1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
49 #include "gdb_obstack.h"
51 #include "dictionary.h"
53 #include <sys/types.h>
55 #include "gdb_string.h"
59 #include "cp-support.h"
61 #include "gdb_assert.h"
64 #include "macroscope.h"
68 /* Prototypes for local functions */
70 static void completion_list_add_name (char *, char *, int, char *, char *);
72 static void rbreak_command (char *, int);
74 static void types_info (char *, int);
76 static void functions_info (char *, int);
78 static void variables_info (char *, int);
80 static void sources_info (char *, int);
82 static void output_source_filename (const char *, int *);
84 static int find_line_common (struct linetable *, int, int *);
86 /* This one is used by linespec.c */
88 char *operator_chars (char *p, char **end);
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
105 const domain_enum domain);
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
111 const domain_enum domain);
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
116 static void print_msymbol_info (struct minimal_symbol *);
118 static void symtab_symbol_info (char *, domain_enum, int);
120 void _initialize_symtab (void);
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
138 static const char *multiple_symbols_mode = multiple_symbols_all;
140 /* Read-only accessor to AUTO_SELECT_MODE. */
143 multiple_symbols_select_mode (void)
145 return multiple_symbols_mode;
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
152 const struct block *block_found;
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
159 lookup_symtab (const char *name)
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
179 /* First, search for an exact match. */
181 ALL_SYMTABS (objfile, s)
183 if (FILENAME_CMP (name, s->filename) == 0)
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
191 if (full_path != NULL)
193 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
201 if (real_path != NULL)
203 char *fullname = symtab_to_fullname (s);
205 if (fullname != NULL)
207 char *rp = gdb_realpath (fullname);
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
218 /* Now, search for a matching tail (only if name doesn't have any dirs). */
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
227 /* Same search rules as above apply here, but now we look thru the
231 ALL_OBJFILES (objfile)
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
258 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
266 int mangled_name_len;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
279 int is_destructor = is_destructor_name (physname);
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
284 int len = (newname == NULL ? 0 : strlen (newname));
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
290 return xstrdup (physname);
292 is_full_physname_constructor = is_constructor_name (physname);
294 is_constructor = is_full_physname_constructor
295 || (newname && strcmp (field_name, newname) == 0);
298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
300 if (is_destructor || is_full_physname_constructor)
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
311 else if (physname[0] == 't' || physname[0] == 'Q')
313 /* The physname for template and qualified methods already includes
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 + strlen (buf) + len + strlen (physname) + 1);
326 mangled_name = (char *) xmalloc (mangled_name_len);
328 mangled_name[0] = '\0';
330 strcpy (mangled_name, field_name);
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
335 as something starting with `::' rather than `classname::'. */
337 strcat (mangled_name, newname);
339 strcat (mangled_name, physname);
340 return (mangled_name);
343 /* Initialize the cplus_specific structure. 'cplus_specific' should
344 only be allocated for use with cplus symbols. */
347 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
348 struct objfile *objfile)
350 /* A language_specific structure should not have been previously
352 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
353 gdb_assert (objfile != NULL);
355 gsymbol->language_specific.cplus_specific =
356 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
359 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
360 correctly allocated. For C++ symbols a cplus_specific struct is
361 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
362 OBJFILE can be NULL. */
364 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
366 struct objfile *objfile)
368 if (gsymbol->language == language_cplus)
370 if (gsymbol->language_specific.cplus_specific == NULL)
371 symbol_init_cplus_specific (gsymbol, objfile);
373 gsymbol->language_specific.cplus_specific->demangled_name = name;
376 gsymbol->language_specific.mangled_lang.demangled_name = name;
379 /* Return the demangled name of GSYMBOL. */
381 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
383 if (gsymbol->language == language_cplus)
385 if (gsymbol->language_specific.cplus_specific != NULL)
386 return gsymbol->language_specific.cplus_specific->demangled_name;
391 return gsymbol->language_specific.mangled_lang.demangled_name;
395 /* Initialize the language dependent portion of a symbol
396 depending upon the language for the symbol. */
398 symbol_set_language (struct general_symbol_info *gsymbol,
399 enum language language)
401 gsymbol->language = language;
402 if (gsymbol->language == language_d
403 || gsymbol->language == language_java
404 || gsymbol->language == language_objc
405 || gsymbol->language == language_fortran)
407 symbol_set_demangled_name (gsymbol, NULL, NULL);
409 else if (gsymbol->language == language_cplus)
410 gsymbol->language_specific.cplus_specific = NULL;
413 memset (&gsymbol->language_specific, 0,
414 sizeof (gsymbol->language_specific));
418 /* Functions to initialize a symbol's mangled name. */
420 /* Objects of this type are stored in the demangled name hash table. */
421 struct demangled_name_entry
427 /* Hash function for the demangled name hash. */
429 hash_demangled_name_entry (const void *data)
431 const struct demangled_name_entry *e = data;
433 return htab_hash_string (e->mangled);
436 /* Equality function for the demangled name hash. */
438 eq_demangled_name_entry (const void *a, const void *b)
440 const struct demangled_name_entry *da = a;
441 const struct demangled_name_entry *db = b;
443 return strcmp (da->mangled, db->mangled) == 0;
446 /* Create the hash table used for demangled names. Each hash entry is
447 a pair of strings; one for the mangled name and one for the demangled
448 name. The entry is hashed via just the mangled name. */
451 create_demangled_names_hash (struct objfile *objfile)
453 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
454 The hash table code will round this up to the next prime number.
455 Choosing a much larger table size wastes memory, and saves only about
456 1% in symbol reading. */
458 objfile->demangled_names_hash = htab_create_alloc
459 (256, hash_demangled_name_entry, eq_demangled_name_entry,
460 NULL, xcalloc, xfree);
463 /* Try to determine the demangled name for a symbol, based on the
464 language of that symbol. If the language is set to language_auto,
465 it will attempt to find any demangling algorithm that works and
466 then set the language appropriately. The returned name is allocated
467 by the demangler and should be xfree'd. */
470 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
473 char *demangled = NULL;
475 if (gsymbol->language == language_unknown)
476 gsymbol->language = language_auto;
478 if (gsymbol->language == language_objc
479 || gsymbol->language == language_auto)
482 objc_demangle (mangled, 0);
483 if (demangled != NULL)
485 gsymbol->language = language_objc;
489 if (gsymbol->language == language_cplus
490 || gsymbol->language == language_auto)
493 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
494 if (demangled != NULL)
496 gsymbol->language = language_cplus;
500 if (gsymbol->language == language_java)
503 cplus_demangle (mangled,
504 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
505 if (demangled != NULL)
507 gsymbol->language = language_java;
511 if (gsymbol->language == language_d
512 || gsymbol->language == language_auto)
514 demangled = d_demangle(mangled, 0);
515 if (demangled != NULL)
517 gsymbol->language = language_d;
521 /* We could support `gsymbol->language == language_fortran' here to provide
522 module namespaces also for inferiors with only minimal symbol table (ELF
523 symbols). Just the mangling standard is not standardized across compilers
524 and there is no DW_AT_producer available for inferiors with only the ELF
525 symbols to check the mangling kind. */
529 /* Set both the mangled and demangled (if any) names for GSYMBOL based
530 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
531 objfile's obstack; but if COPY_NAME is 0 and if NAME is
532 NUL-terminated, then this function assumes that NAME is already
533 correctly saved (either permanently or with a lifetime tied to the
534 objfile), and it will not be copied.
536 The hash table corresponding to OBJFILE is used, and the memory
537 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
538 so the pointer can be discarded after calling this function. */
540 /* We have to be careful when dealing with Java names: when we run
541 into a Java minimal symbol, we don't know it's a Java symbol, so it
542 gets demangled as a C++ name. This is unfortunate, but there's not
543 much we can do about it: but when demangling partial symbols and
544 regular symbols, we'd better not reuse the wrong demangled name.
545 (See PR gdb/1039.) We solve this by putting a distinctive prefix
546 on Java names when storing them in the hash table. */
548 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
549 don't mind the Java prefix so much: different languages have
550 different demangling requirements, so it's only natural that we
551 need to keep language data around in our demangling cache. But
552 it's not good that the minimal symbol has the wrong demangled name.
553 Unfortunately, I can't think of any easy solution to that
556 #define JAVA_PREFIX "##JAVA$$"
557 #define JAVA_PREFIX_LEN 8
560 symbol_set_names (struct general_symbol_info *gsymbol,
561 const char *linkage_name, int len, int copy_name,
562 struct objfile *objfile)
564 struct demangled_name_entry **slot;
565 /* A 0-terminated copy of the linkage name. */
566 const char *linkage_name_copy;
567 /* A copy of the linkage name that might have a special Java prefix
568 added to it, for use when looking names up in the hash table. */
569 const char *lookup_name;
570 /* The length of lookup_name. */
572 struct demangled_name_entry entry;
574 if (gsymbol->language == language_ada)
576 /* In Ada, we do the symbol lookups using the mangled name, so
577 we can save some space by not storing the demangled name.
579 As a side note, we have also observed some overlap between
580 the C++ mangling and Ada mangling, similarly to what has
581 been observed with Java. Because we don't store the demangled
582 name with the symbol, we don't need to use the same trick
585 gsymbol->name = (char *) linkage_name;
588 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
589 memcpy (gsymbol->name, linkage_name, len);
590 gsymbol->name[len] = '\0';
592 symbol_set_demangled_name (gsymbol, NULL, NULL);
597 if (objfile->demangled_names_hash == NULL)
598 create_demangled_names_hash (objfile);
600 /* The stabs reader generally provides names that are not
601 NUL-terminated; most of the other readers don't do this, so we
602 can just use the given copy, unless we're in the Java case. */
603 if (gsymbol->language == language_java)
607 lookup_len = len + JAVA_PREFIX_LEN;
608 alloc_name = alloca (lookup_len + 1);
609 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
610 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
611 alloc_name[lookup_len] = '\0';
613 lookup_name = alloc_name;
614 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
616 else if (linkage_name[len] != '\0')
621 alloc_name = alloca (lookup_len + 1);
622 memcpy (alloc_name, linkage_name, len);
623 alloc_name[lookup_len] = '\0';
625 lookup_name = alloc_name;
626 linkage_name_copy = alloc_name;
631 lookup_name = linkage_name;
632 linkage_name_copy = linkage_name;
635 entry.mangled = (char *) lookup_name;
636 slot = ((struct demangled_name_entry **)
637 htab_find_slot (objfile->demangled_names_hash,
640 /* If this name is not in the hash table, add it. */
643 char *demangled_name = symbol_find_demangled_name (gsymbol,
645 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
647 /* Suppose we have demangled_name==NULL, copy_name==0, and
648 lookup_name==linkage_name. In this case, we already have the
649 mangled name saved, and we don't have a demangled name. So,
650 you might think we could save a little space by not recording
651 this in the hash table at all.
653 It turns out that it is actually important to still save such
654 an entry in the hash table, because storing this name gives
655 us better bcache hit rates for partial symbols. */
656 if (!copy_name && lookup_name == linkage_name)
658 *slot = obstack_alloc (&objfile->objfile_obstack,
659 offsetof (struct demangled_name_entry,
661 + demangled_len + 1);
662 (*slot)->mangled = (char *) lookup_name;
666 /* If we must copy the mangled name, put it directly after
667 the demangled name so we can have a single
669 *slot = obstack_alloc (&objfile->objfile_obstack,
670 offsetof (struct demangled_name_entry,
672 + lookup_len + demangled_len + 2);
673 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
674 strcpy ((*slot)->mangled, lookup_name);
677 if (demangled_name != NULL)
679 strcpy ((*slot)->demangled, demangled_name);
680 xfree (demangled_name);
683 (*slot)->demangled[0] = '\0';
686 gsymbol->name = (*slot)->mangled + lookup_len - len;
687 if ((*slot)->demangled[0] != '\0')
688 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
690 symbol_set_demangled_name (gsymbol, NULL, objfile);
693 /* Return the source code name of a symbol. In languages where
694 demangling is necessary, this is the demangled name. */
697 symbol_natural_name (const struct general_symbol_info *gsymbol)
699 switch (gsymbol->language)
705 case language_fortran:
706 if (symbol_get_demangled_name (gsymbol) != NULL)
707 return symbol_get_demangled_name (gsymbol);
710 if (symbol_get_demangled_name (gsymbol) != NULL)
711 return symbol_get_demangled_name (gsymbol);
713 return ada_decode_symbol (gsymbol);
718 return gsymbol->name;
721 /* Return the demangled name for a symbol based on the language for
722 that symbol. If no demangled name exists, return NULL. */
724 symbol_demangled_name (const struct general_symbol_info *gsymbol)
726 switch (gsymbol->language)
732 case language_fortran:
733 if (symbol_get_demangled_name (gsymbol) != NULL)
734 return symbol_get_demangled_name (gsymbol);
737 if (symbol_get_demangled_name (gsymbol) != NULL)
738 return symbol_get_demangled_name (gsymbol);
740 return ada_decode_symbol (gsymbol);
748 /* Return the search name of a symbol---generally the demangled or
749 linkage name of the symbol, depending on how it will be searched for.
