct program_space *pspace;
1621 ALL_PSPACES (pspace)
1623 struct symbol_cache *cache;
1625 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1627 pspace->symfile_object_file != NULL
1628 ? objfile_name (pspace->symfile_object_file)
1629 : "(no object file)");
1631 /* If the cache hasn't been created yet, avoid creating one. */
1633 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1635 printf_filtered (" empty, no stats available\n");
1637 symbol_cache_stats (cache);
1641 /* This module's 'new_objfile' observer. */
1644 symtab_new_objfile_observer (struct objfile *objfile)
1646 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1647 symbol_cache_flush (current_program_space);
1650 /* This module's 'free_objfile' observer. */
1653 symtab_free_objfile_observer (struct objfile *objfile)
1655 symbol_cache_flush (objfile->pspace);
1658 /* Debug symbols usually don't have section information. We need to dig that
1659 out of the minimal symbols and stash that in the debug symbol. */
1662 fixup_section (struct general_symbol_info *ginfo,
1663 CORE_ADDR addr, struct objfile *objfile)
1665 struct minimal_symbol *msym;
1667 /* First, check whether a minimal symbol with the same name exists
1668 and points to the same address. The address check is required
1669 e.g. on PowerPC64, where the minimal symbol for a function will
1670 point to the function descriptor, while the debug symbol will
1671 point to the actual function code. */
1672 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1674 ginfo->section = MSYMBOL_SECTION (msym);
1677 /* Static, function-local variables do appear in the linker
1678 (minimal) symbols, but are frequently given names that won't
1679 be found via lookup_minimal_symbol(). E.g., it has been
1680 observed in frv-uclinux (ELF) executables that a static,
1681 function-local variable named "foo" might appear in the
1682 linker symbols as "foo.6" or "foo.3". Thus, there is no
1683 point in attempting to extend the lookup-by-name mechanism to
1684 handle this case due to the fact that there can be multiple
1687 So, instead, search the section table when lookup by name has
1688 failed. The ``addr'' and ``endaddr'' fields may have already
1689 been relocated. If so, the relocation offset (i.e. the
1690 ANOFFSET value) needs to be subtracted from these values when
1691 performing the comparison. We unconditionally subtract it,
1692 because, when no relocation has been performed, the ANOFFSET
1693 value will simply be zero.
1695 The address of the symbol whose section we're fixing up HAS
1696 NOT BEEN adjusted (relocated) yet. It can't have been since
1697 the section isn't yet known and knowing the section is
1698 necessary in order to add the correct relocation value. In
1699 other words, we wouldn't even be in this function (attempting
1700 to compute the section) if it were already known.
1702 Note that it is possible to search the minimal symbols
1703 (subtracting the relocation value if necessary) to find the
1704 matching minimal symbol, but this is overkill and much less
1705 efficient. It is not necessary to find the matching minimal
1706 symbol, only its section.
1708 Note that this technique (of doing a section table search)
1709 can fail when unrelocated section addresses overlap. For
1710 this reason, we still attempt a lookup by name prior to doing
1711 a search of the section table. */
1713 struct obj_section *s;
1716 ALL_OBJFILE_OSECTIONS (objfile, s)
1718 int idx = s - objfile->sections;
1719 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1724 if (obj_section_addr (s) - offset <= addr
1725 && addr < obj_section_endaddr (s) - offset)
1727 ginfo->section = idx;
1732 /* If we didn't find the section, assume it is in the first
1733 section. If there is no allocated section, then it hardly
1734 matters what we pick, so just pick zero. */
1738 ginfo->section = fallback;
1743 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1750 if (!SYMBOL_OBJFILE_OWNED (sym))
1753 /* We either have an OBJFILE, or we can get at it from the sym's
1754 symtab. Anything else is a bug. */
1755 gdb_assert (objfile || symbol_symtab (sym));
1757 if (objfile == NULL)
1758 objfile = symbol_objfile (sym);
1760 if (SYMBOL_OBJ_SECTION (objfile, sym))
1763 /* We should have an objfile by now. */
1764 gdb_assert (objfile);
1766 switch (SYMBOL_CLASS (sym))
1770 addr = SYMBOL_VALUE_ADDRESS (sym);
1773 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1777 /* Nothing else will be listed in the minsyms -- no use looking
1782 fixup_section (&sym->ginfo, addr, objfile);
1789 demangle_for_lookup_info::demangle_for_lookup_info
1790 (const lookup_name_info &lookup_name, language lang)
1792 demangle_result_storage storage;
1794 if (lookup_name.ignore_parameters () && lang == language_cplus)
1796 gdb::unique_xmalloc_ptr<char> without_params
1797 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1798 lookup_name.completion_mode ());
1800 if (without_params != NULL)
1802 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1803 m_demangled_name = demangle_for_lookup (without_params.get (),
1809 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1810 m_demangled_name = lookup_name.name ();
1812 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1818 const lookup_name_info &
1819 lookup_name_info::match_any ()
1821 /* Lookup any symbol that "" would complete. I.e., this matches all
1823 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1829 /* Compute the demangled form of NAME as used by the various symbol
1830 lookup functions. The result can either be the input NAME
1831 directly, or a pointer to a buffer owned by the STORAGE object.
1833 For Ada, this function just returns NAME, unmodified.
1834 Normally, Ada symbol lookups are performed using the encoded name
1835 rather than the demangled name, and so it might seem to make sense
1836 for this function to return an encoded version of NAME.
1837 Unfortunately, we cannot do this, because this function is used in
1838 circumstances where it is not appropriate to try to encode NAME.
1839 For instance, when displaying the frame info, we demangle the name
1840 of each parameter, and then perform a symbol lookup inside our
1841 function using that demangled name. In Ada, certain functions
1842 have internally-generated parameters whose name contain uppercase
1843 characters. Encoding those name would result in those uppercase
1844 characters to become lowercase, and thus cause the symbol lookup
1848 demangle_for_lookup (const char *name, enum language lang,
1849 demangle_result_storage &storage)
1851 /* If we are using C++, D, or Go, demangle the name before doing a
1852 lookup, so we can always binary search. */
1853 if (lang == language_cplus)
1855 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1856 if (demangled_name != NULL)
1857 return storage.set_malloc_ptr (demangled_name);
1859 /* If we were given a non-mangled name, canonicalize it
1860 according to the language (so far only for C++). */
1861 std::string canon = cp_canonicalize_string (name);
1862 if (!canon.empty ())
1863 return storage.swap_string (canon);
1865 else if (lang == language_d)
1867 char *demangled_name = d_demangle (name, 0);
1868 if (demangled_name != NULL)
1869 return storage.set_malloc_ptr (demangled_name);
1871 else if (lang == language_go)
1873 char *demangled_name = go_demangle (name, 0);
1874 if (demangled_name != NULL)
1875 return storage.set_malloc_ptr (demangled_name);
1884 search_name_hash (enum language language, const char *search_name)
1886 return language_def (language)->la_search_name_hash (search_name);
1891 This function (or rather its subordinates) have a bunch of loops and
1892 it would seem to be attractive to put in some QUIT's (though I'm not really
1893 sure whether it can run long enough to be really important). But there
1894 are a few calls for which it would appear to be bad news to quit
1895 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1896 that there is C++ code below which can error(), but that probably
1897 doesn't affect these calls since they are looking for a known
1898 variable and thus can probably assume it will never hit the C++
1902 lookup_symbol_in_language (const char *name, const struct block *block,
1903 const domain_enum domain, enum language lang,
1904 struct field_of_this_result *is_a_field_of_this)
1906 demangle_result_storage storage;
1907 const char *modified_name = demangle_for_lookup (name, lang, storage);
1909 return lookup_symbol_aux (modified_name,
1910 symbol_name_match_type::FULL,
1911 block, domain, lang,
1912 is_a_field_of_this);
1918 lookup_symbol (const char *name, const struct block *block,
1920 struct field_of_this_result *is_a_field_of_this)
1922 return lookup_symbol_in_language (name, block, domain,
1923 current_language->la_language,
1924 is_a_field_of_this);
1930 lookup_symbol_search_name (const char *search_name, const struct block *block,
1933 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1934 block, domain, language_asm, NULL);
1940 lookup_language_this (const struct language_defn *lang,
1941 const struct block *block)
1943 if (lang->la_name_of_this == NULL || block == NULL)
1944 return (struct block_symbol) {NULL, NULL};
1946 if (symbol_lookup_debug > 1)
1948 struct objfile *objfile = lookup_objfile_from_block (block);
1950 fprintf_unfiltered (gdb_stdlog,
1951 "lookup_language_this (%s, %s (objfile %s))",
1952 lang->la_name, host_address_to_string (block),
1953 objfile_debug_name (objfile));
1960 sym = block_lookup_symbol (block, lang->la_name_of_this,
1961 symbol_name_match_type::SEARCH_NAME,
1965 if (symbol_lookup_debug > 1)
1967 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1968 SYMBOL_PRINT_NAME (sym),
1969 host_address_to_string (sym),
1970 host_address_to_string (block));
1972 return (struct block_symbol) {sym, block};
1974 if (BLOCK_FUNCTION (block))
1976 block = BLOCK_SUPERBLOCK (block);
1979 if (symbol_lookup_debug > 1)
1980 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1981 return (struct block_symbol) {NULL, NULL};
1984 /* Given TYPE, a structure/union,
1985 return 1 if the component named NAME from the ultimate target
1986 structure/union is defined, otherwise, return 0. */
1989 check_field (struct type *type, const char *name,
1990 struct field_of_this_result *is_a_field_of_this)
1994 /* The type may be a stub. */
1995 type = check_typedef (type);
1997 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1999 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2001 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2003 is_a_field_of_this->type = type;
2004 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2009 /* C++: If it was not found as a data field, then try to return it
2010 as a pointer to a method. */
2012 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2014 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2016 is_a_field_of_this->type = type;
2017 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2022 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2023 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2029 /* Behave like lookup_symbol except that NAME is the natural name
2030 (e.g., demangled name) of the symbol that we're looking for. */
2032 static struct block_symbol
2033 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2034 const struct block *block,
2035 const domain_enum domain, enum language language,
2036 struct field_of_this_result *is_a_field_of_this)
2038 struct block_symbol result;
2039 const struct language_defn *langdef;
2041 if (symbol_lookup_debug)
2043 struct objfile *objfile = lookup_objfile_from_block (block);
2045 fprintf_unfiltered (gdb_stdlog,
2046 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2047 name, host_address_to_string (block),
2049 ? objfile_debug_name (objfile) : "NULL",
2050 domain_name (domain), language_str (language));
2053 /* Make sure we do something sensible with is_a_field_of_this, since
2054 the callers that set this parameter to some non-null value will
2055 certainly use it later. If we don't set it, the contents of
2056 is_a_field_of_this are undefined. */
2057 if (is_a_field_of_this != NULL)
2058 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2060 /* Search specified block and its superiors. Don't search
2061 STATIC_BLOCK or GLOBAL_BLOCK. */
2063 result = lookup_local_symbol (name, match_type, block, domain, language);
2064 if (result.symbol != NULL)
2066 if (symbol_lookup_debug)
2068 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2069 host_address_to_string (result.symbol));
2074 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2075 check to see if NAME is a field of `this'. */
2077 langdef = language_def (language);
2079 /* Don't do this check if we are searching for a struct. It will
2080 not be found by check_field, but will be found by other
2082 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2084 result = lookup_language_this (langdef, block);
2088 struct type *t = result.symbol->type;
2090 /* I'm not really sure that type of this can ever
2091 be typedefed; just be safe. */
2092 t = check_typedef (t);
2093 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2094 t = TYPE_TARGET_TYPE (t);
2096 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2097 && TYPE_CODE (t) != TYPE_CODE_UNION)
2098 error (_("Internal error: `%s' is not an aggregate"),
2099 langdef->la_name_of_this);
2101 if (check_field (t, name, is_a_field_of_this))
2103 if (symbol_lookup_debug)
2105 fprintf_unfiltered (gdb_stdlog,
2106 "lookup_symbol_aux (...) = NULL\n");
2108 return (struct block_symbol) {NULL, NULL};
2113 /* Now do whatever is appropriate for LANGUAGE to look
2114 up static and global variables. */
2116 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2117 if (result.symbol != NULL)
2119 if (symbol_lookup_debug)
2121 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2122 host_address_to_string (result.symbol));
2127 /* Now search all static file-level symbols. Not strictly correct,
2128 but more useful than an error. */
2130 result = lookup_static_symbol (name, domain);
2131 if (symbol_lookup_debug)
2133 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2134 result.symbol != NULL
2135 ? host_address_to_string (result.symbol)
2141 /* Check to see if the symbol is defined in BLOCK or its superiors.
