1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
57 #include "cp-support.h"
59 #include "gdb_assert.h"
62 #include "macroscope.h"
64 #include "parser-defs.h"
66 /* Prototypes for local functions */
68 static void rbreak_command (char *, int);
70 static void types_info (char *, int);
72 static void functions_info (char *, int);
74 static void variables_info (char *, int);
76 static void sources_info (char *, int);
78 static int find_line_common (struct linetable *, int, int *, int);
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *is_a_field_of_this);
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const domain_enum domain);
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
101 const domain_enum domain);
103 void _initialize_symtab (void);
107 /* Program space key for finding name and language of "main". */
109 static const struct program_space_data *main_progspace_key;
111 /* Type of the data stored on the program space. */
115 /* Name of "main". */
119 /* Language of "main". */
121 enum language language_of_main;
124 /* When non-zero, print debugging messages related to symtab creation. */
125 unsigned int symtab_create_debug = 0;
127 /* Non-zero if a file may be known by two different basenames.
128 This is the uncommon case, and significantly slows down gdb.
129 Default set to "off" to not slow down the common case. */
130 int basenames_may_differ = 0;
132 /* Allow the user to configure the debugger behavior with respect
133 to multiple-choice menus when more than one symbol matches during
136 const char multiple_symbols_ask[] = "ask";
137 const char multiple_symbols_all[] = "all";
138 const char multiple_symbols_cancel[] = "cancel";
139 static const char *const multiple_symbols_modes[] =
141 multiple_symbols_ask,
142 multiple_symbols_all,
143 multiple_symbols_cancel,
146 static const char *multiple_symbols_mode = multiple_symbols_all;
148 /* Read-only accessor to AUTO_SELECT_MODE. */
151 multiple_symbols_select_mode (void)
153 return multiple_symbols_mode;
156 /* Block in which the most recently searched-for symbol was found.
157 Might be better to make this a parameter to lookup_symbol and
160 const struct block *block_found;
162 /* Return the name of a domain_enum. */
165 domain_name (domain_enum e)
169 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
170 case VAR_DOMAIN: return "VAR_DOMAIN";
171 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
172 case LABEL_DOMAIN: return "LABEL_DOMAIN";
173 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
174 default: gdb_assert_not_reached ("bad domain_enum");
178 /* Return the name of a search_domain . */
181 search_domain_name (enum search_domain e)
185 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
186 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
187 case TYPES_DOMAIN: return "TYPES_DOMAIN";
188 case ALL_DOMAIN: return "ALL_DOMAIN";
189 default: gdb_assert_not_reached ("bad search_domain");
193 /* Set the primary field in SYMTAB. */
196 set_symtab_primary (struct symtab *symtab, int primary)
198 symtab->primary = primary;
200 if (symtab_create_debug && primary)
202 fprintf_unfiltered (gdb_stdlog,
203 "Created primary symtab %s for %s.\n",
204 host_address_to_string (symtab),
205 symtab_to_filename_for_display (symtab));
209 /* See whether FILENAME matches SEARCH_NAME using the rule that we
210 advertise to the user. (The manual's description of linespecs
211 describes what we advertise). Returns true if they match, false
215 compare_filenames_for_search (const char *filename, const char *search_name)
217 int len = strlen (filename);
218 size_t search_len = strlen (search_name);
220 if (len < search_len)
223 /* The tail of FILENAME must match. */
224 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
227 /* Either the names must completely match, or the character
228 preceding the trailing SEARCH_NAME segment of FILENAME must be a
231 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
232 cannot match FILENAME "/path//dir/file.c" - as user has requested
233 absolute path. The sama applies for "c:\file.c" possibly
234 incorrectly hypothetically matching "d:\dir\c:\file.c".
236 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
237 compatible with SEARCH_NAME "file.c". In such case a compiler had
238 to put the "c:file.c" name into debug info. Such compatibility
239 works only on GDB built for DOS host. */
240 return (len == search_len
241 || (!IS_ABSOLUTE_PATH (search_name)
242 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
243 || (HAS_DRIVE_SPEC (filename)
244 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
247 /* Check for a symtab of a specific name by searching some symtabs.
248 This is a helper function for callbacks of iterate_over_symtabs.
250 If NAME is not absolute, then REAL_PATH is NULL
251 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
253 The return value, NAME, REAL_PATH, CALLBACK, and DATA
254 are identical to the `map_symtabs_matching_filename' method of
255 quick_symbol_functions.