750 If there is no distinct demangled name, then returns the same value
751 (same pointer) as SYMBOL_LINKAGE_NAME. */
753 symbol_search_name (const struct general_symbol_info *gsymbol)
755 if (gsymbol->language == language_ada)
756 return gsymbol->name;
758 return symbol_natural_name (gsymbol);
761 /* Initialize the structure fields to zero values. */
763 init_sal (struct symtab_and_line *sal)
771 sal->explicit_pc = 0;
772 sal->explicit_line = 0;
776 /* Return 1 if the two sections are the same, or if they could
777 plausibly be copies of each other, one in an original object
778 file and another in a separated debug file. */
781 matching_obj_sections (struct obj_section *obj_first,
782 struct obj_section *obj_second)
784 asection *first = obj_first? obj_first->the_bfd_section : NULL;
785 asection *second = obj_second? obj_second->the_bfd_section : NULL;
788 /* If they're the same section, then they match. */
792 /* If either is NULL, give up. */
793 if (first == NULL || second == NULL)
796 /* This doesn't apply to absolute symbols. */
797 if (first->owner == NULL || second->owner == NULL)
800 /* If they're in the same object file, they must be different sections. */
801 if (first->owner == second->owner)
804 /* Check whether the two sections are potentially corresponding. They must
805 have the same size, address, and name. We can't compare section indexes,
806 which would be more reliable, because some sections may have been
808 if (bfd_get_section_size (first) != bfd_get_section_size (second))
811 /* In-memory addresses may start at a different offset, relativize them. */
812 if (bfd_get_section_vma (first->owner, first)
813 - bfd_get_start_address (first->owner)
814 != bfd_get_section_vma (second->owner, second)
815 - bfd_get_start_address (second->owner))
818 if (bfd_get_section_name (first->owner, first) == NULL
819 || bfd_get_section_name (second->owner, second) == NULL
820 || strcmp (bfd_get_section_name (first->owner, first),
821 bfd_get_section_name (second->owner, second)) != 0)
824 /* Otherwise check that they are in corresponding objfiles. */
827 if (obj->obfd == first->owner)
829 gdb_assert (obj != NULL);
831 if (obj->separate_debug_objfile != NULL
832 && obj->separate_debug_objfile->obfd == second->owner)
834 if (obj->separate_debug_objfile_backlink != NULL
835 && obj->separate_debug_objfile_backlink->obfd == second->owner)
842 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
844 struct objfile *objfile;
845 struct minimal_symbol *msymbol;
847 /* If we know that this is not a text address, return failure. This is
848 necessary because we loop based on texthigh and textlow, which do
849 not include the data ranges. */
850 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
852 && (MSYMBOL_TYPE (msymbol) == mst_data
853 || MSYMBOL_TYPE (msymbol) == mst_bss
854 || MSYMBOL_TYPE (msymbol) == mst_abs
855 || MSYMBOL_TYPE (msymbol) == mst_file_data
856 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
859 ALL_OBJFILES (objfile)
861 struct symtab *result = NULL;
864 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
873 /* Debug symbols usually don't have section information. We need to dig that
874 out of the minimal symbols and stash that in the debug symbol. */
877 fixup_section (struct general_symbol_info *ginfo,
878 CORE_ADDR addr, struct objfile *objfile)
880 struct minimal_symbol *msym;
882 /* First, check whether a minimal symbol with the same name exists
883 and points to the same address. The address check is required
884 e.g. on PowerPC64, where the minimal symbol for a function will
885 point to the function descriptor, while the debug symbol will
886 point to the actual function code. */
887 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
890 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
891 ginfo->section = SYMBOL_SECTION (msym);
895 /* Static, function-local variables do appear in the linker
896 (minimal) symbols, but are frequently given names that won't
897 be found via lookup_minimal_symbol(). E.g., it has been
898 observed in frv-uclinux (ELF) executables that a static,
899 function-local variable named "foo" might appear in the
900 linker symbols as "foo.6" or "foo.3". Thus, there is no
901 point in attempting to extend the lookup-by-name mechanism to
902 handle this case due to the fact that there can be multiple
905 So, instead, search the section table when lookup by name has
906 failed. The ``addr'' and ``endaddr'' fields may have already
907 been relocated. If so, the relocation offset (i.e. the
908 ANOFFSET value) needs to be subtracted from these values when
909 performing the comparison. We unconditionally subtract it,
910 because, when no relocation has been performed, the ANOFFSET
911 value will simply be zero.
913 The address of the symbol whose section we're fixing up HAS
914 NOT BEEN adjusted (relocated) yet. It can't have been since
915 the section isn't yet known and knowing the section is
916 necessary in order to add the correct relocation value. In
917 other words, we wouldn't even be in this function (attempting
918 to compute the section) if it were already known.
920 Note that it is possible to search the minimal symbols
921 (subtracting the relocation value if necessary) to find the
922 matching minimal symbol, but this is overkill and much less
923 efficient. It is not necessary to find the matching minimal
924 symbol, only its section.
926 Note that this technique (of doing a section table search)
927 can fail when unrelocated section addresses overlap. For
928 this reason, we still attempt a lookup by name prior to doing
929 a search of the section table. */
931 struct obj_section *s;
933 ALL_OBJFILE_OSECTIONS (objfile, s)
935 int idx = s->the_bfd_section->index;
936 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
938 if (obj_section_addr (s) - offset <= addr
939 && addr < obj_section_endaddr (s) - offset)
941 ginfo->obj_section = s;
942 ginfo->section = idx;
950 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
957 if (SYMBOL_OBJ_SECTION (sym))
960 /* We either have an OBJFILE, or we can get at it from the sym's
961 symtab. Anything else is a bug. */
962 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
965 objfile = SYMBOL_SYMTAB (sym)->objfile;
967 /* We should have an objfile by now. */
968 gdb_assert (objfile);
970 switch (SYMBOL_CLASS (sym))
974 addr = SYMBOL_VALUE_ADDRESS (sym);
977 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
981 /* Nothing else will be listed in the minsyms -- no use looking
986 fixup_section (&sym->ginfo, addr, objfile);
991 /* Find the definition for a specified symbol name NAME
992 in domain DOMAIN, visible from lexical block BLOCK.
993 Returns the struct symbol pointer, or zero if no symbol is found.
994 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
995 NAME is a field of the current implied argument `this'. If so set
996 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
997 BLOCK_FOUND is set to the block in which NAME is found (in the case of
998 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1000 /* This function has a bunch of loops in it and it would seem to be
1001 attractive to put in some QUIT's (though I'm not really sure
1002 whether it can run long enough to be really important). But there
1003 are a few calls for which it would appear to be bad news to quit
1004 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1005 that there is C++ code below which can error(), but that probably
1006 doesn't affect these calls since they are looking for a known
1007 variable and thus can probably assume it will never hit the C++
1011 lookup_symbol_in_language (const char *name, const struct block *block,
1012 const domain_enum domain, enum language lang,
1013 int *is_a_field_of_this)
1015 char *demangled_name = NULL;
1016 const char *modified_name = NULL;
1017 struct symbol *returnval;
1018 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1020 modified_name = name;
1022 /* If we are using C++, D, or Java, demangle the name before doing a
1023 lookup, so we can always binary search. */
1024 if (lang == language_cplus)
1026 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1029 modified_name = demangled_name;
1030 make_cleanup (xfree, demangled_name);
1034 /* If we were given a non-mangled name, canonicalize it
1035 according to the language (so far only for C++). */
1036 demangled_name = cp_canonicalize_string (name);
1039 modified_name = demangled_name;
1040 make_cleanup (xfree, demangled_name);
1044 else if (lang == language_java)
1046 demangled_name = cplus_demangle (name,
1047 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1050 modified_name = demangled_name;
1051 make_cleanup (xfree, demangled_name);
1054 else if (lang == language_d)
1056 demangled_name = d_demangle (name, 0);
1059 modified_name = demangled_name;
1060 make_cleanup (xfree, demangled_name);
1064 if (case_sensitivity == case_sensitive_off)
1069 len = strlen (name);
1070 copy = (char *) alloca (len + 1);
1071 for (i= 0; i < len; i++)
1072 copy[i] = tolower (name[i]);
1074 modified_name = copy;
1077 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1078 is_a_field_of_this);
1079 do_cleanups (cleanup);
1084 /* Behave like lookup_symbol_in_language, but performed with the
1085 current language. */
1088 lookup_symbol (const char *name, const struct block *block,
1089 domain_enum domain, int *is_a_field_of_this)
1091 return lookup_symbol_in_language (name, block, domain,
1092 current_language->la_language,
1093 is_a_field_of_this);
1096 /* Behave like lookup_symbol except that NAME is the natural name
1097 of the symbol that we're looking for and, if LINKAGE_NAME is
1098 non-NULL, ensure that the symbol's linkage name matches as
1101 static struct symbol *
1102 lookup_symbol_aux (const char *name, const struct block *block,
1103 const domain_enum domain, enum language language,
1104 int *is_a_field_of_this)
1107 const struct language_defn *langdef;
1109 /* Make sure we do something sensible with is_a_field_of_this, since
1110 the callers that set this parameter to some non-null value will
1111 certainly use it later and expect it to be either 0 or 1.
1112 If we don't set it, the contents of is_a_field_of_this are
1114 if (is_a_field_of_this != NULL)
1115 *is_a_field_of_this = 0;
1117 /* Search specified block and its superiors. Don't search
1118 STATIC_BLOCK or GLOBAL_BLOCK. */
1120 sym = lookup_symbol_aux_local (name, block, domain, language);
1124 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1125 check to see if NAME is a field of `this'. */
1127 langdef = language_def (language);
1129 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1132 struct symbol *sym = NULL;
1133 const struct block *function_block = block;
1135 /* 'this' is only defined in the function's block, so find the
1136 enclosing function block. */
1137 for (; function_block && !BLOCK_FUNCTION (function_block);
1138 function_block = BLOCK_SUPERBLOCK (function_block));
1140 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1141 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1145 struct type *t = sym->type;
1147 /* I'm not really sure that type of this can ever
1148 be typedefed; just be safe. */
1150 if (TYPE_CODE (t) == TYPE_CODE_PTR
1151 || TYPE_CODE (t) == TYPE_CODE_REF)
1152 t = TYPE_TARGET_TYPE (t);
1154 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1155 && TYPE_CODE (t) != TYPE_CODE_UNION)
1156 error (_("Internal error: `%s' is not an aggregate"),
1157 langdef->la_name_of_this);
1159 if (check_field (t, name))
1161 *is_a_field_of_this = 1;
1167 /* Now do whatever is appropriate for LANGUAGE to look
1168 up static and global variables. */
1170 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1174 /* Now search all static file-level symbols. Not strictly correct,
1175 but more useful than an error. */
1177 return lookup_static_symbol_aux (name, domain);
1180 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1181 first, then check the psymtabs. If a psymtab indicates the existence of the
1182 desired name as a file-level static, then do psymtab-to-symtab conversion on
1183 the fly and return the found symbol. */
1186 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1188 struct objfile *objfile;
1191 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1195 ALL_OBJFILES (objfile)
1197 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1205 /* Check to see if the symbol is defined in BLOCK or its superiors.
1206 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1208 static struct symbol *
1209 lookup_symbol_aux_local (const char *name, const struct block *block,
1210 const domain_enum domain,
1211 enum language language)
1214 const struct block *static_block = block_static_block (block);
1215 const char *scope = block_scope (block);
1217 /* Check if either no block is specified or it's a global block. */
1219 if (static_block == NULL)
1222 while (block != static_block)
1224 sym = lookup_symbol_aux_block (name, block, domain);
1228 if (language == language_cplus || language == language_fortran)
1230 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1236 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1238 block = BLOCK_SUPERBLOCK (block);
1241 /* We've reached the edge of the function without finding a result. */
1246 /* Look up OBJFILE to BLOCK. */
1249 lookup_objfile_from_block (const struct block *block)
1251 struct objfile *obj;
1257 block = block_global_block (block);
1258 /* Go through SYMTABS. */
1259 ALL_SYMTABS (obj, s)
1260 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1262 if (obj->separate_debug_objfile_backlink)
1263 obj = obj->separate_debug_objfile_backlink;
1271 /* Look up a symbol in a block; if found, fixup the symbol, and set
1272 block_found appropriately. */
1275 lookup_symbol_aux_block (const char *name, const struct block *block,
1276 const domain_enum domain)
1280 sym = lookup_block_symbol (block, name, domain);
1283 block_found = block;
1284 return fixup_symbol_section (sym, NULL);
1290 /* Check all global symbols in OBJFILE in symtabs and
1294 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1296 const domain_enum domain)
1298 const struct objfile *objfile;
1300 struct blockvector *bv;
1301 const struct block *block;
1304 for (objfile = main_objfile;
1306 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1308 /* Go through symtabs. */
1309 ALL_OBJFILE_SYMTABS (objfile, s)
1311 bv = BLOCKVECTOR (s);
1312 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1313 sym = lookup_block_symbol (block, name, domain);
1316 block_found = block;
1317 return fixup_symbol_section (sym, (struct objfile *)objfile);
1321 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1330 /* Check to see if the symbol is defined in one of the symtabs.