2142 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2144 static struct block_symbol
2145 lookup_local_symbol (const char *name,
2146 symbol_name_match_type match_type,
2147 const struct block *block,
2148 const domain_enum domain,
2149 enum language language)
2152 const struct block *static_block = block_static_block (block);
2153 const char *scope = block_scope (block);
2155 /* Check if either no block is specified or it's a global block. */
2157 if (static_block == NULL)
2158 return (struct block_symbol) {NULL, NULL};
2160 while (block != static_block)
2162 sym = lookup_symbol_in_block (name, match_type, block, domain);
2164 return (struct block_symbol) {sym, block};
2166 if (language == language_cplus || language == language_fortran)
2168 struct block_symbol blocksym
2169 = cp_lookup_symbol_imports_or_template (scope, name, block,
2172 if (blocksym.symbol != NULL)
2176 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2178 block = BLOCK_SUPERBLOCK (block);
2181 /* We've reached the end of the function without finding a result. */
2183 return (struct block_symbol) {NULL, NULL};
2189 lookup_objfile_from_block (const struct block *block)
2194 block = block_global_block (block);
2195 /* Look through all blockvectors. */
2196 for (objfile *obj : current_program_space->objfiles ())
2198 for (compunit_symtab *cust : obj->compunits ())
2199 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2202 if (obj->separate_debug_objfile_backlink)
2203 obj = obj->separate_debug_objfile_backlink;
2215 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2216 const struct block *block,
2217 const domain_enum domain)
2221 if (symbol_lookup_debug > 1)
2223 struct objfile *objfile = lookup_objfile_from_block (block);
2225 fprintf_unfiltered (gdb_stdlog,
2226 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2227 name, host_address_to_string (block),
2228 objfile_debug_name (objfile),
2229 domain_name (domain));
2232 sym = block_lookup_symbol (block, name, match_type, domain);
2235 if (symbol_lookup_debug > 1)
2237 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2238 host_address_to_string (sym));
2240 return fixup_symbol_section (sym, NULL);
2243 if (symbol_lookup_debug > 1)
2244 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2251 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2253 const domain_enum domain)
2255 struct objfile *objfile;
2257 for (objfile = main_objfile;
2259 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2261 struct block_symbol result
2262 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2264 if (result.symbol != NULL)
2268 return (struct block_symbol) {NULL, NULL};
2271 /* Check to see if the symbol is defined in one of the OBJFILE's
2272 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2273 depending on whether or not we want to search global symbols or
2276 static struct block_symbol
2277 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2278 const char *name, const domain_enum domain)
2280 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2282 if (symbol_lookup_debug > 1)
2284 fprintf_unfiltered (gdb_stdlog,
2285 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2286 objfile_debug_name (objfile),
2287 block_index == GLOBAL_BLOCK
2288 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2289 name, domain_name (domain));
2292 for (compunit_symtab *cust : objfile->compunits ())
2294 const struct blockvector *bv;
2295 const struct block *block;
2296 struct block_symbol result;
2298 bv = COMPUNIT_BLOCKVECTOR (cust);
2299 block = BLOCKVECTOR_BLOCK (bv, block_index);
2300 result.symbol = block_lookup_symbol_primary (block, name, domain);
2301 result.block = block;
2302 if (result.symbol != NULL)
2304 if (symbol_lookup_debug > 1)
2306 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2307 host_address_to_string (result.symbol),
2308 host_address_to_string (block));
2310 result.symbol = fixup_symbol_section (result.symbol, objfile);
2316 if (symbol_lookup_debug > 1)
2317 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2318 return (struct block_symbol) {NULL, NULL};
2321 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2322 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2323 and all associated separate debug objfiles.
2325 Normally we only look in OBJFILE, and not any separate debug objfiles
2326 because the outer loop will cause them to be searched too. This case is
2327 different. Here we're called from search_symbols where it will only
2328 call us for the objfile that contains a matching minsym. */
2330 static struct block_symbol
2331 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2332 const char *linkage_name,
2335 enum language lang = current_language->la_language;
2336 struct objfile *main_objfile, *cur_objfile;
2338 demangle_result_storage storage;
2339 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2341 if (objfile->separate_debug_objfile_backlink)
2342 main_objfile = objfile->separate_debug_objfile_backlink;
2344 main_objfile = objfile;
2346 for (cur_objfile = main_objfile;
2348 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2350 struct block_symbol result;
2352 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2353 modified_name, domain);
2354 if (result.symbol == NULL)
2355 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2356 modified_name, domain);
2357 if (result.symbol != NULL)
2361 return (struct block_symbol) {NULL, NULL};
2364 /* A helper function that throws an exception when a symbol was found
2365 in a psymtab but not in a symtab. */
2367 static void ATTRIBUTE_NORETURN
2368 error_in_psymtab_expansion (int block_index, const char *name,
2369 struct compunit_symtab *cust)
2372 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2373 %s may be an inlined function, or may be a template function\n \
2374 (if a template, try specifying an instantiation: %s<type>)."),
2375 block_index == GLOBAL_BLOCK ? "global" : "static",
2377 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2381 /* A helper function for various lookup routines that interfaces with
2382 the "quick" symbol table functions. */
2384 static struct block_symbol
2385 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2386 const char *name, const domain_enum domain)
2388 struct compunit_symtab *cust;
2389 const struct blockvector *bv;
2390 const struct block *block;
2391 struct block_symbol result;
2394 return (struct block_symbol) {NULL, NULL};
2396 if (symbol_lookup_debug > 1)
2398 fprintf_unfiltered (gdb_stdlog,
2399 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2400 objfile_debug_name (objfile),
2401 block_index == GLOBAL_BLOCK
2402 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2403 name, domain_name (domain));
2406 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2409 if (symbol_lookup_debug > 1)
2411 fprintf_unfiltered (gdb_stdlog,
2412 "lookup_symbol_via_quick_fns (...) = NULL\n");
2414 return (struct block_symbol) {NULL, NULL};
2417 bv = COMPUNIT_BLOCKVECTOR (cust);
2418 block = BLOCKVECTOR_BLOCK (bv, block_index);
2419 result.symbol = block_lookup_symbol (block, name,
2420 symbol_name_match_type::FULL, domain);
2421 if (result.symbol == NULL)
2422 error_in_psymtab_expansion (block_index, name, cust);
2424 if (symbol_lookup_debug > 1)
2426 fprintf_unfiltered (gdb_stdlog,
2427 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2428 host_address_to_string (result.symbol),
2429 host_address_to_string (block));
2432 result.symbol = fixup_symbol_section (result.symbol, objfile);
2433 result.block = block;
2440 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2442 const struct block *block,
2443 const domain_enum domain)
2445 struct block_symbol result;
2447 /* NOTE: carlton/2003-05-19: The comments below were written when
2448 this (or what turned into this) was part of lookup_symbol_aux;
2449 I'm much less worried about these questions now, since these
2450 decisions have turned out well, but I leave these comments here
2453 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2454 not it would be appropriate to search the current global block
2455 here as well. (That's what this code used to do before the
2456 is_a_field_of_this check was moved up.) On the one hand, it's
2457 redundant with the lookup in all objfiles search that happens
2458 next. On the other hand, if decode_line_1 is passed an argument
2459 like filename:var, then the user presumably wants 'var' to be
2460 searched for in filename. On the third hand, there shouldn't be
2461 multiple global variables all of which are named 'var', and it's
2462 not like decode_line_1 has ever restricted its search to only
2463 global variables in a single filename. All in all, only
2464 searching the static block here seems best: it's correct and it's
2467 /* NOTE: carlton/2002-12-05: There's also a possible performance
2468 issue here: if you usually search for global symbols in the
2469 current file, then it would be slightly better to search the
2470 current global block before searching all the symtabs. But there
2471 are other factors that have a much greater effect on performance
2472 than that one, so I don't think we should worry about that for
2475 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2476 the current objfile. Searching the current objfile first is useful
2477 for both matching user expectations as well as performance. */
2479 result = lookup_symbol_in_static_block (name, block, domain);
2480 if (result.symbol != NULL)
2483 /* If we didn't find a definition for a builtin type in the static block,
2484 search for it now. This is actually the right thing to do and can be
2485 a massive performance win. E.g., when debugging a program with lots of
2486 shared libraries we could search all of them only to find out the
2487 builtin type isn't defined in any of them. This is common for types
2489 if (domain == VAR_DOMAIN)
2491 struct gdbarch *gdbarch;
2494 gdbarch = target_gdbarch ();
2496 gdbarch = block_gdbarch (block);
2497 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2499 result.block = NULL;
2500 if (result.symbol != NULL)
2504 return lookup_global_symbol (name, block, domain);
2510 lookup_symbol_in_static_block (const char *name,
2511 const struct block *block,
2512 const domain_enum domain)
2514 const struct block *static_block = block_static_block (block);
2517 if (static_block == NULL)
2518 return (struct block_symbol) {NULL, NULL};
2520 if (symbol_lookup_debug)
2522 struct objfile *objfile = lookup_objfile_from_block (static_block);
2524 fprintf_unfiltered (gdb_stdlog,
2525 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2528 host_address_to_string (block),
2529 objfile_debug_name (objfile),
2530 domain_name (domain));
2533 sym = lookup_symbol_in_block (name,
2534 symbol_name_match_type::FULL,
2535 static_block, domain);
2536 if (symbol_lookup_debug)
2538 fprintf_unfiltered (gdb_stdlog,
2539 "lookup_symbol_in_static_block (...) = %s\n",
2540 sym != NULL ? host_address_to_string (sym) : "NULL");
2542 return (struct block_symbol) {sym, static_block};
2545 /* Perform the standard symbol lookup of NAME in OBJFILE:
2546 1) First search expanded symtabs, and if not found
2547 2) Search the "quick" symtabs (partial or .gdb_index).
2548 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2550 static struct block_symbol
2551 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2552 const char *name, const domain_enum domain)
2554 struct block_symbol result;
2556 if (symbol_lookup_debug)
2558 fprintf_unfiltered (gdb_stdlog,
2559 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2560 objfile_debug_name (objfile),
2561 block_index == GLOBAL_BLOCK
2562 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2563 name, domain_name (domain));
2566 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2568 if (result.symbol != NULL)
2570 if (symbol_lookup_debug)
2572 fprintf_unfiltered (gdb_stdlog,
2573 "lookup_symbol_in_objfile (...) = %s"
2575 host_address_to_string (result.symbol));
2580 result = lookup_symbol_via_quick_fns (objfile, block_index,
2582 if (symbol_lookup_debug)
2584 fprintf_unfiltered (gdb_stdlog,
2585 "lookup_symbol_in_objfile (...) = %s%s\n",
2586 result.symbol != NULL
2587 ? host_address_to_string (result.symbol)
2589 result.symbol != NULL ? " (via quick fns)" : "");
2597 lookup_static_symbol (const char *name, const domain_enum domain)
2599 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2600 struct block_symbol result;
2601 struct block_symbol_cache *bsc;
2602 struct symbol_cache_slot *slot;
2604 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2605 NULL for OBJFILE_CONTEXT. */
2606 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2608 if (result.symbol != NULL)
2610 if (SYMBOL_LOOKUP_FAILED_P (result))
2611 return (struct block_symbol) {NULL, NULL};
2615 for (objfile *objfile : current_program_space->objfiles ())
2617 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2618 if (result.symbol != NULL)
2620 /* Still pass NULL for OBJFILE_CONTEXT here. */
2621 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2627 /* Still pass NULL for OBJFILE_CONTEXT here. */
2628 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2629 return (struct block_symbol) {NULL, NULL};
2632 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2634 struct global_sym_lookup_data
2636 /* The name of the symbol we are searching for. */
2639 /* The domain to use for our search. */
2642 /* The field where the callback should store the symbol if found.
2643 It should be initialized to {NULL, NULL} before the search is started. */
2644 struct block_symbol result;
2647 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2648 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2649 OBJFILE. The arguments for the search are passed via CB_DATA,
2650 which in reality is a pointer to struct global_sym_lookup_data. */
2653 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2656 struct global_sym_lookup_data *data =
2657 (struct global_sym_lookup_data *) cb_data;
2659 gdb_assert (data->result.symbol == NULL
2660 && data->result.block == NULL);
2662 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2663 data->name, data->domain);
2665 /* If we found a match, tell the iterator to stop. Otherwise,
2667 return (data->result.symbol != NULL);
2673 lookup_global_symbol (const char *name,
2674 const struct block *block,
2675 const domain_enum domain)
2677 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2678 struct block_symbol result;
2679 struct objfile *objfile;
2680 struct global_sym_lookup_data lookup_data;
2681 struct block_symbol_cache *bsc;
2682 struct symbol_cache_slot *slot;
2684 objfile = lookup_objfile_from_block (block);
2686 /* First see if we can find the symbol in the cache.
