1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
46 #include "typeprint.h"
48 #include "gdb_obstack.h"
50 #include "dictionary.h"
52 #include <sys/types.h>
57 #include "cp-support.h"
58 #include "observable.h"
61 #include "macroscope.h"
63 #include "parser-defs.h"
64 #include "completer.h"
65 #include "progspace-and-thread.h"
66 #include "common/gdb_optional.h"
67 #include "filename-seen-cache.h"
68 #include "arch-utils.h"
70 #include "common/pathstuff.h"
72 /* Forward declarations for local functions. */
74 static void rbreak_command (const char *, int);
76 static int find_line_common (struct linetable *, int, int *, int);
78 static struct block_symbol
79 lookup_symbol_aux (const char *name,
80 symbol_name_match_type match_type,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *);
87 struct block_symbol lookup_local_symbol (const char *name,
88 symbol_name_match_type match_type,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
93 static struct block_symbol
94 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
95 const char *name, const domain_enum domain);
98 const struct block_symbol null_block_symbol = { NULL, NULL };
100 /* Program space key for finding name and language of "main". */
102 static const struct program_space_data *main_progspace_key;
104 /* Type of the data stored on the program space. */
108 /* Name of "main". */
112 /* Language of "main". */
114 enum language language_of_main;
117 /* Program space key for finding its symbol cache. */
119 static const struct program_space_data *symbol_cache_key;
121 /* The default symbol cache size.
122 There is no extra cpu cost for large N (except when flushing the cache,
123 which is rare). The value here is just a first attempt. A better default
124 value may be higher or lower. A prime number can make up for a bad hash
125 computation, so that's why the number is what it is. */
126 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
128 /* The maximum symbol cache size.
129 There's no method to the decision of what value to use here, other than
130 there's no point in allowing a user typo to make gdb consume all memory. */
131 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
133 /* symbol_cache_lookup returns this if a previous lookup failed to find the
134 symbol in any objfile. */
135 #define SYMBOL_LOOKUP_FAILED \
136 ((struct block_symbol) {(struct symbol *) 1, NULL})
137 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
139 /* Recording lookups that don't find the symbol is just as important, if not
140 more so, than recording found symbols. */
142 enum symbol_cache_slot_state
145 SYMBOL_SLOT_NOT_FOUND,
149 struct symbol_cache_slot
151 enum symbol_cache_slot_state state;
153 /* The objfile that was current when the symbol was looked up.
154 This is only needed for global blocks, but for simplicity's sake
155 we allocate the space for both. If data shows the extra space used
156 for static blocks is a problem, we can split things up then.
158 Global blocks need cache lookup to include the objfile context because
159 we need to account for gdbarch_iterate_over_objfiles_in_search_order
160 which can traverse objfiles in, effectively, any order, depending on
161 the current objfile, thus affecting which symbol is found. Normally,
162 only the current objfile is searched first, and then the rest are
163 searched in recorded order; but putting cache lookup inside
164 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
165 Instead we just make the current objfile part of the context of
166 cache lookup. This means we can record the same symbol multiple times,
167 each with a different "current objfile" that was in effect when the
168 lookup was saved in the cache, but cache space is pretty cheap. */
169 const struct objfile *objfile_context;
173 struct block_symbol found;
182 /* Symbols don't specify global vs static block.
183 So keep them in separate caches. */
185 struct block_symbol_cache
189 unsigned int collisions;
191 /* SYMBOLS is a variable length array of this size.
192 One can imagine that in general one cache (global/static) should be a
193 fraction of the size of the other, but there's no data at the moment
194 on which to decide. */
197 struct symbol_cache_slot symbols[1];
202 Searching for symbols in the static and global blocks over multiple objfiles
203 again and again can be slow, as can searching very big objfiles. This is a
204 simple cache to improve symbol lookup performance, which is critical to
205 overall gdb performance.
207 Symbols are hashed on the name, its domain, and block.
208 They are also hashed on their objfile for objfile-specific lookups. */
212 struct block_symbol_cache *global_symbols;
213 struct block_symbol_cache *static_symbols;
216 /* When non-zero, print debugging messages related to symtab creation. */
217 unsigned int symtab_create_debug = 0;
219 /* When non-zero, print debugging messages related to symbol lookup. */
220 unsigned int symbol_lookup_debug = 0;
222 /* The size of the cache is staged here. */
223 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
225 /* The current value of the symbol cache size.
226 This is saved so that if the user enters a value too big we can restore
227 the original value from here. */
228 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
230 /* Non-zero if a file may be known by two different basenames.
231 This is the uncommon case, and significantly slows down gdb.
232 Default set to "off" to not slow down the common case. */
233 int basenames_may_differ = 0;
235 /* Allow the user to configure the debugger behavior with respect
236 to multiple-choice menus when more than one symbol matches during
239 const char multiple_symbols_ask[] = "ask";
240 const char multiple_symbols_all[] = "all";
241 const char multiple_symbols_cancel[] = "cancel";
242 static const char *const multiple_symbols_modes[] =
244 multiple_symbols_ask,
245 multiple_symbols_all,
246 multiple_symbols_cancel,
249 static const char *multiple_symbols_mode = multiple_symbols_all;
251 /* Read-only accessor to AUTO_SELECT_MODE. */
254 multiple_symbols_select_mode (void)
256 return multiple_symbols_mode;
259 /* Return the name of a domain_enum. */
262 domain_name (domain_enum e)
266 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
267 case VAR_DOMAIN: return "VAR_DOMAIN";
268 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
269 case MODULE_DOMAIN: return "MODULE_DOMAIN";
270 case LABEL_DOMAIN: return "LABEL_DOMAIN";
271 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
272 default: gdb_assert_not_reached ("bad domain_enum");
276 /* Return the name of a search_domain . */
279 search_domain_name (enum search_domain e)
283 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
284 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
285 case TYPES_DOMAIN: return "TYPES_DOMAIN";
286 case ALL_DOMAIN: return "ALL_DOMAIN";
287 default: gdb_assert_not_reached ("bad search_domain");
294 compunit_primary_filetab (const struct compunit_symtab *cust)
296 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
298 /* The primary file symtab is the first one in the list. */
299 return COMPUNIT_FILETABS (cust);
305 compunit_language (const struct compunit_symtab *cust)
307 struct symtab *symtab = compunit_primary_filetab (cust);
309 /* The language of the compunit symtab is the language of its primary
311 return SYMTAB_LANGUAGE (symtab);
314 /* See whether FILENAME matches SEARCH_NAME using the rule that we
315 advertise to the user. (The manual's description of linespecs
316 describes what we advertise). Returns true if they match, false
320 compare_filenames_for_search (const char *filename, const char *search_name)
322 int len = strlen (filename);
323 size_t search_len = strlen (search_name);
325 if (len < search_len)
328 /* The tail of FILENAME must match. */
329 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
332 /* Either the names must completely match, or the character
333 preceding the trailing SEARCH_NAME segment of FILENAME must be a
336 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
337 cannot match FILENAME "/path//dir/file.c" - as user has requested
338 absolute path. The sama applies for "c:\file.c" possibly
339 incorrectly hypothetically matching "d:\dir\c:\file.c".
341 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
342 compatible with SEARCH_NAME "file.c". In such case a compiler had
343 to put the "c:file.c" name into debug info. Such compatibility
344 works only on GDB built for DOS host. */
345 return (len == search_len
346 || (!IS_ABSOLUTE_PATH (search_name)
347 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
348 || (HAS_DRIVE_SPEC (filename)
349 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
352 /* Same as compare_filenames_for_search, but for glob-style patterns.
353 Heads up on the order of the arguments. They match the order of
354 compare_filenames_for_search, but it's the opposite of the order of
355 arguments to gdb_filename_fnmatch. */
358 compare_glob_filenames_for_search (const char *filename,
359 const char *search_name)
361 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
362 all /s have to be explicitly specified. */
363 int file_path_elements = count_path_elements (filename);
364 int search_path_elements = count_path_elements (search_name);
366 if (search_path_elements > file_path_elements)
369 if (IS_ABSOLUTE_PATH (search_name))
371 return (search_path_elements == file_path_elements
372 && gdb_filename_fnmatch (search_name, filename,
373 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
377 const char *file_to_compare
378 = strip_leading_path_elements (filename,
379 file_path_elements - search_path_elements);
381 return gdb_filename_fnmatch (search_name, file_to_compare,
382 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
386 /* Check for a symtab of a specific name by searching some symtabs.
387 This is a helper function for callbacks of iterate_over_symtabs.
389 If NAME is not absolute, then REAL_PATH is NULL
390 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
392 The return value, NAME, REAL_PATH and CALLBACK are identical to the
393 `map_symtabs_matching_filename' method of quick_symbol_functions.
395 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
396 Each symtab within the specified compunit symtab is also searched.
397 AFTER_LAST is one past the last compunit symtab to search; NULL means to
398 search until the end of the list. */
401 iterate_over_some_symtabs (const char *name,
402 const char *real_path,
403 struct compunit_symtab *first,
404 struct compunit_symtab *after_last,
405 gdb::function_view<bool (symtab *)> callback)
407 struct compunit_symtab *cust;
409 const char* base_name = lbasename (name);
411 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
413 ALL_COMPUNIT_FILETABS (cust, s)
415 if (compare_filenames_for_search (s->filename, name))
422 /* Before we invoke realpath, which can get expensive when many
423 files are involved, do a quick comparison of the basenames. */
424 if (! basenames_may_differ
425 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
428 if (compare_filenames_for_search (symtab_to_fullname (s), name))
435 /* If the user gave us an absolute path, try to find the file in
436 this symtab and use its absolute path. */
437 if (real_path != NULL)
439 const char *fullname = symtab_to_fullname (s);
441 gdb_assert (IS_ABSOLUTE_PATH (real_path));
442 gdb_assert (IS_ABSOLUTE_PATH (name));
443 if (FILENAME_CMP (real_path, fullname) == 0)
456 /* Check for a symtab of a specific name; first in symtabs, then in
457 psymtabs. *If* there is no '/' in the name, a match after a '/'
458 in the symtab filename will also work.
460 Calls CALLBACK with each symtab that is found. If CALLBACK returns
461 true, the search stops. */
464 iterate_over_symtabs (const char *name,
465 gdb::function_view<bool (symtab *)> callback)
467 struct objfile *objfile;
468 gdb::unique_xmalloc_ptr<char> real_path;
470 /* Here we are interested in canonicalizing an absolute path, not
471 absolutizing a relative path. */
472 if (IS_ABSOLUTE_PATH (name))
474 real_path = gdb_realpath (name);
475 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
478 ALL_OBJFILES (objfile)
480 if (iterate_over_some_symtabs (name, real_path.get (),
481 objfile->compunit_symtabs, NULL,
486 /* Same search rules as above apply here, but now we look thru the
489 ALL_OBJFILES (objfile)
492 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
500 /* A wrapper for iterate_over_symtabs that returns the first matching
504 lookup_symtab (const char *name)
506 struct symtab *result = NULL;
508 iterate_over_symtabs (name, [&] (symtab *symtab)
518 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
519 full method name, which consist of the class name (from T), the unadorned
520 method name from METHOD_ID, and the signature for the specific overload,
521 specified by SIGNATURE_ID. Note that this function is g++ specific. */
524 gdb_mangle_name (struct type *type, int method_id, int signature_id)
526 int mangled_name_len;
528 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
529 struct fn_field *method = &f[signature_id];
530 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
531 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
532 const char *newname = TYPE_NAME (type);
534 /* Does the form of physname indicate that it is the full mangled name
535 of a constructor (not just the args)? */
536 int is_full_physname_constructor;
539 int is_destructor = is_destructor_name (physname);
540 /* Need a new type prefix. */
541 const char *const_prefix = method->is_const ? "C" : "";
542 const char *volatile_prefix = method->is_volatile ? "V" : "";
544 int len = (newname == NULL ? 0 : strlen (newname));
546 /* Nothing to do if physname already contains a fully mangled v3 abi name
547 or an operator name. */
548 if ((physname[0] == '_' && physname[1] == 'Z')
549 || is_operator_name (field_name))
550 return xstrdup (physname);
552 is_full_physname_constructor = is_constructor_name (physname);
554 is_constructor = is_full_physname_constructor
555 || (newname && strcmp (field_name, newname) == 0);
558 is_destructor = (startswith (physname, "__dt"));
560 if (is_destructor || is_full_physname_constructor)
562 mangled_name = (char *) xmalloc (strlen (physname) + 1);
563 strcpy (mangled_name, physname);
569 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
571 else if (physname[0] == 't' || physname[0] == 'Q')
573 /* The physname for template and qualified methods already includes
575 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
581 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
582 volatile_prefix, len);
584 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
585 + strlen (buf) + len + strlen (physname) + 1);
587 mangled_name = (char *) xmalloc (mangled_name_len);
589 mangled_name[0] = '\0';
591 strcpy (mangled_name, field_name);
593 strcat (mangled_name, buf);
594 /* If the class doesn't have a name, i.e. newname NULL, then we just
595 mangle it using 0 for the length of the class. Thus it gets mangled
596 as something starting with `::' rather than `classname::'. */
598 strcat (mangled_name, newname);
600 strcat (mangled_name, physname);
601 return (mangled_name);
604 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
605 correctly allocated. */
608 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
610 struct obstack *obstack)
612 if (gsymbol->language == language_ada)
616 gsymbol->ada_mangled = 0;
617 gsymbol->language_specific.obstack = obstack;
621 gsymbol->ada_mangled = 1;
622 gsymbol->language_specific.demangled_name = name;
626 gsymbol->language_specific.demangled_name = name;
629 /* Return the demangled name of GSYMBOL. */
632 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
634 if (gsymbol->language == language_ada)
636 if (!gsymbol->ada_mangled)
641 return gsymbol->language_specific.demangled_name;
645 /* Initialize the language dependent portion of a symbol
646 depending upon the language for the symbol. */
649 symbol_set_language (struct general_symbol_info *gsymbol,
650 enum language language,
651 struct obstack *obstack)
653 gsymbol->language = language;
654 if (gsymbol->language == language_cplus
655 || gsymbol->language == language_d
656 || gsymbol->language == language_go
657 || gsymbol->language == language_objc
658 || gsymbol->language == language_fortran)
660 symbol_set_demangled_name (gsymbol, NULL, obstack);
662 else if (gsymbol->language == language_ada)
664 gdb_assert (gsymbol->ada_mangled == 0);
665 gsymbol->language_specific.obstack = obstack;
669 memset (&gsymbol->language_specific, 0,
670 sizeof (gsymbol->language_specific));
674 /* Functions to initialize a symbol's mangled name. */
676 /* Objects of this type are stored in the demangled name hash table. */
677 struct demangled_name_entry
683 /* Hash function for the demangled name hash. */
686 hash_demangled_name_entry (const void *data)
688 const struct demangled_name_entry *e
689 = (const struct demangled_name_entry *) data;
691 return htab_hash_string (e->mangled);
694 /* Equality function for the demangled name hash. */
697 eq_demangled_name_entry (const void *a, const void *b)
699 const struct demangled_name_entry *da
700 = (const struct demangled_name_entry *) a;
701 const struct demangled_name_entry *db
702 = (const struct demangled_name_entry *) b;
704 return strcmp (da->mangled, db->mangled) == 0;
707 /* Create the hash table used for demangled names. Each hash entry is
708 a pair of strings; one for the mangled name and one for the demangled
709 name. The entry is hashed via just the mangled name. */
712 create_demangled_names_hash (struct objfile *objfile)
714 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
715 The hash table code will round this up to the next prime number.
716 Choosing a much larger table size wastes memory, and saves only about
717 1% in symbol reading. */
719 objfile->per_bfd->demangled_names_hash = htab_create_alloc
720 (256, hash_demangled_name_entry, eq_demangled_name_entry,
721 NULL, xcalloc, xfree);
724 /* Try to determine the demangled name for a symbol, based on the
725 language of that symbol. If the language is set to language_auto,
726 it will attempt to find any demangling algorithm that works and
727 then set the language appropriately. The returned name is allocated
728 by the demangler and should be xfree'd. */
731 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
734 char *demangled = NULL;
737 if (gsymbol->language == language_unknown)
738 gsymbol->language = language_auto;
740 if (gsymbol->language != language_auto)
742 const struct language_defn *lang = language_def (gsymbol->language);
744 language_sniff_from_mangled_name (lang, mangled, &demangled);
748 for (i = language_unknown; i < nr_languages; ++i)
750 enum language l = (enum language) i;
751 const struct language_defn *lang = language_def (l);
753 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
755 gsymbol->language = l;
763 /* Set both the mangled and demangled (if any) names for GSYMBOL based
764 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
765 objfile's obstack; but if COPY_NAME is 0 and if NAME is
766 NUL-terminated, then this function assumes that NAME is already
767 correctly saved (either permanently or with a lifetime tied to the
768 objfile), and it will not be copied.