1331 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1332 depending on whether or not we want to search global symbols or
1335 static struct symbol *
1336 lookup_symbol_aux_symtabs (int block_index, const char *name,
1337 const domain_enum domain)
1340 struct objfile *objfile;
1341 struct blockvector *bv;
1342 const struct block *block;
1345 ALL_OBJFILES (objfile)
1348 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1352 ALL_OBJFILE_SYMTABS (objfile, s)
1355 bv = BLOCKVECTOR (s);
1356 block = BLOCKVECTOR_BLOCK (bv, block_index);
1357 sym = lookup_block_symbol (block, name, domain);
1360 block_found = block;
1361 return fixup_symbol_section (sym, objfile);
1369 /* A helper function for lookup_symbol_aux that interfaces with the
1370 "quick" symbol table functions. */
1372 static struct symbol *
1373 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1374 const char *name, const domain_enum domain)
1376 struct symtab *symtab;
1377 struct blockvector *bv;
1378 const struct block *block;
1383 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1387 bv = BLOCKVECTOR (symtab);
1388 block = BLOCKVECTOR_BLOCK (bv, kind);
1389 sym = lookup_block_symbol (block, name, domain);
1392 /* This shouldn't be necessary, but as a last resort try
1393 looking in the statics even though the psymtab claimed
1394 the symbol was global, or vice-versa. It's possible
1395 that the psymtab gets it wrong in some cases. */
1397 /* FIXME: carlton/2002-09-30: Should we really do that?
1398 If that happens, isn't it likely to be a GDB error, in
1399 which case we should fix the GDB error rather than
1400 silently dealing with it here? So I'd vote for
1401 removing the check for the symbol in the other
1403 block = BLOCKVECTOR_BLOCK (bv,
1404 kind == GLOBAL_BLOCK ?
1405 STATIC_BLOCK : GLOBAL_BLOCK);
1406 sym = lookup_block_symbol (block, name, domain);
1409 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1410 %s may be an inlined function, or may be a template function\n\
1411 (if a template, try specifying an instantiation: %s<type>)."),
1412 kind == GLOBAL_BLOCK ? "global" : "static",
1413 name, symtab->filename, name, name);
1415 return fixup_symbol_section (sym, objfile);
1418 /* A default version of lookup_symbol_nonlocal for use by languages
1419 that can't think of anything better to do. This implements the C
1423 basic_lookup_symbol_nonlocal (const char *name,
1424 const struct block *block,
1425 const domain_enum domain)
1429 /* NOTE: carlton/2003-05-19: The comments below were written when
1430 this (or what turned into this) was part of lookup_symbol_aux;
1431 I'm much less worried about these questions now, since these
1432 decisions have turned out well, but I leave these comments here
1435 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1436 not it would be appropriate to search the current global block
1437 here as well. (That's what this code used to do before the
1438 is_a_field_of_this check was moved up.) On the one hand, it's
1439 redundant with the lookup_symbol_aux_symtabs search that happens
1440 next. On the other hand, if decode_line_1 is passed an argument
1441 like filename:var, then the user presumably wants 'var' to be
1442 searched for in filename. On the third hand, there shouldn't be
1443 multiple global variables all of which are named 'var', and it's
1444 not like decode_line_1 has ever restricted its search to only
1445 global variables in a single filename. All in all, only
1446 searching the static block here seems best: it's correct and it's
1449 /* NOTE: carlton/2002-12-05: There's also a possible performance
1450 issue here: if you usually search for global symbols in the
1451 current file, then it would be slightly better to search the
1452 current global block before searching all the symtabs. But there
1453 are other factors that have a much greater effect on performance
1454 than that one, so I don't think we should worry about that for
1457 sym = lookup_symbol_static (name, block, domain);
1461 return lookup_symbol_global (name, block, domain);
1464 /* Lookup a symbol in the static block associated to BLOCK, if there
1465 is one; do nothing if BLOCK is NULL or a global block. */
1468 lookup_symbol_static (const char *name,
1469 const struct block *block,
1470 const domain_enum domain)
1472 const struct block *static_block = block_static_block (block);
1474 if (static_block != NULL)
1475 return lookup_symbol_aux_block (name, static_block, domain);
1480 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1484 lookup_symbol_global (const char *name,
1485 const struct block *block,
1486 const domain_enum domain)
1488 struct symbol *sym = NULL;
1489 struct objfile *objfile = NULL;
1491 /* Call library-specific lookup procedure. */
1492 objfile = lookup_objfile_from_block (block);
1493 if (objfile != NULL)
1494 sym = solib_global_lookup (objfile, name, domain);
1498 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1502 ALL_OBJFILES (objfile)
1504 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1513 symbol_matches_domain (enum language symbol_language,
1514 domain_enum symbol_domain,
1517 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1518 A Java class declaration also defines a typedef for the class.
1519 Similarly, any Ada type declaration implicitly defines a typedef. */
1520 if (symbol_language == language_cplus
1521 || symbol_language == language_d
1522 || symbol_language == language_java
1523 || symbol_language == language_ada)
1525 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1526 && symbol_domain == STRUCT_DOMAIN)
1529 /* For all other languages, strict match is required. */
1530 return (symbol_domain == domain);
1533 /* Look up a type named NAME in the struct_domain. The type returned
1534 must not be opaque -- i.e., must have at least one field
1538 lookup_transparent_type (const char *name)
1540 return current_language->la_lookup_transparent_type (name);
1543 /* A helper for basic_lookup_transparent_type that interfaces with the
1544 "quick" symbol table functions. */
1546 static struct type *
1547 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1550 struct symtab *symtab;
1551 struct blockvector *bv;
1552 struct block *block;
1557 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1561 bv = BLOCKVECTOR (symtab);
1562 block = BLOCKVECTOR_BLOCK (bv, kind);
1563 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1566 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1568 /* This shouldn't be necessary, but as a last resort
1569 * try looking in the 'other kind' even though the psymtab
1570 * claimed the symbol was one thing. It's possible that
1571 * the psymtab gets it wrong in some cases.
1573 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1574 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1576 /* FIXME; error is wrong in one case. */
1578 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1579 %s may be an inlined function, or may be a template function\n\
1580 (if a template, try specifying an instantiation: %s<type>)."),
1581 name, symtab->filename, name, name);
1583 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1584 return SYMBOL_TYPE (sym);
1589 /* The standard implementation of lookup_transparent_type. This code
1590 was modeled on lookup_symbol -- the parts not relevant to looking
1591 up types were just left out. In particular it's assumed here that
1592 types are available in struct_domain and only at file-static or
1596 basic_lookup_transparent_type (const char *name)
1599 struct symtab *s = NULL;
1600 struct blockvector *bv;
1601 struct objfile *objfile;
1602 struct block *block;
1605 /* Now search all the global symbols. Do the symtab's first, then
1606 check the psymtab's. If a psymtab indicates the existence
1607 of the desired name as a global, then do psymtab-to-symtab
1608 conversion on the fly and return the found symbol. */
1610 ALL_OBJFILES (objfile)
1613 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1615 name, STRUCT_DOMAIN);
1617 ALL_OBJFILE_SYMTABS (objfile, s)
1620 bv = BLOCKVECTOR (s);
1621 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1622 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1623 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1625 return SYMBOL_TYPE (sym);
1630 ALL_OBJFILES (objfile)
1632 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1637 /* Now search the static file-level symbols.
1638 Not strictly correct, but more useful than an error.
1639 Do the symtab's first, then
1640 check the psymtab's. If a psymtab indicates the existence
1641 of the desired name as a file-level static, then do psymtab-to-symtab
1642 conversion on the fly and return the found symbol. */
1644 ALL_OBJFILES (objfile)
1647 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1648 name, STRUCT_DOMAIN);
1650 ALL_OBJFILE_SYMTABS (objfile, s)
1652 bv = BLOCKVECTOR (s);
1653 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1654 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1655 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1657 return SYMBOL_TYPE (sym);
1662 ALL_OBJFILES (objfile)
1664 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1669 return (struct type *) 0;
1673 /* Find the name of the file containing main(). */
1674 /* FIXME: What about languages without main() or specially linked
1675 executables that have no main() ? */
1678 find_main_filename (void)
1680 struct objfile *objfile;
1681 char *name = main_name ();
1683 ALL_OBJFILES (objfile)
1689 result = objfile->sf->qf->find_symbol_file (objfile, name);
1696 /* Search BLOCK for symbol NAME in DOMAIN.
1698 Note that if NAME is the demangled form of a C++ symbol, we will fail
1699 to find a match during the binary search of the non-encoded names, but
1700 for now we don't worry about the slight inefficiency of looking for
1701 a match we'll never find, since it will go pretty quick. Once the
1702 binary search terminates, we drop through and do a straight linear
1703 search on the symbols. Each symbol which is marked as being a ObjC/C++
1704 symbol (language_cplus or language_objc set) has both the encoded and
1705 non-encoded names tested for a match. */
1708 lookup_block_symbol (const struct block *block, const char *name,
1709 const domain_enum domain)
1711 struct dict_iterator iter;
1714 if (!BLOCK_FUNCTION (block))
1716 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1718 sym = dict_iter_name_next (name, &iter))
1720 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1721 SYMBOL_DOMAIN (sym), domain))
1728 /* Note that parameter symbols do not always show up last in the
1729 list; this loop makes sure to take anything else other than
1730 parameter symbols first; it only uses parameter symbols as a
1731 last resort. Note that this only takes up extra computation
1734 struct symbol *sym_found = NULL;
1736 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1738 sym = dict_iter_name_next (name, &iter))
1740 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1741 SYMBOL_DOMAIN (sym), domain))
1744 if (!SYMBOL_IS_ARGUMENT (sym))
1750 return (sym_found); /* Will be NULL if not found. */
1754 /* Find the symtab associated with PC and SECTION. Look through the
1755 psymtabs and read in another symtab if necessary. */
1758 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1761 struct blockvector *bv;
1762 struct symtab *s = NULL;
1763 struct symtab *best_s = NULL;
1764 struct objfile *objfile;
1765 struct program_space *pspace;
1766 CORE_ADDR distance = 0;
1767 struct minimal_symbol *msymbol;
1769 pspace = current_program_space;
1771 /* If we know that this is not a text address, return failure. This is
1772 necessary because we loop based on the block's high and low code
1773 addresses, which do not include the data ranges, and because
1774 we call find_pc_sect_psymtab which has a similar restriction based
1775 on the partial_symtab's texthigh and textlow. */
1776 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1778 && (MSYMBOL_TYPE (msymbol) == mst_data
1779 || MSYMBOL_TYPE (msymbol) == mst_bss
1780 || MSYMBOL_TYPE (msymbol) == mst_abs
1781 || MSYMBOL_TYPE (msymbol) == mst_file_data
1782 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1785 /* Search all symtabs for the one whose file contains our address, and which
1786 is the smallest of all the ones containing the address. This is designed
1787 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1788 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1789 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1791 This happens for native ecoff format, where code from included files
1792 gets its own symtab. The symtab for the included file should have
1793 been read in already via the dependency mechanism.
1794 It might be swifter to create several symtabs with the same name
1795 like xcoff does (I'm not sure).
1797 It also happens for objfiles that have their functions reordered.
1798 For these, the symtab we are looking for is not necessarily read in. */
1800 ALL_PRIMARY_SYMTABS (objfile, s)
1802 bv = BLOCKVECTOR (s);
1803 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1805 if (BLOCK_START (b) <= pc
1806 && BLOCK_END (b) > pc
1808 || BLOCK_END (b) - BLOCK_START (b) < distance))
1810 /* For an objfile that has its functions reordered,
1811 find_pc_psymtab will find the proper partial symbol table
1812 and we simply return its corresponding symtab. */
1813 /* In order to better support objfiles that contain both
1814 stabs and coff debugging info, we continue on if a psymtab
1816 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1818 struct symtab *result;
1821 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1830 struct dict_iterator iter;
1831 struct symbol *sym = NULL;
1833 ALL_BLOCK_SYMBOLS (b, iter, sym)
1835 fixup_symbol_section (sym, objfile);
1836 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1840 continue; /* No symbol in this symtab matches
1843 distance = BLOCK_END (b) - BLOCK_START (b);
1851 ALL_OBJFILES (objfile)
1853 struct symtab *result;
1857 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1868 /* Find the symtab associated with PC. Look through the psymtabs and read
1869 in another symtab if necessary. Backward compatibility, no section. */
1872 find_pc_symtab (CORE_ADDR pc)
1874 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1878 /* Find the source file and line number for a given PC value and SECTION.
1879 Return a structure containing a symtab pointer, a line number,
1880 and a pc range for the entire source line.