257 FIRST and AFTER_LAST indicate the range of symtabs to search.
258 AFTER_LAST is one past the last symtab to search; NULL means to
259 search until the end of the list. */
262 iterate_over_some_symtabs (const char *name,
263 const char *real_path,
264 int (*callback) (struct symtab *symtab,
267 struct symtab *first,
268 struct symtab *after_last)
270 struct symtab *s = NULL;
271 const char* base_name = lbasename (name);
273 for (s = first; s != NULL && s != after_last; s = s->next)
275 if (compare_filenames_for_search (s->filename, name))
277 if (callback (s, data))
282 /* Before we invoke realpath, which can get expensive when many
283 files are involved, do a quick comparison of the basenames. */
284 if (! basenames_may_differ
285 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
288 if (compare_filenames_for_search (symtab_to_fullname (s), name))
290 if (callback (s, data))
295 /* If the user gave us an absolute path, try to find the file in
296 this symtab and use its absolute path. */
297 if (real_path != NULL)
299 const char *fullname = symtab_to_fullname (s);
301 gdb_assert (IS_ABSOLUTE_PATH (real_path));
302 gdb_assert (IS_ABSOLUTE_PATH (name));
303 if (FILENAME_CMP (real_path, fullname) == 0)
305 if (callback (s, data))
315 /* Check for a symtab of a specific name; first in symtabs, then in
316 psymtabs. *If* there is no '/' in the name, a match after a '/'
317 in the symtab filename will also work.
319 Calls CALLBACK with each symtab that is found and with the supplied
320 DATA. If CALLBACK returns true, the search stops. */
323 iterate_over_symtabs (const char *name,
324 int (*callback) (struct symtab *symtab,
328 struct objfile *objfile;
329 char *real_path = NULL;
330 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
332 /* Here we are interested in canonicalizing an absolute path, not
333 absolutizing a relative path. */
334 if (IS_ABSOLUTE_PATH (name))
336 real_path = gdb_realpath (name);
337 make_cleanup (xfree, real_path);
338 gdb_assert (IS_ABSOLUTE_PATH (real_path));
341 ALL_OBJFILES (objfile)
343 if (iterate_over_some_symtabs (name, real_path, callback, data,
344 objfile->symtabs, NULL))
346 do_cleanups (cleanups);
351 /* Same search rules as above apply here, but now we look thru the
354 ALL_OBJFILES (objfile)
357 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
363 do_cleanups (cleanups);
368 do_cleanups (cleanups);
371 /* The callback function used by lookup_symtab. */
374 lookup_symtab_callback (struct symtab *symtab, void *data)
376 struct symtab **result_ptr = data;
378 *result_ptr = symtab;
382 /* A wrapper for iterate_over_symtabs that returns the first matching
386 lookup_symtab (const char *name)
388 struct symtab *result = NULL;
390 iterate_over_symtabs (name, lookup_symtab_callback, &result);
395 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
396 full method name, which consist of the class name (from T), the unadorned
397 method name from METHOD_ID, and the signature for the specific overload,
398 specified by SIGNATURE_ID. Note that this function is g++ specific. */
401 gdb_mangle_name (struct type *type, int method_id, int signature_id)
403 int mangled_name_len;
405 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
406 struct fn_field *method = &f[signature_id];
407 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
408 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
409 const char *newname = type_name_no_tag (type);
411 /* Does the form of physname indicate that it is the full mangled name
412 of a constructor (not just the args)? */
413 int is_full_physname_constructor;
416 int is_destructor = is_destructor_name (physname);
417 /* Need a new type prefix. */
418 char *const_prefix = method->is_const ? "C" : "";
419 char *volatile_prefix = method->is_volatile ? "V" : "";
421 int len = (newname == NULL ? 0 : strlen (newname));
423 /* Nothing to do if physname already contains a fully mangled v3 abi name
424 or an operator name. */
425 if ((physname[0] == '_' && physname[1] == 'Z')
426 || is_operator_name (field_name))
427 return xstrdup (physname);
429 is_full_physname_constructor = is_constructor_name (physname);
431 is_constructor = is_full_physname_constructor
432 || (newname && strcmp (field_name, newname) == 0);
435 is_destructor = (strncmp (physname, "__dt", 4) == 0);
437 if (is_destructor || is_full_physname_constructor)
439 mangled_name = (char *) xmalloc (strlen (physname) + 1);
440 strcpy (mangled_name, physname);
446 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