770 The hash table corresponding to OBJFILE is used, and the memory
771 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
772 so the pointer can be discarded after calling this function. */
775 symbol_set_names (struct general_symbol_info *gsymbol,
776 const char *linkage_name, int len, int copy_name,
777 struct objfile *objfile)
779 struct demangled_name_entry **slot;
780 /* A 0-terminated copy of the linkage name. */
781 const char *linkage_name_copy;
782 struct demangled_name_entry entry;
783 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
785 if (gsymbol->language == language_ada)
787 /* In Ada, we do the symbol lookups using the mangled name, so
788 we can save some space by not storing the demangled name. */
790 gsymbol->name = linkage_name;
793 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
796 memcpy (name, linkage_name, len);
798 gsymbol->name = name;
800 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
805 if (per_bfd->demangled_names_hash == NULL)
806 create_demangled_names_hash (objfile);
808 if (linkage_name[len] != '\0')
812 alloc_name = (char *) alloca (len + 1);
813 memcpy (alloc_name, linkage_name, len);
814 alloc_name[len] = '\0';
816 linkage_name_copy = alloc_name;
819 linkage_name_copy = linkage_name;
821 /* Set the symbol language. */
822 char *demangled_name_ptr
823 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
824 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
826 entry.mangled = linkage_name_copy;
827 slot = ((struct demangled_name_entry **)
828 htab_find_slot (per_bfd->demangled_names_hash,
831 /* If this name is not in the hash table, add it. */
833 /* A C version of the symbol may have already snuck into the table.
834 This happens to, e.g., main.init (__go_init_main). Cope. */
835 || (gsymbol->language == language_go
836 && (*slot)->demangled[0] == '\0'))
838 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
840 /* Suppose we have demangled_name==NULL, copy_name==0, and
841 linkage_name_copy==linkage_name. In this case, we already have the
842 mangled name saved, and we don't have a demangled name. So,
843 you might think we could save a little space by not recording
844 this in the hash table at all.
846 It turns out that it is actually important to still save such
847 an entry in the hash table, because storing this name gives
848 us better bcache hit rates for partial symbols. */
849 if (!copy_name && linkage_name_copy == linkage_name)
852 = ((struct demangled_name_entry *)
853 obstack_alloc (&per_bfd->storage_obstack,
854 offsetof (struct demangled_name_entry, demangled)
855 + demangled_len + 1));
856 (*slot)->mangled = linkage_name;
862 /* If we must copy the mangled name, put it directly after
863 the demangled name so we can have a single
866 = ((struct demangled_name_entry *)
867 obstack_alloc (&per_bfd->storage_obstack,
868 offsetof (struct demangled_name_entry, demangled)
869 + len + demangled_len + 2));
870 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
871 strcpy (mangled_ptr, linkage_name_copy);
872 (*slot)->mangled = mangled_ptr;
875 if (demangled_name != NULL)
876 strcpy ((*slot)->demangled, demangled_name.get());
878 (*slot)->demangled[0] = '\0';
881 gsymbol->name = (*slot)->mangled;
882 if ((*slot)->demangled[0] != '\0')
883 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
884 &per_bfd->storage_obstack);
886 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
889 /* Return the source code name of a symbol. In languages where
890 demangling is necessary, this is the demangled name. */
893 symbol_natural_name (const struct general_symbol_info *gsymbol)
895 switch (gsymbol->language)
901 case language_fortran:
902 if (symbol_get_demangled_name (gsymbol) != NULL)
903 return symbol_get_demangled_name (gsymbol);
906 return ada_decode_symbol (gsymbol);
910 return gsymbol->name;
913 /* Return the demangled name for a symbol based on the language for
914 that symbol. If no demangled name exists, return NULL. */
917 symbol_demangled_name (const struct general_symbol_info *gsymbol)
919 const char *dem_name = NULL;
921 switch (gsymbol->language)
927 case language_fortran:
928 dem_name = symbol_get_demangled_name (gsymbol);
931 dem_name = ada_decode_symbol (gsymbol);
939 /* Return the search name of a symbol---generally the demangled or
940 linkage name of the symbol, depending on how it will be searched for.
941 If there is no distinct demangled name, then returns the same value
942 (same pointer) as SYMBOL_LINKAGE_NAME. */
945 symbol_search_name (const struct general_symbol_info *gsymbol)
947 if (gsymbol->language == language_ada)
948 return gsymbol->name;
950 return symbol_natural_name (gsymbol);
956 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
957 const lookup_name_info &name)
959 symbol_name_matcher_ftype *name_match
960 = get_symbol_name_matcher (language_def (gsymbol->language), name);
961 return name_match (symbol_search_name (gsymbol), name, NULL);
966 /* Return 1 if the two sections are the same, or if they could
967 plausibly be copies of each other, one in an original object
968 file and another in a separated debug file. */
971 matching_obj_sections (struct obj_section *obj_first,
972 struct obj_section *obj_second)
974 asection *first = obj_first? obj_first->the_bfd_section : NULL;
975 asection *second = obj_second? obj_second->the_bfd_section : NULL;
978 /* If they're the same section, then they match. */
982 /* If either is NULL, give up. */
983 if (first == NULL || second == NULL)
986 /* This doesn't apply to absolute symbols. */
987 if (first->owner == NULL || second->owner == NULL)
990 /* If they're in the same object file, they must be different sections. */
991 if (first->owner == second->owner)
994 /* Check whether the two sections are potentially corresponding. They must
995 have the same size, address, and name. We can't compare section indexes,
996 which would be more reliable, because some sections may have been
998 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1001 /* In-memory addresses may start at a different offset, relativize them. */
1002 if (bfd_get_section_vma (first->owner, first)
1003 - bfd_get_start_address (first->owner)
1004 != bfd_get_section_vma (second->owner, second)
1005 - bfd_get_start_address (second->owner))
1008 if (bfd_get_section_name (first->owner, first) == NULL
1009 || bfd_get_section_name (second->owner, second) == NULL
1010 || strcmp (bfd_get_section_name (first->owner, first),
1011 bfd_get_section_name (second->owner, second)) != 0)
1014 /* Otherwise check that they are in corresponding objfiles. */
1017 if (obj->obfd == first->owner)
1019 gdb_assert (obj != NULL);
1021 if (obj->separate_debug_objfile != NULL
1022 && obj->separate_debug_objfile->obfd == second->owner)
1024 if (obj->separate_debug_objfile_backlink != NULL
1025 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1034 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1036 struct objfile *objfile;
1037 struct bound_minimal_symbol msymbol;
1039 /* If we know that this is not a text address, return failure. This is
1040 necessary because we loop based on texthigh and textlow, which do
1041 not include the data ranges. */
1042 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1044 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1047 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1048 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1051 ALL_OBJFILES (objfile)
1053 struct compunit_symtab *cust = NULL;
1056 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1063 /* Hash function for the symbol cache. */
1066 hash_symbol_entry (const struct objfile *objfile_context,
1067 const char *name, domain_enum domain)
1069 unsigned int hash = (uintptr_t) objfile_context;
1072 hash += htab_hash_string (name);
1074 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1075 to map to the same slot. */
1076 if (domain == STRUCT_DOMAIN)
1077 hash += VAR_DOMAIN * 7;
1084 /* Equality function for the symbol cache. */
1087 eq_symbol_entry (const struct symbol_cache_slot *slot,
1088 const struct objfile *objfile_context,
1089 const char *name, domain_enum domain)
1091 const char *slot_name;
1092 domain_enum slot_domain;
1094 if (slot->state == SYMBOL_SLOT_UNUSED)
1097 if (slot->objfile_context != objfile_context)
1100 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1102 slot_name = slot->value.not_found.name;
1103 slot_domain = slot->value.not_found.domain;
1107 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1108 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1111 /* NULL names match. */
1112 if (slot_name == NULL && name == NULL)
1114 /* But there's no point in calling symbol_matches_domain in the
1115 SYMBOL_SLOT_FOUND case. */
1116 if (slot_domain != domain)
1119 else if (slot_name != NULL && name != NULL)
1121 /* It's important that we use the same comparison that was done
1122 the first time through. If the slot records a found symbol,
1123 then this means using the symbol name comparison function of
1124 the symbol's language with SYMBOL_SEARCH_NAME. See
1125 dictionary.c. It also means using symbol_matches_domain for
1126 found symbols. See block.c.
1128 If the slot records a not-found symbol, then require a precise match.
1129 We could still be lax with whitespace like strcmp_iw though. */
1131 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1133 if (strcmp (slot_name, name) != 0)
1135 if (slot_domain != domain)
1140 struct symbol *sym = slot->value.found.symbol;
1141 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1143 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1146 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1147 slot_domain, domain))
1153 /* Only one name is NULL. */
1160 /* Given a cache of size SIZE, return the size of the struct (with variable
1161 length array) in bytes. */
1164 symbol_cache_byte_size (unsigned int size)
1166 return (sizeof (struct block_symbol_cache)
1167 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1173 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1175 /* If there's no change in size, don't do anything.
1176 All caches have the same size, so we can just compare with the size
1177 of the global symbols cache. */
1178 if ((cache->global_symbols != NULL
1179 && cache->global_symbols->size == new_size)
1180 || (cache->global_symbols == NULL
1184 xfree (cache->global_symbols);
1185 xfree (cache->static_symbols);
1189 cache->global_symbols = NULL;
1190 cache->static_symbols = NULL;
1194 size_t total_size = symbol_cache_byte_size (new_size);
1196 cache->global_symbols
1197 = (struct block_symbol_cache *) xcalloc (1, total_size);
1198 cache->static_symbols
1199 = (struct block_symbol_cache *) xcalloc (1, total_size);
1200 cache->global_symbols->size = new_size;
1201 cache->static_symbols->size = new_size;
1205 /* Make a symbol cache of size SIZE. */
1207 static struct symbol_cache *
1208 make_symbol_cache (unsigned int size)
1210 struct symbol_cache *cache;
1212 cache = XCNEW (struct symbol_cache);
1213 resize_symbol_cache (cache, symbol_cache_size);
1217 /* Free the space used by CACHE. */
1220 free_symbol_cache (struct symbol_cache *cache)
1222 xfree (cache->global_symbols);
1223 xfree (cache->static_symbols);
1227 /* Return the symbol cache of PSPACE.
1228 Create one if it doesn't exist yet. */
1230 static struct symbol_cache *
1231 get_symbol_cache (struct program_space *pspace)
1233 struct symbol_cache *cache
1234 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1238 cache = make_symbol_cache (symbol_cache_size);
1239 set_program_space_data (pspace, symbol_cache_key, cache);
1245 /* Delete the symbol cache of PSPACE.
1246 Called when PSPACE is destroyed. */
1249 symbol_cache_cleanup (struct program_space *pspace, void *data)
1251 struct symbol_cache *cache = (struct symbol_cache *) data;
1253 free_symbol_cache (cache);
1256 /* Set the size of the symbol cache in all program spaces. */
1259 set_symbol_cache_size (unsigned int new_size)
1261 struct program_space *pspace;
1263 ALL_PSPACES (pspace)
1265 struct symbol_cache *cache
1266 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1268 /* The pspace could have been created but not have a cache yet. */
1270 resize_symbol_cache (cache, new_size);
1274 /* Called when symbol-cache-size is set. */
1277 set_symbol_cache_size_handler (const char *args, int from_tty,
1278 struct cmd_list_element *c)
1280 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1282 /* Restore the previous value.
1283 This is the value the "show" command prints. */
1284 new_symbol_cache_size = symbol_cache_size;
1286 error (_("Symbol cache size is too large, max is %u."),
1287 MAX_SYMBOL_CACHE_SIZE);
1289 symbol_cache_size = new_symbol_cache_size;
1291 set_symbol_cache_size (symbol_cache_size);
1294 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1295 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1296 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1297 failed (and thus this one will too), or NULL if the symbol is not present
1299 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1300 set to the cache and slot of the symbol to save the result of a full lookup
1303 static struct block_symbol
1304 symbol_cache_lookup (struct symbol_cache *cache,
1305 struct objfile *objfile_context, int block,
1306 const char *name, domain_enum domain,
1307 struct block_symbol_cache **bsc_ptr,
1308 struct symbol_cache_slot **slot_ptr)
1310 struct block_symbol_cache *bsc;
1312 struct symbol_cache_slot *slot;
1314 if (block == GLOBAL_BLOCK)
1315 bsc = cache->global_symbols;
1317 bsc = cache->static_symbols;
1322 return (struct block_symbol) {NULL, NULL};
1325 hash = hash_symbol_entry (objfile_context, name, domain);
1326 slot = bsc->symbols + hash % bsc->size;
1328 if (eq_symbol_entry (slot, objfile_context, name, domain))
1330 if (symbol_lookup_debug)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "%s block symbol cache hit%s for %s, %s\n",
1333 block == GLOBAL_BLOCK ? "Global" : "Static",
1334 slot->state == SYMBOL_SLOT_NOT_FOUND
1335 ? " (not found)" : "",
1336 name, domain_name (domain));
1338 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1339 return SYMBOL_LOOKUP_FAILED;
1340 return slot->value.found;
1343 /* Symbol is not present in the cache. */
1348 if (symbol_lookup_debug)
1350 fprintf_unfiltered (gdb_stdlog,
1351 "%s block symbol cache miss for %s, %s\n",
1352 block == GLOBAL_BLOCK ? "Global" : "Static",
1353 name, domain_name (domain));
1356 return (struct block_symbol) {NULL, NULL};
1359 /* Clear out SLOT. */
1362 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1364 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1365 xfree (slot->value.not_found.name);
1366 slot->state = SYMBOL_SLOT_UNUSED;
1369 /* Mark SYMBOL as found in SLOT.
1370 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1371 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1372 necessarily the objfile the symbol was found in. */
1375 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1376 struct symbol_cache_slot *slot,
1377 struct objfile *objfile_context,
1378 struct symbol *symbol,
1379 const struct block *block)
1383 if (slot->state != SYMBOL_SLOT_UNUSED)
1386 symbol_cache_clear_slot (slot);
1388 slot->state = SYMBOL_SLOT_FOUND;
1389 slot->objfile_context = objfile_context;
1390 slot->value.found.symbol = symbol;
1391 slot->value.found.block = block;
1394 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1395 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1396 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1399 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1400 struct symbol_cache_slot *slot,
1401 struct objfile *objfile_context,
1402 const char *name, domain_enum domain)
1406 if (slot->state != SYMBOL_SLOT_UNUSED)
1409 symbol_cache_clear_slot (slot);
1411 slot->state = SYMBOL_SLOT_NOT_FOUND;
1412 slot->objfile_context = objfile_context;
1413 slot->value.not_found.name = xstrdup (name);
1414 slot->value.not_found.domain = domain;
1417 /* Flush the symbol cache of PSPACE. */
1420 symbol_cache_flush (struct program_space *pspace)
1422 struct symbol_cache *cache
1423 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1428 if (cache->global_symbols == NULL)
1430 gdb_assert (symbol_cache_size == 0);
1431 gdb_assert (cache->static_symbols == NULL);
1435 /* If the cache is untouched since the last flush, early exit.
1436 This is important for performance during the startup of a program linked
1437 with 100s (or 1000s) of shared libraries. */
1438 if (cache->global_symbols->misses == 0
1439 && cache->static_symbols->misses == 0)
1442 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1443 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1445 for (pass = 0; pass < 2; ++pass)
1447 struct block_symbol_cache *bsc
1448 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1451 for (i = 0; i < bsc->size; ++i)
1452 symbol_cache_clear_slot (&bsc->symbols[i]);
1455 cache->global_symbols->hits = 0;
1456 cache->global_symbols->misses = 0;
1457 cache->global_symbols->collisions = 0;
1458 cache->static_symbols->hits = 0;
1459 cache->static_symbols->misses = 0;
1460 cache->static_symbols->collisions = 0;
1466 symbol_cache_dump (const struct symbol_cache *cache)
1470 if (cache->global_symbols == NULL)
1472 printf_filtered (" <disabled>\n");
1476 for (pass = 0; pass < 2; ++pass)
1478 const struct block_symbol_cache *bsc
1479 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1483 printf_filtered ("Global symbols:\n");
1485 printf_filtered ("Static symbols:\n");
1487 for (i = 0; i < bsc->size; ++i)
1489 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1493 switch (slot->state)
1495 case SYMBOL_SLOT_UNUSED:
1497 case SYMBOL_SLOT_NOT_FOUND:
1498 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1499 host_address_to_string (slot->objfile_context),
1500 slot->value.not_found.name,
1501 domain_name (slot->value.not_found.domain));
1503 case SYMBOL_SLOT_FOUND:
1505 struct symbol *found = slot->value.found.symbol;
1506 const struct objfile *context = slot->objfile_context;
1508 printf_filtered (" [%4u] = %s, %s %s\n", i,
1509 host_address_to_string (context),
1510 SYMBOL_PRINT_NAME (found),
1511 domain_name (SYMBOL_DOMAIN (found)));
1519 /* The "mt print symbol-cache" command. */
1522 maintenance_print_symbol_cache (const char *args, int from_tty)
1524 struct program_space *pspace;
1526 ALL_PSPACES (pspace)
1528 struct symbol_cache *cache;
1530 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->symfile_object_file != NULL
1533 ? objfile_name (pspace->symfile_object_file)
1534 : "(no object file)");
1536 /* If the cache hasn't been created yet, avoid creating one. */
1538 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1540 printf_filtered (" <empty>\n");
1542 symbol_cache_dump (cache);
1546 /* The "mt flush-symbol-cache" command. */
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1551 struct program_space *pspace;
1553 ALL_PSPACES (pspace)
1555 symbol_cache_flush (pspace);
1559 /* Print usage statistics of CACHE. */
1562 symbol_cache_stats (struct symbol_cache *cache)
1566 if (cache->global_symbols == NULL)
1568 printf_filtered (" <disabled>\n");
1572 for (pass = 0; pass < 2; ++pass)
1574 const struct block_symbol_cache *bsc
1575 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1580 printf_filtered ("Global block cache stats:\n");
1582 printf_filtered ("Static block cache stats:\n");
1584 printf_filtered (" size: %u\n", bsc->size);
1585 printf_filtered (" hits: %u\n", bsc->hits);
1586 printf_filtered (" misses: %u\n", bsc->misses);
1587 printf_filtered (" collisions: %u\n", bsc->collisions);
1591 /* The "mt print symbol-cache-statistics" command. */
1594 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1596 struct program_space *pspace;
1598 ALL_PSPACES (pspace)
1600 struct symbol_cache *cache;
1602 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1604 pspace->symfile_object_file != NULL
1605 ? objfile_name (pspace->symfile_object_file)
1606 : "(no object file)");
1608 /* If the cache hasn't been created yet, avoid creating one. */
1610 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1612 printf_filtered (" empty, no stats available\n");
1614 symbol_cache_stats (cache);
1618 /* This module's 'new_objfile' observer. */
1621 symtab_new_objfile_observer (struct objfile *objfile)
1623 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1624 symbol_cache_flush (current_program_space);
1627 /* This module's 'free_objfile' observer. */
1630 symtab_free_objfile_observer (struct objfile *objfile)
1632 symbol_cache_flush (objfile->pspace);
1635 /* Debug symbols usually don't have section information. We need to dig that
1636 out of the minimal symbols and stash that in the debug symbol. */
1639 fixup_section (struct general_symbol_info *ginfo,
1640 CORE_ADDR addr, struct objfile *objfile)
1642 struct minimal_symbol *msym;
1644 /* First, check whether a minimal symbol with the same name exists
1645 and points to the same address. The address check is required
1646 e.g. on PowerPC64, where the minimal symbol for a function will
1647 point to the function descriptor, while the debug symbol will
1648 point to the actual function code. */
1649 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1651 ginfo->section = MSYMBOL_SECTION (msym);
1654 /* Static, function-local variables do appear in the linker
1655 (minimal) symbols, but are frequently given names that won't
1656 be found via lookup_minimal_symbol(). E.g., it has been
1657 observed in frv-uclinux (ELF) executables that a static,
1658 function-local variable named "foo" might appear in the
1659 linker symbols as "foo.6" or "foo.3". Thus, there is no
1660 point in attempting to extend the lookup-by-name mechanism to
1661 handle this case due to the fact that there can be multiple
1664 So, instead, search the section table when lookup by name has
1665 failed. The ``addr'' and ``endaddr'' fields may have already
1666 been relocated. If so, the relocation offset (i.e. the
1667 ANOFFSET value) needs to be subtracted from these values when
1668 performing the comparison. We unconditionally subtract it,
1669 because, when no relocation has been performed, the ANOFFSET
1670 value will simply be zero.