1881 The value's .pc field is NOT the specified pc.
1882 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1883 use the line that ends there. Otherwise, in that case, the line
1884 that begins there is used. */
1886 /* The big complication here is that a line may start in one file, and end just
1887 before the start of another file. This usually occurs when you #include
1888 code in the middle of a subroutine. To properly find the end of a line's PC
1889 range, we must search all symtabs associated with this compilation unit, and
1890 find the one whose first PC is closer than that of the next line in this
1893 /* If it's worth the effort, we could be using a binary search. */
1895 struct symtab_and_line
1896 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1899 struct linetable *l;
1902 struct linetable_entry *item;
1903 struct symtab_and_line val;
1904 struct blockvector *bv;
1905 struct minimal_symbol *msymbol;
1906 struct minimal_symbol *mfunsym;
1907 struct objfile *objfile;
1909 /* Info on best line seen so far, and where it starts, and its file. */
1911 struct linetable_entry *best = NULL;
1912 CORE_ADDR best_end = 0;
1913 struct symtab *best_symtab = 0;
1915 /* Store here the first line number
1916 of a file which contains the line at the smallest pc after PC.
1917 If we don't find a line whose range contains PC,
1918 we will use a line one less than this,
1919 with a range from the start of that file to the first line's pc. */
1920 struct linetable_entry *alt = NULL;
1921 struct symtab *alt_symtab = 0;
1923 /* Info on best line seen in this file. */
1925 struct linetable_entry *prev;
1927 /* If this pc is not from the current frame,
1928 it is the address of the end of a call instruction.
1929 Quite likely that is the start of the following statement.
1930 But what we want is the statement containing the instruction.
1931 Fudge the pc to make sure we get that. */
1933 init_sal (&val); /* initialize to zeroes */
1935 val.pspace = current_program_space;
1937 /* It's tempting to assume that, if we can't find debugging info for
1938 any function enclosing PC, that we shouldn't search for line
1939 number info, either. However, GAS can emit line number info for
1940 assembly files --- very helpful when debugging hand-written
1941 assembly code. In such a case, we'd have no debug info for the
1942 function, but we would have line info. */
1947 /* elz: added this because this function returned the wrong
1948 information if the pc belongs to a stub (import/export)
1949 to call a shlib function. This stub would be anywhere between
1950 two functions in the target, and the line info was erroneously
1951 taken to be the one of the line before the pc. */
1953 /* RT: Further explanation:
1955 * We have stubs (trampolines) inserted between procedures.
1957 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1958 * exists in the main image.
1960 * In the minimal symbol table, we have a bunch of symbols
1961 * sorted by start address. The stubs are marked as "trampoline",
1962 * the others appear as text. E.g.:
1964 * Minimal symbol table for main image
1965 * main: code for main (text symbol)
1966 * shr1: stub (trampoline symbol)
1967 * foo: code for foo (text symbol)
1969 * Minimal symbol table for "shr1" image:
1971 * shr1: code for shr1 (text symbol)
1974 * So the code below is trying to detect if we are in the stub
1975 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1976 * and if found, do the symbolization from the real-code address
1977 * rather than the stub address.
1979 * Assumptions being made about the minimal symbol table:
1980 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1981 * if we're really in the trampoline.s If we're beyond it (say
1982 * we're in "foo" in the above example), it'll have a closer
1983 * symbol (the "foo" text symbol for example) and will not
1984 * return the trampoline.
1985 * 2. lookup_minimal_symbol_text() will find a real text symbol
1986 * corresponding to the trampoline, and whose address will
1987 * be different than the trampoline address. I put in a sanity
1988 * check for the address being the same, to avoid an
1989 * infinite recursion.
1991 msymbol = lookup_minimal_symbol_by_pc (pc);
1992 if (msymbol != NULL)
1993 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1995 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1997 if (mfunsym == NULL)
1998 /* I eliminated this warning since it is coming out
1999 * in the following situation:
2000 * gdb shmain // test program with shared libraries
2001 * (gdb) break shr1 // function in shared lib
2002 * Warning: In stub for ...
2003 * In the above situation, the shared lib is not loaded yet,
2004 * so of course we can't find the real func/line info,
2005 * but the "break" still works, and the warning is annoying.
2006 * So I commented out the warning. RT */
2007 /* warning ("In stub for %s; unable to find real function/line info",
2008 SYMBOL_LINKAGE_NAME (msymbol)); */
2011 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2012 == SYMBOL_VALUE_ADDRESS (msymbol))
2013 /* Avoid infinite recursion */
2014 /* See above comment about why warning is commented out. */
2015 /* warning ("In stub for %s; unable to find real function/line info",
2016 SYMBOL_LINKAGE_NAME (msymbol)); */
2020 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2024 s = find_pc_sect_symtab (pc, section);
2027 /* If no symbol information, return previous pc. */
2034 bv = BLOCKVECTOR (s);
2035 objfile = s->objfile;
2037 /* Look at all the symtabs that share this blockvector.
2038 They all have the same apriori range, that we found was right;
2039 but they have different line tables. */
2041 ALL_OBJFILE_SYMTABS (objfile, s)
2043 if (BLOCKVECTOR (s) != bv)
2046 /* Find the best line in this symtab. */
2053 /* I think len can be zero if the symtab lacks line numbers
2054 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2055 I'm not sure which, and maybe it depends on the symbol
2061 item = l->item; /* Get first line info. */
2063 /* Is this file's first line closer than the first lines of other files?
2064 If so, record this file, and its first line, as best alternate. */
2065 if (item->pc > pc && (!alt || item->pc < alt->pc))
2071 for (i = 0; i < len; i++, item++)
2073 /* Leave prev pointing to the linetable entry for the last line
2074 that started at or before PC. */
2081 /* At this point, prev points at the line whose start addr is <= pc, and
2082 item points at the next line. If we ran off the end of the linetable
2083 (pc >= start of the last line), then prev == item. If pc < start of
2084 the first line, prev will not be set. */
2086 /* Is this file's best line closer than the best in the other files?
2087 If so, record this file, and its best line, as best so far. Don't
2088 save prev if it represents the end of a function (i.e. line number
2089 0) instead of a real line. */
2091 if (prev && prev->line && (!best || prev->pc > best->pc))
2096 /* Discard BEST_END if it's before the PC of the current BEST. */
2097 if (best_end <= best->pc)
2101 /* If another line (denoted by ITEM) is in the linetable and its
2102 PC is after BEST's PC, but before the current BEST_END, then
2103 use ITEM's PC as the new best_end. */
2104 if (best && i < len && item->pc > best->pc
2105 && (best_end == 0 || best_end > item->pc))
2106 best_end = item->pc;
2111 /* If we didn't find any line number info, just return zeros.
2112 We used to return alt->line - 1 here, but that could be
2113 anywhere; if we don't have line number info for this PC,
2114 don't make some up. */
2117 else if (best->line == 0)
2119 /* If our best fit is in a range of PC's for which no line
2120 number info is available (line number is zero) then we didn't
2121 find any valid line information. */
2126 val.symtab = best_symtab;
2127 val.line = best->line;
2129 if (best_end && (!alt || best_end < alt->pc))
2134 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2136 val.section = section;
2140 /* Backward compatibility (no section). */
2142 struct symtab_and_line
2143 find_pc_line (CORE_ADDR pc, int notcurrent)
2145 struct obj_section *section;
2147 section = find_pc_overlay (pc);
2148 if (pc_in_unmapped_range (pc, section))
2149 pc = overlay_mapped_address (pc, section);
2150 return find_pc_sect_line (pc, section, notcurrent);
2153 /* Find line number LINE in any symtab whose name is the same as
2156 If found, return the symtab that contains the linetable in which it was
2157 found, set *INDEX to the index in the linetable of the best entry
2158 found, and set *EXACT_MATCH nonzero if the value returned is an
2161 If not found, return NULL. */
2164 find_line_symtab (struct symtab *symtab, int line,
2165 int *index, int *exact_match)
2167 int exact = 0; /* Initialized here to avoid a compiler warning. */
2169 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2173 struct linetable *best_linetable;
2174 struct symtab *best_symtab;
2176 /* First try looking it up in the given symtab. */
2177 best_linetable = LINETABLE (symtab);
2178 best_symtab = symtab;
2179 best_index = find_line_common (best_linetable, line, &exact);
2180 if (best_index < 0 || !exact)
2182 /* Didn't find an exact match. So we better keep looking for
2183 another symtab with the same name. In the case of xcoff,
2184 multiple csects for one source file (produced by IBM's FORTRAN
2185 compiler) produce multiple symtabs (this is unavoidable
2186 assuming csects can be at arbitrary places in memory and that
2187 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2189 /* BEST is the smallest linenumber > LINE so far seen,
2190 or 0 if none has been seen so far.
2191 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2194 struct objfile *objfile;
2197 if (best_index >= 0)
2198 best = best_linetable->item[best_index].line;
2202 ALL_OBJFILES (objfile)
2205 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2209 /* Get symbol full file name if possible. */
2210 symtab_to_fullname (symtab);
2212 ALL_SYMTABS (objfile, s)
2214 struct linetable *l;
2217 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2219 if (symtab->fullname != NULL
2220 && symtab_to_fullname (s) != NULL
2221 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2224 ind = find_line_common (l, line, &exact);
2234 if (best == 0 || l->item[ind].line < best)
2236 best = l->item[ind].line;
2249 *index = best_index;
2251 *exact_match = exact;
2256 /* Set the PC value for a given source file and line number and return true.
2257 Returns zero for invalid line number (and sets the PC to 0).
2258 The source file is specified with a struct symtab. */
2261 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2263 struct linetable *l;
2270 symtab = find_line_symtab (symtab, line, &ind, NULL);
2273 l = LINETABLE (symtab);
2274 *pc = l->item[ind].pc;
2281 /* Find the range of pc values in a line.
2282 Store the starting pc of the line into *STARTPTR
2283 and the ending pc (start of next line) into *ENDPTR.
2284 Returns 1 to indicate success.
2285 Returns 0 if could not find the specified line. */
2288 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2291 CORE_ADDR startaddr;
2292 struct symtab_and_line found_sal;
2295 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2298 /* This whole function is based on address. For example, if line 10 has
2299 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2300 "info line *0x123" should say the line goes from 0x100 to 0x200
2301 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2302 This also insures that we never give a range like "starts at 0x134
2303 and ends at 0x12c". */
2305 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2306 if (found_sal.line != sal.line)
2308 /* The specified line (sal) has zero bytes. */
2309 *startptr = found_sal.pc;
2310 *endptr = found_sal.pc;
2314 *startptr = found_sal.pc;
2315 *endptr = found_sal.end;
2320 /* Given a line table and a line number, return the index into the line
2321 table for the pc of the nearest line whose number is >= the specified one.
2322 Return -1 if none is found. The value is >= 0 if it is an index.
2324 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2327 find_line_common (struct linetable *l, int lineno,
2333 /* BEST is the smallest linenumber > LINENO so far seen,
2334 or 0 if none has been seen so far.
2335 BEST_INDEX identifies the item for it. */
2337 int best_index = -1;
2348 for (i = 0; i < len; i++)
2350 struct linetable_entry *item = &(l->item[i]);
2352 if (item->line == lineno)
2354 /* Return the first (lowest address) entry which matches. */
2359 if (item->line > lineno && (best == 0 || item->line < best))
2366 /* If we got here, we didn't get an exact match. */
2371 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2373 struct symtab_and_line sal;
2375 sal = find_pc_line (pc, 0);
2378 return sal.symtab != 0;
2381 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2382 address for that function that has an entry in SYMTAB's line info
2383 table. If such an entry cannot be found, return FUNC_ADDR
2386 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2388 CORE_ADDR func_start, func_end;
2389 struct linetable *l;
2392 /* Give up if this symbol has no lineinfo table. */
2393 l = LINETABLE (symtab);
2397 /* Get the range for the function's PC values, or give up if we
2398 cannot, for some reason. */
2399 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2402 /* Linetable entries are ordered by PC values, see the commentary in
2403 symtab.h where `struct linetable' is defined. Thus, the first
2404 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2405 address we are looking for. */
2406 for (i = 0; i < l->nitems; i++)
2408 struct linetable_entry *item = &(l->item[i]);
2410 /* Don't use line numbers of zero, they mark special entries in
2411 the table. See the commentary on symtab.h before the
2412 definition of struct linetable. */
2413 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2420 /* Given a function symbol SYM, find the symtab and line for the start
2422 If the argument FUNFIRSTLINE is nonzero, we want the first line
2423 of real code inside the function. */
2425 struct symtab_and_line
2426 find_function_start_sal (struct symbol *sym, int funfirstline)
2428 struct symtab_and_line sal;
2430 fixup_symbol_section (sym, NULL);
2431 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2432 SYMBOL_OBJ_SECTION (sym), 0);
2434 /* We always should have a line for the function start address.
2435 If we don't, something is odd. Create a plain SAL refering
2436 just the PC and hope that skip_prologue_sal (if requested)
2437 can find a line number for after the prologue. */
2438 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2441 sal.pspace = current_program_space;
2442 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2443 sal.section = SYMBOL_OBJ_SECTION (sym);
2447 skip_prologue_sal (&sal);
2452 /* Adjust SAL to the first instruction past the function prologue.