2687 This works because we use the current objfile to qualify the lookup. */
2688 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2690 if (result.symbol != NULL)
2692 if (SYMBOL_LOOKUP_FAILED_P (result))
2693 return (struct block_symbol) {NULL, NULL};
2697 /* Call library-specific lookup procedure. */
2698 if (objfile != NULL)
2699 result = solib_global_lookup (objfile, name, domain);
2701 /* If that didn't work go a global search (of global blocks, heh). */
2702 if (result.symbol == NULL)
2704 memset (&lookup_data, 0, sizeof (lookup_data));
2705 lookup_data.name = name;
2706 lookup_data.domain = domain;
2707 gdbarch_iterate_over_objfiles_in_search_order
2708 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2709 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2710 result = lookup_data.result;
2713 if (result.symbol != NULL)
2714 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2716 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2722 symbol_matches_domain (enum language symbol_language,
2723 domain_enum symbol_domain,
2726 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2727 Similarly, any Ada type declaration implicitly defines a typedef. */
2728 if (symbol_language == language_cplus
2729 || symbol_language == language_d
2730 || symbol_language == language_ada
2731 || symbol_language == language_rust)
2733 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2734 && symbol_domain == STRUCT_DOMAIN)
2737 /* For all other languages, strict match is required. */
2738 return (symbol_domain == domain);
2744 lookup_transparent_type (const char *name)
2746 return current_language->la_lookup_transparent_type (name);
2749 /* A helper for basic_lookup_transparent_type that interfaces with the
2750 "quick" symbol table functions. */
2752 static struct type *
2753 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2756 struct compunit_symtab *cust;
2757 const struct blockvector *bv;
2758 struct block *block;
2763 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2768 bv = COMPUNIT_BLOCKVECTOR (cust);
2769 block = BLOCKVECTOR_BLOCK (bv, block_index);
2770 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2771 block_find_non_opaque_type, NULL);
2773 error_in_psymtab_expansion (block_index, name, cust);
2774 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2775 return SYMBOL_TYPE (sym);
2778 /* Subroutine of basic_lookup_transparent_type to simplify it.
2779 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2780 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2782 static struct type *
2783 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2786 const struct blockvector *bv;
2787 const struct block *block;
2788 const struct symbol *sym;
2790 for (compunit_symtab *cust : objfile->compunits ())
2792 bv = COMPUNIT_BLOCKVECTOR (cust);
2793 block = BLOCKVECTOR_BLOCK (bv, block_index);
2794 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2795 block_find_non_opaque_type, NULL);
2798 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2799 return SYMBOL_TYPE (sym);
2806 /* The standard implementation of lookup_transparent_type. This code
2807 was modeled on lookup_symbol -- the parts not relevant to looking
2808 up types were just left out. In particular it's assumed here that
2809 types are available in STRUCT_DOMAIN and only in file-static or
2813 basic_lookup_transparent_type (const char *name)
2817 /* Now search all the global symbols. Do the symtab's first, then
2818 check the psymtab's. If a psymtab indicates the existence
2819 of the desired name as a global, then do psymtab-to-symtab
2820 conversion on the fly and return the found symbol. */
2822 for (objfile *objfile : current_program_space->objfiles ())
2824 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2829 for (objfile *objfile : current_program_space->objfiles ())
2831 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2836 /* Now search the static file-level symbols.
2837 Not strictly correct, but more useful than an error.
2838 Do the symtab's first, then
2839 check the psymtab's. If a psymtab indicates the existence
2840 of the desired name as a file-level static, then do psymtab-to-symtab
2841 conversion on the fly and return the found symbol. */
2843 for (objfile *objfile : current_program_space->objfiles ())
2845 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2850 for (objfile *objfile : current_program_space->objfiles ())
2852 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2857 return (struct type *) 0;
2860 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2862 For each symbol that matches, CALLBACK is called. The symbol is
2863 passed to the callback.
2865 If CALLBACK returns false, the iteration ends. Otherwise, the
2866 search continues. */
2869 iterate_over_symbols (const struct block *block,
2870 const lookup_name_info &name,
2871 const domain_enum domain,
2872 gdb::function_view<symbol_found_callback_ftype> callback)
2874 struct block_iterator iter;
2877 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2879 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2880 SYMBOL_DOMAIN (sym), domain))
2882 struct block_symbol block_sym = {sym, block};
2884 if (!callback (&block_sym))
2890 /* Find the compunit symtab associated with PC and SECTION.
2891 This will read in debug info as necessary. */
2893 struct compunit_symtab *
2894 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2896 struct compunit_symtab *best_cust = NULL;
2897 CORE_ADDR distance = 0;
2898 struct bound_minimal_symbol msymbol;
2900 /* If we know that this is not a text address, return failure. This is
2901 necessary because we loop based on the block's high and low code
2902 addresses, which do not include the data ranges, and because
2903 we call find_pc_sect_psymtab which has a similar restriction based
2904 on the partial_symtab's texthigh and textlow. */
2905 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2906 if (msymbol.minsym && msymbol.minsym->data_p ())
2909 /* Search all symtabs for the one whose file contains our address, and which
2910 is the smallest of all the ones containing the address. This is designed
2911 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2912 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2913 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2915 This happens for native ecoff format, where code from included files
2916 gets its own symtab. The symtab for the included file should have
2917 been read in already via the dependency mechanism.
2918 It might be swifter to create several symtabs with the same name
2919 like xcoff does (I'm not sure).
2921 It also happens for objfiles that have their functions reordered.
2922 For these, the symtab we are looking for is not necessarily read in. */
2924 for (objfile *obj_file : current_program_space->objfiles ())
2926 for (compunit_symtab *cust : obj_file->compunits ())
2929 const struct blockvector *bv;
2931 bv = COMPUNIT_BLOCKVECTOR (cust);
2932 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2934 if (BLOCK_START (b) <= pc
2935 && BLOCK_END (b) > pc
2937 || BLOCK_END (b) - BLOCK_START (b) < distance))
2939 /* For an objfile that has its functions reordered,
2940 find_pc_psymtab will find the proper partial symbol table
2941 and we simply return its corresponding symtab. */
2942 /* In order to better support objfiles that contain both
2943 stabs and coff debugging info, we continue on if a psymtab
2945 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2947 struct compunit_symtab *result;
2950 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2960 struct block_iterator iter;
2961 struct symbol *sym = NULL;
2963 ALL_BLOCK_SYMBOLS (b, iter, sym)
2965 fixup_symbol_section (sym, obj_file);
2966 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2972 continue; /* No symbol in this symtab matches
2975 distance = BLOCK_END (b) - BLOCK_START (b);
2981 if (best_cust != NULL)
2984 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2986 for (objfile *objf : current_program_space->objfiles ())
2988 struct compunit_symtab *result;
2992 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
3003 /* Find the compunit symtab associated with PC.
3004 This will read in debug info as necessary.
3005 Backward compatibility, no section. */
3007 struct compunit_symtab *
3008 find_pc_compunit_symtab (CORE_ADDR pc)
3010 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3016 find_symbol_at_address (CORE_ADDR address)
3018 for (objfile *objfile : current_program_space->objfiles ())
3020 if (objfile->sf == NULL
3021 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3024 struct compunit_symtab *symtab
3025 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3028 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3030 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3032 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3033 struct block_iterator iter;
3036 ALL_BLOCK_SYMBOLS (b, iter, sym)
3038 if (SYMBOL_CLASS (sym) == LOC_STATIC
3039 && SYMBOL_VALUE_ADDRESS (sym) == address)
3051 /* Find the source file and line number for a given PC value and SECTION.
3052 Return a structure containing a symtab pointer, a line number,
3053 and a pc range for the entire source line.
3054 The value's .pc field is NOT the specified pc.
3055 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3056 use the line that ends there. Otherwise, in that case, the line
3057 that begins there is used. */
3059 /* The big complication here is that a line may start in one file, and end just
3060 before the start of another file. This usually occurs when you #include
3061 code in the middle of a subroutine. To properly find the end of a line's PC
3062 range, we must search all symtabs associated with this compilation unit, and
3063 find the one whose first PC is closer than that of the next line in this
3066 struct symtab_and_line
3067 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3069 struct compunit_symtab *cust;
3070 struct linetable *l;
3072 struct linetable_entry *item;
3073 const struct blockvector *bv;
3074 struct bound_minimal_symbol msymbol;
3076 /* Info on best line seen so far, and where it starts, and its file. */
3078 struct linetable_entry *best = NULL;
3079 CORE_ADDR best_end = 0;
3080 struct symtab *best_symtab = 0;
3082 /* Store here the first line number
3083 of a file which contains the line at the smallest pc after PC.
3084 If we don't find a line whose range contains PC,
3085 we will use a line one less than this,
3086 with a range from the start of that file to the first line's pc. */
3087 struct linetable_entry *alt = NULL;
3089 /* Info on best line seen in this file. */
3091 struct linetable_entry *prev;
3093 /* If this pc is not from the current frame,
3094 it is the address of the end of a call instruction.
3095 Quite likely that is the start of the following statement.
3096 But what we want is the statement containing the instruction.
3097 Fudge the pc to make sure we get that. */
3099 /* It's tempting to assume that, if we can't find debugging info for
3100 any function enclosing PC, that we shouldn't search for line
3101 number info, either. However, GAS can emit line number info for
3102 assembly files --- very helpful when debugging hand-written
3103 assembly code. In such a case, we'd have no debug info for the
3104 function, but we would have line info. */
3109 /* elz: added this because this function returned the wrong
3110 information if the pc belongs to a stub (import/export)
3111 to call a shlib function. This stub would be anywhere between
3112 two functions in the target, and the line info was erroneously
3113 taken to be the one of the line before the pc. */
3115 /* RT: Further explanation:
3117 * We have stubs (trampolines) inserted between procedures.
3119 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3120 * exists in the main image.
3122 * In the minimal symbol table, we have a bunch of symbols
3123 * sorted by start address. The stubs are marked as "trampoline",
3124 * the others appear as text. E.g.:
3126 * Minimal symbol table for main image
3127 * main: code for main (text symbol)
3128 * shr1: stub (trampoline symbol)
3129 * foo: code for foo (text symbol)
3131 * Minimal symbol table for "shr1" image:
3133 * shr1: code for shr1 (text symbol)
3136 * So the code below is trying to detect if we are in the stub
3137 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3138 * and if found, do the symbolization from the real-code address
3139 * rather than the stub address.
3141 * Assumptions being made about the minimal symbol table:
3142 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3143 * if we're really in the trampoline.s If we're beyond it (say
3144 * we're in "foo" in the above example), it'll have a closer
3145 * symbol (the "foo" text symbol for example) and will not
3146 * return the trampoline.
3147 * 2. lookup_minimal_symbol_text() will find a real text symbol
3148 * corresponding to the trampoline, and whose address will
3149 * be different than the trampoline address. I put in a sanity
3150 * check for the address being the same, to avoid an
3151 * infinite recursion.
3153 msymbol = lookup_minimal_symbol_by_pc (pc);
3154 if (msymbol.minsym != NULL)
3155 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3157 struct bound_minimal_symbol mfunsym
3158 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3161 if (mfunsym.minsym == NULL)
3162 /* I eliminated this warning since it is coming out
3163 * in the following situation:
3164 * gdb shmain // test program with shared libraries
3165 * (gdb) break shr1 // function in shared lib
3166 * Warning: In stub for ...
3167 * In the above situation, the shared lib is not loaded yet,
3168 * so of course we can't find the real func/line info,
3169 * but the "break" still works, and the warning is annoying.
3170 * So I commented out the warning. RT */
3171 /* warning ("In stub for %s; unable to find real function/line info",
3172 SYMBOL_LINKAGE_NAME (msymbol)); */
3175 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3176 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3177 /* Avoid infinite recursion */
3178 /* See above comment about why warning is commented out. */
3179 /* warning ("In stub for %s; unable to find real function/line info",
3180 SYMBOL_LINKAGE_NAME (msymbol)); */
3184 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3187 symtab_and_line val;
3188 val.pspace = current_program_space;
3190 cust = find_pc_sect_compunit_symtab (pc, section);
3193 /* If no symbol information, return previous pc. */
3200 bv = COMPUNIT_BLOCKVECTOR (cust);
3202 /* Look at all the symtabs that share this blockvector.
3203 They all have the same apriori range, that we found was right;
3204 but they have different line tables. */
3206 for (symtab *iter_s : compunit_filetabs (cust))
3208 /* Find the best line in this symtab. */
3209 l = SYMTAB_LINETABLE (iter_s);
3215 /* I think len can be zero if the symtab lacks line numbers
3216 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3217 I'm not sure which, and maybe it depends on the symbol
3223 item = l->item; /* Get first line info. */
3225 /* Is this file's first line closer than the first lines of other files?
3226 If so, record this file, and its first line, as best alternate. */
3227 if (item->pc > pc && (!alt || item->pc < alt->pc))
3230 auto pc_compare = [](const CORE_ADDR & comp_pc,
3231 const struct linetable_entry & lhs)->bool
3233 return comp_pc < lhs.pc;
3236 struct linetable_entry *first = item;
3237 struct linetable_entry *last = item + len;
3238 item = std::upper_bound (first, last, pc, pc_compare);
3240 prev = item - 1; /* Found a matching item. */
3242 /* At this point, prev points at the line whose start addr is <= pc, and
3243 item points at the next line. If we ran off the end of the linetable
3244 (pc >= start of the last line), then prev == item. If pc < start of
3245 the first line, prev will not be set. */
3247 /* Is this file's best line closer than the best in the other files?