1672 The address of the symbol whose section we're fixing up HAS
1673 NOT BEEN adjusted (relocated) yet. It can't have been since
1674 the section isn't yet known and knowing the section is
1675 necessary in order to add the correct relocation value. In
1676 other words, we wouldn't even be in this function (attempting
1677 to compute the section) if it were already known.
1679 Note that it is possible to search the minimal symbols
1680 (subtracting the relocation value if necessary) to find the
1681 matching minimal symbol, but this is overkill and much less
1682 efficient. It is not necessary to find the matching minimal
1683 symbol, only its section.
1685 Note that this technique (of doing a section table search)
1686 can fail when unrelocated section addresses overlap. For
1687 this reason, we still attempt a lookup by name prior to doing
1688 a search of the section table. */
1690 struct obj_section *s;
1693 ALL_OBJFILE_OSECTIONS (objfile, s)
1695 int idx = s - objfile->sections;
1696 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1701 if (obj_section_addr (s) - offset <= addr
1702 && addr < obj_section_endaddr (s) - offset)
1704 ginfo->section = idx;
1709 /* If we didn't find the section, assume it is in the first
1710 section. If there is no allocated section, then it hardly
1711 matters what we pick, so just pick zero. */
1715 ginfo->section = fallback;
1720 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1727 if (!SYMBOL_OBJFILE_OWNED (sym))
1730 /* We either have an OBJFILE, or we can get at it from the sym's
1731 symtab. Anything else is a bug. */
1732 gdb_assert (objfile || symbol_symtab (sym));
1734 if (objfile == NULL)
1735 objfile = symbol_objfile (sym);
1737 if (SYMBOL_OBJ_SECTION (objfile, sym))
1740 /* We should have an objfile by now. */
1741 gdb_assert (objfile);
1743 switch (SYMBOL_CLASS (sym))
1747 addr = SYMBOL_VALUE_ADDRESS (sym);
1750 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1754 /* Nothing else will be listed in the minsyms -- no use looking
1759 fixup_section (&sym->ginfo, addr, objfile);
1766 demangle_for_lookup_info::demangle_for_lookup_info
1767 (const lookup_name_info &lookup_name, language lang)
1769 demangle_result_storage storage;
1771 if (lookup_name.ignore_parameters () && lang == language_cplus)
1773 gdb::unique_xmalloc_ptr<char> without_params
1774 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1775 lookup_name.completion_mode ());
1777 if (without_params != NULL)
1779 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1780 m_demangled_name = demangle_for_lookup (without_params.get (),
1786 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1787 m_demangled_name = lookup_name.name ();
1789 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1795 const lookup_name_info &
1796 lookup_name_info::match_any ()
1798 /* Lookup any symbol that "" would complete. I.e., this matches all
1800 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1806 /* Compute the demangled form of NAME as used by the various symbol
1807 lookup functions. The result can either be the input NAME
1808 directly, or a pointer to a buffer owned by the STORAGE object.
1810 For Ada, this function just returns NAME, unmodified.
1811 Normally, Ada symbol lookups are performed using the encoded name
1812 rather than the demangled name, and so it might seem to make sense
1813 for this function to return an encoded version of NAME.
1814 Unfortunately, we cannot do this, because this function is used in
1815 circumstances where it is not appropriate to try to encode NAME.
1816 For instance, when displaying the frame info, we demangle the name
1817 of each parameter, and then perform a symbol lookup inside our
1818 function using that demangled name. In Ada, certain functions
1819 have internally-generated parameters whose name contain uppercase
1820 characters. Encoding those name would result in those uppercase
1821 characters to become lowercase, and thus cause the symbol lookup
1825 demangle_for_lookup (const char *name, enum language lang,
1826 demangle_result_storage &storage)
1828 /* If we are using C++, D, or Go, demangle the name before doing a
1829 lookup, so we can always binary search. */
1830 if (lang == language_cplus)
1832 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1833 if (demangled_name != NULL)
1834 return storage.set_malloc_ptr (demangled_name);
1836 /* If we were given a non-mangled name, canonicalize it
1837 according to the language (so far only for C++). */
1838 std::string canon = cp_canonicalize_string (name);
1839 if (!canon.empty ())
1840 return storage.swap_string (canon);
1842 else if (lang == language_d)
1844 char *demangled_name = d_demangle (name, 0);
1845 if (demangled_name != NULL)
1846 return storage.set_malloc_ptr (demangled_name);
1848 else if (lang == language_go)
1850 char *demangled_name = go_demangle (name, 0);
1851 if (demangled_name != NULL)
1852 return storage.set_malloc_ptr (demangled_name);
1861 search_name_hash (enum language language, const char *search_name)
1863 return language_def (language)->la_search_name_hash (search_name);
1868 This function (or rather its subordinates) have a bunch of loops and
1869 it would seem to be attractive to put in some QUIT's (though I'm not really
1870 sure whether it can run long enough to be really important). But there
1871 are a few calls for which it would appear to be bad news to quit
1872 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1873 that there is C++ code below which can error(), but that probably
1874 doesn't affect these calls since they are looking for a known
1875 variable and thus can probably assume it will never hit the C++
1879 lookup_symbol_in_language (const char *name, const struct block *block,
1880 const domain_enum domain, enum language lang,
1881 struct field_of_this_result *is_a_field_of_this)
1883 demangle_result_storage storage;
1884 const char *modified_name = demangle_for_lookup (name, lang, storage);
1886 return lookup_symbol_aux (modified_name,
1887 symbol_name_match_type::FULL,
1888 block, domain, lang,
1889 is_a_field_of_this);
1895 lookup_symbol (const char *name, const struct block *block,
1897 struct field_of_this_result *is_a_field_of_this)
1899 return lookup_symbol_in_language (name, block, domain,
1900 current_language->la_language,
1901 is_a_field_of_this);
1907 lookup_symbol_search_name (const char *search_name, const struct block *block,
1910 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1911 block, domain, language_asm, NULL);
1917 lookup_language_this (const struct language_defn *lang,
1918 const struct block *block)
1920 if (lang->la_name_of_this == NULL || block == NULL)
1921 return (struct block_symbol) {NULL, NULL};
1923 if (symbol_lookup_debug > 1)
1925 struct objfile *objfile = lookup_objfile_from_block (block);
1927 fprintf_unfiltered (gdb_stdlog,
1928 "lookup_language_this (%s, %s (objfile %s))",
1929 lang->la_name, host_address_to_string (block),
1930 objfile_debug_name (objfile));
1937 sym = block_lookup_symbol (block, lang->la_name_of_this,
1938 symbol_name_match_type::SEARCH_NAME,
1942 if (symbol_lookup_debug > 1)
1944 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1945 SYMBOL_PRINT_NAME (sym),
1946 host_address_to_string (sym),
1947 host_address_to_string (block));
1949 return (struct block_symbol) {sym, block};
1951 if (BLOCK_FUNCTION (block))
1953 block = BLOCK_SUPERBLOCK (block);
1956 if (symbol_lookup_debug > 1)
1957 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1958 return (struct block_symbol) {NULL, NULL};
1961 /* Given TYPE, a structure/union,
1962 return 1 if the component named NAME from the ultimate target
1963 structure/union is defined, otherwise, return 0. */
1966 check_field (struct type *type, const char *name,
1967 struct field_of_this_result *is_a_field_of_this)
1971 /* The type may be a stub. */
1972 type = check_typedef (type);
1974 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1976 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1978 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1980 is_a_field_of_this->type = type;
1981 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1986 /* C++: If it was not found as a data field, then try to return it
1987 as a pointer to a method. */
1989 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1991 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1993 is_a_field_of_this->type = type;
1994 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1999 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2000 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2006 /* Behave like lookup_symbol except that NAME is the natural name
2007 (e.g., demangled name) of the symbol that we're looking for. */
2009 static struct block_symbol
2010 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2011 const struct block *block,
2012 const domain_enum domain, enum language language,
2013 struct field_of_this_result *is_a_field_of_this)
2015 struct block_symbol result;
2016 const struct language_defn *langdef;
2018 if (symbol_lookup_debug)
2020 struct objfile *objfile = lookup_objfile_from_block (block);
2022 fprintf_unfiltered (gdb_stdlog,
2023 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2024 name, host_address_to_string (block),
2026 ? objfile_debug_name (objfile) : "NULL",
2027 domain_name (domain), language_str (language));
2030 /* Make sure we do something sensible with is_a_field_of_this, since
2031 the callers that set this parameter to some non-null value will
2032 certainly use it later. If we don't set it, the contents of
2033 is_a_field_of_this are undefined. */
2034 if (is_a_field_of_this != NULL)
2035 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2037 /* Search specified block and its superiors. Don't search
2038 STATIC_BLOCK or GLOBAL_BLOCK. */
2040 result = lookup_local_symbol (name, match_type, block, domain, language);
2041 if (result.symbol != NULL)
2043 if (symbol_lookup_debug)
2045 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2046 host_address_to_string (result.symbol));
2051 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2052 check to see if NAME is a field of `this'. */
2054 langdef = language_def (language);
2056 /* Don't do this check if we are searching for a struct. It will
2057 not be found by check_field, but will be found by other
2059 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2061 result = lookup_language_this (langdef, block);
2065 struct type *t = result.symbol->type;
2067 /* I'm not really sure that type of this can ever
2068 be typedefed; just be safe. */
2069 t = check_typedef (t);
2070 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2071 t = TYPE_TARGET_TYPE (t);
2073 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2074 && TYPE_CODE (t) != TYPE_CODE_UNION)
2075 error (_("Internal error: `%s' is not an aggregate"),
2076 langdef->la_name_of_this);
2078 if (check_field (t, name, is_a_field_of_this))
2080 if (symbol_lookup_debug)
2082 fprintf_unfiltered (gdb_stdlog,
2083 "lookup_symbol_aux (...) = NULL\n");
2085 return (struct block_symbol) {NULL, NULL};
2090 /* Now do whatever is appropriate for LANGUAGE to look
2091 up static and global variables. */
2093 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2094 if (result.symbol != NULL)
2096 if (symbol_lookup_debug)
2098 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2099 host_address_to_string (result.symbol));
2104 /* Now search all static file-level symbols. Not strictly correct,
2105 but more useful than an error. */
2107 result = lookup_static_symbol (name, domain);
2108 if (symbol_lookup_debug)
2110 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2111 result.symbol != NULL
2112 ? host_address_to_string (result.symbol)
2118 /* Check to see if the symbol is defined in BLOCK or its superiors.
2119 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2121 static struct block_symbol
2122 lookup_local_symbol (const char *name,
2123 symbol_name_match_type match_type,
2124 const struct block *block,
2125 const domain_enum domain,
2126 enum language language)
2129 const struct block *static_block = block_static_block (block);
2130 const char *scope = block_scope (block);
2132 /* Check if either no block is specified or it's a global block. */
2134 if (static_block == NULL)
2135 return (struct block_symbol) {NULL, NULL};
2137 while (block != static_block)
2139 sym = lookup_symbol_in_block (name, match_type, block, domain);
2141 return (struct block_symbol) {sym, block};
2143 if (language == language_cplus || language == language_fortran)
2145 struct block_symbol blocksym
2146 = cp_lookup_symbol_imports_or_template (scope, name, block,
2149 if (blocksym.symbol != NULL)
2153 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2155 block = BLOCK_SUPERBLOCK (block);
2158 /* We've reached the end of the function without finding a result. */
2160 return (struct block_symbol) {NULL, NULL};
2166 lookup_objfile_from_block (const struct block *block)
2168 struct objfile *obj;
2169 struct compunit_symtab *cust;
2174 block = block_global_block (block);
2175 /* Look through all blockvectors. */
2176 ALL_COMPUNITS (obj, cust)
2177 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2180 if (obj->separate_debug_objfile_backlink)
2181 obj = obj->separate_debug_objfile_backlink;
2192 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2193 const struct block *block,
2194 const domain_enum domain)
2198 if (symbol_lookup_debug > 1)
2200 struct objfile *objfile = lookup_objfile_from_block (block);
2202 fprintf_unfiltered (gdb_stdlog,
2203 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2204 name, host_address_to_string (block),
2205 objfile_debug_name (objfile),
2206 domain_name (domain));
2209 sym = block_lookup_symbol (block, name, match_type, domain);
2212 if (symbol_lookup_debug > 1)
2214 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2215 host_address_to_string (sym));
2217 return fixup_symbol_section (sym, NULL);
2220 if (symbol_lookup_debug > 1)
2221 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2228 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2230 const domain_enum domain)
2232 struct objfile *objfile;
2234 for (objfile = main_objfile;
2236 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2238 struct block_symbol result
2239 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2241 if (result.symbol != NULL)
2245 return (struct block_symbol) {NULL, NULL};
2248 /* Check to see if the symbol is defined in one of the OBJFILE's
2249 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2250 depending on whether or not we want to search global symbols or
2253 static struct block_symbol
2254 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2255 const char *name, const domain_enum domain)
2257 struct compunit_symtab *cust;
2259 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2261 if (symbol_lookup_debug > 1)
2263 fprintf_unfiltered (gdb_stdlog,
2264 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2265 objfile_debug_name (objfile),
2266 block_index == GLOBAL_BLOCK
2267 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2268 name, domain_name (domain));
2271 ALL_OBJFILE_COMPUNITS (objfile, cust)
2273 const struct blockvector *bv;
2274 const struct block *block;
2275 struct block_symbol result;
2277 bv = COMPUNIT_BLOCKVECTOR (cust);
2278 block = BLOCKVECTOR_BLOCK (bv, block_index);
2279 result.symbol = block_lookup_symbol_primary (block, name, domain);
2280 result.block = block;
2281 if (result.symbol != NULL)
2283 if (symbol_lookup_debug > 1)
2285 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2286 host_address_to_string (result.symbol),
2287 host_address_to_string (block));
2289 result.symbol = fixup_symbol_section (result.symbol, objfile);
2295 if (symbol_lookup_debug > 1)
2296 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2297 return (struct block_symbol) {NULL, NULL};
2300 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2301 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2302 and all associated separate debug objfiles.