2453 If the PC was explicitly specified, the SAL is not changed.
2454 If the line number was explicitly specified, at most the SAL's PC
2455 is updated. If SAL is already past the prologue, then do nothing. */
2457 skip_prologue_sal (struct symtab_and_line *sal)
2460 struct symtab_and_line start_sal;
2461 struct cleanup *old_chain;
2463 struct obj_section *section;
2465 struct objfile *objfile;
2466 struct gdbarch *gdbarch;
2467 struct block *b, *function_block;
2469 /* Do not change the SAL is PC was specified explicitly. */
2470 if (sal->explicit_pc)
2473 old_chain = save_current_space_and_thread ();
2474 switch_to_program_space_and_thread (sal->pspace);
2476 sym = find_pc_sect_function (sal->pc, sal->section);
2479 fixup_symbol_section (sym, NULL);
2481 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2482 section = SYMBOL_OBJ_SECTION (sym);
2483 name = SYMBOL_LINKAGE_NAME (sym);
2484 objfile = SYMBOL_SYMTAB (sym)->objfile;
2488 struct minimal_symbol *msymbol
2489 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2491 if (msymbol == NULL)
2493 do_cleanups (old_chain);
2497 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2498 section = SYMBOL_OBJ_SECTION (msymbol);
2499 name = SYMBOL_LINKAGE_NAME (msymbol);
2500 objfile = msymbol_objfile (msymbol);
2503 gdbarch = get_objfile_arch (objfile);
2505 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2506 so that gdbarch_skip_prologue has something unique to work on. */
2507 if (section_is_overlay (section) && !section_is_mapped (section))
2508 pc = overlay_unmapped_address (pc, section);
2510 /* Skip "first line" of function (which is actually its prologue). */
2511 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2512 pc = gdbarch_skip_prologue (gdbarch, pc);
2514 /* For overlays, map pc back into its mapped VMA range. */
2515 pc = overlay_mapped_address (pc, section);
2517 /* Calculate line number. */
2518 start_sal = find_pc_sect_line (pc, section, 0);
2520 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2521 line is still part of the same function. */
2522 if (start_sal.pc != pc
2523 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2524 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2525 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2526 == lookup_minimal_symbol_by_pc_section (pc, section))))
2528 /* First pc of next line */
2530 /* Recalculate the line number (might not be N+1). */
2531 start_sal = find_pc_sect_line (pc, section, 0);
2534 /* On targets with executable formats that don't have a concept of
2535 constructors (ELF with .init has, PE doesn't), gcc emits a call
2536 to `__main' in `main' between the prologue and before user
2538 if (gdbarch_skip_main_prologue_p (gdbarch)
2539 && name && strcmp (name, "main") == 0)
2541 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2542 /* Recalculate the line number (might not be N+1). */
2543 start_sal = find_pc_sect_line (pc, section, 0);
2546 /* If we still don't have a valid source line, try to find the first
2547 PC in the lineinfo table that belongs to the same function. This
2548 happens with COFF debug info, which does not seem to have an
2549 entry in lineinfo table for the code after the prologue which has
2550 no direct relation to source. For example, this was found to be
2551 the case with the DJGPP target using "gcc -gcoff" when the
2552 compiler inserted code after the prologue to make sure the stack
2554 if (sym && start_sal.symtab == NULL)
2556 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2557 /* Recalculate the line number. */
2558 start_sal = find_pc_sect_line (pc, section, 0);
2561 do_cleanups (old_chain);
2563 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2564 forward SAL to the end of the prologue. */
2569 sal->section = section;
2571 /* Unless the explicit_line flag was set, update the SAL line
2572 and symtab to correspond to the modified PC location. */
2573 if (sal->explicit_line)
2576 sal->symtab = start_sal.symtab;
2577 sal->line = start_sal.line;
2578 sal->end = start_sal.end;
2580 /* Check if we are now inside an inlined function. If we can,
2581 use the call site of the function instead. */
2582 b = block_for_pc_sect (sal->pc, sal->section);
2583 function_block = NULL;
2586 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2588 else if (BLOCK_FUNCTION (b) != NULL)
2590 b = BLOCK_SUPERBLOCK (b);
2592 if (function_block != NULL
2593 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2595 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2596 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2600 /* If P is of the form "operator[ \t]+..." where `...' is
2601 some legitimate operator text, return a pointer to the
2602 beginning of the substring of the operator text.
2603 Otherwise, return "". */
2605 operator_chars (char *p, char **end)
2608 if (strncmp (p, "operator", 8))
2612 /* Don't get faked out by `operator' being part of a longer
2614 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2617 /* Allow some whitespace between `operator' and the operator symbol. */
2618 while (*p == ' ' || *p == '\t')
2621 /* Recognize 'operator TYPENAME'. */
2623 if (isalpha (*p) || *p == '_' || *p == '$')
2627 while (isalnum (*q) || *q == '_' || *q == '$')
2636 case '\\': /* regexp quoting */
2639 if (p[2] == '=') /* 'operator\*=' */
2641 else /* 'operator\*' */
2645 else if (p[1] == '[')
2648 error (_("mismatched quoting on brackets, "
2649 "try 'operator\\[\\]'"));
2650 else if (p[2] == '\\' && p[3] == ']')
2652 *end = p + 4; /* 'operator\[\]' */
2656 error (_("nothing is allowed between '[' and ']'"));
2660 /* Gratuitous qoute: skip it and move on. */
2682 if (p[0] == '-' && p[1] == '>')
2684 /* Struct pointer member operator 'operator->'. */
2687 *end = p + 3; /* 'operator->*' */
2690 else if (p[2] == '\\')
2692 *end = p + 4; /* Hopefully 'operator->\*' */
2697 *end = p + 2; /* 'operator->' */
2701 if (p[1] == '=' || p[1] == p[0])
2712 error (_("`operator ()' must be specified "
2713 "without whitespace in `()'"));
2718 error (_("`operator ?:' must be specified "
2719 "without whitespace in `?:'"));
2724 error (_("`operator []' must be specified "
2725 "without whitespace in `[]'"));
2729 error (_("`operator %s' not supported"), p);
2738 /* If FILE is not already in the table of files, return zero;
2739 otherwise return non-zero. Optionally add FILE to the table if ADD
2740 is non-zero. If *FIRST is non-zero, forget the old table
2743 filename_seen (const char *file, int add, int *first)
2745 /* Table of files seen so far. */
2746 static const char **tab = NULL;
2747 /* Allocated size of tab in elements.
2748 Start with one 256-byte block (when using GNU malloc.c).
2749 24 is the malloc overhead when range checking is in effect. */
2750 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2751 /* Current size of tab in elements. */
2752 static int tab_cur_size;
2758 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2762 /* Is FILE in tab? */
2763 for (p = tab; p < tab + tab_cur_size; p++)
2764 if (strcmp (*p, file) == 0)
2767 /* No; maybe add it to tab. */
2770 if (tab_cur_size == tab_alloc_size)
2772 tab_alloc_size *= 2;
2773 tab = (const char **) xrealloc ((char *) tab,
2774 tab_alloc_size * sizeof (*tab));
2776 tab[tab_cur_size++] = file;
2782 /* Slave routine for sources_info. Force line breaks at ,'s.
2783 NAME is the name to print and *FIRST is nonzero if this is the first
2784 name printed. Set *FIRST to zero. */
2786 output_source_filename (const char *name, int *first)
2788 /* Since a single source file can result in several partial symbol
2789 tables, we need to avoid printing it more than once. Note: if
2790 some of the psymtabs are read in and some are not, it gets
2791 printed both under "Source files for which symbols have been
2792 read" and "Source files for which symbols will be read in on
2793 demand". I consider this a reasonable way to deal with the
2794 situation. I'm not sure whether this can also happen for
2795 symtabs; it doesn't hurt to check. */
2797 /* Was NAME already seen? */
2798 if (filename_seen (name, 1, first))
2800 /* Yes; don't print it again. */
2803 /* No; print it and reset *FIRST. */
2810 printf_filtered (", ");
2814 fputs_filtered (name, gdb_stdout);
2817 /* A callback for map_partial_symbol_filenames. */
2819 output_partial_symbol_filename (const char *fullname, const char *filename,
2822 output_source_filename (fullname ? fullname : filename, data);
2826 sources_info (char *ignore, int from_tty)
2829 struct objfile *objfile;
2832 if (!have_full_symbols () && !have_partial_symbols ())
2834 error (_("No symbol table is loaded. Use the \"file\" command."));
2837 printf_filtered ("Source files for which symbols have been read in:\n\n");
2840 ALL_SYMTABS (objfile, s)
2842 const char *fullname = symtab_to_fullname (s);
2844 output_source_filename (fullname ? fullname : s->filename, &first);
2846 printf_filtered ("\n\n");
2848 printf_filtered ("Source files for which symbols "
2849 "will be read in on demand:\n\n");
2852 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2853 printf_filtered ("\n");
2857 file_matches (const char *file, char *files[], int nfiles)
2861 if (file != NULL && nfiles != 0)
2863 for (i = 0; i < nfiles; i++)
2865 if (strcmp (files[i], lbasename (file)) == 0)
2869 else if (nfiles == 0)
2874 /* Free any memory associated with a search. */
2876 free_search_symbols (struct symbol_search *symbols)
2878 struct symbol_search *p;
2879 struct symbol_search *next;
2881 for (p = symbols; p != NULL; p = next)
2889 do_free_search_symbols_cleanup (void *symbols)
2891 free_search_symbols (symbols);
2895 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2897 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2900 /* Helper function for sort_search_symbols and qsort. Can only
2901 sort symbols, not minimal symbols. */
2903 compare_search_syms (const void *sa, const void *sb)
2905 struct symbol_search **sym_a = (struct symbol_search **) sa;
2906 struct symbol_search **sym_b = (struct symbol_search **) sb;
2908 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2909 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2912 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2913 prevtail where it is, but update its next pointer to point to
2914 the first of the sorted symbols. */
2915 static struct symbol_search *
2916 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2918 struct symbol_search **symbols, *symp, *old_next;
2921 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2923 symp = prevtail->next;
2924 for (i = 0; i < nfound; i++)
2929 /* Generally NULL. */
2932 qsort (symbols, nfound, sizeof (struct symbol_search *),
2933 compare_search_syms);
2936 for (i = 0; i < nfound; i++)
2938 symp->next = symbols[i];
2941 symp->next = old_next;
2947 /* An object of this type is passed as the user_data to the
2948 expand_symtabs_matching method. */
2949 struct search_symbols_data
2956 /* A callback for expand_symtabs_matching. */
2958 search_symbols_file_matches (const char *filename, void *user_data)
2960 struct search_symbols_data *data = user_data;
2962 return file_matches (filename, data->files, data->nfiles);
2965 /* A callback for expand_symtabs_matching. */
2967 search_symbols_name_matches (const char *symname, void *user_data)
2969 struct search_symbols_data *data = user_data;
2971 return data->regexp == NULL || re_exec (symname);
2974 /* Search the symbol table for matches to the regular expression REGEXP,
2975 returning the results in *MATCHES.
2977 Only symbols of KIND are searched:
2978 FUNCTIONS_DOMAIN - search all functions
2979 TYPES_DOMAIN - search all type names
2980 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2981 and constants (enums)
2983 free_search_symbols should be called when *MATCHES is no longer needed.
2985 The results are sorted locally; each symtab's global and static blocks are
2986 separately alphabetized. */
2989 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2990 struct symbol_search **matches)
2993 struct blockvector *bv;
2996 struct dict_iterator iter;
2998 struct objfile *objfile;
2999 struct minimal_symbol *msymbol;
3002 static const enum minimal_symbol_type types[]
3003 = {mst_data, mst_text, mst_abs, mst_unknown};
3004 static const enum minimal_symbol_type types2[]
3005 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
3006 static const enum minimal_symbol_type types3[]
3007 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3008 static const enum minimal_symbol_type types4[]
3009 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
3010 enum minimal_symbol_type ourtype;
3011 enum minimal_symbol_type ourtype2;
3012 enum minimal_symbol_type ourtype3;
3013 enum minimal_symbol_type ourtype4;
3014 struct symbol_search *sr;
3015 struct symbol_search *psr;
3016 struct symbol_search *tail;
3017 struct cleanup *old_chain = NULL;
3018 struct search_symbols_data datum;
3020 if (kind < VARIABLES_DOMAIN)
3021 error (_("must search on specific domain"));
3023 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3024 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3025 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3026 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3028 sr = *matches = NULL;
3033 /* Make sure spacing is right for C++ operators.
3034 This is just a courtesy to make the matching less sensitive
3035 to how many spaces the user leaves between 'operator'
3036 and <TYPENAME> or <OPERATOR>. */
3038 char *opname = operator_chars (regexp, &opend);
3042 int fix = -1; /* -1 means ok; otherwise number of
3045 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3047 /* There should 1 space between 'operator' and 'TYPENAME'. */
3048 if (opname[-1] != ' ' || opname[-2] == ' ')
3053 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3054 if (opname[-1] == ' ')
3057 /* If wrong number of spaces, fix it. */
3060 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3062 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3067 if (0 != (val = re_comp (regexp)))
3068 error (_("Invalid regexp (%s): %s"), val, regexp);
3071 /* Search through the partial symtabs *first* for all symbols
3072 matching the regexp. That way we don't have to reproduce all of
3073 the machinery below. */
3075 datum.nfiles = nfiles;
3076 datum.files = files;
3077 datum.regexp = regexp;
3078 ALL_OBJFILES (objfile)
3081 objfile->sf->qf->expand_symtabs_matching (objfile,
3082 search_symbols_file_matches,
3083 search_symbols_name_matches,
3088 /* Here, we search through the minimal symbol tables for functions
3089 and variables that match, and force their symbols to be read.