3248 If so, record this file, and its best line, as best so far. Don't
3249 save prev if it represents the end of a function (i.e. line number
3250 0) instead of a real line. */
3252 if (prev && prev->line && (!best || prev->pc > best->pc))
3255 best_symtab = iter_s;
3257 /* Discard BEST_END if it's before the PC of the current BEST. */
3258 if (best_end <= best->pc)
3262 /* If another line (denoted by ITEM) is in the linetable and its
3263 PC is after BEST's PC, but before the current BEST_END, then
3264 use ITEM's PC as the new best_end. */
3265 if (best && item < last && item->pc > best->pc
3266 && (best_end == 0 || best_end > item->pc))
3267 best_end = item->pc;
3272 /* If we didn't find any line number info, just return zeros.
3273 We used to return alt->line - 1 here, but that could be
3274 anywhere; if we don't have line number info for this PC,
3275 don't make some up. */
3278 else if (best->line == 0)
3280 /* If our best fit is in a range of PC's for which no line
3281 number info is available (line number is zero) then we didn't
3282 find any valid line information. */
3287 val.symtab = best_symtab;
3288 val.line = best->line;
3290 if (best_end && (!alt || best_end < alt->pc))
3295 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3297 val.section = section;
3301 /* Backward compatibility (no section). */
3303 struct symtab_and_line
3304 find_pc_line (CORE_ADDR pc, int notcurrent)
3306 struct obj_section *section;
3308 section = find_pc_overlay (pc);
3309 if (pc_in_unmapped_range (pc, section))
3310 pc = overlay_mapped_address (pc, section);
3311 return find_pc_sect_line (pc, section, notcurrent);
3317 find_pc_line_symtab (CORE_ADDR pc)
3319 struct symtab_and_line sal;
3321 /* This always passes zero for NOTCURRENT to find_pc_line.
3322 There are currently no callers that ever pass non-zero. */
3323 sal = find_pc_line (pc, 0);
3327 /* Find line number LINE in any symtab whose name is the same as
3330 If found, return the symtab that contains the linetable in which it was
3331 found, set *INDEX to the index in the linetable of the best entry
3332 found, and set *EXACT_MATCH nonzero if the value returned is an
3335 If not found, return NULL. */
3338 find_line_symtab (struct symtab *sym_tab, int line,
3339 int *index, int *exact_match)
3341 int exact = 0; /* Initialized here to avoid a compiler warning. */
3343 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3347 struct linetable *best_linetable;
3348 struct symtab *best_symtab;
3350 /* First try looking it up in the given symtab. */
3351 best_linetable = SYMTAB_LINETABLE (sym_tab);
3352 best_symtab = sym_tab;
3353 best_index = find_line_common (best_linetable, line, &exact, 0);
3354 if (best_index < 0 || !exact)
3356 /* Didn't find an exact match. So we better keep looking for
3357 another symtab with the same name. In the case of xcoff,
3358 multiple csects for one source file (produced by IBM's FORTRAN
3359 compiler) produce multiple symtabs (this is unavoidable
3360 assuming csects can be at arbitrary places in memory and that
3361 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3363 /* BEST is the smallest linenumber > LINE so far seen,
3364 or 0 if none has been seen so far.
3365 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3368 if (best_index >= 0)
3369 best = best_linetable->item[best_index].line;
3373 for (objfile *objfile : current_program_space->objfiles ())
3376 objfile->sf->qf->expand_symtabs_with_fullname
3377 (objfile, symtab_to_fullname (sym_tab));
3380 for (objfile *objfile : current_program_space->objfiles ())
3382 for (compunit_symtab *cu : objfile->compunits ())
3384 for (symtab *s : compunit_filetabs (cu))
3386 struct linetable *l;
3389 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3391 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3392 symtab_to_fullname (s)) != 0)
3394 l = SYMTAB_LINETABLE (s);
3395 ind = find_line_common (l, line, &exact, 0);
3405 if (best == 0 || l->item[ind].line < best)
3407 best = l->item[ind].line;
3422 *index = best_index;
3424 *exact_match = exact;
3429 /* Given SYMTAB, returns all the PCs function in the symtab that
3430 exactly match LINE. Returns an empty vector if there are no exact
3431 matches, but updates BEST_ITEM in this case. */
3433 std::vector<CORE_ADDR>
3434 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3435 struct linetable_entry **best_item)
3438 std::vector<CORE_ADDR> result;
3440 /* First, collect all the PCs that are at this line. */
3446 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3453 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3455 if (*best_item == NULL || item->line < (*best_item)->line)
3461 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3469 /* Set the PC value for a given source file and line number and return true.
3470 Returns zero for invalid line number (and sets the PC to 0).
3471 The source file is specified with a struct symtab. */
3474 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3476 struct linetable *l;
3483 symtab = find_line_symtab (symtab, line, &ind, NULL);
3486 l = SYMTAB_LINETABLE (symtab);
3487 *pc = l->item[ind].pc;
3494 /* Find the range of pc values in a line.
3495 Store the starting pc of the line into *STARTPTR
3496 and the ending pc (start of next line) into *ENDPTR.
3497 Returns 1 to indicate success.
3498 Returns 0 if could not find the specified line. */
3501 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3504 CORE_ADDR startaddr;
3505 struct symtab_and_line found_sal;
3508 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3511 /* This whole function is based on address. For example, if line 10 has
3512 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3513 "info line *0x123" should say the line goes from 0x100 to 0x200
3514 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3515 This also insures that we never give a range like "starts at 0x134
3516 and ends at 0x12c". */
3518 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3519 if (found_sal.line != sal.line)
3521 /* The specified line (sal) has zero bytes. */
3522 *startptr = found_sal.pc;
3523 *endptr = found_sal.pc;
3527 *startptr = found_sal.pc;
3528 *endptr = found_sal.end;
3533 /* Given a line table and a line number, return the index into the line
3534 table for the pc of the nearest line whose number is >= the specified one.
3535 Return -1 if none is found. The value is >= 0 if it is an index.
3536 START is the index at which to start searching the line table.
3538 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3541 find_line_common (struct linetable *l, int lineno,
3542 int *exact_match, int start)
3547 /* BEST is the smallest linenumber > LINENO so far seen,
3548 or 0 if none has been seen so far.
3549 BEST_INDEX identifies the item for it. */
3551 int best_index = -1;
3562 for (i = start; i < len; i++)
3564 struct linetable_entry *item = &(l->item[i]);
3566 if (item->line == lineno)
3568 /* Return the first (lowest address) entry which matches. */
3573 if (item->line > lineno && (best == 0 || item->line < best))
3580 /* If we got here, we didn't get an exact match. */
3585 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3587 struct symtab_and_line sal;
3589 sal = find_pc_line (pc, 0);
3592 return sal.symtab != 0;
3595 /* Helper for find_function_start_sal. Does most of the work, except
3596 setting the sal's symbol. */
3598 static symtab_and_line
3599 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3602 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3604 if (funfirstline && sal.symtab != NULL
3605 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3606 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3608 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3611 if (gdbarch_skip_entrypoint_p (gdbarch))
3612 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3616 /* We always should have a line for the function start address.
3617 If we don't, something is odd. Create a plain SAL referring
3618 just the PC and hope that skip_prologue_sal (if requested)
3619 can find a line number for after the prologue. */
3620 if (sal.pc < func_addr)
3623 sal.pspace = current_program_space;
3625 sal.section = section;
3629 skip_prologue_sal (&sal);
3637 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3641 = find_function_start_sal_1 (func_addr, section, funfirstline);
3643 /* find_function_start_sal_1 does a linetable search, so it finds
3644 the symtab and linenumber, but not a symbol. Fill in the
3645 function symbol too. */
3646 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3654 find_function_start_sal (symbol *sym, bool funfirstline)
3656 fixup_symbol_section (sym, NULL);
3658 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3659 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3666 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3667 address for that function that has an entry in SYMTAB's line info
3668 table. If such an entry cannot be found, return FUNC_ADDR
3672 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3674 CORE_ADDR func_start, func_end;
3675 struct linetable *l;
3678 /* Give up if this symbol has no lineinfo table. */
3679 l = SYMTAB_LINETABLE (symtab);
3683 /* Get the range for the function's PC values, or give up if we
3684 cannot, for some reason. */
3685 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3688 /* Linetable entries are ordered by PC values, see the commentary in
3689 symtab.h where `struct linetable' is defined. Thus, the first
3690 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3691 address we are looking for. */
3692 for (i = 0; i < l->nitems; i++)
3694 struct linetable_entry *item = &(l->item[i]);
3696 /* Don't use line numbers of zero, they mark special entries in
3697 the table. See the commentary on symtab.h before the
3698 definition of struct linetable. */
3699 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3706 /* Adjust SAL to the first instruction past the function prologue.
3707 If the PC was explicitly specified, the SAL is not changed.
3708 If the line number was explicitly specified, at most the SAL's PC
3709 is updated. If SAL is already past the prologue, then do nothing. */
3712 skip_prologue_sal (struct symtab_and_line *sal)
3715 struct symtab_and_line start_sal;
3716 CORE_ADDR pc, saved_pc;
3717 struct obj_section *section;
3719 struct objfile *objfile;
3720 struct gdbarch *gdbarch;
3721 const struct block *b, *function_block;
3722 int force_skip, skip;
3724 /* Do not change the SAL if PC was specified explicitly. */
3725 if (sal->explicit_pc)
3728 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3730 switch_to_program_space_and_thread (sal->pspace);
3732 sym = find_pc_sect_function (sal->pc, sal->section);
3735 fixup_symbol_section (sym, NULL);
3737 objfile = symbol_objfile (sym);
3738 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3739 section = SYMBOL_OBJ_SECTION (objfile, sym);
3740 name = SYMBOL_LINKAGE_NAME (sym);
3744 struct bound_minimal_symbol msymbol
3745 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3747 if (msymbol.minsym == NULL)
3750 objfile = msymbol.objfile;
3751 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3752 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3753 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3756 gdbarch = get_objfile_arch (objfile);
3758 /* Process the prologue in two passes. In the first pass try to skip the
3759 prologue (SKIP is true) and verify there is a real need for it (indicated
3760 by FORCE_SKIP). If no such reason was found run a second pass where the
3761 prologue is not skipped (SKIP is false). */
3766 /* Be conservative - allow direct PC (without skipping prologue) only if we
3767 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3768 have to be set by the caller so we use SYM instead. */
3770 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3778 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3779 so that gdbarch_skip_prologue has something unique to work on. */
3780 if (section_is_overlay (section) && !section_is_mapped (section))
3781 pc = overlay_unmapped_address (pc, section);
3783 /* Skip "first line" of function (which is actually its prologue). */
3784 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3785 if (gdbarch_skip_entrypoint_p (gdbarch))
3786 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3788 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3790 /* For overlays, map pc back into its mapped VMA range. */
3791 pc = overlay_mapped_address (pc, section);
3793 /* Calculate line number. */
3794 start_sal = find_pc_sect_line (pc, section, 0);
3796 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3797 line is still part of the same function. */
3798 if (skip && start_sal.pc != pc
3799 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3800 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3801 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3802 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3804 /* First pc of next line */
3806 /* Recalculate the line number (might not be N+1). */
3807 start_sal = find_pc_sect_line (pc, section, 0);
3810 /* On targets with executable formats that don't have a concept of
3811 constructors (ELF with .init has, PE doesn't), gcc emits a call
3812 to `__main' in `main' between the prologue and before user
3814 if (gdbarch_skip_main_prologue_p (gdbarch)
3815 && name && strcmp_iw (name, "main") == 0)
3817 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3818 /* Recalculate the line number (might not be N+1). */
3819 start_sal = find_pc_sect_line (pc, section, 0);
3823 while (!force_skip && skip--);
3825 /* If we still don't have a valid source line, try to find the first
3826 PC in the lineinfo table that belongs to the same function. This
3827 happens with COFF debug info, which does not seem to have an
3828 entry in lineinfo table for the code after the prologue which has
3829 no direct relation to source. For example, this was found to be
3830 the case with the DJGPP target using "gcc -gcoff" when the
3831 compiler inserted code after the prologue to make sure the stack
3833 if (!force_skip && sym && start_sal.symtab == NULL)
3835 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3836 /* Recalculate the line number. */
3837 start_sal = find_pc_sect_line (pc, section, 0);
3840 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3841 forward SAL to the end of the prologue. */
3846 sal->section = section;
3848 /* Unless the explicit_line flag was set, update the SAL line
3849 and symtab to correspond to the modified PC location. */
3850 if (sal->explicit_line)
3853 sal->symtab = start_sal.symtab;
3854 sal->line = start_sal.line;
3855 sal->end = start_sal.end;
3857 /* Check if we are now inside an inlined function. If we can,
3858 use the call site of the function instead. */
3859 b = block_for_pc_sect (sal->pc, sal->section);
3860 function_block = NULL;
3863 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3865 else if (BLOCK_FUNCTION (b) != NULL)
3867 b = BLOCK_SUPERBLOCK (b);
3869 if (function_block != NULL
3870 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3872 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3873 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3877 /* Given PC at the function's start address, attempt to find the
3878 prologue end using SAL information. Return zero if the skip fails.
3880 A non-optimized prologue traditionally has one SAL for the function
3881 and a second for the function body. A single line function has
3882 them both pointing at the same line.
3884 An optimized prologue is similar but the prologue may contain
3885 instructions (SALs) from the instruction body. Need to skip those
3886 while not getting into the function body.