2304 Normally we only look in OBJFILE, and not any separate debug objfiles
2305 because the outer loop will cause them to be searched too. This case is
2306 different. Here we're called from search_symbols where it will only
2307 call us for the the objfile that contains a matching minsym. */
2309 static struct block_symbol
2310 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2311 const char *linkage_name,
2314 enum language lang = current_language->la_language;
2315 struct objfile *main_objfile, *cur_objfile;
2317 demangle_result_storage storage;
2318 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2320 if (objfile->separate_debug_objfile_backlink)
2321 main_objfile = objfile->separate_debug_objfile_backlink;
2323 main_objfile = objfile;
2325 for (cur_objfile = main_objfile;
2327 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2329 struct block_symbol result;
2331 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2332 modified_name, domain);
2333 if (result.symbol == NULL)
2334 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2335 modified_name, domain);
2336 if (result.symbol != NULL)
2340 return (struct block_symbol) {NULL, NULL};
2343 /* A helper function that throws an exception when a symbol was found
2344 in a psymtab but not in a symtab. */
2346 static void ATTRIBUTE_NORETURN
2347 error_in_psymtab_expansion (int block_index, const char *name,
2348 struct compunit_symtab *cust)
2351 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2352 %s may be an inlined function, or may be a template function\n \
2353 (if a template, try specifying an instantiation: %s<type>)."),
2354 block_index == GLOBAL_BLOCK ? "global" : "static",
2356 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2360 /* A helper function for various lookup routines that interfaces with
2361 the "quick" symbol table functions. */
2363 static struct block_symbol
2364 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2365 const char *name, const domain_enum domain)
2367 struct compunit_symtab *cust;
2368 const struct blockvector *bv;
2369 const struct block *block;
2370 struct block_symbol result;
2373 return (struct block_symbol) {NULL, NULL};
2375 if (symbol_lookup_debug > 1)
2377 fprintf_unfiltered (gdb_stdlog,
2378 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2379 objfile_debug_name (objfile),
2380 block_index == GLOBAL_BLOCK
2381 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2382 name, domain_name (domain));
2385 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2388 if (symbol_lookup_debug > 1)
2390 fprintf_unfiltered (gdb_stdlog,
2391 "lookup_symbol_via_quick_fns (...) = NULL\n");
2393 return (struct block_symbol) {NULL, NULL};
2396 bv = COMPUNIT_BLOCKVECTOR (cust);
2397 block = BLOCKVECTOR_BLOCK (bv, block_index);
2398 result.symbol = block_lookup_symbol (block, name,
2399 symbol_name_match_type::FULL, domain);
2400 if (result.symbol == NULL)
2401 error_in_psymtab_expansion (block_index, name, cust);
2403 if (symbol_lookup_debug > 1)
2405 fprintf_unfiltered (gdb_stdlog,
2406 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2407 host_address_to_string (result.symbol),
2408 host_address_to_string (block));
2411 result.symbol = fixup_symbol_section (result.symbol, objfile);
2412 result.block = block;
2419 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2421 const struct block *block,
2422 const domain_enum domain)
2424 struct block_symbol result;
2426 /* NOTE: carlton/2003-05-19: The comments below were written when
2427 this (or what turned into this) was part of lookup_symbol_aux;
2428 I'm much less worried about these questions now, since these
2429 decisions have turned out well, but I leave these comments here
2432 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2433 not it would be appropriate to search the current global block
2434 here as well. (That's what this code used to do before the
2435 is_a_field_of_this check was moved up.) On the one hand, it's
2436 redundant with the lookup in all objfiles search that happens
2437 next. On the other hand, if decode_line_1 is passed an argument
2438 like filename:var, then the user presumably wants 'var' to be
2439 searched for in filename. On the third hand, there shouldn't be
2440 multiple global variables all of which are named 'var', and it's
2441 not like decode_line_1 has ever restricted its search to only
2442 global variables in a single filename. All in all, only
2443 searching the static block here seems best: it's correct and it's
2446 /* NOTE: carlton/2002-12-05: There's also a possible performance
2447 issue here: if you usually search for global symbols in the
2448 current file, then it would be slightly better to search the
2449 current global block before searching all the symtabs. But there
2450 are other factors that have a much greater effect on performance
2451 than that one, so I don't think we should worry about that for
2454 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2455 the current objfile. Searching the current objfile first is useful
2456 for both matching user expectations as well as performance. */
2458 result = lookup_symbol_in_static_block (name, block, domain);
2459 if (result.symbol != NULL)
2462 /* If we didn't find a definition for a builtin type in the static block,
2463 search for it now. This is actually the right thing to do and can be
2464 a massive performance win. E.g., when debugging a program with lots of
2465 shared libraries we could search all of them only to find out the
2466 builtin type isn't defined in any of them. This is common for types
2468 if (domain == VAR_DOMAIN)
2470 struct gdbarch *gdbarch;
2473 gdbarch = target_gdbarch ();
2475 gdbarch = block_gdbarch (block);
2476 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2478 result.block = NULL;
2479 if (result.symbol != NULL)
2483 return lookup_global_symbol (name, block, domain);
2489 lookup_symbol_in_static_block (const char *name,
2490 const struct block *block,
2491 const domain_enum domain)
2493 const struct block *static_block = block_static_block (block);
2496 if (static_block == NULL)
2497 return (struct block_symbol) {NULL, NULL};
2499 if (symbol_lookup_debug)
2501 struct objfile *objfile = lookup_objfile_from_block (static_block);
2503 fprintf_unfiltered (gdb_stdlog,
2504 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2507 host_address_to_string (block),
2508 objfile_debug_name (objfile),
2509 domain_name (domain));
2512 sym = lookup_symbol_in_block (name,
2513 symbol_name_match_type::FULL,
2514 static_block, domain);
2515 if (symbol_lookup_debug)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "lookup_symbol_in_static_block (...) = %s\n",
2519 sym != NULL ? host_address_to_string (sym) : "NULL");
2521 return (struct block_symbol) {sym, static_block};
2524 /* Perform the standard symbol lookup of NAME in OBJFILE:
2525 1) First search expanded symtabs, and if not found
2526 2) Search the "quick" symtabs (partial or .gdb_index).
2527 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2529 static struct block_symbol
2530 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2531 const char *name, const domain_enum domain)
2533 struct block_symbol result;
2535 if (symbol_lookup_debug)
2537 fprintf_unfiltered (gdb_stdlog,
2538 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2539 objfile_debug_name (objfile),
2540 block_index == GLOBAL_BLOCK
2541 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2542 name, domain_name (domain));
2545 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2547 if (result.symbol != NULL)
2549 if (symbol_lookup_debug)
2551 fprintf_unfiltered (gdb_stdlog,
2552 "lookup_symbol_in_objfile (...) = %s"
2554 host_address_to_string (result.symbol));
2559 result = lookup_symbol_via_quick_fns (objfile, block_index,
2561 if (symbol_lookup_debug)
2563 fprintf_unfiltered (gdb_stdlog,
2564 "lookup_symbol_in_objfile (...) = %s%s\n",
2565 result.symbol != NULL
2566 ? host_address_to_string (result.symbol)
2568 result.symbol != NULL ? " (via quick fns)" : "");
2576 lookup_static_symbol (const char *name, const domain_enum domain)
2578 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2579 struct objfile *objfile;
2580 struct block_symbol result;
2581 struct block_symbol_cache *bsc;
2582 struct symbol_cache_slot *slot;
2584 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2585 NULL for OBJFILE_CONTEXT. */
2586 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2588 if (result.symbol != NULL)
2590 if (SYMBOL_LOOKUP_FAILED_P (result))
2591 return (struct block_symbol) {NULL, NULL};
2595 ALL_OBJFILES (objfile)
2597 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2598 if (result.symbol != NULL)
2600 /* Still pass NULL for OBJFILE_CONTEXT here. */
2601 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2607 /* Still pass NULL for OBJFILE_CONTEXT here. */
2608 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2609 return (struct block_symbol) {NULL, NULL};
2612 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2614 struct global_sym_lookup_data
2616 /* The name of the symbol we are searching for. */
2619 /* The domain to use for our search. */
2622 /* The field where the callback should store the symbol if found.
2623 It should be initialized to {NULL, NULL} before the search is started. */
2624 struct block_symbol result;
2627 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2628 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2629 OBJFILE. The arguments for the search are passed via CB_DATA,
2630 which in reality is a pointer to struct global_sym_lookup_data. */
2633 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2636 struct global_sym_lookup_data *data =
2637 (struct global_sym_lookup_data *) cb_data;
2639 gdb_assert (data->result.symbol == NULL
2640 && data->result.block == NULL);
2642 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2643 data->name, data->domain);
2645 /* If we found a match, tell the iterator to stop. Otherwise,
2647 return (data->result.symbol != NULL);
2653 lookup_global_symbol (const char *name,
2654 const struct block *block,
2655 const domain_enum domain)
2657 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2658 struct block_symbol result;
2659 struct objfile *objfile;
2660 struct global_sym_lookup_data lookup_data;
2661 struct block_symbol_cache *bsc;
2662 struct symbol_cache_slot *slot;
2664 objfile = lookup_objfile_from_block (block);
2666 /* First see if we can find the symbol in the cache.
2667 This works because we use the current objfile to qualify the lookup. */
2668 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2670 if (result.symbol != NULL)
2672 if (SYMBOL_LOOKUP_FAILED_P (result))
2673 return (struct block_symbol) {NULL, NULL};
2677 /* Call library-specific lookup procedure. */
2678 if (objfile != NULL)
2679 result = solib_global_lookup (objfile, name, domain);
2681 /* If that didn't work go a global search (of global blocks, heh). */
2682 if (result.symbol == NULL)
2684 memset (&lookup_data, 0, sizeof (lookup_data));
2685 lookup_data.name = name;
2686 lookup_data.domain = domain;
2687 gdbarch_iterate_over_objfiles_in_search_order
2688 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2689 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2690 result = lookup_data.result;
2693 if (result.symbol != NULL)
2694 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2696 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2702 symbol_matches_domain (enum language symbol_language,
2703 domain_enum symbol_domain,
2706 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2707 Similarly, any Ada type declaration implicitly defines a typedef. */
2708 if (symbol_language == language_cplus
2709 || symbol_language == language_d
2710 || symbol_language == language_ada
2711 || symbol_language == language_rust)
2713 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2714 && symbol_domain == STRUCT_DOMAIN)
2717 /* For all other languages, strict match is required. */
2718 return (symbol_domain == domain);
2724 lookup_transparent_type (const char *name)
2726 return current_language->la_lookup_transparent_type (name);
2729 /* A helper for basic_lookup_transparent_type that interfaces with the
2730 "quick" symbol table functions. */
2732 static struct type *
2733 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2736 struct compunit_symtab *cust;
2737 const struct blockvector *bv;
2738 struct block *block;
2743 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2748 bv = COMPUNIT_BLOCKVECTOR (cust);
2749 block = BLOCKVECTOR_BLOCK (bv, block_index);
2750 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2751 block_find_non_opaque_type, NULL);
2753 error_in_psymtab_expansion (block_index, name, cust);
2754 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2755 return SYMBOL_TYPE (sym);
2758 /* Subroutine of basic_lookup_transparent_type to simplify it.
2759 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2760 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2762 static struct type *
2763 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2766 const struct compunit_symtab *cust;
2767 const struct blockvector *bv;
2768 const struct block *block;
2769 const struct symbol *sym;
2771 ALL_OBJFILE_COMPUNITS (objfile, cust)
2773 bv = COMPUNIT_BLOCKVECTOR (cust);
2774 block = BLOCKVECTOR_BLOCK (bv, block_index);
2775 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2776 block_find_non_opaque_type, NULL);
2779 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2780 return SYMBOL_TYPE (sym);
2787 /* The standard implementation of lookup_transparent_type. This code
2788 was modeled on lookup_symbol -- the parts not relevant to looking
2789 up types were just left out. In particular it's assumed here that
2790 types are available in STRUCT_DOMAIN and only in file-static or
2794 basic_lookup_transparent_type (const char *name)
2796 struct objfile *objfile;
2799 /* Now search all the global symbols. Do the symtab's first, then
2800 check the psymtab's. If a psymtab indicates the existence
2801 of the desired name as a global, then do psymtab-to-symtab
2802 conversion on the fly and return the found symbol. */
2804 ALL_OBJFILES (objfile)
2806 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2811 ALL_OBJFILES (objfile)
2813 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2818 /* Now search the static file-level symbols.
2819 Not strictly correct, but more useful than an error.
2820 Do the symtab's first, then
2821 check the psymtab's. If a psymtab indicates the existence
2822 of the desired name as a file-level static, then do psymtab-to-symtab
2823 conversion on the fly and return the found symbol. */
2825 ALL_OBJFILES (objfile)
2827 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2832 ALL_OBJFILES (objfile)
2834 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2839 return (struct type *) 0;
2842 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2844 For each symbol that matches, CALLBACK is called. The symbol is
2845 passed to the callback.
2847 If CALLBACK returns false, the iteration ends. Otherwise, the
2848 search continues. */
2851 iterate_over_symbols (const struct block *block,
2852 const lookup_name_info &name,
2853 const domain_enum domain,
2854 gdb::function_view<symbol_found_callback_ftype> callback)
2856 struct block_iterator iter;
2859 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2861 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2862 SYMBOL_DOMAIN (sym), domain))
2864 struct block_symbol block_sym = {sym, block};
2866 if (!callback (&block_sym))
2872 /* Find the compunit symtab associated with PC and SECTION.
2873 This will read in debug info as necessary. */
2875 struct compunit_symtab *
2876 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2878 struct compunit_symtab *cust;
2879 struct compunit_symtab *best_cust = NULL;
2880 struct objfile *objfile;
2881 CORE_ADDR distance = 0;
2882 struct bound_minimal_symbol msymbol;
2884 /* If we know that this is not a text address, return failure. This is
2885 necessary because we loop based on the block's high and low code
2886 addresses, which do not include the data ranges, and because
2887 we call find_pc_sect_psymtab which has a similar restriction based
2888 on the partial_symtab's texthigh and textlow. */
2889 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2891 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2892 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2893 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2894 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2895 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2898 /* Search all symtabs for the one whose file contains our address, and which
2899 is the smallest of all the ones containing the address. This is designed
2900 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2901 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2902 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2904 This happens for native ecoff format, where code from included files
2905 gets its own symtab. The symtab for the included file should have
2906 been read in already via the dependency mechanism.
2907 It might be swifter to create several symtabs with the same name
2908 like xcoff does (I'm not sure).
2910 It also happens for objfiles that have their functions reordered.
2911 For these, the symtab we are looking for is not necessarily read in. */
2913 ALL_COMPUNITS (objfile, cust)
2916 const struct blockvector *bv;
2918 bv = COMPUNIT_BLOCKVECTOR (cust);
2919 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2921 if (BLOCK_START (b) <= pc
2922 && BLOCK_END (b) > pc
2924 || BLOCK_END (b) - BLOCK_START (b) < distance))
2926 /* For an objfile that has its functions reordered,
2927 find_pc_psymtab will find the proper partial symbol table
2928 and we simply return its corresponding symtab. */
2929 /* In order to better support objfiles that contain both
2930 stabs and coff debugging info, we continue on if a psymtab
2932 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2934 struct compunit_symtab *result;
2937 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2946 struct block_iterator iter;
2947 struct symbol *sym = NULL;
2949 ALL_BLOCK_SYMBOLS (b, iter, sym)
2951 fixup_symbol_section (sym, objfile);
2952 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2957 continue; /* No symbol in this symtab matches
2960 distance = BLOCK_END (b) - BLOCK_START (b);
2965 if (best_cust != NULL)
2968 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2970 ALL_OBJFILES (objfile)
2972 struct compunit_symtab *result;
2976 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2987 /* Find the compunit symtab associated with PC.
2988 This will read in debug info as necessary.
2989 Backward compatibility, no section. */
2991 struct compunit_symtab *
2992 find_pc_compunit_symtab (CORE_ADDR pc)
2994 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3000 find_symbol_at_address (CORE_ADDR address)
3002 struct objfile *objfile;
3004 ALL_OBJFILES (objfile)
3006 if (objfile->sf == NULL
3007 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3010 struct compunit_symtab *symtab
3011 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3014 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3016 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3018 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3019 struct block_iterator iter;
3022 ALL_BLOCK_SYMBOLS (b, iter, sym)
3024 if (SYMBOL_CLASS (sym) == LOC_STATIC
3025 && SYMBOL_VALUE_ADDRESS (sym) == address)
3037 /* Find the source file and line number for a given PC value and SECTION.
3038 Return a structure containing a symtab pointer, a line number,
3039 and a pc range for the entire source line.
3040 The value's .pc field is NOT the specified pc.
3041 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3042 use the line that ends there. Otherwise, in that case, the line
3043 that begins there is used. */
3045 /* The big complication here is that a line may start in one file, and end just
3046 before the start of another file. This usually occurs when you #include
3047 code in the middle of a subroutine. To properly find the end of a line's PC
3048 range, we must search all symtabs associated with this compilation unit, and
3049 find the one whose first PC is closer than that of the next line in this
3052 struct symtab_and_line
3053 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3055 struct compunit_symtab *cust;
3056 struct symtab *iter_s;
3057 struct linetable *l;
3059 struct linetable_entry *item;
3060 const struct blockvector *bv;
3061 struct bound_minimal_symbol msymbol;
3063 /* Info on best line seen so far, and where it starts, and its file. */
3065 struct linetable_entry *best = NULL;
3066 CORE_ADDR best_end = 0;
3067 struct symtab *best_symtab = 0;
3069 /* Store here the first line number
3070 of a file which contains the line at the smallest pc after PC.
3071 If we don't find a line whose range contains PC,
3072 we will use a line one less than this,
3073 with a range from the start of that file to the first line's pc. */
3074 struct linetable_entry *alt = NULL;
3076 /* Info on best line seen in this file. */
3078 struct linetable_entry *prev;
3080 /* If this pc is not from the current frame,
3081 it is the address of the end of a call instruction.