3090 This is in particular necessary for demangled variable names,
3091 which are no longer put into the partial symbol tables.
3092 The symbol will then be found during the scan of symtabs below.
3094 For functions, find_pc_symtab should succeed if we have debug info
3095 for the function, for variables we have to call lookup_symbol
3096 to determine if the variable has debug info.
3097 If the lookup fails, set found_misc so that we will rescan to print
3098 any matching symbols without debug info. */
3100 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3102 ALL_MSYMBOLS (objfile, msymbol)
3106 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3107 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3108 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3109 MSYMBOL_TYPE (msymbol) == ourtype4)
3112 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3114 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3116 /* FIXME: carlton/2003-02-04: Given that the
3117 semantics of lookup_symbol keeps on changing
3118 slightly, it would be a nice idea if we had a
3119 function lookup_symbol_minsym that found the
3120 symbol associated to a given minimal symbol (if
3122 if (kind == FUNCTIONS_DOMAIN
3123 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3124 (struct block *) NULL,
3134 ALL_PRIMARY_SYMTABS (objfile, s)
3136 bv = BLOCKVECTOR (s);
3137 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3139 struct symbol_search *prevtail = tail;
3142 b = BLOCKVECTOR_BLOCK (bv, i);
3143 ALL_BLOCK_SYMBOLS (b, iter, sym)
3145 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3149 if (file_matches (real_symtab->filename, files, nfiles)
3151 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3152 && ((kind == VARIABLES_DOMAIN
3153 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3154 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3155 && SYMBOL_CLASS (sym) != LOC_BLOCK
3156 /* LOC_CONST can be used for more than just enums,
3157 e.g., c++ static const members.
3158 We only want to skip enums here. */
3159 && !(SYMBOL_CLASS (sym) == LOC_CONST
3160 && TYPE_CODE (SYMBOL_TYPE (sym))
3162 || (kind == FUNCTIONS_DOMAIN
3163 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3164 || (kind == TYPES_DOMAIN
3165 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3168 psr = (struct symbol_search *)
3169 xmalloc (sizeof (struct symbol_search));
3171 psr->symtab = real_symtab;
3173 psr->msymbol = NULL;
3185 if (prevtail == NULL)
3187 struct symbol_search dummy;
3190 tail = sort_search_symbols (&dummy, nfound);
3193 old_chain = make_cleanup_free_search_symbols (sr);
3196 tail = sort_search_symbols (prevtail, nfound);
3201 /* If there are no eyes, avoid all contact. I mean, if there are
3202 no debug symbols, then print directly from the msymbol_vector. */
3204 if (found_misc || kind != FUNCTIONS_DOMAIN)
3206 ALL_MSYMBOLS (objfile, msymbol)
3210 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3211 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3212 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3213 MSYMBOL_TYPE (msymbol) == ourtype4)
3216 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3218 /* Functions: Look up by address. */
3219 if (kind != FUNCTIONS_DOMAIN ||
3220 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3222 /* Variables/Absolutes: Look up by name. */
3223 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3224 (struct block *) NULL, VAR_DOMAIN, 0)
3228 psr = (struct symbol_search *)
3229 xmalloc (sizeof (struct symbol_search));
3231 psr->msymbol = msymbol;
3238 old_chain = make_cleanup_free_search_symbols (sr);
3252 discard_cleanups (old_chain);
3255 /* Helper function for symtab_symbol_info, this function uses
3256 the data returned from search_symbols() to print information
3257 regarding the match to gdb_stdout. */
3260 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3261 int block, char *last)
3263 if (last == NULL || strcmp (last, s->filename) != 0)
3265 fputs_filtered ("\nFile ", gdb_stdout);
3266 fputs_filtered (s->filename, gdb_stdout);
3267 fputs_filtered (":\n", gdb_stdout);
3270 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3271 printf_filtered ("static ");
3273 /* Typedef that is not a C++ class. */
3274 if (kind == TYPES_DOMAIN
3275 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3276 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3277 /* variable, func, or typedef-that-is-c++-class. */
3278 else if (kind < TYPES_DOMAIN ||
3279 (kind == TYPES_DOMAIN &&
3280 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3282 type_print (SYMBOL_TYPE (sym),
3283 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3284 ? "" : SYMBOL_PRINT_NAME (sym)),
3287 printf_filtered (";\n");
3291 /* This help function for symtab_symbol_info() prints information
3292 for non-debugging symbols to gdb_stdout. */
3295 print_msymbol_info (struct minimal_symbol *msymbol)
3297 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3300 if (gdbarch_addr_bit (gdbarch) <= 32)
3301 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3302 & (CORE_ADDR) 0xffffffff,
3305 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3307 printf_filtered ("%s %s\n",
3308 tmp, SYMBOL_PRINT_NAME (msymbol));
3311 /* This is the guts of the commands "info functions", "info types", and
3312 "info variables". It calls search_symbols to find all matches and then
3313 print_[m]symbol_info to print out some useful information about the
3317 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3319 static const char * const classnames[] =
3320 {"variable", "function", "type", "method"};
3321 struct symbol_search *symbols;
3322 struct symbol_search *p;
3323 struct cleanup *old_chain;
3324 char *last_filename = NULL;
3327 /* Must make sure that if we're interrupted, symbols gets freed. */
3328 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3329 old_chain = make_cleanup_free_search_symbols (symbols);
3331 printf_filtered (regexp
3332 ? "All %ss matching regular expression \"%s\":\n"
3333 : "All defined %ss:\n",
3334 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3336 for (p = symbols; p != NULL; p = p->next)
3340 if (p->msymbol != NULL)
3344 printf_filtered ("\nNon-debugging symbols:\n");
3347 print_msymbol_info (p->msymbol);
3351 print_symbol_info (kind,
3356 last_filename = p->symtab->filename;
3360 do_cleanups (old_chain);
3364 variables_info (char *regexp, int from_tty)
3366 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3370 functions_info (char *regexp, int from_tty)
3372 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3377 types_info (char *regexp, int from_tty)
3379 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3382 /* Breakpoint all functions matching regular expression. */
3385 rbreak_command_wrapper (char *regexp, int from_tty)
3387 rbreak_command (regexp, from_tty);
3390 /* A cleanup function that calls end_rbreak_breakpoints. */
3393 do_end_rbreak_breakpoints (void *ignore)
3395 end_rbreak_breakpoints ();
3399 rbreak_command (char *regexp, int from_tty)
3401 struct symbol_search *ss;
3402 struct symbol_search *p;
3403 struct cleanup *old_chain;
3404 char *string = NULL;
3406 char **files = NULL;
3411 char *colon = strchr (regexp, ':');
3413 if (colon && *(colon + 1) != ':')
3418 colon_index = colon - regexp;
3419 file_name = alloca (colon_index + 1);
3420 memcpy (file_name, regexp, colon_index);
3421 file_name[colon_index--] = 0;
3422 while (isspace (file_name[colon_index]))
3423 file_name[colon_index--] = 0;
3427 while (isspace (*regexp)) regexp++;
3431 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3432 old_chain = make_cleanup_free_search_symbols (ss);
3433 make_cleanup (free_current_contents, &string);
3435 start_rbreak_breakpoints ();
3436 make_cleanup (do_end_rbreak_breakpoints, NULL);
3437 for (p = ss; p != NULL; p = p->next)
3439 if (p->msymbol == NULL)
3441 int newlen = (strlen (p->symtab->filename)
3442 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3447 string = xrealloc (string, newlen);
3450 strcpy (string, p->symtab->filename);
3451 strcat (string, ":'");
3452 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3453 strcat (string, "'");
3454 break_command (string, from_tty);
3455 print_symbol_info (FUNCTIONS_DOMAIN,
3459 p->symtab->filename);
3463 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3467 string = xrealloc (string, newlen);
3470 strcpy (string, "'");
3471 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3472 strcat (string, "'");
3474 break_command (string, from_tty);
3475 printf_filtered ("<function, no debug info> %s;\n",
3476 SYMBOL_PRINT_NAME (p->msymbol));
3480 do_cleanups (old_chain);
3484 /* Helper routine for make_symbol_completion_list. */
3486 static int return_val_size;
3487 static int return_val_index;
3488 static char **return_val;
3490 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3491 completion_list_add_name \
3492 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3494 /* Test to see if the symbol specified by SYMNAME (which is already
3495 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3496 characters. If so, add it to the current completion list. */
3499 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3500 char *text, char *word)
3504 /* Clip symbols that cannot match. */
3506 if (strncmp (symname, sym_text, sym_text_len) != 0)
3511 /* We have a match for a completion, so add SYMNAME to the current list
3512 of matches. Note that the name is moved to freshly malloc'd space. */
3517 if (word == sym_text)
3519 new = xmalloc (strlen (symname) + 5);
3520 strcpy (new, symname);
3522 else if (word > sym_text)
3524 /* Return some portion of symname. */
3525 new = xmalloc (strlen (symname) + 5);
3526 strcpy (new, symname + (word - sym_text));
3530 /* Return some of SYM_TEXT plus symname. */
3531 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3532 strncpy (new, word, sym_text - word);
3533 new[sym_text - word] = '\0';
3534 strcat (new, symname);
3537 if (return_val_index + 3 > return_val_size)
3539 newsize = (return_val_size *= 2) * sizeof (char *);
3540 return_val = (char **) xrealloc ((char *) return_val, newsize);
3542 return_val[return_val_index++] = new;
3543 return_val[return_val_index] = NULL;
3547 /* ObjC: In case we are completing on a selector, look as the msymbol
3548 again and feed all the selectors into the mill. */
3551 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3552 int sym_text_len, char *text, char *word)
3554 static char *tmp = NULL;
3555 static unsigned int tmplen = 0;
3557 char *method, *category, *selector;
3560 method = SYMBOL_NATURAL_NAME (msymbol);
3562 /* Is it a method? */
3563 if ((method[0] != '-') && (method[0] != '+'))
3566 if (sym_text[0] == '[')
3567 /* Complete on shortened method method. */
3568 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3570 while ((strlen (method) + 1) >= tmplen)
3576 tmp = xrealloc (tmp, tmplen);
3578 selector = strchr (method, ' ');
3579 if (selector != NULL)
3582 category = strchr (method, '(');
3584 if ((category != NULL) && (selector != NULL))
3586 memcpy (tmp, method, (category - method));
3587 tmp[category - method] = ' ';
3588 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3589 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3590 if (sym_text[0] == '[')
3591 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3594 if (selector != NULL)
3596 /* Complete on selector only. */
3597 strcpy (tmp, selector);
3598 tmp2 = strchr (tmp, ']');
3602 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3606 /* Break the non-quoted text based on the characters which are in
3607 symbols. FIXME: This should probably be language-specific. */
3610 language_search_unquoted_string (char *text, char *p)
3612 for (; p > text; --p)
3614 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3618 if ((current_language->la_language == language_objc))
3620 if (p[-1] == ':') /* Might be part of a method name. */
3622 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3623 p -= 2; /* Beginning of a method name. */
3624 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3625 { /* Might be part of a method name. */
3628 /* Seeing a ' ' or a '(' is not conclusive evidence
3629 that we are in the middle of a method name. However,
3630 finding "-[" or "+[" should be pretty un-ambiguous.
3631 Unfortunately we have to find it now to decide. */
3634 if (isalnum (t[-1]) || t[-1] == '_' ||
3635 t[-1] == ' ' || t[-1] == ':' ||
3636 t[-1] == '(' || t[-1] == ')')
3641 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3642 p = t - 2; /* Method name detected. */
3643 /* Else we leave with p unchanged. */
3653 completion_list_add_fields (struct symbol *sym, char *sym_text,
3654 int sym_text_len, char *text, char *word)
3656 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3658 struct type *t = SYMBOL_TYPE (sym);
3659 enum type_code c = TYPE_CODE (t);
3662 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3663 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3664 if (TYPE_FIELD_NAME (t, j))
3665 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3666 sym_text, sym_text_len, text, word);
3670 /* Type of the user_data argument passed to add_macro_name or
3671 add_partial_symbol_name. The contents are simply whatever is
3672 needed by completion_list_add_name. */
3673 struct add_name_data
3681 /* A callback used with macro_for_each and macro_for_each_in_scope.