3888 The functions end point and an increasing SAL line are used as
3889 indicators of the prologue's endpoint.
3891 This code is based on the function refine_prologue_limit
3895 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3897 struct symtab_and_line prologue_sal;
3900 const struct block *bl;
3902 /* Get an initial range for the function. */
3903 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3904 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3906 prologue_sal = find_pc_line (start_pc, 0);
3907 if (prologue_sal.line != 0)
3909 /* For languages other than assembly, treat two consecutive line
3910 entries at the same address as a zero-instruction prologue.
3911 The GNU assembler emits separate line notes for each instruction
3912 in a multi-instruction macro, but compilers generally will not
3914 if (prologue_sal.symtab->language != language_asm)
3916 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3919 /* Skip any earlier lines, and any end-of-sequence marker
3920 from a previous function. */
3921 while (linetable->item[idx].pc != prologue_sal.pc
3922 || linetable->item[idx].line == 0)
3925 if (idx+1 < linetable->nitems
3926 && linetable->item[idx+1].line != 0
3927 && linetable->item[idx+1].pc == start_pc)
3931 /* If there is only one sal that covers the entire function,
3932 then it is probably a single line function, like
3934 if (prologue_sal.end >= end_pc)
3937 while (prologue_sal.end < end_pc)
3939 struct symtab_and_line sal;
3941 sal = find_pc_line (prologue_sal.end, 0);
3944 /* Assume that a consecutive SAL for the same (or larger)
3945 line mark the prologue -> body transition. */
3946 if (sal.line >= prologue_sal.line)
3948 /* Likewise if we are in a different symtab altogether
3949 (e.g. within a file included via #include). */
3950 if (sal.symtab != prologue_sal.symtab)
3953 /* The line number is smaller. Check that it's from the
3954 same function, not something inlined. If it's inlined,
3955 then there is no point comparing the line numbers. */
3956 bl = block_for_pc (prologue_sal.end);
3959 if (block_inlined_p (bl))
3961 if (BLOCK_FUNCTION (bl))
3966 bl = BLOCK_SUPERBLOCK (bl);
3971 /* The case in which compiler's optimizer/scheduler has
3972 moved instructions into the prologue. We look ahead in
3973 the function looking for address ranges whose
3974 corresponding line number is less the first one that we
3975 found for the function. This is more conservative then
3976 refine_prologue_limit which scans a large number of SALs
3977 looking for any in the prologue. */
3982 if (prologue_sal.end < end_pc)
3983 /* Return the end of this line, or zero if we could not find a
3985 return prologue_sal.end;
3987 /* Don't return END_PC, which is past the end of the function. */
3988 return prologue_sal.pc;
3994 find_function_alias_target (bound_minimal_symbol msymbol)
3996 CORE_ADDR func_addr;
3997 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4000 symbol *sym = find_pc_function (func_addr);
4002 && SYMBOL_CLASS (sym) == LOC_BLOCK
4003 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4010 /* If P is of the form "operator[ \t]+..." where `...' is
4011 some legitimate operator text, return a pointer to the
4012 beginning of the substring of the operator text.
4013 Otherwise, return "". */
4016 operator_chars (const char *p, const char **end)
4019 if (!startswith (p, CP_OPERATOR_STR))
4021 p += CP_OPERATOR_LEN;
4023 /* Don't get faked out by `operator' being part of a longer
4025 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4028 /* Allow some whitespace between `operator' and the operator symbol. */
4029 while (*p == ' ' || *p == '\t')
4032 /* Recognize 'operator TYPENAME'. */
4034 if (isalpha (*p) || *p == '_' || *p == '$')
4036 const char *q = p + 1;
4038 while (isalnum (*q) || *q == '_' || *q == '$')
4047 case '\\': /* regexp quoting */
4050 if (p[2] == '=') /* 'operator\*=' */
4052 else /* 'operator\*' */
4056 else if (p[1] == '[')
4059 error (_("mismatched quoting on brackets, "
4060 "try 'operator\\[\\]'"));
4061 else if (p[2] == '\\' && p[3] == ']')
4063 *end = p + 4; /* 'operator\[\]' */
4067 error (_("nothing is allowed between '[' and ']'"));
4071 /* Gratuitous qoute: skip it and move on. */
4093 if (p[0] == '-' && p[1] == '>')
4095 /* Struct pointer member operator 'operator->'. */
4098 *end = p + 3; /* 'operator->*' */
4101 else if (p[2] == '\\')
4103 *end = p + 4; /* Hopefully 'operator->\*' */
4108 *end = p + 2; /* 'operator->' */
4112 if (p[1] == '=' || p[1] == p[0])
4123 error (_("`operator ()' must be specified "
4124 "without whitespace in `()'"));
4129 error (_("`operator ?:' must be specified "
4130 "without whitespace in `?:'"));
4135 error (_("`operator []' must be specified "
4136 "without whitespace in `[]'"));
4140 error (_("`operator %s' not supported"), p);
4149 /* Data structure to maintain printing state for output_source_filename. */
4151 struct output_source_filename_data
4153 /* Cache of what we've seen so far. */
4154 struct filename_seen_cache *filename_seen_cache;
4156 /* Flag of whether we're printing the first one. */
4160 /* Slave routine for sources_info. Force line breaks at ,'s.
4161 NAME is the name to print.
4162 DATA contains the state for printing and watching for duplicates. */
4165 output_source_filename (const char *name,
4166 struct output_source_filename_data *data)
4168 /* Since a single source file can result in several partial symbol
4169 tables, we need to avoid printing it more than once. Note: if
4170 some of the psymtabs are read in and some are not, it gets
4171 printed both under "Source files for which symbols have been
4172 read" and "Source files for which symbols will be read in on
4173 demand". I consider this a reasonable way to deal with the
4174 situation. I'm not sure whether this can also happen for
4175 symtabs; it doesn't hurt to check. */
4177 /* Was NAME already seen? */
4178 if (data->filename_seen_cache->seen (name))
4180 /* Yes; don't print it again. */
4184 /* No; print it and reset *FIRST. */
4186 printf_filtered (", ");
4190 fputs_styled (name, file_name_style.style (), gdb_stdout);
4193 /* A callback for map_partial_symbol_filenames. */
4196 output_partial_symbol_filename (const char *filename, const char *fullname,
4199 output_source_filename (fullname ? fullname : filename,
4200 (struct output_source_filename_data *) data);
4204 info_sources_command (const char *ignore, int from_tty)
4206 struct output_source_filename_data data;
4208 if (!have_full_symbols () && !have_partial_symbols ())
4210 error (_("No symbol table is loaded. Use the \"file\" command."));
4213 filename_seen_cache filenames_seen;
4215 data.filename_seen_cache = &filenames_seen;
4217 printf_filtered ("Source files for which symbols have been read in:\n\n");
4220 for (objfile *objfile : current_program_space->objfiles ())
4222 for (compunit_symtab *cu : objfile->compunits ())
4224 for (symtab *s : compunit_filetabs (cu))
4226 const char *fullname = symtab_to_fullname (s);
4228 output_source_filename (fullname, &data);
4232 printf_filtered ("\n\n");
4234 printf_filtered ("Source files for which symbols "
4235 "will be read in on demand:\n\n");
4237 filenames_seen.clear ();
4239 map_symbol_filenames (output_partial_symbol_filename, &data,
4240 1 /*need_fullname*/);
4241 printf_filtered ("\n");
4244 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4245 non-zero compare only lbasename of FILES. */
4248 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4252 if (file != NULL && nfiles != 0)
4254 for (i = 0; i < nfiles; i++)
4256 if (compare_filenames_for_search (file, (basenames
4257 ? lbasename (files[i])
4262 else if (nfiles == 0)
4267 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4268 sort symbols, not minimal symbols. */
4271 symbol_search::compare_search_syms (const symbol_search &sym_a,
4272 const symbol_search &sym_b)
4276 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4277 symbol_symtab (sym_b.symbol)->filename);
4281 if (sym_a.block != sym_b.block)
4282 return sym_a.block - sym_b.block;
4284 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4285 SYMBOL_PRINT_NAME (sym_b.symbol));
4288 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4289 If SYM has no symbol_type or symbol_name, returns false. */
4292 treg_matches_sym_type_name (const compiled_regex &treg,
4293 const struct symbol *sym)
4295 struct type *sym_type;
4296 std::string printed_sym_type_name;
4298 if (symbol_lookup_debug > 1)
4300 fprintf_unfiltered (gdb_stdlog,
4301 "treg_matches_sym_type_name\n sym %s\n",
4302 SYMBOL_NATURAL_NAME (sym));
4305 sym_type = SYMBOL_TYPE (sym);
4306 if (sym_type == NULL)
4310 scoped_switch_to_sym_language_if_auto l (sym);
4312 printed_sym_type_name = type_to_string (sym_type);
4316 if (symbol_lookup_debug > 1)
4318 fprintf_unfiltered (gdb_stdlog,
4319 " sym_type_name %s\n",
4320 printed_sym_type_name.c_str ());
4324 if (printed_sym_type_name.empty ())
4327 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4331 /* Sort the symbols in RESULT and remove duplicates. */
4334 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4336 std::sort (result->begin (), result->end ());
4337 result->erase (std::unique (result->begin (), result->end ()),
4341 /* Search the symbol table for matches to the regular expression REGEXP,
4342 returning the results.
4344 Only symbols of KIND are searched:
4345 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4346 and constants (enums).
4347 if T_REGEXP is not NULL, only returns var that have
4348 a type matching regular expression T_REGEXP.
4349 FUNCTIONS_DOMAIN - search all functions
4350 TYPES_DOMAIN - search all type names
4351 ALL_DOMAIN - an internal error for this function
4353 Within each file the results are sorted locally; each symtab's global and
4354 static blocks are separately alphabetized.
4355 Duplicate entries are removed. */
4357 std::vector<symbol_search>
4358 search_symbols (const char *regexp, enum search_domain kind,
4359 const char *t_regexp,
4360 int nfiles, const char *files[])
4362 const struct blockvector *bv;
4365 struct block_iterator iter;
4368 static const enum minimal_symbol_type types[]
4369 = {mst_data, mst_text, mst_abs};
4370 static const enum minimal_symbol_type types2[]
4371 = {mst_bss, mst_file_text, mst_abs};
4372 static const enum minimal_symbol_type types3[]
4373 = {mst_file_data, mst_solib_trampoline, mst_abs};
4374 static const enum minimal_symbol_type types4[]
4375 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4376 enum minimal_symbol_type ourtype;
4377 enum minimal_symbol_type ourtype2;
4378 enum minimal_symbol_type ourtype3;
4379 enum minimal_symbol_type ourtype4;
4380 std::vector<symbol_search> result;
4381 gdb::optional<compiled_regex> preg;
4382 gdb::optional<compiled_regex> treg;
4384 gdb_assert (kind <= TYPES_DOMAIN);
4386 ourtype = types[kind];
4387 ourtype2 = types2[kind];
4388 ourtype3 = types3[kind];
4389 ourtype4 = types4[kind];
4393 /* Make sure spacing is right for C++ operators.
4394 This is just a courtesy to make the matching less sensitive
4395 to how many spaces the user leaves between 'operator'
4396 and <TYPENAME> or <OPERATOR>. */
4398 const char *opname = operator_chars (regexp, &opend);
4402 int fix = -1; /* -1 means ok; otherwise number of
4405 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4407 /* There should 1 space between 'operator' and 'TYPENAME'. */
4408 if (opname[-1] != ' ' || opname[-2] == ' ')
4413 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4414 if (opname[-1] == ' ')
4417 /* If wrong number of spaces, fix it. */
4420 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4422 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4427 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4429 preg.emplace (regexp, cflags, _("Invalid regexp"));
4432 if (t_regexp != NULL)
4434 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4436 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4439 /* Search through the partial symtabs *first* for all symbols
4440 matching the regexp. That way we don't have to reproduce all of
4441 the machinery below. */
4442 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4444 return file_matches (filename, files, nfiles,
4447 lookup_name_info::match_any (),
4448 [&] (const char *symname)
4450 return (!preg.has_value ()
4451 || preg->exec (symname,
4457 /* Here, we search through the minimal symbol tables for functions
4458 and variables that match, and force their symbols to be read.
4459 This is in particular necessary for demangled variable names,
4460 which are no longer put into the partial symbol tables.
4461 The symbol will then be found during the scan of symtabs below.
4463 For functions, find_pc_symtab should succeed if we have debug info
4464 for the function, for variables we have to call
4465 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4467 If the lookup fails, set found_misc so that we will rescan to print
4468 any matching symbols without debug info.