3082 Quite likely that is the start of the following statement.
3083 But what we want is the statement containing the instruction.
3084 Fudge the pc to make sure we get that. */
3086 /* It's tempting to assume that, if we can't find debugging info for
3087 any function enclosing PC, that we shouldn't search for line
3088 number info, either. However, GAS can emit line number info for
3089 assembly files --- very helpful when debugging hand-written
3090 assembly code. In such a case, we'd have no debug info for the
3091 function, but we would have line info. */
3096 /* elz: added this because this function returned the wrong
3097 information if the pc belongs to a stub (import/export)
3098 to call a shlib function. This stub would be anywhere between
3099 two functions in the target, and the line info was erroneously
3100 taken to be the one of the line before the pc. */
3102 /* RT: Further explanation:
3104 * We have stubs (trampolines) inserted between procedures.
3106 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3107 * exists in the main image.
3109 * In the minimal symbol table, we have a bunch of symbols
3110 * sorted by start address. The stubs are marked as "trampoline",
3111 * the others appear as text. E.g.:
3113 * Minimal symbol table for main image
3114 * main: code for main (text symbol)
3115 * shr1: stub (trampoline symbol)
3116 * foo: code for foo (text symbol)
3118 * Minimal symbol table for "shr1" image:
3120 * shr1: code for shr1 (text symbol)
3123 * So the code below is trying to detect if we are in the stub
3124 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3125 * and if found, do the symbolization from the real-code address
3126 * rather than the stub address.
3128 * Assumptions being made about the minimal symbol table:
3129 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3130 * if we're really in the trampoline.s If we're beyond it (say
3131 * we're in "foo" in the above example), it'll have a closer
3132 * symbol (the "foo" text symbol for example) and will not
3133 * return the trampoline.
3134 * 2. lookup_minimal_symbol_text() will find a real text symbol
3135 * corresponding to the trampoline, and whose address will
3136 * be different than the trampoline address. I put in a sanity
3137 * check for the address being the same, to avoid an
3138 * infinite recursion.
3140 msymbol = lookup_minimal_symbol_by_pc (pc);
3141 if (msymbol.minsym != NULL)
3142 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3144 struct bound_minimal_symbol mfunsym
3145 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3148 if (mfunsym.minsym == NULL)
3149 /* I eliminated this warning since it is coming out
3150 * in the following situation:
3151 * gdb shmain // test program with shared libraries
3152 * (gdb) break shr1 // function in shared lib
3153 * Warning: In stub for ...
3154 * In the above situation, the shared lib is not loaded yet,
3155 * so of course we can't find the real func/line info,
3156 * but the "break" still works, and the warning is annoying.
3157 * So I commented out the warning. RT */
3158 /* warning ("In stub for %s; unable to find real function/line info",
3159 SYMBOL_LINKAGE_NAME (msymbol)); */
3162 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3163 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3164 /* Avoid infinite recursion */
3165 /* See above comment about why warning is commented out. */
3166 /* warning ("In stub for %s; unable to find real function/line info",
3167 SYMBOL_LINKAGE_NAME (msymbol)); */
3171 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3174 symtab_and_line val;
3175 val.pspace = current_program_space;
3177 cust = find_pc_sect_compunit_symtab (pc, section);
3180 /* If no symbol information, return previous pc. */
3187 bv = COMPUNIT_BLOCKVECTOR (cust);
3189 /* Look at all the symtabs that share this blockvector.
3190 They all have the same apriori range, that we found was right;
3191 but they have different line tables. */
3193 ALL_COMPUNIT_FILETABS (cust, iter_s)
3195 /* Find the best line in this symtab. */
3196 l = SYMTAB_LINETABLE (iter_s);
3202 /* I think len can be zero if the symtab lacks line numbers
3203 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3204 I'm not sure which, and maybe it depends on the symbol
3210 item = l->item; /* Get first line info. */
3212 /* Is this file's first line closer than the first lines of other files?
3213 If so, record this file, and its first line, as best alternate. */
3214 if (item->pc > pc && (!alt || item->pc < alt->pc))
3217 auto pc_compare = [](const CORE_ADDR & comp_pc,
3218 const struct linetable_entry & lhs)->bool
3220 return comp_pc < lhs.pc;
3223 struct linetable_entry *first = item;
3224 struct linetable_entry *last = item + len;
3225 item = std::upper_bound (first, last, pc, pc_compare);
3227 prev = item - 1; /* Found a matching item. */
3229 /* At this point, prev points at the line whose start addr is <= pc, and
3230 item points at the next line. If we ran off the end of the linetable
3231 (pc >= start of the last line), then prev == item. If pc < start of
3232 the first line, prev will not be set. */
3234 /* Is this file's best line closer than the best in the other files?
3235 If so, record this file, and its best line, as best so far. Don't
3236 save prev if it represents the end of a function (i.e. line number
3237 0) instead of a real line. */
3239 if (prev && prev->line && (!best || prev->pc > best->pc))
3242 best_symtab = iter_s;
3244 /* Discard BEST_END if it's before the PC of the current BEST. */
3245 if (best_end <= best->pc)
3249 /* If another line (denoted by ITEM) is in the linetable and its
3250 PC is after BEST's PC, but before the current BEST_END, then
3251 use ITEM's PC as the new best_end. */
3252 if (best && item < last && item->pc > best->pc
3253 && (best_end == 0 || best_end > item->pc))
3254 best_end = item->pc;
3259 /* If we didn't find any line number info, just return zeros.
3260 We used to return alt->line - 1 here, but that could be
3261 anywhere; if we don't have line number info for this PC,
3262 don't make some up. */
3265 else if (best->line == 0)
3267 /* If our best fit is in a range of PC's for which no line
3268 number info is available (line number is zero) then we didn't
3269 find any valid line information. */
3274 val.symtab = best_symtab;
3275 val.line = best->line;
3277 if (best_end && (!alt || best_end < alt->pc))
3282 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3284 val.section = section;
3288 /* Backward compatibility (no section). */
3290 struct symtab_and_line
3291 find_pc_line (CORE_ADDR pc, int notcurrent)
3293 struct obj_section *section;
3295 section = find_pc_overlay (pc);
3296 if (pc_in_unmapped_range (pc, section))
3297 pc = overlay_mapped_address (pc, section);
3298 return find_pc_sect_line (pc, section, notcurrent);
3304 find_pc_line_symtab (CORE_ADDR pc)
3306 struct symtab_and_line sal;
3308 /* This always passes zero for NOTCURRENT to find_pc_line.
3309 There are currently no callers that ever pass non-zero. */
3310 sal = find_pc_line (pc, 0);
3314 /* Find line number LINE in any symtab whose name is the same as
3317 If found, return the symtab that contains the linetable in which it was
3318 found, set *INDEX to the index in the linetable of the best entry
3319 found, and set *EXACT_MATCH nonzero if the value returned is an
3322 If not found, return NULL. */
3325 find_line_symtab (struct symtab *symtab, int line,
3326 int *index, int *exact_match)
3328 int exact = 0; /* Initialized here to avoid a compiler warning. */
3330 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3334 struct linetable *best_linetable;
3335 struct symtab *best_symtab;
3337 /* First try looking it up in the given symtab. */
3338 best_linetable = SYMTAB_LINETABLE (symtab);
3339 best_symtab = symtab;
3340 best_index = find_line_common (best_linetable, line, &exact, 0);
3341 if (best_index < 0 || !exact)
3343 /* Didn't find an exact match. So we better keep looking for
3344 another symtab with the same name. In the case of xcoff,
3345 multiple csects for one source file (produced by IBM's FORTRAN
3346 compiler) produce multiple symtabs (this is unavoidable
3347 assuming csects can be at arbitrary places in memory and that
3348 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3350 /* BEST is the smallest linenumber > LINE so far seen,
3351 or 0 if none has been seen so far.
3352 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3355 struct objfile *objfile;
3356 struct compunit_symtab *cu;
3359 if (best_index >= 0)
3360 best = best_linetable->item[best_index].line;
3364 ALL_OBJFILES (objfile)
3367 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3368 symtab_to_fullname (symtab));
3371 ALL_FILETABS (objfile, cu, s)
3373 struct linetable *l;
3376 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3378 if (FILENAME_CMP (symtab_to_fullname (symtab),
3379 symtab_to_fullname (s)) != 0)
3381 l = SYMTAB_LINETABLE (s);
3382 ind = find_line_common (l, line, &exact, 0);
3392 if (best == 0 || l->item[ind].line < best)
3394 best = l->item[ind].line;
3407 *index = best_index;
3409 *exact_match = exact;
3414 /* Given SYMTAB, returns all the PCs function in the symtab that
3415 exactly match LINE. Returns an empty vector if there are no exact
3416 matches, but updates BEST_ITEM in this case. */
3418 std::vector<CORE_ADDR>
3419 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3420 struct linetable_entry **best_item)
3423 std::vector<CORE_ADDR> result;
3425 /* First, collect all the PCs that are at this line. */
3431 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3438 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3440 if (*best_item == NULL || item->line < (*best_item)->line)
3446 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3454 /* Set the PC value for a given source file and line number and return true.
3455 Returns zero for invalid line number (and sets the PC to 0).
3456 The source file is specified with a struct symtab. */
3459 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3461 struct linetable *l;
3468 symtab = find_line_symtab (symtab, line, &ind, NULL);
3471 l = SYMTAB_LINETABLE (symtab);
3472 *pc = l->item[ind].pc;
3479 /* Find the range of pc values in a line.
3480 Store the starting pc of the line into *STARTPTR
3481 and the ending pc (start of next line) into *ENDPTR.
3482 Returns 1 to indicate success.
3483 Returns 0 if could not find the specified line. */
3486 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3489 CORE_ADDR startaddr;
3490 struct symtab_and_line found_sal;
3493 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3496 /* This whole function is based on address. For example, if line 10 has
3497 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3498 "info line *0x123" should say the line goes from 0x100 to 0x200
3499 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3500 This also insures that we never give a range like "starts at 0x134
3501 and ends at 0x12c". */
3503 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3504 if (found_sal.line != sal.line)
3506 /* The specified line (sal) has zero bytes. */
3507 *startptr = found_sal.pc;
3508 *endptr = found_sal.pc;
3512 *startptr = found_sal.pc;
3513 *endptr = found_sal.end;
3518 /* Given a line table and a line number, return the index into the line
3519 table for the pc of the nearest line whose number is >= the specified one.
3520 Return -1 if none is found. The value is >= 0 if it is an index.
3521 START is the index at which to start searching the line table.
3523 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3526 find_line_common (struct linetable *l, int lineno,
3527 int *exact_match, int start)
3532 /* BEST is the smallest linenumber > LINENO so far seen,
3533 or 0 if none has been seen so far.
3534 BEST_INDEX identifies the item for it. */
3536 int best_index = -1;
3547 for (i = start; i < len; i++)
3549 struct linetable_entry *item = &(l->item[i]);
3551 if (item->line == lineno)
3553 /* Return the first (lowest address) entry which matches. */
3558 if (item->line > lineno && (best == 0 || item->line < best))
3565 /* If we got here, we didn't get an exact match. */
3570 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3572 struct symtab_and_line sal;
3574 sal = find_pc_line (pc, 0);
3577 return sal.symtab != 0;
3580 /* Helper for find_function_start_sal. Does most of the work, except
3581 setting the sal's symbol. */
3583 static symtab_and_line
3584 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3587 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3589 if (funfirstline && sal.symtab != NULL
3590 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3591 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3593 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3596 if (gdbarch_skip_entrypoint_p (gdbarch))
3597 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3601 /* We always should have a line for the function start address.
3602 If we don't, something is odd. Create a plain SAL referring
3603 just the PC and hope that skip_prologue_sal (if requested)
3604 can find a line number for after the prologue. */
3605 if (sal.pc < func_addr)
3608 sal.pspace = current_program_space;
3610 sal.section = section;
3614 skip_prologue_sal (&sal);
3622 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3626 = find_function_start_sal_1 (func_addr, section, funfirstline);
3628 /* find_function_start_sal_1 does a linetable search, so it finds
3629 the symtab and linenumber, but not a symbol. Fill in the
3630 function symbol too. */
3631 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3639 find_function_start_sal (symbol *sym, bool funfirstline)
3641 fixup_symbol_section (sym, NULL);
3643 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3644 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3651 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3652 address for that function that has an entry in SYMTAB's line info
3653 table. If such an entry cannot be found, return FUNC_ADDR
3657 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3659 CORE_ADDR func_start, func_end;
3660 struct linetable *l;
3663 /* Give up if this symbol has no lineinfo table. */
3664 l = SYMTAB_LINETABLE (symtab);
3668 /* Get the range for the function's PC values, or give up if we
3669 cannot, for some reason. */
3670 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3673 /* Linetable entries are ordered by PC values, see the commentary in
3674 symtab.h where `struct linetable' is defined. Thus, the first
3675 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3676 address we are looking for. */
3677 for (i = 0; i < l->nitems; i++)
3679 struct linetable_entry *item = &(l->item[i]);
3681 /* Don't use line numbers of zero, they mark special entries in
3682 the table. See the commentary on symtab.h before the
3683 definition of struct linetable. */
3684 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3691 /* Adjust SAL to the first instruction past the function prologue.
3692 If the PC was explicitly specified, the SAL is not changed.
3693 If the line number was explicitly specified, at most the SAL's PC
3694 is updated. If SAL is already past the prologue, then do nothing. */
3697 skip_prologue_sal (struct symtab_and_line *sal)
3700 struct symtab_and_line start_sal;
3701 CORE_ADDR pc, saved_pc;
3702 struct obj_section *section;
3704 struct objfile *objfile;
3705 struct gdbarch *gdbarch;
3706 const struct block *b, *function_block;
3707 int force_skip, skip;
3709 /* Do not change the SAL if PC was specified explicitly. */
3710 if (sal->explicit_pc)
3713 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3715 switch_to_program_space_and_thread (sal->pspace);
3717 sym = find_pc_sect_function (sal->pc, sal->section);
3720 fixup_symbol_section (sym, NULL);
3722 objfile = symbol_objfile (sym);
3723 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3724 section = SYMBOL_OBJ_SECTION (objfile, sym);
3725 name = SYMBOL_LINKAGE_NAME (sym);
3729 struct bound_minimal_symbol msymbol
3730 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3732 if (msymbol.minsym == NULL)
3735 objfile = msymbol.objfile;
3736 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3737 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3738 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3741 gdbarch = get_objfile_arch (objfile);
3743 /* Process the prologue in two passes. In the first pass try to skip the
3744 prologue (SKIP is true) and verify there is a real need for it (indicated
3745 by FORCE_SKIP). If no such reason was found run a second pass where the
3746 prologue is not skipped (SKIP is false). */
3751 /* Be conservative - allow direct PC (without skipping prologue) only if we
3752 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3753 have to be set by the caller so we use SYM instead. */
3755 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3763 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3764 so that gdbarch_skip_prologue has something unique to work on. */
3765 if (section_is_overlay (section) && !section_is_mapped (section))
3766 pc = overlay_unmapped_address (pc, section);
3768 /* Skip "first line" of function (which is actually its prologue). */
3769 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3770 if (gdbarch_skip_entrypoint_p (gdbarch))
3771 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3773 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3775 /* For overlays, map pc back into its mapped VMA range. */
3776 pc = overlay_mapped_address (pc, section);
3778 /* Calculate line number. */
3779 start_sal = find_pc_sect_line (pc, section, 0);
3781 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3782 line is still part of the same function. */
3783 if (skip && start_sal.pc != pc
3784 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3785 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3786 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3787 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3789 /* First pc of next line */
3791 /* Recalculate the line number (might not be N+1). */
3792 start_sal = find_pc_sect_line (pc, section, 0);
3795 /* On targets with executable formats that don't have a concept of
3796 constructors (ELF with .init has, PE doesn't), gcc emits a call
3797 to `__main' in `main' between the prologue and before user
3799 if (gdbarch_skip_main_prologue_p (gdbarch)
3800 && name && strcmp_iw (name, "main") == 0)
3802 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3803 /* Recalculate the line number (might not be N+1). */
3804 start_sal = find_pc_sect_line (pc, section, 0);
3808 while (!force_skip && skip--);
3810 /* If we still don't have a valid source line, try to find the first
3811 PC in the lineinfo table that belongs to the same function. This
3812 happens with COFF debug info, which does not seem to have an
3813 entry in lineinfo table for the code after the prologue which has
3814 no direct relation to source. For example, this was found to be
3815 the case with the DJGPP target using "gcc -gcoff" when the
3816 compiler inserted code after the prologue to make sure the stack
3818 if (!force_skip && sym && start_sal.symtab == NULL)
3820 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3821 /* Recalculate the line number. */
3822 start_sal = find_pc_sect_line (pc, section, 0);
3825 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3826 forward SAL to the end of the prologue. */
3831 sal->section = section;
3833 /* Unless the explicit_line flag was set, update the SAL line
3834 and symtab to correspond to the modified PC location. */
3835 if (sal->explicit_line)
3838 sal->symtab = start_sal.symtab;
3839 sal->line = start_sal.line;
3840 sal->end = start_sal.end;
3842 /* Check if we are now inside an inlined function. If we can,
3843 use the call site of the function instead. */
3844 b = block_for_pc_sect (sal->pc, sal->section);
3845 function_block = NULL;
3848 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3850 else if (BLOCK_FUNCTION (b) != NULL)
3852 b = BLOCK_SUPERBLOCK (b);
3854 if (function_block != NULL
3855 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3857 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3858 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3862 /* Given PC at the function's start address, attempt to find the
3863 prologue end using SAL information. Return zero if the skip fails.