3682 This adds a macro's name to the current completion list. */
3684 add_macro_name (const char *name, const struct macro_definition *ignore,
3687 struct add_name_data *datum = (struct add_name_data *) user_data;
3689 completion_list_add_name ((char *) name,
3690 datum->sym_text, datum->sym_text_len,
3691 datum->text, datum->word);
3694 /* A callback for map_partial_symbol_names. */
3696 add_partial_symbol_name (const char *name, void *user_data)
3698 struct add_name_data *datum = (struct add_name_data *) user_data;
3700 completion_list_add_name ((char *) name,
3701 datum->sym_text, datum->sym_text_len,
3702 datum->text, datum->word);
3706 default_make_symbol_completion_list_break_on (char *text, char *word,
3707 const char *break_on)
3709 /* Problem: All of the symbols have to be copied because readline
3710 frees them. I'm not going to worry about this; hopefully there
3711 won't be that many. */
3715 struct minimal_symbol *msymbol;
3716 struct objfile *objfile;
3718 const struct block *surrounding_static_block, *surrounding_global_block;
3719 struct dict_iterator iter;
3720 /* The symbol we are completing on. Points in same buffer as text. */
3722 /* Length of sym_text. */
3724 struct add_name_data datum;
3726 /* Now look for the symbol we are supposed to complete on. */
3730 char *quote_pos = NULL;
3732 /* First see if this is a quoted string. */
3734 for (p = text; *p != '\0'; ++p)
3736 if (quote_found != '\0')
3738 if (*p == quote_found)
3739 /* Found close quote. */
3741 else if (*p == '\\' && p[1] == quote_found)
3742 /* A backslash followed by the quote character
3743 doesn't end the string. */
3746 else if (*p == '\'' || *p == '"')
3752 if (quote_found == '\'')
3753 /* A string within single quotes can be a symbol, so complete on it. */
3754 sym_text = quote_pos + 1;
3755 else if (quote_found == '"')
3756 /* A double-quoted string is never a symbol, nor does it make sense
3757 to complete it any other way. */
3759 return_val = (char **) xmalloc (sizeof (char *));
3760 return_val[0] = NULL;
3765 /* It is not a quoted string. Break it based on the characters
3766 which are in symbols. */
3769 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3770 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3779 sym_text_len = strlen (sym_text);
3781 return_val_size = 100;
3782 return_val_index = 0;
3783 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3784 return_val[0] = NULL;
3786 datum.sym_text = sym_text;
3787 datum.sym_text_len = sym_text_len;
3791 /* Look through the partial symtabs for all symbols which begin
3792 by matching SYM_TEXT. Add each one that you find to the list. */
3793 map_partial_symbol_names (add_partial_symbol_name, &datum);
3795 /* At this point scan through the misc symbol vectors and add each
3796 symbol you find to the list. Eventually we want to ignore
3797 anything that isn't a text symbol (everything else will be
3798 handled by the psymtab code above). */
3800 ALL_MSYMBOLS (objfile, msymbol)
3803 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3805 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3808 /* Search upwards from currently selected frame (so that we can
3809 complete on local vars). Also catch fields of types defined in
3810 this places which match our text string. Only complete on types
3811 visible from current context. */
3813 b = get_selected_block (0);
3814 surrounding_static_block = block_static_block (b);
3815 surrounding_global_block = block_global_block (b);
3816 if (surrounding_static_block != NULL)
3817 while (b != surrounding_static_block)
3821 ALL_BLOCK_SYMBOLS (b, iter, sym)
3823 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3825 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3829 /* Stop when we encounter an enclosing function. Do not stop for
3830 non-inlined functions - the locals of the enclosing function
3831 are in scope for a nested function. */
3832 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3834 b = BLOCK_SUPERBLOCK (b);
3837 /* Add fields from the file's types; symbols will be added below. */
3839 if (surrounding_static_block != NULL)
3840 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3841 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3843 if (surrounding_global_block != NULL)
3844 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3845 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3847 /* Go through the symtabs and check the externs and statics for
3848 symbols which match. */
3850 ALL_PRIMARY_SYMTABS (objfile, s)
3853 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3854 ALL_BLOCK_SYMBOLS (b, iter, sym)
3856 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3860 ALL_PRIMARY_SYMTABS (objfile, s)
3863 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3864 ALL_BLOCK_SYMBOLS (b, iter, sym)
3866 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3870 if (current_language->la_macro_expansion == macro_expansion_c)
3872 struct macro_scope *scope;
3874 /* Add any macros visible in the default scope. Note that this
3875 may yield the occasional wrong result, because an expression
3876 might be evaluated in a scope other than the default. For
3877 example, if the user types "break file:line if <TAB>", the
3878 resulting expression will be evaluated at "file:line" -- but
3879 at there does not seem to be a way to detect this at
3881 scope = default_macro_scope ();
3884 macro_for_each_in_scope (scope->file, scope->line,
3885 add_macro_name, &datum);
3889 /* User-defined macros are always visible. */
3890 macro_for_each (macro_user_macros, add_macro_name, &datum);
3893 return (return_val);
3897 default_make_symbol_completion_list (char *text, char *word)
3899 return default_make_symbol_completion_list_break_on (text, word, "");
3902 /* Return a NULL terminated array of all symbols (regardless of class)
3903 which begin by matching TEXT. If the answer is no symbols, then
3904 the return value is an array which contains only a NULL pointer. */
3907 make_symbol_completion_list (char *text, char *word)
3909 return current_language->la_make_symbol_completion_list (text, word);
3912 /* Like make_symbol_completion_list, but suitable for use as a
3913 completion function. */
3916 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3917 char *text, char *word)
3919 return make_symbol_completion_list (text, word);
3922 /* Like make_symbol_completion_list, but returns a list of symbols
3923 defined in a source file FILE. */
3926 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3931 struct dict_iterator iter;
3932 /* The symbol we are completing on. Points in same buffer as text. */
3934 /* Length of sym_text. */
3937 /* Now look for the symbol we are supposed to complete on.
3938 FIXME: This should be language-specific. */
3942 char *quote_pos = NULL;
3944 /* First see if this is a quoted string. */
3946 for (p = text; *p != '\0'; ++p)
3948 if (quote_found != '\0')
3950 if (*p == quote_found)
3951 /* Found close quote. */
3953 else if (*p == '\\' && p[1] == quote_found)
3954 /* A backslash followed by the quote character
3955 doesn't end the string. */
3958 else if (*p == '\'' || *p == '"')
3964 if (quote_found == '\'')
3965 /* A string within single quotes can be a symbol, so complete on it. */
3966 sym_text = quote_pos + 1;
3967 else if (quote_found == '"')
3968 /* A double-quoted string is never a symbol, nor does it make sense
3969 to complete it any other way. */
3971 return_val = (char **) xmalloc (sizeof (char *));
3972 return_val[0] = NULL;
3977 /* Not a quoted string. */
3978 sym_text = language_search_unquoted_string (text, p);
3982 sym_text_len = strlen (sym_text);
3984 return_val_size = 10;
3985 return_val_index = 0;
3986 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3987 return_val[0] = NULL;
3989 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3991 s = lookup_symtab (srcfile);
3994 /* Maybe they typed the file with leading directories, while the
3995 symbol tables record only its basename. */
3996 const char *tail = lbasename (srcfile);
3999 s = lookup_symtab (tail);
4002 /* If we have no symtab for that file, return an empty list. */
4004 return (return_val);
4006 /* Go through this symtab and check the externs and statics for
4007 symbols which match. */
4009 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4010 ALL_BLOCK_SYMBOLS (b, iter, sym)
4012 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4015 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4016 ALL_BLOCK_SYMBOLS (b, iter, sym)
4018 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4021 return (return_val);
4024 /* A helper function for make_source_files_completion_list. It adds
4025 another file name to a list of possible completions, growing the
4026 list as necessary. */
4029 add_filename_to_list (const char *fname, char *text, char *word,
4030 char ***list, int *list_used, int *list_alloced)
4033 size_t fnlen = strlen (fname);
4035 if (*list_used + 1 >= *list_alloced)
4038 *list = (char **) xrealloc ((char *) *list,
4039 *list_alloced * sizeof (char *));
4044 /* Return exactly fname. */
4045 new = xmalloc (fnlen + 5);
4046 strcpy (new, fname);
4048 else if (word > text)
4050 /* Return some portion of fname. */
4051 new = xmalloc (fnlen + 5);
4052 strcpy (new, fname + (word - text));
4056 /* Return some of TEXT plus fname. */
4057 new = xmalloc (fnlen + (text - word) + 5);
4058 strncpy (new, word, text - word);
4059 new[text - word] = '\0';
4060 strcat (new, fname);
4062 (*list)[*list_used] = new;
4063 (*list)[++*list_used] = NULL;
4067 not_interesting_fname (const char *fname)
4069 static const char *illegal_aliens[] = {
4070 "_globals_", /* inserted by coff_symtab_read */
4075 for (i = 0; illegal_aliens[i]; i++)
4077 if (strcmp (fname, illegal_aliens[i]) == 0)
4083 /* An object of this type is passed as the user_data argument to
4084 map_partial_symbol_filenames. */
4085 struct add_partial_filename_data
4096 /* A callback for map_partial_symbol_filenames. */
4098 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4101 struct add_partial_filename_data *data = user_data;
4103 if (not_interesting_fname (filename))
4105 if (!filename_seen (filename, 1, data->first)
4106 #if HAVE_DOS_BASED_FILE_SYSTEM
4107 && strncasecmp (filename, data->text, data->text_len) == 0
4109 && strncmp (filename, data->text, data->text_len) == 0
4113 /* This file matches for a completion; add it to the
4114 current list of matches. */
4115 add_filename_to_list (filename, data->text, data->word,
4116 data->list, data->list_used, data->list_alloced);
4120 const char *base_name = lbasename (filename);
4122 if (base_name != filename
4123 && !filename_seen (base_name, 1, data->first)
4124 #if HAVE_DOS_BASED_FILE_SYSTEM
4125 && strncasecmp (base_name, data->text, data->text_len) == 0
4127 && strncmp (base_name, data->text, data->text_len) == 0
4130 add_filename_to_list (base_name, data->text, data->word,
4131 data->list, data->list_used, data->list_alloced);
4135 /* Return a NULL terminated array of all source files whose names
4136 begin with matching TEXT. The file names are looked up in the
4137 symbol tables of this program. If the answer is no matchess, then
4138 the return value is an array which contains only a NULL pointer. */
4141 make_source_files_completion_list (char *text, char *word)
4144 struct objfile *objfile;
4146 int list_alloced = 1;
4148 size_t text_len = strlen (text);
4149 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4150 const char *base_name;
4151 struct add_partial_filename_data datum;
4155 if (!have_full_symbols () && !have_partial_symbols ())
4158 ALL_SYMTABS (objfile, s)
4160 if (not_interesting_fname (s->filename))
4162 if (!filename_seen (s->filename, 1, &first)
4163 #if HAVE_DOS_BASED_FILE_SYSTEM
4164 && strncasecmp (s->filename, text, text_len) == 0
4166 && strncmp (s->filename, text, text_len) == 0
4170 /* This file matches for a completion; add it to the current
4172 add_filename_to_list (s->filename, text, word,
4173 &list, &list_used, &list_alloced);
4177 /* NOTE: We allow the user to type a base name when the
4178 debug info records leading directories, but not the other
4179 way around. This is what subroutines of breakpoint
4180 command do when they parse file names. */
4181 base_name = lbasename (s->filename);
4182 if (base_name != s->filename
4183 && !filename_seen (base_name, 1, &first)
4184 #if HAVE_DOS_BASED_FILE_SYSTEM
4185 && strncasecmp (base_name, text, text_len) == 0
4187 && strncmp (base_name, text, text_len) == 0
4190 add_filename_to_list (base_name, text, word,
4191 &list, &list_used, &list_alloced);
4195 datum.first = &first;
4198 datum.text_len = text_len;
4200 datum.list_used = &list_used;
4201 datum.list_alloced = &list_alloced;
4202 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4207 /* Determine if PC is in the prologue of a function. The prologue is the area
4208 between the first instruction of a function, and the first executable line.
4209 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4211 If non-zero, func_start is where we think the prologue starts, possibly
4212 by previous examination of symbol table information. */
4215 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4217 struct symtab_and_line sal;
4218 CORE_ADDR func_addr, func_end;
4220 /* We have several sources of information we can consult to figure
4222 - Compilers usually emit line number info that marks the prologue
4223 as its own "source line". So the ending address of that "line"
4224 is the end of the prologue. If available, this is the most
4226 - The minimal symbols and partial symbols, which can usually tell
4227 us the starting and ending addresses of a function.
4228 - If we know the function's start address, we can call the
4229 architecture-defined gdbarch_skip_prologue function to analyze the
4230 instruction stream and guess where the prologue ends.
4231 - Our `func_start' argument; if non-zero, this is the caller's
4232 best guess as to the function's entry point. At the time of
4233 this writing, handle_inferior_event doesn't get this right, so
4234 it should be our last resort. */
4236 /* Consult the partial symbol table, to find which function
4238 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4240 CORE_ADDR prologue_end;
4242 /* We don't even have minsym information, so fall back to using
4243 func_start, if given. */
4245 return 1; /* We *might* be in a prologue. */
4247 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4249 return func_start <= pc && pc < prologue_end;
4252 /* If we have line number information for the function, that's
4253 usually pretty reliable. */
4254 sal = find_pc_line (func_addr, 0);
4256 /* Now sal describes the source line at the function's entry point,
4257 which (by convention) is the prologue. The end of that "line",
4258 sal.end, is the end of the prologue.
4260 Note that, for functions whose source code is all on a single
4261 line, the line number information doesn't always end up this way.