4469 We only search the objfile the msymbol came from, we no longer search
4470 all objfiles. In large programs (1000s of shared libs) searching all
4471 objfiles is not worth the pain. */
4473 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4475 for (objfile *objfile : current_program_space->objfiles ())
4477 for (minimal_symbol *msymbol : objfile->msymbols ())
4481 if (msymbol->created_by_gdb)
4484 if (MSYMBOL_TYPE (msymbol) == ourtype
4485 || MSYMBOL_TYPE (msymbol) == ourtype2
4486 || MSYMBOL_TYPE (msymbol) == ourtype3
4487 || MSYMBOL_TYPE (msymbol) == ourtype4)
4489 if (!preg.has_value ()
4490 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4493 /* Note: An important side-effect of these
4494 lookup functions is to expand the symbol
4495 table if msymbol is found, for the benefit of
4496 the next loop on compunits. */
4497 if (kind == FUNCTIONS_DOMAIN
4498 ? (find_pc_compunit_symtab
4499 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4501 : (lookup_symbol_in_objfile_from_linkage_name
4502 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4512 for (objfile *objfile : current_program_space->objfiles ())
4514 for (compunit_symtab *cust : objfile->compunits ())
4516 bv = COMPUNIT_BLOCKVECTOR (cust);
4517 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4519 b = BLOCKVECTOR_BLOCK (bv, i);
4520 ALL_BLOCK_SYMBOLS (b, iter, sym)
4522 struct symtab *real_symtab = symbol_symtab (sym);
4526 /* Check first sole REAL_SYMTAB->FILENAME. It does
4527 not need to be a substring of symtab_to_fullname as
4528 it may contain "./" etc. */
4529 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4530 || ((basenames_may_differ
4531 || file_matches (lbasename (real_symtab->filename),
4533 && file_matches (symtab_to_fullname (real_symtab),
4535 && ((!preg.has_value ()
4536 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4538 && ((kind == VARIABLES_DOMAIN
4539 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4540 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4541 && SYMBOL_CLASS (sym) != LOC_BLOCK
4542 /* LOC_CONST can be used for more than
4543 just enums, e.g., c++ static const
4544 members. We only want to skip enums
4546 && !(SYMBOL_CLASS (sym) == LOC_CONST
4547 && (TYPE_CODE (SYMBOL_TYPE (sym))
4549 && (!treg.has_value ()
4550 || treg_matches_sym_type_name (*treg, sym)))
4551 || (kind == FUNCTIONS_DOMAIN
4552 && SYMBOL_CLASS (sym) == LOC_BLOCK
4553 && (!treg.has_value ()
4554 || treg_matches_sym_type_name (*treg,
4556 || (kind == TYPES_DOMAIN
4557 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4560 result.emplace_back (i, sym);
4567 if (!result.empty ())
4568 sort_search_symbols_remove_dups (&result);
4570 /* If there are no eyes, avoid all contact. I mean, if there are
4571 no debug symbols, then add matching minsyms. But if the user wants
4572 to see symbols matching a type regexp, then never give a minimal symbol,
4573 as we assume that a minimal symbol does not have a type. */
4575 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4576 && !treg.has_value ())
4578 for (objfile *objfile : current_program_space->objfiles ())
4580 for (minimal_symbol *msymbol : objfile->msymbols ())
4584 if (msymbol->created_by_gdb)
4587 if (MSYMBOL_TYPE (msymbol) == ourtype
4588 || MSYMBOL_TYPE (msymbol) == ourtype2
4589 || MSYMBOL_TYPE (msymbol) == ourtype3
4590 || MSYMBOL_TYPE (msymbol) == ourtype4)
4592 if (!preg.has_value ()
4593 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4596 /* For functions we can do a quick check of whether the
4597 symbol might be found via find_pc_symtab. */
4598 if (kind != FUNCTIONS_DOMAIN
4599 || (find_pc_compunit_symtab
4600 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4603 if (lookup_symbol_in_objfile_from_linkage_name
4604 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4609 result.emplace_back (i, msymbol, objfile);
4621 /* Helper function for symtab_symbol_info, this function uses
4622 the data returned from search_symbols() to print information
4623 regarding the match to gdb_stdout. If LAST is not NULL,
4624 print file and line number information for the symbol as
4625 well. Skip printing the filename if it matches LAST. */
4628 print_symbol_info (enum search_domain kind,
4630 int block, const char *last)
4632 scoped_switch_to_sym_language_if_auto l (sym);
4633 struct symtab *s = symbol_symtab (sym);
4637 const char *s_filename = symtab_to_filename_for_display (s);
4639 if (filename_cmp (last, s_filename) != 0)
4641 fputs_filtered ("\nFile ", gdb_stdout);
4642 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4643 fputs_filtered (":\n", gdb_stdout);
4646 if (SYMBOL_LINE (sym) != 0)
4647 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4649 puts_filtered ("\t");
4652 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4653 printf_filtered ("static ");
4655 /* Typedef that is not a C++ class. */
4656 if (kind == TYPES_DOMAIN
4657 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4658 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4659 /* variable, func, or typedef-that-is-c++-class. */
4660 else if (kind < TYPES_DOMAIN
4661 || (kind == TYPES_DOMAIN
4662 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4664 type_print (SYMBOL_TYPE (sym),
4665 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4666 ? "" : SYMBOL_PRINT_NAME (sym)),
4669 printf_filtered (";\n");
4673 /* This help function for symtab_symbol_info() prints information
4674 for non-debugging symbols to gdb_stdout. */
4677 print_msymbol_info (struct bound_minimal_symbol msymbol)
4679 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4682 if (gdbarch_addr_bit (gdbarch) <= 32)
4683 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4684 & (CORE_ADDR) 0xffffffff,
4687 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4689 fputs_styled (tmp, address_style.style (), gdb_stdout);
4690 fputs_filtered (" ", gdb_stdout);
4691 if (msymbol.minsym->text_p ())
4692 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4693 function_name_style.style (),
4696 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4697 fputs_filtered ("\n", gdb_stdout);
4700 /* This is the guts of the commands "info functions", "info types", and
4701 "info variables". It calls search_symbols to find all matches and then
4702 print_[m]symbol_info to print out some useful information about the
4706 symtab_symbol_info (bool quiet,
4707 const char *regexp, enum search_domain kind,
4708 const char *t_regexp, int from_tty)
4710 static const char * const classnames[] =
4711 {"variable", "function", "type"};
4712 const char *last_filename = "";
4715 gdb_assert (kind <= TYPES_DOMAIN);
4717 /* Must make sure that if we're interrupted, symbols gets freed. */
4718 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4725 if (t_regexp != NULL)
4727 (_("All %ss matching regular expression \"%s\""
4728 " with type matching regular expression \"%s\":\n"),
4729 classnames[kind], regexp, t_regexp);
4731 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4732 classnames[kind], regexp);
4736 if (t_regexp != NULL)
4738 (_("All defined %ss"
4739 " with type matching regular expression \"%s\" :\n"),
4740 classnames[kind], t_regexp);
4742 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4746 for (const symbol_search &p : symbols)
4750 if (p.msymbol.minsym != NULL)
4755 printf_filtered (_("\nNon-debugging symbols:\n"));
4758 print_msymbol_info (p.msymbol);
4762 print_symbol_info (kind,
4767 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4773 info_variables_command (const char *args, int from_tty)
4776 std::string t_regexp;
4780 && extract_info_print_args (&args, &quiet, ®exp, &t_regexp))
4784 report_unrecognized_option_error ("info variables", args);
4786 symtab_symbol_info (quiet,
4787 regexp.empty () ? NULL : regexp.c_str (),
4789 t_regexp.empty () ? NULL : t_regexp.c_str (),
4795 info_functions_command (const char *args, int from_tty)
4798 std::string t_regexp;
4802 && extract_info_print_args (&args, &quiet, ®exp, &t_regexp))
4806 report_unrecognized_option_error ("info functions", args);
4808 symtab_symbol_info (quiet,
4809 regexp.empty () ? NULL : regexp.c_str (),
4811 t_regexp.empty () ? NULL : t_regexp.c_str (),
4817 info_types_command (const char *regexp, int from_tty)
4819 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4822 /* Breakpoint all functions matching regular expression. */
4825 rbreak_command_wrapper (char *regexp, int from_tty)
4827 rbreak_command (regexp, from_tty);
4831 rbreak_command (const char *regexp, int from_tty)
4834 const char **files = NULL;
4835 const char *file_name;
4840 const char *colon = strchr (regexp, ':');
4842 if (colon && *(colon + 1) != ':')
4847 colon_index = colon - regexp;
4848 local_name = (char *) alloca (colon_index + 1);
4849 memcpy (local_name, regexp, colon_index);
4850 local_name[colon_index--] = 0;
4851 while (isspace (local_name[colon_index]))
4852 local_name[colon_index--] = 0;
4853 file_name = local_name;
4856 regexp = skip_spaces (colon + 1);
4860 std::vector<symbol_search> symbols = search_symbols (regexp,
4865 scoped_rbreak_breakpoints finalize;
4866 for (const symbol_search &p : symbols)
4868 if (p.msymbol.minsym == NULL)
4870 struct symtab *symtab = symbol_symtab (p.symbol);
4871 const char *fullname = symtab_to_fullname (symtab);
4873 string = string_printf ("%s:'%s'", fullname,
4874 SYMBOL_LINKAGE_NAME (p.symbol));
4875 break_command (&string[0], from_tty);
4876 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4880 string = string_printf ("'%s'",
4881 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4883 break_command (&string[0], from_tty);
4884 printf_filtered ("<function, no debug info> %s;\n",
4885 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4891 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4894 compare_symbol_name (const char *symbol_name, language symbol_language,
4895 const lookup_name_info &lookup_name,
4896 completion_match_result &match_res)
4898 const language_defn *lang = language_def (symbol_language);
4900 symbol_name_matcher_ftype *name_match
4901 = get_symbol_name_matcher (lang, lookup_name);
4903 return name_match (symbol_name, lookup_name, &match_res);
4909 completion_list_add_name (completion_tracker &tracker,
4910 language symbol_language,
4911 const char *symname,
4912 const lookup_name_info &lookup_name,
4913 const char *text, const char *word)
4915 completion_match_result &match_res
4916 = tracker.reset_completion_match_result ();
4918 /* Clip symbols that cannot match. */
4919 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4922 /* Refresh SYMNAME from the match string. It's potentially
4923 different depending on language. (E.g., on Ada, the match may be
4924 the encoded symbol name wrapped in "<>"). */
4925 symname = match_res.match.match ();
4926 gdb_assert (symname != NULL);
4928 /* We have a match for a completion, so add SYMNAME to the current list
4929 of matches. Note that the name is moved to freshly malloc'd space. */
4932 gdb::unique_xmalloc_ptr<char> completion
4933 = make_completion_match_str (symname, text, word);
4935 /* Here we pass the match-for-lcd object to add_completion. Some
4936 languages match the user text against substrings of symbol
4937 names in some cases. E.g., in C++, "b push_ba" completes to
4938 "std::vector::push_back", "std::string::push_back", etc., and
4939 in this case we want the completion lowest common denominator
4940 to be "push_back" instead of "std::". */
4941 tracker.add_completion (std::move (completion),
4942 &match_res.match_for_lcd, text, word);
4946 /* completion_list_add_name wrapper for struct symbol. */
4949 completion_list_add_symbol (completion_tracker &tracker,
4951 const lookup_name_info &lookup_name,
4952 const char *text, const char *word)
4954 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4955 SYMBOL_NATURAL_NAME (sym),
4956 lookup_name, text, word);
4959 /* completion_list_add_name wrapper for struct minimal_symbol. */
4962 completion_list_add_msymbol (completion_tracker &tracker,
4963 minimal_symbol *sym,
4964 const lookup_name_info &lookup_name,
4965 const char *text, const char *word)
4967 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4968 MSYMBOL_NATURAL_NAME (sym),
4969 lookup_name, text, word);
4973 /* ObjC: In case we are completing on a selector, look as the msymbol
4974 again and feed all the selectors into the mill. */
4977 completion_list_objc_symbol (completion_tracker &tracker,
4978 struct minimal_symbol *msymbol,
4979 const lookup_name_info &lookup_name,
4980 const char *text, const char *word)
4982 static char *tmp = NULL;
4983 static unsigned int tmplen = 0;
4985 const char *method, *category, *selector;
4988 method = MSYMBOL_NATURAL_NAME (msymbol);
4990 /* Is it a method? */
4991 if ((method[0] != '-') && (method[0] != '+'))
4995 /* Complete on shortened method method. */
4996 completion_list_add_name (tracker, language_objc,
5001 while ((strlen (method) + 1) >= tmplen)
5007 tmp = (char *) xrealloc (tmp, tmplen);
5009 selector = strchr (method, ' ');
5010 if (selector != NULL)
5013 category = strchr (method, '(');
5015 if ((category != NULL) && (selector != NULL))
5017 memcpy (tmp, method, (category - method));
5018 tmp[category - method] = ' ';
5019 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5020 completion_list_add_name (tracker, language_objc, tmp,
5021 lookup_name, text, word);
5023 completion_list_add_name (tracker, language_objc, tmp + 1,
5024 lookup_name, text, word);
5027 if (selector != NULL)
5029 /* Complete on selector only. */
5030 strcpy (tmp, selector);
5031 tmp2 = strchr (tmp, ']');
5035 completion_list_add_name (tracker, language_objc, tmp,
5036 lookup_name, text, word);
5040 /* Break the non-quoted text based on the characters which are in
5041 symbols. FIXME: This should probably be language-specific. */
5044 language_search_unquoted_string (const char *text, const char *p)
5046 for (; p > text; --p)
5048 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5052 if ((current_language->la_language == language_objc))
5054 if (p[-1] == ':') /* Might be part of a method name. */
5056 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5057 p -= 2; /* Beginning of a method name. */
5058 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5059 { /* Might be part of a method name. */
5062 /* Seeing a ' ' or a '(' is not conclusive evidence
5063 that we are in the middle of a method name. However,
5064 finding "-[" or "+[" should be pretty un-ambiguous.