3865 A non-optimized prologue traditionally has one SAL for the function
3866 and a second for the function body. A single line function has
3867 them both pointing at the same line.
3869 An optimized prologue is similar but the prologue may contain
3870 instructions (SALs) from the instruction body. Need to skip those
3871 while not getting into the function body.
3873 The functions end point and an increasing SAL line are used as
3874 indicators of the prologue's endpoint.
3876 This code is based on the function refine_prologue_limit
3880 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3882 struct symtab_and_line prologue_sal;
3885 const struct block *bl;
3887 /* Get an initial range for the function. */
3888 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3889 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3891 prologue_sal = find_pc_line (start_pc, 0);
3892 if (prologue_sal.line != 0)
3894 /* For languages other than assembly, treat two consecutive line
3895 entries at the same address as a zero-instruction prologue.
3896 The GNU assembler emits separate line notes for each instruction
3897 in a multi-instruction macro, but compilers generally will not
3899 if (prologue_sal.symtab->language != language_asm)
3901 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3904 /* Skip any earlier lines, and any end-of-sequence marker
3905 from a previous function. */
3906 while (linetable->item[idx].pc != prologue_sal.pc
3907 || linetable->item[idx].line == 0)
3910 if (idx+1 < linetable->nitems
3911 && linetable->item[idx+1].line != 0
3912 && linetable->item[idx+1].pc == start_pc)
3916 /* If there is only one sal that covers the entire function,
3917 then it is probably a single line function, like
3919 if (prologue_sal.end >= end_pc)
3922 while (prologue_sal.end < end_pc)
3924 struct symtab_and_line sal;
3926 sal = find_pc_line (prologue_sal.end, 0);
3929 /* Assume that a consecutive SAL for the same (or larger)
3930 line mark the prologue -> body transition. */
3931 if (sal.line >= prologue_sal.line)
3933 /* Likewise if we are in a different symtab altogether
3934 (e.g. within a file included via #include). */
3935 if (sal.symtab != prologue_sal.symtab)
3938 /* The line number is smaller. Check that it's from the
3939 same function, not something inlined. If it's inlined,
3940 then there is no point comparing the line numbers. */
3941 bl = block_for_pc (prologue_sal.end);
3944 if (block_inlined_p (bl))
3946 if (BLOCK_FUNCTION (bl))
3951 bl = BLOCK_SUPERBLOCK (bl);
3956 /* The case in which compiler's optimizer/scheduler has
3957 moved instructions into the prologue. We look ahead in
3958 the function looking for address ranges whose
3959 corresponding line number is less the first one that we
3960 found for the function. This is more conservative then
3961 refine_prologue_limit which scans a large number of SALs
3962 looking for any in the prologue. */
3967 if (prologue_sal.end < end_pc)
3968 /* Return the end of this line, or zero if we could not find a
3970 return prologue_sal.end;
3972 /* Don't return END_PC, which is past the end of the function. */
3973 return prologue_sal.pc;
3979 find_function_alias_target (bound_minimal_symbol msymbol)
3981 CORE_ADDR func_addr;
3982 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3985 symbol *sym = find_pc_function (func_addr);
3987 && SYMBOL_CLASS (sym) == LOC_BLOCK
3988 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3995 /* If P is of the form "operator[ \t]+..." where `...' is
3996 some legitimate operator text, return a pointer to the
3997 beginning of the substring of the operator text.
3998 Otherwise, return "". */
4001 operator_chars (const char *p, const char **end)
4004 if (!startswith (p, CP_OPERATOR_STR))
4006 p += CP_OPERATOR_LEN;
4008 /* Don't get faked out by `operator' being part of a longer
4010 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4013 /* Allow some whitespace between `operator' and the operator symbol. */
4014 while (*p == ' ' || *p == '\t')
4017 /* Recognize 'operator TYPENAME'. */
4019 if (isalpha (*p) || *p == '_' || *p == '$')
4021 const char *q = p + 1;
4023 while (isalnum (*q) || *q == '_' || *q == '$')
4032 case '\\': /* regexp quoting */
4035 if (p[2] == '=') /* 'operator\*=' */
4037 else /* 'operator\*' */
4041 else if (p[1] == '[')
4044 error (_("mismatched quoting on brackets, "
4045 "try 'operator\\[\\]'"));
4046 else if (p[2] == '\\' && p[3] == ']')
4048 *end = p + 4; /* 'operator\[\]' */
4052 error (_("nothing is allowed between '[' and ']'"));
4056 /* Gratuitous qoute: skip it and move on. */
4078 if (p[0] == '-' && p[1] == '>')
4080 /* Struct pointer member operator 'operator->'. */
4083 *end = p + 3; /* 'operator->*' */
4086 else if (p[2] == '\\')
4088 *end = p + 4; /* Hopefully 'operator->\*' */
4093 *end = p + 2; /* 'operator->' */
4097 if (p[1] == '=' || p[1] == p[0])
4108 error (_("`operator ()' must be specified "
4109 "without whitespace in `()'"));
4114 error (_("`operator ?:' must be specified "
4115 "without whitespace in `?:'"));
4120 error (_("`operator []' must be specified "
4121 "without whitespace in `[]'"));
4125 error (_("`operator %s' not supported"), p);
4134 /* Data structure to maintain printing state for output_source_filename. */
4136 struct output_source_filename_data
4138 /* Cache of what we've seen so far. */
4139 struct filename_seen_cache *filename_seen_cache;
4141 /* Flag of whether we're printing the first one. */
4145 /* Slave routine for sources_info. Force line breaks at ,'s.
4146 NAME is the name to print.
4147 DATA contains the state for printing and watching for duplicates. */
4150 output_source_filename (const char *name,
4151 struct output_source_filename_data *data)
4153 /* Since a single source file can result in several partial symbol
4154 tables, we need to avoid printing it more than once. Note: if
4155 some of the psymtabs are read in and some are not, it gets
4156 printed both under "Source files for which symbols have been
4157 read" and "Source files for which symbols will be read in on
4158 demand". I consider this a reasonable way to deal with the
4159 situation. I'm not sure whether this can also happen for
4160 symtabs; it doesn't hurt to check. */
4162 /* Was NAME already seen? */
4163 if (data->filename_seen_cache->seen (name))
4165 /* Yes; don't print it again. */
4169 /* No; print it and reset *FIRST. */
4171 printf_filtered (", ");
4175 fputs_filtered (name, gdb_stdout);
4178 /* A callback for map_partial_symbol_filenames. */
4181 output_partial_symbol_filename (const char *filename, const char *fullname,
4184 output_source_filename (fullname ? fullname : filename,
4185 (struct output_source_filename_data *) data);
4189 info_sources_command (const char *ignore, int from_tty)
4191 struct compunit_symtab *cu;
4193 struct objfile *objfile;
4194 struct output_source_filename_data data;
4196 if (!have_full_symbols () && !have_partial_symbols ())
4198 error (_("No symbol table is loaded. Use the \"file\" command."));
4201 filename_seen_cache filenames_seen;
4203 data.filename_seen_cache = &filenames_seen;
4205 printf_filtered ("Source files for which symbols have been read in:\n\n");
4208 ALL_FILETABS (objfile, cu, s)
4210 const char *fullname = symtab_to_fullname (s);
4212 output_source_filename (fullname, &data);
4214 printf_filtered ("\n\n");
4216 printf_filtered ("Source files for which symbols "
4217 "will be read in on demand:\n\n");
4219 filenames_seen.clear ();
4221 map_symbol_filenames (output_partial_symbol_filename, &data,
4222 1 /*need_fullname*/);
4223 printf_filtered ("\n");
4226 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4227 non-zero compare only lbasename of FILES. */
4230 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4234 if (file != NULL && nfiles != 0)
4236 for (i = 0; i < nfiles; i++)
4238 if (compare_filenames_for_search (file, (basenames
4239 ? lbasename (files[i])
4244 else if (nfiles == 0)
4249 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4250 sort symbols, not minimal symbols. */
4253 symbol_search::compare_search_syms (const symbol_search &sym_a,
4254 const symbol_search &sym_b)
4258 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4259 symbol_symtab (sym_b.symbol)->filename);
4263 if (sym_a.block != sym_b.block)
4264 return sym_a.block - sym_b.block;
4266 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4267 SYMBOL_PRINT_NAME (sym_b.symbol));
4270 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4271 If SYM has no symbol_type or symbol_name, returns false. */
4274 treg_matches_sym_type_name (const compiled_regex &treg,
4275 const struct symbol *sym)
4277 struct type *sym_type;
4278 std::string printed_sym_type_name;
4280 if (symbol_lookup_debug > 1)
4282 fprintf_unfiltered (gdb_stdlog,
4283 "treg_matches_sym_type_name\n sym %s\n",
4284 SYMBOL_NATURAL_NAME (sym));
4287 sym_type = SYMBOL_TYPE (sym);
4288 if (sym_type == NULL)
4291 if (language_mode == language_mode_auto)
4293 scoped_restore_current_language l;
4295 set_language (SYMBOL_LANGUAGE (sym));
4296 printed_sym_type_name = type_to_string (sym_type);
4299 printed_sym_type_name = type_to_string (sym_type);
4301 if (symbol_lookup_debug > 1)
4303 fprintf_unfiltered (gdb_stdlog,
4304 " sym_type_name %s\n",
4305 printed_sym_type_name.c_str ());
4309 if (printed_sym_type_name.empty ())
4312 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4316 /* Sort the symbols in RESULT and remove duplicates. */
4319 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4321 std::sort (result->begin (), result->end ());
4322 result->erase (std::unique (result->begin (), result->end ()),
4326 /* Search the symbol table for matches to the regular expression REGEXP,
4327 returning the results.
4329 Only symbols of KIND are searched:
4330 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4331 and constants (enums).
4332 if T_REGEXP is not NULL, only returns var that have
4333 a type matching regular expression T_REGEXP.
4334 FUNCTIONS_DOMAIN - search all functions
4335 TYPES_DOMAIN - search all type names
4336 ALL_DOMAIN - an internal error for this function
4338 Within each file the results are sorted locally; each symtab's global and
4339 static blocks are separately alphabetized.
4340 Duplicate entries are removed. */
4342 std::vector<symbol_search>
4343 search_symbols (const char *regexp, enum search_domain kind,
4344 const char *t_regexp,
4345 int nfiles, const char *files[])
4347 struct compunit_symtab *cust;
4348 const struct blockvector *bv;
4351 struct block_iterator iter;
4353 struct objfile *objfile;
4354 struct minimal_symbol *msymbol;
4356 static const enum minimal_symbol_type types[]
4357 = {mst_data, mst_text, mst_abs};
4358 static const enum minimal_symbol_type types2[]
4359 = {mst_bss, mst_file_text, mst_abs};
4360 static const enum minimal_symbol_type types3[]
4361 = {mst_file_data, mst_solib_trampoline, mst_abs};
4362 static const enum minimal_symbol_type types4[]
4363 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4364 enum minimal_symbol_type ourtype;
4365 enum minimal_symbol_type ourtype2;
4366 enum minimal_symbol_type ourtype3;
4367 enum minimal_symbol_type ourtype4;
4368 std::vector<symbol_search> result;
4369 gdb::optional<compiled_regex> preg;
4370 gdb::optional<compiled_regex> treg;
4372 gdb_assert (kind <= TYPES_DOMAIN);
4374 ourtype = types[kind];
4375 ourtype2 = types2[kind];
4376 ourtype3 = types3[kind];
4377 ourtype4 = types4[kind];
4381 /* Make sure spacing is right for C++ operators.
4382 This is just a courtesy to make the matching less sensitive
4383 to how many spaces the user leaves between 'operator'
4384 and <TYPENAME> or <OPERATOR>. */
4386 const char *opname = operator_chars (regexp, &opend);
4390 int fix = -1; /* -1 means ok; otherwise number of
4393 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4395 /* There should 1 space between 'operator' and 'TYPENAME'. */
4396 if (opname[-1] != ' ' || opname[-2] == ' ')
4401 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4402 if (opname[-1] == ' ')
4405 /* If wrong number of spaces, fix it. */
4408 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4410 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4415 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4417 preg.emplace (regexp, cflags, _("Invalid regexp"));
4420 if (t_regexp != NULL)
4422 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4424 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4427 /* Search through the partial symtabs *first* for all symbols
4428 matching the regexp. That way we don't have to reproduce all of
4429 the machinery below. */
4430 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4432 return file_matches (filename, files, nfiles,
4435 lookup_name_info::match_any (),
4436 [&] (const char *symname)
4438 return (!preg.has_value ()
4439 || preg->exec (symname,
4445 /* Here, we search through the minimal symbol tables for functions
4446 and variables that match, and force their symbols to be read.
4447 This is in particular necessary for demangled variable names,
4448 which are no longer put into the partial symbol tables.
4449 The symbol will then be found during the scan of symtabs below.
4451 For functions, find_pc_symtab should succeed if we have debug info
4452 for the function, for variables we have to call
4453 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4455 If the lookup fails, set found_misc so that we will rescan to print
4456 any matching symbols without debug info.
4457 We only search the objfile the msymbol came from, we no longer search
4458 all objfiles. In large programs (1000s of shared libs) searching all
4459 objfiles is not worth the pain. */
4461 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4463 ALL_MSYMBOLS (objfile, msymbol)
4467 if (msymbol->created_by_gdb)
4470 if (MSYMBOL_TYPE (msymbol) == ourtype
4471 || MSYMBOL_TYPE (msymbol) == ourtype2
4472 || MSYMBOL_TYPE (msymbol) == ourtype3
4473 || MSYMBOL_TYPE (msymbol) == ourtype4)
4475 if (!preg.has_value ()
4476 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4479 /* Note: An important side-effect of these lookup functions
4480 is to expand the symbol table if msymbol is found, for the
4481 benefit of the next loop on ALL_COMPUNITS. */
4482 if (kind == FUNCTIONS_DOMAIN
4483 ? (find_pc_compunit_symtab
4484 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4485 : (lookup_symbol_in_objfile_from_linkage_name
4486 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4494 ALL_COMPUNITS (objfile, cust)
4496 bv = COMPUNIT_BLOCKVECTOR (cust);
4497 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4499 b = BLOCKVECTOR_BLOCK (bv, i);
4500 ALL_BLOCK_SYMBOLS (b, iter, sym)
4502 struct symtab *real_symtab = symbol_symtab (sym);
4506 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4507 a substring of symtab_to_fullname as it may contain "./" etc. */
4508 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4509 || ((basenames_may_differ
4510 || file_matches (lbasename (real_symtab->filename),
4512 && file_matches (symtab_to_fullname (real_symtab),
4514 && ((!preg.has_value ()
4515 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4517 && ((kind == VARIABLES_DOMAIN
4518 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4519 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4520 && SYMBOL_CLASS (sym) != LOC_BLOCK
4521 /* LOC_CONST can be used for more than just enums,
4522 e.g., c++ static const members.