4262 So we must verify that our purported end-of-prologue address is
4263 *within* the function, not at its start or end. */
4265 || sal.end <= func_addr
4266 || func_end <= sal.end)
4268 /* We don't have any good line number info, so use the minsym
4269 information, together with the architecture-specific prologue
4271 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4273 return func_addr <= pc && pc < prologue_end;
4276 /* We have line number info, and it looks good. */
4277 return func_addr <= pc && pc < sal.end;
4280 /* Given PC at the function's start address, attempt to find the
4281 prologue end using SAL information. Return zero if the skip fails.
4283 A non-optimized prologue traditionally has one SAL for the function
4284 and a second for the function body. A single line function has
4285 them both pointing at the same line.
4287 An optimized prologue is similar but the prologue may contain
4288 instructions (SALs) from the instruction body. Need to skip those
4289 while not getting into the function body.
4291 The functions end point and an increasing SAL line are used as
4292 indicators of the prologue's endpoint.
4294 This code is based on the function refine_prologue_limit (versions
4295 found in both ia64 and ppc). */
4298 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4300 struct symtab_and_line prologue_sal;
4305 /* Get an initial range for the function. */
4306 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4307 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4309 prologue_sal = find_pc_line (start_pc, 0);
4310 if (prologue_sal.line != 0)
4312 /* For langauges other than assembly, treat two consecutive line
4313 entries at the same address as a zero-instruction prologue.
4314 The GNU assembler emits separate line notes for each instruction
4315 in a multi-instruction macro, but compilers generally will not
4317 if (prologue_sal.symtab->language != language_asm)
4319 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4322 /* Skip any earlier lines, and any end-of-sequence marker
4323 from a previous function. */
4324 while (linetable->item[idx].pc != prologue_sal.pc
4325 || linetable->item[idx].line == 0)
4328 if (idx+1 < linetable->nitems
4329 && linetable->item[idx+1].line != 0
4330 && linetable->item[idx+1].pc == start_pc)
4334 /* If there is only one sal that covers the entire function,
4335 then it is probably a single line function, like
4337 if (prologue_sal.end >= end_pc)
4340 while (prologue_sal.end < end_pc)
4342 struct symtab_and_line sal;
4344 sal = find_pc_line (prologue_sal.end, 0);
4347 /* Assume that a consecutive SAL for the same (or larger)
4348 line mark the prologue -> body transition. */
4349 if (sal.line >= prologue_sal.line)
4352 /* The line number is smaller. Check that it's from the
4353 same function, not something inlined. If it's inlined,
4354 then there is no point comparing the line numbers. */
4355 bl = block_for_pc (prologue_sal.end);
4358 if (block_inlined_p (bl))
4360 if (BLOCK_FUNCTION (bl))
4365 bl = BLOCK_SUPERBLOCK (bl);
4370 /* The case in which compiler's optimizer/scheduler has
4371 moved instructions into the prologue. We look ahead in
4372 the function looking for address ranges whose
4373 corresponding line number is less the first one that we
4374 found for the function. This is more conservative then
4375 refine_prologue_limit which scans a large number of SALs
4376 looking for any in the prologue. */
4381 if (prologue_sal.end < end_pc)
4382 /* Return the end of this line, or zero if we could not find a
4384 return prologue_sal.end;
4386 /* Don't return END_PC, which is past the end of the function. */
4387 return prologue_sal.pc;
4390 struct symtabs_and_lines
4391 decode_line_spec (char *string, int funfirstline)
4393 struct symtabs_and_lines sals;
4394 struct symtab_and_line cursal;
4397 error (_("Empty line specification."));
4399 /* We use whatever is set as the current source line. We do not try
4400 and get a default or it will recursively call us! */
4401 cursal = get_current_source_symtab_and_line ();
4403 sals = decode_line_1 (&string, funfirstline,
4404 cursal.symtab, cursal.line,
4405 (char ***) NULL, NULL);
4408 error (_("Junk at end of line specification: %s"), string);
4413 static char *name_of_main;
4414 enum language language_of_main = language_unknown;
4417 set_main_name (const char *name)
4419 if (name_of_main != NULL)
4421 xfree (name_of_main);
4422 name_of_main = NULL;
4423 language_of_main = language_unknown;
4427 name_of_main = xstrdup (name);
4428 language_of_main = language_unknown;
4432 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4436 find_main_name (void)
4438 const char *new_main_name;
4440 /* Try to see if the main procedure is in Ada. */
4441 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4442 be to add a new method in the language vector, and call this
4443 method for each language until one of them returns a non-empty
4444 name. This would allow us to remove this hard-coded call to
4445 an Ada function. It is not clear that this is a better approach
4446 at this point, because all methods need to be written in a way
4447 such that false positives never be returned. For instance, it is
4448 important that a method does not return a wrong name for the main
4449 procedure if the main procedure is actually written in a different
4450 language. It is easy to guaranty this with Ada, since we use a
4451 special symbol generated only when the main in Ada to find the name
4452 of the main procedure. It is difficult however to see how this can
4453 be guarantied for languages such as C, for instance. This suggests
4454 that order of call for these methods becomes important, which means
4455 a more complicated approach. */
4456 new_main_name = ada_main_name ();
4457 if (new_main_name != NULL)
4459 set_main_name (new_main_name);
4463 new_main_name = pascal_main_name ();
4464 if (new_main_name != NULL)
4466 set_main_name (new_main_name);
4470 /* The languages above didn't identify the name of the main procedure.
4471 Fallback to "main". */
4472 set_main_name ("main");
4478 if (name_of_main == NULL)
4481 return name_of_main;
4484 /* Handle ``executable_changed'' events for the symtab module. */
4487 symtab_observer_executable_changed (void)
4489 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4490 set_main_name (NULL);
4493 /* Helper to expand_line_sal below. Appends new sal to SAL,
4494 initializing it from SYMTAB, LINENO and PC. */
4496 append_expanded_sal (struct symtabs_and_lines *sal,
4497 struct program_space *pspace,
4498 struct symtab *symtab,
4499 int lineno, CORE_ADDR pc)
4501 sal->sals = xrealloc (sal->sals,
4502 sizeof (sal->sals[0])
4503 * (sal->nelts + 1));
4504 init_sal (sal->sals + sal->nelts);
4505 sal->sals[sal->nelts].pspace = pspace;
4506 sal->sals[sal->nelts].symtab = symtab;
4507 sal->sals[sal->nelts].section = NULL;
4508 sal->sals[sal->nelts].end = 0;
4509 sal->sals[sal->nelts].line = lineno;
4510 sal->sals[sal->nelts].pc = pc;
4514 /* Helper to expand_line_sal below. Search in the symtabs for any
4515 linetable entry that exactly matches FULLNAME and LINENO and append
4516 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4517 use FILENAME and LINENO instead. If there is at least one match,
4518 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4522 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4523 struct symtabs_and_lines *ret,
4524 struct linetable_entry **best_item,
4525 struct symtab **best_symtab)
4527 struct program_space *pspace;
4528 struct objfile *objfile;
4529 struct symtab *symtab;
4535 ALL_PSPACES (pspace)
4536 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4538 if (FILENAME_CMP (filename, symtab->filename) == 0)
4540 struct linetable *l;
4543 if (fullname != NULL
4544 && symtab_to_fullname (symtab) != NULL
4545 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4547 l = LINETABLE (symtab);
4552 for (j = 0; j < len; j++)
4554 struct linetable_entry *item = &(l->item[j]);
4556 if (item->line == lineno)
4559 append_expanded_sal (ret, objfile->pspace,
4560 symtab, lineno, item->pc);
4562 else if (!exact && item->line > lineno
4563 && (*best_item == NULL
4564 || item->line < (*best_item)->line))
4567 *best_symtab = symtab;
4575 /* Compute a set of all sals in all program spaces that correspond to
4576 same file and line as SAL and return those. If there are several
4577 sals that belong to the same block, only one sal for the block is
4578 included in results. */
4580 struct symtabs_and_lines
4581 expand_line_sal (struct symtab_and_line sal)
4583 struct symtabs_and_lines ret;
4585 struct objfile *objfile;
4588 struct block **blocks = NULL;
4590 struct cleanup *old_chain;
4595 /* Only expand sals that represent file.c:line. */
4596 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4598 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4605 struct program_space *pspace;
4606 struct linetable_entry *best_item = 0;
4607 struct symtab *best_symtab = 0;
4609 char *match_filename;
4612 match_filename = sal.symtab->filename;
4614 /* We need to find all symtabs for a file which name
4615 is described by sal. We cannot just directly
4616 iterate over symtabs, since a symtab might not be
4617 yet created. We also cannot iterate over psymtabs,
4618 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4619 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4620 corresponding to an included file. Therefore, we do
4621 first pass over psymtabs, reading in those with
4622 the right name. Then, we iterate over symtabs, knowing
4623 that all symtabs we're interested in are loaded. */
4625 old_chain = save_current_program_space ();
4626 ALL_PSPACES (pspace)
4628 set_current_program_space (pspace);
4629 ALL_PSPACE_OBJFILES (pspace, objfile)
4632 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4633 sal.symtab->filename);
4636 do_cleanups (old_chain);
4638 /* Now search the symtab for exact matches and append them. If
4639 none is found, append the best_item and all its exact
4641 symtab_to_fullname (sal.symtab);
4642 exact = append_exact_match_to_sals (sal.symtab->filename,
4643 sal.symtab->fullname, lineno,
4644 &ret, &best_item, &best_symtab);
4645 if (!exact && best_item)
4646 append_exact_match_to_sals (best_symtab->filename,
4647 best_symtab->fullname, best_item->line,
4648 &ret, &best_item, &best_symtab);
4651 /* For optimized code, compiler can scatter one source line accross
4652 disjoint ranges of PC values, even when no duplicate functions
4653 or inline functions are involved. For example, 'for (;;)' inside
4654 non-template non-inline non-ctor-or-dtor function can result
4655 in two PC ranges. In this case, we don't want to set breakpoint
4656 on first PC of each range. To filter such cases, we use containing
4657 blocks -- for each PC found above we see if there are other PCs
4658 that are in the same block. If yes, the other PCs are filtered out. */
4660 old_chain = save_current_program_space ();
4661 filter = alloca (ret.nelts * sizeof (int));
4662 blocks = alloca (ret.nelts * sizeof (struct block *));
4663 for (i = 0; i < ret.nelts; ++i)
4665 set_current_program_space (ret.sals[i].pspace);
4668 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4671 do_cleanups (old_chain);
4673 for (i = 0; i < ret.nelts; ++i)
4674 if (blocks[i] != NULL)
4675 for (j = i+1; j < ret.nelts; ++j)
4676 if (blocks[j] == blocks[i])
4684 struct symtab_and_line *final =
4685 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4687 for (i = 0, j = 0; i < ret.nelts; ++i)
4689 final[j++] = ret.sals[i];
4691 ret.nelts -= deleted;
4699 /* Return 1 if the supplied producer string matches the ARM RealView
4700 compiler (armcc). */
4703 producer_is_realview (const char *producer)
4705 static const char *const arm_idents[] = {
4706 "ARM C Compiler, ADS",
4707 "Thumb C Compiler, ADS",
4708 "ARM C++ Compiler, ADS",
4709 "Thumb C++ Compiler, ADS",
4710 "ARM/Thumb C/C++ Compiler, RVCT",
4711 "ARM C/C++ Compiler, RVCT"
4715 if (producer == NULL)
4718 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4719 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4726 _initialize_symtab (void)
4728 add_info ("variables", variables_info, _("\
4729 All global and static variable names, or those matching REGEXP."));
4731 add_com ("whereis", class_info, variables_info, _("\
4732 All global and static variable names, or those matching REGEXP."));
4734 add_info ("functions", functions_info,
4735 _("All function names, or those matching REGEXP."));
4737 /* FIXME: This command has at least the following problems:
4738 1. It prints builtin types (in a very strange and confusing fashion).
4739 2. It doesn't print right, e.g. with
4740 typedef struct foo *FOO
4741 type_print prints "FOO" when we want to make it (in this situation)
4742 print "struct foo *".
4743 I also think "ptype" or "whatis" is more likely to be useful (but if
4744 there is much disagreement "info types" can be fixed). */
4745 add_info ("types", types_info,
4746 _("All type names, or those matching REGEXP."));
4748 add_info ("sources", sources_info,
4749 _("Source files in the program."));
4751 add_com ("rbreak", class_breakpoint, rbreak_command,
4752 _("Set a breakpoint for all functions matching REGEXP."));
4756 add_com ("lf", class_info, sources_info,
4757 _("Source files in the program"));
4758 add_com ("lg", class_info, variables_info, _("\
4759 All global and static variable names, or those matching REGEXP."));
4762 add_setshow_enum_cmd ("multiple-symbols", no_class,
4763 multiple_symbols_modes, &multiple_symbols_mode,
4765 Set the debugger behavior when more than one symbol are possible matches\n\
4766 in an expression."), _("\
4767 Show how the debugger handles ambiguities in expressions."), _("\
4768 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4769 NULL, NULL, &setlist, &showlist);
4771 observer_attach_executable_changed (symtab_observer_executable_changed);