5065 Unfortunately we have to find it now to decide. */
5068 if (isalnum (t[-1]) || t[-1] == '_' ||
5069 t[-1] == ' ' || t[-1] == ':' ||
5070 t[-1] == '(' || t[-1] == ')')
5075 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5076 p = t - 2; /* Method name detected. */
5077 /* Else we leave with p unchanged. */
5087 completion_list_add_fields (completion_tracker &tracker,
5089 const lookup_name_info &lookup_name,
5090 const char *text, const char *word)
5092 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5094 struct type *t = SYMBOL_TYPE (sym);
5095 enum type_code c = TYPE_CODE (t);
5098 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5099 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5100 if (TYPE_FIELD_NAME (t, j))
5101 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5102 TYPE_FIELD_NAME (t, j),
5103 lookup_name, text, word);
5110 symbol_is_function_or_method (symbol *sym)
5112 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5114 case TYPE_CODE_FUNC:
5115 case TYPE_CODE_METHOD:
5125 symbol_is_function_or_method (minimal_symbol *msymbol)
5127 switch (MSYMBOL_TYPE (msymbol))
5130 case mst_text_gnu_ifunc:
5131 case mst_solib_trampoline:
5141 bound_minimal_symbol
5142 find_gnu_ifunc (const symbol *sym)
5144 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5147 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5148 symbol_name_match_type::SEARCH_NAME);
5149 struct objfile *objfile = symbol_objfile (sym);
5151 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5152 minimal_symbol *ifunc = NULL;
5154 iterate_over_minimal_symbols (objfile, lookup_name,
5155 [&] (minimal_symbol *minsym)
5157 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5158 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5160 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5161 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5163 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5165 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5167 current_top_target ());
5169 if (msym_addr == address)
5179 return {ifunc, objfile};
5183 /* Add matching symbols from SYMTAB to the current completion list. */
5186 add_symtab_completions (struct compunit_symtab *cust,
5187 completion_tracker &tracker,
5188 complete_symbol_mode mode,
5189 const lookup_name_info &lookup_name,
5190 const char *text, const char *word,
5191 enum type_code code)
5194 const struct block *b;
5195 struct block_iterator iter;
5201 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5204 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5205 ALL_BLOCK_SYMBOLS (b, iter, sym)
5207 if (completion_skip_symbol (mode, sym))
5210 if (code == TYPE_CODE_UNDEF
5211 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5212 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5213 completion_list_add_symbol (tracker, sym,
5221 default_collect_symbol_completion_matches_break_on
5222 (completion_tracker &tracker, complete_symbol_mode mode,
5223 symbol_name_match_type name_match_type,
5224 const char *text, const char *word,
5225 const char *break_on, enum type_code code)
5227 /* Problem: All of the symbols have to be copied because readline
5228 frees them. I'm not going to worry about this; hopefully there
5229 won't be that many. */
5232 const struct block *b;
5233 const struct block *surrounding_static_block, *surrounding_global_block;
5234 struct block_iterator iter;
5235 /* The symbol we are completing on. Points in same buffer as text. */
5236 const char *sym_text;
5238 /* Now look for the symbol we are supposed to complete on. */
5239 if (mode == complete_symbol_mode::LINESPEC)
5245 const char *quote_pos = NULL;
5247 /* First see if this is a quoted string. */
5249 for (p = text; *p != '\0'; ++p)
5251 if (quote_found != '\0')
5253 if (*p == quote_found)
5254 /* Found close quote. */
5256 else if (*p == '\\' && p[1] == quote_found)
5257 /* A backslash followed by the quote character
5258 doesn't end the string. */
5261 else if (*p == '\'' || *p == '"')
5267 if (quote_found == '\'')
5268 /* A string within single quotes can be a symbol, so complete on it. */
5269 sym_text = quote_pos + 1;
5270 else if (quote_found == '"')
5271 /* A double-quoted string is never a symbol, nor does it make sense
5272 to complete it any other way. */
5278 /* It is not a quoted string. Break it based on the characters
5279 which are in symbols. */
5282 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5283 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5292 lookup_name_info lookup_name (sym_text, name_match_type, true);
5294 /* At this point scan through the misc symbol vectors and add each
5295 symbol you find to the list. Eventually we want to ignore
5296 anything that isn't a text symbol (everything else will be
5297 handled by the psymtab code below). */
5299 if (code == TYPE_CODE_UNDEF)
5301 for (objfile *objfile : current_program_space->objfiles ())
5303 for (minimal_symbol *msymbol : objfile->msymbols ())
5307 if (completion_skip_symbol (mode, msymbol))
5310 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5313 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5319 /* Add completions for all currently loaded symbol tables. */
5320 for (objfile *objfile : current_program_space->objfiles ())
5322 for (compunit_symtab *cust : objfile->compunits ())
5323 add_symtab_completions (cust, tracker, mode, lookup_name,
5324 sym_text, word, code);
5327 /* Look through the partial symtabs for all symbols which begin by
5328 matching SYM_TEXT. Expand all CUs that you find to the list. */
5329 expand_symtabs_matching (NULL,
5332 [&] (compunit_symtab *symtab) /* expansion notify */
5334 add_symtab_completions (symtab,
5335 tracker, mode, lookup_name,
5336 sym_text, word, code);
5340 /* Search upwards from currently selected frame (so that we can
5341 complete on local vars). Also catch fields of types defined in
5342 this places which match our text string. Only complete on types
5343 visible from current context. */
5345 b = get_selected_block (0);
5346 surrounding_static_block = block_static_block (b);
5347 surrounding_global_block = block_global_block (b);
5348 if (surrounding_static_block != NULL)
5349 while (b != surrounding_static_block)
5353 ALL_BLOCK_SYMBOLS (b, iter, sym)
5355 if (code == TYPE_CODE_UNDEF)
5357 completion_list_add_symbol (tracker, sym, lookup_name,
5359 completion_list_add_fields (tracker, sym, lookup_name,
5362 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5363 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5364 completion_list_add_symbol (tracker, sym, lookup_name,
5368 /* Stop when we encounter an enclosing function. Do not stop for
5369 non-inlined functions - the locals of the enclosing function
5370 are in scope for a nested function. */
5371 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5373 b = BLOCK_SUPERBLOCK (b);
5376 /* Add fields from the file's types; symbols will be added below. */
5378 if (code == TYPE_CODE_UNDEF)
5380 if (surrounding_static_block != NULL)
5381 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5382 completion_list_add_fields (tracker, sym, lookup_name,
5385 if (surrounding_global_block != NULL)
5386 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5387 completion_list_add_fields (tracker, sym, lookup_name,
5391 /* Skip macros if we are completing a struct tag -- arguable but
5392 usually what is expected. */
5393 if (current_language->la_macro_expansion == macro_expansion_c
5394 && code == TYPE_CODE_UNDEF)
5396 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5398 /* This adds a macro's name to the current completion list. */
5399 auto add_macro_name = [&] (const char *macro_name,
5400 const macro_definition *,
5401 macro_source_file *,
5404 completion_list_add_name (tracker, language_c, macro_name,
5405 lookup_name, sym_text, word);
5408 /* Add any macros visible in the default scope. Note that this
5409 may yield the occasional wrong result, because an expression
5410 might be evaluated in a scope other than the default. For
5411 example, if the user types "break file:line if <TAB>", the
5412 resulting expression will be evaluated at "file:line" -- but
5413 at there does not seem to be a way to detect this at
5415 scope = default_macro_scope ();
5417 macro_for_each_in_scope (scope->file, scope->line,
5420 /* User-defined macros are always visible. */
5421 macro_for_each (macro_user_macros, add_macro_name);
5426 default_collect_symbol_completion_matches (completion_tracker &tracker,
5427 complete_symbol_mode mode,
5428 symbol_name_match_type name_match_type,
5429 const char *text, const char *word,
5430 enum type_code code)
5432 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5438 /* Collect all symbols (regardless of class) which begin by matching
5442 collect_symbol_completion_matches (completion_tracker &tracker,
5443 complete_symbol_mode mode,
5444 symbol_name_match_type name_match_type,
5445 const char *text, const char *word)
5447 current_language->la_collect_symbol_completion_matches (tracker, mode,
5453 /* Like collect_symbol_completion_matches, but only collect
5454 STRUCT_DOMAIN symbols whose type code is CODE. */
5457 collect_symbol_completion_matches_type (completion_tracker &tracker,
5458 const char *text, const char *word,
5459 enum type_code code)
5461 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5462 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5464 gdb_assert (code == TYPE_CODE_UNION
5465 || code == TYPE_CODE_STRUCT
5466 || code == TYPE_CODE_ENUM);
5467 current_language->la_collect_symbol_completion_matches (tracker, mode,
5472 /* Like collect_symbol_completion_matches, but collects a list of
5473 symbols defined in all source files named SRCFILE. */
5476 collect_file_symbol_completion_matches (completion_tracker &tracker,
5477 complete_symbol_mode mode,
5478 symbol_name_match_type name_match_type,
5479 const char *text, const char *word,
5480 const char *srcfile)
5482 /* The symbol we are completing on. Points in same buffer as text. */
5483 const char *sym_text;
5485 /* Now look for the symbol we are supposed to complete on.