4523 We only want to skip enums here. */
4524 && !(SYMBOL_CLASS (sym) == LOC_CONST
4525 && (TYPE_CODE (SYMBOL_TYPE (sym))
4527 && (!treg.has_value ()
4528 || treg_matches_sym_type_name (*treg, sym)))
4529 || (kind == FUNCTIONS_DOMAIN
4530 && SYMBOL_CLASS (sym) == LOC_BLOCK
4531 && (!treg.has_value ()
4532 || treg_matches_sym_type_name (*treg, sym)))
4533 || (kind == TYPES_DOMAIN
4534 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4537 result.emplace_back (i, sym);
4543 if (!result.empty ())
4544 sort_search_symbols_remove_dups (&result);
4546 /* If there are no eyes, avoid all contact. I mean, if there are
4547 no debug symbols, then add matching minsyms. */
4549 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4551 ALL_MSYMBOLS (objfile, msymbol)
4555 if (msymbol->created_by_gdb)
4558 if (MSYMBOL_TYPE (msymbol) == ourtype
4559 || MSYMBOL_TYPE (msymbol) == ourtype2
4560 || MSYMBOL_TYPE (msymbol) == ourtype3
4561 || MSYMBOL_TYPE (msymbol) == ourtype4)
4563 /* If the user wants to see var matching a type regexp,
4564 then never give a minimal symbol. */
4565 if (kind != VARIABLES_DOMAIN
4566 && !treg.has_value () /* minimal symbol has never a type ???? */
4567 && (!preg.has_value ()
4568 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4571 /* For functions we can do a quick check of whether the
4572 symbol might be found via find_pc_symtab. */
4573 if (kind != FUNCTIONS_DOMAIN
4574 || (find_pc_compunit_symtab
4575 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4577 if (lookup_symbol_in_objfile_from_linkage_name
4578 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4582 result.emplace_back (i, msymbol, objfile);
4593 /* Helper function for symtab_symbol_info, this function uses
4594 the data returned from search_symbols() to print information
4595 regarding the match to gdb_stdout. If LAST is not NULL,
4596 print file and line number information for the symbol as
4597 well. Skip printing the filename if it matches LAST. */
4600 print_symbol_info (enum search_domain kind,
4602 int block, const char *last)
4604 struct symtab *s = symbol_symtab (sym);
4608 const char *s_filename = symtab_to_filename_for_display (s);
4610 if (filename_cmp (last, s_filename) != 0)
4612 fputs_filtered ("\nFile ", gdb_stdout);
4613 fputs_filtered (s_filename, gdb_stdout);
4614 fputs_filtered (":\n", gdb_stdout);
4617 if (SYMBOL_LINE (sym) != 0)
4618 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4620 puts_filtered ("\t");
4623 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4624 printf_filtered ("static ");
4626 /* Typedef that is not a C++ class. */
4627 if (kind == TYPES_DOMAIN
4628 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4629 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4630 /* variable, func, or typedef-that-is-c++-class. */
4631 else if (kind < TYPES_DOMAIN
4632 || (kind == TYPES_DOMAIN
4633 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4635 type_print (SYMBOL_TYPE (sym),
4636 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4637 ? "" : SYMBOL_PRINT_NAME (sym)),
4640 printf_filtered (";\n");
4644 /* This help function for symtab_symbol_info() prints information
4645 for non-debugging symbols to gdb_stdout. */
4648 print_msymbol_info (struct bound_minimal_symbol msymbol)
4650 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4653 if (gdbarch_addr_bit (gdbarch) <= 32)
4654 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4655 & (CORE_ADDR) 0xffffffff,
4658 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4660 printf_filtered ("%s %s\n",
4661 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4664 /* This is the guts of the commands "info functions", "info types", and
4665 "info variables". It calls search_symbols to find all matches and then
4666 print_[m]symbol_info to print out some useful information about the
4670 symtab_symbol_info (bool quiet,
4671 const char *regexp, enum search_domain kind,
4672 const char *t_regexp, int from_tty)
4674 static const char * const classnames[] =
4675 {"variable", "function", "type"};
4676 const char *last_filename = "";
4679 gdb_assert (kind <= TYPES_DOMAIN);
4681 /* Must make sure that if we're interrupted, symbols gets freed. */
4682 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4689 if (t_regexp != NULL)
4691 (_("All %ss matching regular expression \"%s\""
4692 " with type matching regulation expression \"%s\":\n"),
4693 classnames[kind], regexp, t_regexp);
4695 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4696 classnames[kind], regexp);
4700 if (t_regexp != NULL)
4702 (_("All defined %ss"
4703 " with type matching regulation expression \"%s\" :\n"),
4704 classnames[kind], t_regexp);
4706 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4710 for (const symbol_search &p : symbols)
4714 if (p.msymbol.minsym != NULL)
4719 printf_filtered (_("\nNon-debugging symbols:\n"));
4722 print_msymbol_info (p.msymbol);
4726 print_symbol_info (kind,
4731 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4737 info_variables_command (const char *args, int from_tty)
4740 std::string t_regexp;
4744 && extract_info_print_args (&args, &quiet, ®exp, &t_regexp))
4748 report_unrecognized_option_error ("info variables", args);
4750 symtab_symbol_info (quiet,
4751 regexp.empty () ? NULL : regexp.c_str (),
4753 t_regexp.empty () ? NULL : t_regexp.c_str (),
4759 info_functions_command (const char *args, int from_tty)
4762 std::string t_regexp;
4766 && extract_info_print_args (&args, &quiet, ®exp, &t_regexp))
4770 report_unrecognized_option_error ("info functions", args);
4772 symtab_symbol_info (quiet,
4773 regexp.empty () ? NULL : regexp.c_str (),
4775 t_regexp.empty () ? NULL : t_regexp.c_str (),
4781 info_types_command (const char *regexp, int from_tty)
4783 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4786 /* Breakpoint all functions matching regular expression. */
4789 rbreak_command_wrapper (char *regexp, int from_tty)
4791 rbreak_command (regexp, from_tty);
4795 rbreak_command (const char *regexp, int from_tty)
4798 const char **files = NULL;
4799 const char *file_name;
4804 const char *colon = strchr (regexp, ':');
4806 if (colon && *(colon + 1) != ':')
4811 colon_index = colon - regexp;
4812 local_name = (char *) alloca (colon_index + 1);
4813 memcpy (local_name, regexp, colon_index);
4814 local_name[colon_index--] = 0;
4815 while (isspace (local_name[colon_index]))
4816 local_name[colon_index--] = 0;
4817 file_name = local_name;
4820 regexp = skip_spaces (colon + 1);
4824 std::vector<symbol_search> symbols = search_symbols (regexp,
4829 scoped_rbreak_breakpoints finalize;
4830 for (const symbol_search &p : symbols)
4832 if (p.msymbol.minsym == NULL)
4834 struct symtab *symtab = symbol_symtab (p.symbol);
4835 const char *fullname = symtab_to_fullname (symtab);
4837 string = string_printf ("%s:'%s'", fullname,
4838 SYMBOL_LINKAGE_NAME (p.symbol));
4839 break_command (&string[0], from_tty);
4840 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4844 string = string_printf ("'%s'",
4845 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4847 break_command (&string[0], from_tty);
4848 printf_filtered ("<function, no debug info> %s;\n",
4849 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4855 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4858 compare_symbol_name (const char *symbol_name, language symbol_language,
4859 const lookup_name_info &lookup_name,
4860 completion_match_result &match_res)
4862 const language_defn *lang = language_def (symbol_language);
4864 symbol_name_matcher_ftype *name_match
4865 = get_symbol_name_matcher (lang, lookup_name);
4867 return name_match (symbol_name, lookup_name, &match_res);
4873 completion_list_add_name (completion_tracker &tracker,
4874 language symbol_language,
4875 const char *symname,
4876 const lookup_name_info &lookup_name,
4877 const char *text, const char *word)
4879 completion_match_result &match_res
4880 = tracker.reset_completion_match_result ();
4882 /* Clip symbols that cannot match. */
4883 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4886 /* Refresh SYMNAME from the match string. It's potentially
4887 different depending on language. (E.g., on Ada, the match may be
4888 the encoded symbol name wrapped in "<>"). */
4889 symname = match_res.match.match ();
4890 gdb_assert (symname != NULL);
4892 /* We have a match for a completion, so add SYMNAME to the current list
4893 of matches. Note that the name is moved to freshly malloc'd space. */
4896 gdb::unique_xmalloc_ptr<char> completion
4897 = make_completion_match_str (symname, text, word);
4899 /* Here we pass the match-for-lcd object to add_completion. Some
4900 languages match the user text against substrings of symbol
4901 names in some cases. E.g., in C++, "b push_ba" completes to
4902 "std::vector::push_back", "std::string::push_back", etc., and
4903 in this case we want the completion lowest common denominator
4904 to be "push_back" instead of "std::". */
4905 tracker.add_completion (std::move (completion),
4906 &match_res.match_for_lcd, text, word);
4910 /* completion_list_add_name wrapper for struct symbol. */
4913 completion_list_add_symbol (completion_tracker &tracker,
4915 const lookup_name_info &lookup_name,
4916 const char *text, const char *word)
4918 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4919 SYMBOL_NATURAL_NAME (sym),
4920 lookup_name, text, word);
4923 /* completion_list_add_name wrapper for struct minimal_symbol. */
4926 completion_list_add_msymbol (completion_tracker &tracker,
4927 minimal_symbol *sym,
4928 const lookup_name_info &lookup_name,
4929 const char *text, const char *word)
4931 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4932 MSYMBOL_NATURAL_NAME (sym),
4933 lookup_name, text, word);
4937 /* ObjC: In case we are completing on a selector, look as the msymbol
4938 again and feed all the selectors into the mill. */
4941 completion_list_objc_symbol (completion_tracker &tracker,
4942 struct minimal_symbol *msymbol,
4943 const lookup_name_info &lookup_name,
4944 const char *text, const char *word)
4946 static char *tmp = NULL;
4947 static unsigned int tmplen = 0;
4949 const char *method, *category, *selector;
4952 method = MSYMBOL_NATURAL_NAME (msymbol);
4954 /* Is it a method? */
4955 if ((method[0] != '-') && (method[0] != '+'))
4959 /* Complete on shortened method method. */
4960 completion_list_add_name (tracker, language_objc,
4965 while ((strlen (method) + 1) >= tmplen)
4971 tmp = (char *) xrealloc (tmp, tmplen);
4973 selector = strchr (method, ' ');
4974 if (selector != NULL)
4977 category = strchr (method, '(');
4979 if ((category != NULL) && (selector != NULL))
4981 memcpy (tmp, method, (category - method));
4982 tmp[category - method] = ' ';
4983 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4984 completion_list_add_name (tracker, language_objc, tmp,
4985 lookup_name, text, word);
4987 completion_list_add_name (tracker, language_objc, tmp + 1,
4988 lookup_name, text, word);
4991 if (selector != NULL)
4993 /* Complete on selector only. */
4994 strcpy (tmp, selector);
4995 tmp2 = strchr (tmp, ']');
4999 completion_list_add_name (tracker, language_objc, tmp,
5000 lookup_name, text, word);
5004 /* Break the non-quoted text based on the characters which are in
5005 symbols. FIXME: This should probably be language-specific. */
5008 language_search_unquoted_string (const char *text, const char *p)
5010 for (; p > text; --p)
5012 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5016 if ((current_language->la_language == language_objc))
5018 if (p[-1] == ':') /* Might be part of a method name. */
5020 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5021 p -= 2; /* Beginning of a method name. */
5022 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5023 { /* Might be part of a method name. */
5026 /* Seeing a ' ' or a '(' is not conclusive evidence
5027 that we are in the middle of a method name. However,
5028 finding "-[" or "+[" should be pretty un-ambiguous.
5029 Unfortunately we have to find it now to decide. */
5032 if (isalnum (t[-1]) || t[-1] == '_' ||
5033 t[-1] == ' ' || t[-1] == ':' ||
5034 t[-1] == '(' || t[-1] == ')')
5039 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5040 p = t - 2; /* Method name detected. */
5041 /* Else we leave with p unchanged. */
5051 completion_list_add_fields (completion_tracker &tracker,
5053 const lookup_name_info &lookup_name,
5054 const char *text, const char *word)
5056 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5058 struct type *t = SYMBOL_TYPE (sym);
5059 enum type_code c = TYPE_CODE (t);
5062 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5063 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5064 if (TYPE_FIELD_NAME (t, j))
5065 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5066 TYPE_FIELD_NAME (t, j),
5067 lookup_name, text, word);
5074 symbol_is_function_or_method (symbol *sym)
5076 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5078 case TYPE_CODE_FUNC:
5079 case TYPE_CODE_METHOD:
5089 symbol_is_function_or_method (minimal_symbol *msymbol)
5091 switch (MSYMBOL_TYPE (msymbol))
5094 case mst_text_gnu_ifunc:
5095 case mst_solib_trampoline:
5105 bound_minimal_symbol
5106 find_gnu_ifunc (const symbol *sym)
5108 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5111 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5112 symbol_name_match_type::SEARCH_NAME);
5113 struct objfile *objfile = symbol_objfile (sym);
5115 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5116 minimal_symbol *ifunc = NULL;
5118 iterate_over_minimal_symbols (objfile, lookup_name,
5119 [&] (minimal_symbol *minsym)
5121 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5122 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5124 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5125 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5127 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5129 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5131 current_top_target ());
5133 if (msym_addr == address)
5143 return {ifunc, objfile};
5147 /* Add matching symbols from SYMTAB to the current completion list. */
5150 add_symtab_completions (struct compunit_symtab *cust,
5151 completion_tracker &tracker,
5152 complete_symbol_mode mode,
5153 const lookup_name_info &lookup_name,
5154 const char *text, const char *word,
5155 enum type_code code)
5158 const struct block *b;
5159 struct block_iterator iter;
5165 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5168 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5169 ALL_BLOCK_SYMBOLS (b, iter, sym)
5171 if (completion_skip_symbol (mode, sym))
5174 if (code == TYPE_CODE_UNDEF
5175 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5176 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5177 completion_list_add_symbol (tracker, sym,
5185 default_collect_symbol_completion_matches_break_on
5186 (completion_tracker &tracker, complete_symbol_mode mode,
5187 symbol_name_match_type name_match_type,
5188 const char *text, const char *word,
5189 const char *break_on, enum type_code code)
5191 /* Problem: All of the symbols have to be copied because readline
5192 frees them. I'm not going to worry about this; hopefully there
5193 won't be that many. */
5196 struct compunit_symtab *cust;
5197 struct minimal_symbol *msymbol;
5198 struct objfile *objfile;
5199 const struct block *b;
5200 const struct block *surrounding_static_block, *surrounding_global_block;
5201 struct block_iterator iter;
5202 /* The symbol we are completing on. Points in same buffer as text. */
5203 const char *sym_text;
5205 /* Now look for the symbol we are supposed to complete on. */
5206 if (mode == complete_symbol_mode::LINESPEC)
5212 const char *quote_pos = NULL;
5214 /* First see if this is a quoted string. */
5216 for (p = text; *p != '\0'; ++p)
5218 if (quote_found != '\0')
5220 if (*p == quote_found)
5221 /* Found close quote. */
5223 else if (*p == '\\' && p[1] == quote_found)
5224 /* A backslash followed by the quote character
5225 doesn't end the string. */
5228 else if (*p == '\'' || *p == '"')
5234 if (quote_found == '\'')
5235 /* A string within single quotes can be a symbol, so complete on it. */
5236 sym_text = quote_pos + 1;
5237 else if (quote_found == '"')
5238 /* A double-quoted string is never a symbol, nor does it make sense
5239 to complete it any other way. */
5245 /* It is not a quoted string. Break it based on the characters
5246 which are in symbols. */
5249 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5250 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5259 lookup_name_info lookup_name (sym_text, name_match_type, true);
5261 /* At this point scan through the misc symbol vectors and add each
5262 symbol you find to the list. Eventually we want to ignore
5263 anything that isn't a text symbol (everything else will be
5264 handled by the psymtab code below). */
5266 if (code == TYPE_CODE_UNDEF)
5268 ALL_MSYMBOLS (objfile, msymbol)
5272 if (completion_skip_symbol (mode, msymbol))
5275 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5278 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5283 /* Add completions for all currently loaded symbol tables. */
5284 ALL_COMPUNITS (objfile, cust)
5285 add_symtab_completions (cust, tracker, mode, lookup_name,
5286 sym_text, word, code);
5288 /* Look through the partial symtabs for all symbols which begin by
5289 matching SYM_TEXT. Expand all CUs that you find to the list. */
5290 expand_symtabs_matching (NULL,
5293 [&] (compunit_symtab *symtab) /* expansion notify */
5295 add_symtab_completions (symtab,
5296 tracker, mode, lookup_name,
5297 sym_text, word, code);
5301 /* Search upwards from currently selected frame (so that we can
5302 complete on local vars). Also catch fields of types defined in
5303 this places which match our text string. Only complete on types
5304 visible from current context. */
5306 b = get_selected_block (0);
5307 surrounding_static_block = block_static_block (b);
5308 surrounding_global_block = block_global_block (b);
5309 if (surrounding_static_block != NULL)
5310 while (b != surrounding_static_block)
5314 ALL_BLOCK_SYMBOLS (b, iter, sym)
5316 if (code == TYPE_CODE_UNDEF)
5318 completion_list_add_symbol (tracker, sym, lookup_name,
5320 completion_list_add_fields (tracker, sym, lookup_name,
5323 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5324 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5325 completion_list_add_symbol (tracker, sym, lookup_name,
5329 /* Stop when we encounter an enclosing function. Do not stop for
5330 non-inlined functions - the locals of the enclosing function
5331 are in scope for a nested function. */
5332 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5334 b = BLOCK_SUPERBLOCK (b);
5337 /* Add fields from the file's types; symbols will be added below. */
5339 if (code == TYPE_CODE_UNDEF)
5341 if (surrounding_static_block != NULL)
5342 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5343 completion_list_add_fields (tracker, sym, lookup_name,
5346 if (surrounding_global_block != NULL)
5347 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5348 completion_list_add_fields (tracker, sym, lookup_name,
5352 /* Skip macros if we are completing a struct tag -- arguable but
5353 usually what is expected. */
5354 if (current_language->la_macro_expansion == macro_expansion_c
5355 && code == TYPE_CODE_UNDEF)
5357 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5359 /* This adds a macro's name to the current completion list. */
5360 auto add_macro_name = [&] (const char *macro_name,
5361 const macro_definition *,
5362 macro_source_file *,
5365 completion_list_add_name (tracker, language_c, macro_name,
5366 lookup_name, sym_text, word);
5369 /* Add any macros visible in the default scope. Note that this
5370 may yield the occasional wrong result, because an expression
5371 might be evaluated in a scope other than the default. For
5372 example, if the user types "break file:line if <TAB>", the
5373 resulting expression will be evaluated at "file:line" -- but
5374 at there does not seem to be a way to detect this at
5376 scope = default_macro_scope ();
5378 macro_for_each_in_scope (scope->file, scope->line,
5381 /* User-defined macros are always visible. */
5382 macro_for_each (macro_user_macros, add_macro_name);
5387 default_collect_symbol_completion_matches (completion_tracker &tracker,
5388 complete_symbol_mode mode,
5389 symbol_name_match_type name_match_type,
5390 const char *text, const char *word,
5391 enum type_code code)
5393 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5399 /* Collect all symbols (regardless of class) which begin by matching
5403 collect_symbol_completion_matches (completion_tracker &tracker,
5404 complete_symbol_mode mode,
5405 symbol_name_match_type name_match_type,
5406 const char *text, const char *word)
5408 current_language->la_collect_symbol_completion_matches (tracker, mode,
5414 /* Like collect_symbol_completion_matches, but only collect
5415 STRUCT_DOMAIN symbols whose type code is CODE. */
5418 collect_symbol_completion_matches_type (completion_tracker &tracker,
5419 const char *text, const char *word,
5420 enum type_code code)
5422 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5423 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5425 gdb_assert (code == TYPE_CODE_UNION
5426 || code == TYPE_CODE_STRUCT
5427 || code == TYPE_CODE_ENUM);
5428 current_language->la_collect_symbol_completion_matches (tracker, mode,
5433 /* Like collect_symbol_completion_matches, but collects a list of
5434 symbols defined in all source files named SRCFILE. */
5437 collect_file_symbol_completion_matches (completion_tracker &tracker,
5438 complete_symbol_mode mode,
5439 symbol_name_match_type name_match_type,
5440 const char *text, const char *word,
5441 const char *srcfile)
5443 /* The symbol we are completing on. Points in same buffer as text. */
5444 const char *sym_text;
5446 /* Now look for the symbol we are supposed to complete on.