5486 FIXME: This should be language-specific. */
5487 if (mode == complete_symbol_mode::LINESPEC)
5493 const char *quote_pos = NULL;
5495 /* First see if this is a quoted string. */
5497 for (p = text; *p != '\0'; ++p)
5499 if (quote_found != '\0')
5501 if (*p == quote_found)
5502 /* Found close quote. */
5504 else if (*p == '\\' && p[1] == quote_found)
5505 /* A backslash followed by the quote character
5506 doesn't end the string. */
5509 else if (*p == '\'' || *p == '"')
5515 if (quote_found == '\'')
5516 /* A string within single quotes can be a symbol, so complete on it. */
5517 sym_text = quote_pos + 1;
5518 else if (quote_found == '"')
5519 /* A double-quoted string is never a symbol, nor does it make sense
5520 to complete it any other way. */
5526 /* Not a quoted string. */
5527 sym_text = language_search_unquoted_string (text, p);
5531 lookup_name_info lookup_name (sym_text, name_match_type, true);
5533 /* Go through symtabs for SRCFILE and check the externs and statics
5534 for symbols which match. */
5535 iterate_over_symtabs (srcfile, [&] (symtab *s)
5537 add_symtab_completions (SYMTAB_COMPUNIT (s),
5538 tracker, mode, lookup_name,
5539 sym_text, word, TYPE_CODE_UNDEF);
5544 /* A helper function for make_source_files_completion_list. It adds
5545 another file name to a list of possible completions, growing the
5546 list as necessary. */
5549 add_filename_to_list (const char *fname, const char *text, const char *word,
5550 completion_list *list)
5552 list->emplace_back (make_completion_match_str (fname, text, word));
5556 not_interesting_fname (const char *fname)
5558 static const char *illegal_aliens[] = {
5559 "_globals_", /* inserted by coff_symtab_read */
5564 for (i = 0; illegal_aliens[i]; i++)
5566 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5572 /* An object of this type is passed as the user_data argument to
5573 map_partial_symbol_filenames. */
5574 struct add_partial_filename_data
5576 struct filename_seen_cache *filename_seen_cache;
5580 completion_list *list;
5583 /* A callback for map_partial_symbol_filenames. */
5586 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5589 struct add_partial_filename_data *data
5590 = (struct add_partial_filename_data *) user_data;
5592 if (not_interesting_fname (filename))
5594 if (!data->filename_seen_cache->seen (filename)
5595 && filename_ncmp (filename, data->text, data->text_len) == 0)
5597 /* This file matches for a completion; add it to the
5598 current list of matches. */
5599 add_filename_to_list (filename, data->text, data->word, data->list);
5603 const char *base_name = lbasename (filename);
5605 if (base_name != filename
5606 && !data->filename_seen_cache->seen (base_name)
5607 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5608 add_filename_to_list (base_name, data->text, data->word, data->list);
5612 /* Return a list of all source files whose names begin with matching
5613 TEXT. The file names are looked up in the symbol tables of this
5617 make_source_files_completion_list (const char *text, const char *word)
5619 size_t text_len = strlen (text);
5620 completion_list list;
5621 const char *base_name;
5622 struct add_partial_filename_data datum;
5624 if (!have_full_symbols () && !have_partial_symbols ())
5627 filename_seen_cache filenames_seen;
5629 for (objfile *objfile : current_program_space->objfiles ())
5631 for (compunit_symtab *cu : objfile->compunits ())
5633 for (symtab *s : compunit_filetabs (cu))
5635 if (not_interesting_fname (s->filename))
5637 if (!filenames_seen.seen (s->filename)
5638 && filename_ncmp (s->filename, text, text_len) == 0)
5640 /* This file matches for a completion; add it to the current
5642 add_filename_to_list (s->filename, text, word, &list);
5646 /* NOTE: We allow the user to type a base name when the
5647 debug info records leading directories, but not the other
5648 way around. This is what subroutines of breakpoint
5649 command do when they parse file names. */
5650 base_name = lbasename (s->filename);
5651 if (base_name != s->filename
5652 && !filenames_seen.seen (base_name)
5653 && filename_ncmp (base_name, text, text_len) == 0)
5654 add_filename_to_list (base_name, text, word, &list);
5660 datum.filename_seen_cache = &filenames_seen;
5663 datum.text_len = text_len;
5665 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5666 0 /*need_fullname*/);
5673 /* Return the "main_info" object for the current program space. If
5674 the object has not yet been created, create it and fill in some
5677 static struct main_info *
5678 get_main_info (void)
5680 struct main_info *info
5681 = (struct main_info *) program_space_data (current_program_space,
5682 main_progspace_key);
5686 /* It may seem strange to store the main name in the progspace
5687 and also in whatever objfile happens to see a main name in
5688 its debug info. The reason for this is mainly historical:
5689 gdb returned "main" as the name even if no function named
5690 "main" was defined the program; and this approach lets us
5691 keep compatibility. */
5692 info = XCNEW (struct main_info);
5693 info->language_of_main = language_unknown;
5694 set_program_space_data (current_program_space, main_progspace_key,
5701 /* A cleanup to destroy a struct main_info when a progspace is
5705 main_info_cleanup (struct program_space *pspace, void *data)
5707 struct main_info *info = (struct main_info *) data;
5710 xfree (info->name_of_main);
5715 set_main_name (const char *name, enum language lang)
5717 struct main_info *info = get_main_info ();
5719 if (info->name_of_main != NULL)
5721 xfree (info->name_of_main);
5722 info->name_of_main = NULL;
5723 info->language_of_main = language_unknown;
5727 info->name_of_main = xstrdup (name);
5728 info->language_of_main = lang;
5732 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5736 find_main_name (void)
5738 const char *new_main_name;
5740 /* First check the objfiles to see whether a debuginfo reader has
5741 picked up the appropriate main name. Historically the main name
5742 was found in a more or less random way; this approach instead
5743 relies on the order of objfile creation -- which still isn't
5744 guaranteed to get the correct answer, but is just probably more
5746 for (objfile *objfile : current_program_space->objfiles ())
5748 if (objfile->per_bfd->name_of_main != NULL)
5750 set_main_name (objfile->per_bfd->name_of_main,
5751 objfile->per_bfd->language_of_main);
5756 /* Try to see if the main procedure is in Ada. */
5757 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5758 be to add a new method in the language vector, and call this
5759 method for each language until one of them returns a non-empty
5760 name. This would allow us to remove this hard-coded call to
5761 an Ada function. It is not clear that this is a better approach
5762 at this point, because all methods need to be written in a way
5763 such that false positives never be returned. For instance, it is
5764 important that a method does not return a wrong name for the main
5765 procedure if the main procedure is actually written in a different
5766 language. It is easy to guaranty this with Ada, since we use a
5767 special symbol generated only when the main in Ada to find the name
5768 of the main procedure. It is difficult however to see how this can
5769 be guarantied for languages such as C, for instance. This suggests
5770 that order of call for these methods becomes important, which means
5771 a more complicated approach. */
5772 new_main_name = ada_main_name ();
5773 if (new_main_name != NULL)
5775 set_main_name (new_main_name, language_ada);
5779 new_main_name = d_main_name ();
5780 if (new_main_name != NULL)
5782 set_main_name (new_main_name, language_d);
5786 new_main_name = go_main_name ();
5787 if (new_main_name != NULL)
5789 set_main_name (new_main_name, language_go);
5793 new_main_name = pascal_main_name ();
5794 if (new_main_name != NULL)
5796 set_main_name (new_main_name, language_pascal);
5800 /* The languages above didn't identify the name of the main procedure.
5801 Fallback to "main". */
5802 set_main_name ("main", language_unknown);
5808 struct main_info *info = get_main_info ();
5810 if (info->name_of_main == NULL)
5813 return info->name_of_main;
5816 /* Return the language of the main function. If it is not known,
5817 return language_unknown. */
5820 main_language (void)
5822 struct main_info *info = get_main_info ();
5824 if (info->name_of_main == NULL)
5827 return info->language_of_main;
5830 /* Handle ``executable_changed'' events for the symtab module. */
5833 symtab_observer_executable_changed (void)
5835 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5836 set_main_name (NULL, language_unknown);
5839 /* Return 1 if the supplied producer string matches the ARM RealView
5840 compiler (armcc). */
5843 producer_is_realview (const char *producer)
5845 static const char *const arm_idents[] = {
5846 "ARM C Compiler, ADS",
5847 "Thumb C Compiler, ADS",
5848 "ARM C++ Compiler, ADS",
5849 "Thumb C++ Compiler, ADS",
5850 "ARM/Thumb C/C++ Compiler, RVCT",
5851 "ARM C/C++ Compiler, RVCT"
5855 if (producer == NULL)
5858 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5859 if (startswith (producer, arm_idents[i]))
5867 /* The next index to hand out in response to a registration request. */
5869 static int next_aclass_value = LOC_FINAL_VALUE;
5871 /* The maximum number of "aclass" registrations we support. This is
5872 constant for convenience. */
5873 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5875 /* The objects representing the various "aclass" values. The elements
5876 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5877 elements are those registered at gdb initialization time. */
5879 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5881 /* The globally visible pointer. This is separate from 'symbol_impl'
5882 so that it can be const. */
5884 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5886 /* Make sure we saved enough room in struct symbol. */
5888 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5890 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5891 is the ops vector associated with this index. This returns the new
5892 index, which should be used as the aclass_index field for symbols
5896 register_symbol_computed_impl (enum address_class aclass,
5897 const struct symbol_computed_ops *ops)
5899 int result = next_aclass_value++;
5901 gdb_assert (aclass == LOC_COMPUTED);
5902 gdb_assert (result < MAX_SYMBOL_IMPLS);
5903 symbol_impl[result].aclass = aclass;
5904 symbol_impl[result].ops_computed = ops;
5906 /* Sanity check OPS. */
5907 gdb_assert (ops != NULL);
5908 gdb_assert (ops->tracepoint_var_ref != NULL);
5909 gdb_assert (ops->describe_location != NULL);
5910 gdb_assert (ops->get_symbol_read_needs != NULL);
5911 gdb_assert (ops->read_variable != NULL);
5916 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5917 OPS is the ops vector associated with this index. This returns the
5918 new index, which should be used as the aclass_index field for symbols
5922 register_symbol_block_impl (enum address_class aclass,
5923 const struct symbol_block_ops *ops)
5925 int result = next_aclass_value++;
5927 gdb_assert (aclass == LOC_BLOCK);
5928 gdb_assert (result < MAX_SYMBOL_IMPLS);
5929 symbol_impl[result].aclass = aclass;
5930 symbol_impl[result].ops_block = ops;
5932 /* Sanity check OPS. */
5933 gdb_assert (ops != NULL);
5934 gdb_assert (ops->find_frame_base_location != NULL);
5939 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5940 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5941 this index. This returns the new index, which should be used as
5942 the aclass_index field for symbols of this type. */
5945 register_symbol_register_impl (enum address_class aclass,
5946 const struct symbol_register_ops *ops)
5948 int result = next_aclass_value++;
5950 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5951 gdb_assert (result < MAX_SYMBOL_IMPLS);
5952 symbol_impl[result].aclass = aclass;
5953 symbol_impl[result].ops_register = ops;
5958 /* Initialize elements of 'symbol_impl' for the constants in enum
5962 initialize_ordinary_address_classes (void)
5966 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5967 symbol_impl[i].aclass = (enum address_class) i;
5972 /* Helper function to initialize the fields of an objfile-owned symbol.
5973 It assumed that *SYM is already all zeroes. */
5976 initialize_objfile_symbol_1 (struct symbol *sym)
5978 SYMBOL_OBJFILE_OWNED (sym) = 1;
5979 SYMBOL_SECTION (sym) = -1;
5982 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5985 initialize_objfile_symbol (struct symbol *sym)
5987 memset (sym, 0, sizeof (*sym));
5988 initialize_objfile_symbol_1 (sym);
5991 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5995 allocate_symbol (struct objfile *objfile)
5997 struct symbol *result;
5999 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6000 initialize_objfile_symbol_1 (result);
6005 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6008 struct template_symbol *
6009 allocate_template_symbol (struct objfile *objfile)
6011 struct template_symbol *result;
6013 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6014 initialize_objfile_symbol_1 (result);
6022 symbol_objfile (const struct symbol *symbol)
6024 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6025 return SYMTAB_OBJFILE (symbol->owner.symtab);
6031 symbol_arch (const struct symbol *symbol)
6033 if (!SYMBOL_OBJFILE_OWNED (symbol))
6034 return symbol->owner.arch;
6035 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6041 symbol_symtab (const struct symbol *symbol)
6043 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6044 return symbol->owner.symtab;
6050 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6052 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6053 symbol->owner.symtab = symtab;
6059 _initialize_symtab (void)
6061 initialize_ordinary_address_classes ();
6064 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6067 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6069 add_info ("variables", info_variables_command,
6070 info_print_args_help (_("\
6071 All global and static variable names or those matching REGEXPs.\n\
6072 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6073 Prints the global and static variables.\n"),
6074 _("global and static variables")));
6076 add_com ("whereis", class_info, info_variables_command,
6077 info_print_args_help (_("\
6078 All global and static variable names, or those matching REGEXPs.\n\
6079 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6080 Prints the global and static variables.\n"),
6081 _("global and static variables")));
6083 add_info ("functions", info_functions_command,
6084 info_print_args_help (_("\
6085 All function names or those matching REGEXPs.\n\
6086 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6087 Prints the functions.\n"),
6090 /* FIXME: This command has at least the following problems:
6091 1. It prints builtin types (in a very strange and confusing fashion).
6092 2. It doesn't print right, e.g. with
6093 typedef struct foo *FOO
6094 type_print prints "FOO" when we want to make it (in this situation)
6095 print "struct foo *".
6096 I also think "ptype" or "whatis" is more likely to be useful (but if
6097 there is much disagreement "info types" can be fixed). */
6098 add_info ("types", info_types_command,
6099 _("All type names, or those matching REGEXP."));
6101 add_info ("sources", info_sources_command,
6102 _("Source files in the program."));
6104 add_com ("rbreak", class_breakpoint, rbreak_command,
6105 _("Set a breakpoint for all functions matching REGEXP."));
6107 add_setshow_enum_cmd ("multiple-symbols", no_class,
6108 multiple_symbols_modes, &multiple_symbols_mode,
6110 Set the debugger behavior when more than one symbol are possible matches\n\
6111 in an expression."), _("\
6112 Show how the debugger handles ambiguities in expressions."), _("\
6113 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6114 NULL, NULL, &setlist, &showlist);
6116 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6117 &basenames_may_differ, _("\
6118 Set whether a source file may have multiple base names."), _("\
6119 Show whether a source file may have multiple base names."), _("\
6120 (A \"base name\" is the name of a file with the directory part removed.\n\
6121 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6122 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6123 before comparing them. Canonicalization is an expensive operation,\n\
6124 but it allows the same file be known by more than one base name.\n\
6125 If not set (the default), all source files are assumed to have just\n\
6126 one base name, and gdb will do file name comparisons more efficiently."),
6128 &setlist, &showlist);
6130 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6131 _("Set debugging of symbol table creation."),
6132 _("Show debugging of symbol table creation."), _("\
6133 When enabled (non-zero), debugging messages are printed when building\n\
6134 symbol tables. A value of 1 (one) normally provides enough information.\n\
6135 A value greater than 1 provides more verbose information."),
6138 &setdebuglist, &showdebuglist);
6140 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6142 Set debugging of symbol lookup."), _("\
6143 Show debugging of symbol lookup."), _("\
6144 When enabled (non-zero), symbol lookups are logged."),
6146 &setdebuglist, &showdebuglist);
6148 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6149 &new_symbol_cache_size,
6150 _("Set the size of the symbol cache."),
6151 _("Show the size of the symbol cache."), _("\
6152 The size of the symbol cache.\n\
6153 If zero then the symbol cache is disabled."),
6154 set_symbol_cache_size_handler, NULL,
6155 &maintenance_set_cmdlist,
6156 &maintenance_show_cmdlist);
6158 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6159 _("Dump the symbol cache for each program space."),
6160 &maintenanceprintlist);
6162 add_cmd ("symbol-cache-statistics", class_maintenance,
6163 maintenance_print_symbol_cache_statistics,
6164 _("Print symbol cache statistics for each program space."),
6165 &maintenanceprintlist);
6167 add_cmd ("flush-symbol-cache", class_maintenance,
6168 maintenance_flush_symbol_cache,
6169 _("Flush the symbol cache for each program space."),
6172 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6173 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6174 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);