5447 FIXME: This should be language-specific. */
5448 if (mode == complete_symbol_mode::LINESPEC)
5454 const char *quote_pos = NULL;
5456 /* First see if this is a quoted string. */
5458 for (p = text; *p != '\0'; ++p)
5460 if (quote_found != '\0')
5462 if (*p == quote_found)
5463 /* Found close quote. */
5465 else if (*p == '\\' && p[1] == quote_found)
5466 /* A backslash followed by the quote character
5467 doesn't end the string. */
5470 else if (*p == '\'' || *p == '"')
5476 if (quote_found == '\'')
5477 /* A string within single quotes can be a symbol, so complete on it. */
5478 sym_text = quote_pos + 1;
5479 else if (quote_found == '"')
5480 /* A double-quoted string is never a symbol, nor does it make sense
5481 to complete it any other way. */
5487 /* Not a quoted string. */
5488 sym_text = language_search_unquoted_string (text, p);
5492 lookup_name_info lookup_name (sym_text, name_match_type, true);
5494 /* Go through symtabs for SRCFILE and check the externs and statics
5495 for symbols which match. */
5496 iterate_over_symtabs (srcfile, [&] (symtab *s)
5498 add_symtab_completions (SYMTAB_COMPUNIT (s),
5499 tracker, mode, lookup_name,
5500 sym_text, word, TYPE_CODE_UNDEF);
5505 /* A helper function for make_source_files_completion_list. It adds
5506 another file name to a list of possible completions, growing the
5507 list as necessary. */
5510 add_filename_to_list (const char *fname, const char *text, const char *word,
5511 completion_list *list)
5513 list->emplace_back (make_completion_match_str (fname, text, word));
5517 not_interesting_fname (const char *fname)
5519 static const char *illegal_aliens[] = {
5520 "_globals_", /* inserted by coff_symtab_read */
5525 for (i = 0; illegal_aliens[i]; i++)
5527 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5533 /* An object of this type is passed as the user_data argument to
5534 map_partial_symbol_filenames. */
5535 struct add_partial_filename_data
5537 struct filename_seen_cache *filename_seen_cache;
5541 completion_list *list;
5544 /* A callback for map_partial_symbol_filenames. */
5547 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5550 struct add_partial_filename_data *data
5551 = (struct add_partial_filename_data *) user_data;
5553 if (not_interesting_fname (filename))
5555 if (!data->filename_seen_cache->seen (filename)
5556 && filename_ncmp (filename, data->text, data->text_len) == 0)
5558 /* This file matches for a completion; add it to the
5559 current list of matches. */
5560 add_filename_to_list (filename, data->text, data->word, data->list);
5564 const char *base_name = lbasename (filename);
5566 if (base_name != filename
5567 && !data->filename_seen_cache->seen (base_name)
5568 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5569 add_filename_to_list (base_name, data->text, data->word, data->list);
5573 /* Return a list of all source files whose names begin with matching
5574 TEXT. The file names are looked up in the symbol tables of this
5578 make_source_files_completion_list (const char *text, const char *word)
5580 struct compunit_symtab *cu;
5582 struct objfile *objfile;
5583 size_t text_len = strlen (text);
5584 completion_list list;
5585 const char *base_name;
5586 struct add_partial_filename_data datum;
5588 if (!have_full_symbols () && !have_partial_symbols ())
5591 filename_seen_cache filenames_seen;
5593 ALL_FILETABS (objfile, cu, s)
5595 if (not_interesting_fname (s->filename))
5597 if (!filenames_seen.seen (s->filename)
5598 && filename_ncmp (s->filename, text, text_len) == 0)
5600 /* This file matches for a completion; add it to the current
5602 add_filename_to_list (s->filename, text, word, &list);
5606 /* NOTE: We allow the user to type a base name when the
5607 debug info records leading directories, but not the other
5608 way around. This is what subroutines of breakpoint
5609 command do when they parse file names. */
5610 base_name = lbasename (s->filename);
5611 if (base_name != s->filename
5612 && !filenames_seen.seen (base_name)
5613 && filename_ncmp (base_name, text, text_len) == 0)
5614 add_filename_to_list (base_name, text, word, &list);
5618 datum.filename_seen_cache = &filenames_seen;
5621 datum.text_len = text_len;
5623 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5624 0 /*need_fullname*/);
5631 /* Return the "main_info" object for the current program space. If
5632 the object has not yet been created, create it and fill in some
5635 static struct main_info *
5636 get_main_info (void)
5638 struct main_info *info
5639 = (struct main_info *) program_space_data (current_program_space,
5640 main_progspace_key);
5644 /* It may seem strange to store the main name in the progspace
5645 and also in whatever objfile happens to see a main name in
5646 its debug info. The reason for this is mainly historical:
5647 gdb returned "main" as the name even if no function named
5648 "main" was defined the program; and this approach lets us
5649 keep compatibility. */
5650 info = XCNEW (struct main_info);
5651 info->language_of_main = language_unknown;
5652 set_program_space_data (current_program_space, main_progspace_key,
5659 /* A cleanup to destroy a struct main_info when a progspace is
5663 main_info_cleanup (struct program_space *pspace, void *data)
5665 struct main_info *info = (struct main_info *) data;
5668 xfree (info->name_of_main);
5673 set_main_name (const char *name, enum language lang)
5675 struct main_info *info = get_main_info ();
5677 if (info->name_of_main != NULL)
5679 xfree (info->name_of_main);
5680 info->name_of_main = NULL;
5681 info->language_of_main = language_unknown;
5685 info->name_of_main = xstrdup (name);
5686 info->language_of_main = lang;
5690 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5694 find_main_name (void)
5696 const char *new_main_name;
5697 struct objfile *objfile;
5699 /* First check the objfiles to see whether a debuginfo reader has
5700 picked up the appropriate main name. Historically the main name
5701 was found in a more or less random way; this approach instead
5702 relies on the order of objfile creation -- which still isn't
5703 guaranteed to get the correct answer, but is just probably more
5705 ALL_OBJFILES (objfile)
5707 if (objfile->per_bfd->name_of_main != NULL)
5709 set_main_name (objfile->per_bfd->name_of_main,
5710 objfile->per_bfd->language_of_main);
5715 /* Try to see if the main procedure is in Ada. */
5716 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5717 be to add a new method in the language vector, and call this
5718 method for each language until one of them returns a non-empty
5719 name. This would allow us to remove this hard-coded call to
5720 an Ada function. It is not clear that this is a better approach
5721 at this point, because all methods need to be written in a way
5722 such that false positives never be returned. For instance, it is
5723 important that a method does not return a wrong name for the main
5724 procedure if the main procedure is actually written in a different
5725 language. It is easy to guaranty this with Ada, since we use a
5726 special symbol generated only when the main in Ada to find the name
5727 of the main procedure. It is difficult however to see how this can
5728 be guarantied for languages such as C, for instance. This suggests
5729 that order of call for these methods becomes important, which means
5730 a more complicated approach. */
5731 new_main_name = ada_main_name ();
5732 if (new_main_name != NULL)
5734 set_main_name (new_main_name, language_ada);
5738 new_main_name = d_main_name ();
5739 if (new_main_name != NULL)
5741 set_main_name (new_main_name, language_d);
5745 new_main_name = go_main_name ();
5746 if (new_main_name != NULL)
5748 set_main_name (new_main_name, language_go);
5752 new_main_name = pascal_main_name ();
5753 if (new_main_name != NULL)
5755 set_main_name (new_main_name, language_pascal);
5759 /* The languages above didn't identify the name of the main procedure.
5760 Fallback to "main". */
5761 set_main_name ("main", language_unknown);
5767 struct main_info *info = get_main_info ();
5769 if (info->name_of_main == NULL)
5772 return info->name_of_main;
5775 /* Return the language of the main function. If it is not known,
5776 return language_unknown. */
5779 main_language (void)
5781 struct main_info *info = get_main_info ();
5783 if (info->name_of_main == NULL)
5786 return info->language_of_main;
5789 /* Handle ``executable_changed'' events for the symtab module. */
5792 symtab_observer_executable_changed (void)
5794 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5795 set_main_name (NULL, language_unknown);
5798 /* Return 1 if the supplied producer string matches the ARM RealView
5799 compiler (armcc). */
5802 producer_is_realview (const char *producer)
5804 static const char *const arm_idents[] = {
5805 "ARM C Compiler, ADS",
5806 "Thumb C Compiler, ADS",
5807 "ARM C++ Compiler, ADS",
5808 "Thumb C++ Compiler, ADS",
5809 "ARM/Thumb C/C++ Compiler, RVCT",
5810 "ARM C/C++ Compiler, RVCT"
5814 if (producer == NULL)
5817 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5818 if (startswith (producer, arm_idents[i]))
5826 /* The next index to hand out in response to a registration request. */
5828 static int next_aclass_value = LOC_FINAL_VALUE;
5830 /* The maximum number of "aclass" registrations we support. This is
5831 constant for convenience. */
5832 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5834 /* The objects representing the various "aclass" values. The elements
5835 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5836 elements are those registered at gdb initialization time. */
5838 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5840 /* The globally visible pointer. This is separate from 'symbol_impl'
5841 so that it can be const. */
5843 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5845 /* Make sure we saved enough room in struct symbol. */
5847 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5849 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5850 is the ops vector associated with this index. This returns the new
5851 index, which should be used as the aclass_index field for symbols
5855 register_symbol_computed_impl (enum address_class aclass,
5856 const struct symbol_computed_ops *ops)
5858 int result = next_aclass_value++;
5860 gdb_assert (aclass == LOC_COMPUTED);
5861 gdb_assert (result < MAX_SYMBOL_IMPLS);
5862 symbol_impl[result].aclass = aclass;
5863 symbol_impl[result].ops_computed = ops;
5865 /* Sanity check OPS. */
5866 gdb_assert (ops != NULL);
5867 gdb_assert (ops->tracepoint_var_ref != NULL);
5868 gdb_assert (ops->describe_location != NULL);
5869 gdb_assert (ops->get_symbol_read_needs != NULL);
5870 gdb_assert (ops->read_variable != NULL);
5875 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5876 OPS is the ops vector associated with this index. This returns the
5877 new index, which should be used as the aclass_index field for symbols
5881 register_symbol_block_impl (enum address_class aclass,
5882 const struct symbol_block_ops *ops)
5884 int result = next_aclass_value++;
5886 gdb_assert (aclass == LOC_BLOCK);
5887 gdb_assert (result < MAX_SYMBOL_IMPLS);
5888 symbol_impl[result].aclass = aclass;
5889 symbol_impl[result].ops_block = ops;
5891 /* Sanity check OPS. */
5892 gdb_assert (ops != NULL);
5893 gdb_assert (ops->find_frame_base_location != NULL);
5898 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5899 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5900 this index. This returns the new index, which should be used as
5901 the aclass_index field for symbols of this type. */
5904 register_symbol_register_impl (enum address_class aclass,
5905 const struct symbol_register_ops *ops)
5907 int result = next_aclass_value++;
5909 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5910 gdb_assert (result < MAX_SYMBOL_IMPLS);
5911 symbol_impl[result].aclass = aclass;
5912 symbol_impl[result].ops_register = ops;
5917 /* Initialize elements of 'symbol_impl' for the constants in enum
5921 initialize_ordinary_address_classes (void)
5925 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5926 symbol_impl[i].aclass = (enum address_class) i;
5931 /* Helper function to initialize the fields of an objfile-owned symbol.
5932 It assumed that *SYM is already all zeroes. */
5935 initialize_objfile_symbol_1 (struct symbol *sym)
5937 SYMBOL_OBJFILE_OWNED (sym) = 1;
5938 SYMBOL_SECTION (sym) = -1;
5941 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5944 initialize_objfile_symbol (struct symbol *sym)
5946 memset (sym, 0, sizeof (*sym));
5947 initialize_objfile_symbol_1 (sym);
5950 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5954 allocate_symbol (struct objfile *objfile)
5956 struct symbol *result;
5958 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5959 initialize_objfile_symbol_1 (result);
5964 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5967 struct template_symbol *
5968 allocate_template_symbol (struct objfile *objfile)
5970 struct template_symbol *result;
5972 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5973 initialize_objfile_symbol_1 (result);
5981 symbol_objfile (const struct symbol *symbol)
5983 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5984 return SYMTAB_OBJFILE (symbol->owner.symtab);
5990 symbol_arch (const struct symbol *symbol)
5992 if (!SYMBOL_OBJFILE_OWNED (symbol))
5993 return symbol->owner.arch;
5994 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6000 symbol_symtab (const struct symbol *symbol)
6002 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6003 return symbol->owner.symtab;
6009 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6011 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6012 symbol->owner.symtab = symtab;
6018 _initialize_symtab (void)
6020 initialize_ordinary_address_classes ();
6023 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6026 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6028 add_info ("variables", info_variables_command,
6029 info_print_args_help (_("\
6030 All global and static variable names or those matching REGEXPs.\n\
6031 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6032 Prints the global and static variables.\n"),
6033 _("global and static variables")));
6035 add_com ("whereis", class_info, info_variables_command,
6036 info_print_args_help (_("\
6037 All global and static variable names, or those matching REGEXPs.\n\
6038 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6039 Prints the global and static variables.\n"),
6040 _("global and static variables")));
6042 add_info ("functions", info_functions_command,
6043 info_print_args_help (_("\
6044 All function names or those matching REGEXPs.\n\
6045 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6046 Prints the functions.\n"),
6049 /* FIXME: This command has at least the following problems:
6050 1. It prints builtin types (in a very strange and confusing fashion).
6051 2. It doesn't print right, e.g. with
6052 typedef struct foo *FOO
6053 type_print prints "FOO" when we want to make it (in this situation)
6054 print "struct foo *".
6055 I also think "ptype" or "whatis" is more likely to be useful (but if
6056 there is much disagreement "info types" can be fixed). */
6057 add_info ("types", info_types_command,
6058 _("All type names, or those matching REGEXP."));
6060 add_info ("sources", info_sources_command,
6061 _("Source files in the program."));
6063 add_com ("rbreak", class_breakpoint, rbreak_command,
6064 _("Set a breakpoint for all functions matching REGEXP."));
6066 add_setshow_enum_cmd ("multiple-symbols", no_class,
6067 multiple_symbols_modes, &multiple_symbols_mode,
6069 Set the debugger behavior when more than one symbol are possible matches\n\
6070 in an expression."), _("\
6071 Show how the debugger handles ambiguities in expressions."), _("\
6072 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6073 NULL, NULL, &setlist, &showlist);
6075 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6076 &basenames_may_differ, _("\
6077 Set whether a source file may have multiple base names."), _("\
6078 Show whether a source file may have multiple base names."), _("\
6079 (A \"base name\" is the name of a file with the directory part removed.\n\
6080 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6081 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6082 before comparing them. Canonicalization is an expensive operation,\n\
6083 but it allows the same file be known by more than one base name.\n\
6084 If not set (the default), all source files are assumed to have just\n\
6085 one base name, and gdb will do file name comparisons more efficiently."),
6087 &setlist, &showlist);
6089 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6090 _("Set debugging of symbol table creation."),
6091 _("Show debugging of symbol table creation."), _("\
6092 When enabled (non-zero), debugging messages are printed when building\n\
6093 symbol tables. A value of 1 (one) normally provides enough information.\n\
6094 A value greater than 1 provides more verbose information."),
6097 &setdebuglist, &showdebuglist);
6099 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6101 Set debugging of symbol lookup."), _("\
6102 Show debugging of symbol lookup."), _("\
6103 When enabled (non-zero), symbol lookups are logged."),
6105 &setdebuglist, &showdebuglist);
6107 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6108 &new_symbol_cache_size,
6109 _("Set the size of the symbol cache."),
6110 _("Show the size of the symbol cache."), _("\
6111 The size of the symbol cache.\n\
6112 If zero then the symbol cache is disabled."),
6113 set_symbol_cache_size_handler, NULL,
6114 &maintenance_set_cmdlist,
6115 &maintenance_show_cmdlist);
6117 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6118 _("Dump the symbol cache for each program space."),
6119 &maintenanceprintlist);
6121 add_cmd ("symbol-cache-statistics", class_maintenance,
6122 maintenance_print_symbol_cache_statistics,
6123 _("Print symbol cache statistics for each program space."),
6124 &maintenanceprintlist);
6126 add_cmd ("flush-symbol-cache", class_maintenance,
6127 maintenance_flush_symbol_cache,
6128 _("Flush the symbol cache for each program space."),
6131 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6132 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6133 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);