448 else if (physname[0] == 't' || physname[0] == 'Q')
450 /* The physname for template and qualified methods already includes
452 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
458 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
459 volatile_prefix, len);
461 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
462 + strlen (buf) + len + strlen (physname) + 1);
464 mangled_name = (char *) xmalloc (mangled_name_len);
466 mangled_name[0] = '\0';
468 strcpy (mangled_name, field_name);
470 strcat (mangled_name, buf);
471 /* If the class doesn't have a name, i.e. newname NULL, then we just
472 mangle it using 0 for the length of the class. Thus it gets mangled
473 as something starting with `::' rather than `classname::'. */
475 strcat (mangled_name, newname);
477 strcat (mangled_name, physname);
478 return (mangled_name);
481 /* Initialize the cplus_specific structure. 'cplus_specific' should
482 only be allocated for use with cplus symbols. */
485 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
486 struct obstack *obstack)
488 /* A language_specific structure should not have been previously
490 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
491 gdb_assert (obstack != NULL);
493 gsymbol->language_specific.cplus_specific =
494 OBSTACK_ZALLOC (obstack, struct cplus_specific);
497 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
498 correctly allocated. For C++ symbols a cplus_specific struct is
499 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
500 OBJFILE can be NULL. */
503 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
505 struct obstack *obstack)
507 if (gsymbol->language == language_cplus)
509 if (gsymbol->language_specific.cplus_specific == NULL)
510 symbol_init_cplus_specific (gsymbol, obstack);
512 gsymbol->language_specific.cplus_specific->demangled_name = name;
514 else if (gsymbol->language == language_ada)
518 gsymbol->ada_mangled = 0;
519 gsymbol->language_specific.obstack = obstack;
523 gsymbol->ada_mangled = 1;
524 gsymbol->language_specific.mangled_lang.demangled_name = name;
528 gsymbol->language_specific.mangled_lang.demangled_name = name;
531 /* Return the demangled name of GSYMBOL. */
534 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
536 if (gsymbol->language == language_cplus)
538 if (gsymbol->language_specific.cplus_specific != NULL)
539 return gsymbol->language_specific.cplus_specific->demangled_name;
543 else if (gsymbol->language == language_ada)
545 if (!gsymbol->ada_mangled)
550 return gsymbol->language_specific.mangled_lang.demangled_name;
554 /* Initialize the language dependent portion of a symbol
555 depending upon the language for the symbol. */
558 symbol_set_language (struct general_symbol_info *gsymbol,
559 enum language language,
560 struct obstack *obstack)
562 gsymbol->language = language;
563 if (gsymbol->language == language_d
564 || gsymbol->language == language_go
565 || gsymbol->language == language_java
566 || gsymbol->language == language_objc
567 || gsymbol->language == language_fortran)
569 symbol_set_demangled_name (gsymbol, NULL, obstack);
571 else if (gsymbol->language == language_ada)
573 gdb_assert (gsymbol->ada_mangled == 0);
574 gsymbol->language_specific.obstack = obstack;
576 else if (gsymbol->language == language_cplus)
577 gsymbol->language_specific.cplus_specific = NULL;
580 memset (&gsymbol->language_specific, 0,
581 sizeof (gsymbol->language_specific));
585 /* Functions to initialize a symbol's mangled name. */
587 /* Objects of this type are stored in the demangled name hash table. */
588 struct demangled_name_entry
594 /* Hash function for the demangled name hash. */
597 hash_demangled_name_entry (const void *data)
599 const struct demangled_name_entry *e = data;
601 return htab_hash_string (e->mangled);
604 /* Equality function for the demangled name hash. */
607 eq_demangled_name_entry (const void *a, const void *b)
609 const struct demangled_name_entry *da = a;
610 const struct demangled_name_entry *db = b;
612 return strcmp (da->mangled, db->mangled) == 0;
615 /* Create the hash table used for demangled names. Each hash entry is
616 a pair of strings; one for the mangled name and one for the demangled
617 name. The entry is hashed via just the mangled name. */
620 create_demangled_names_hash (struct objfile *objfile)
622 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
623 The hash table code will round this up to the next prime number.
624 Choosing a much larger table size wastes memory, and saves only about
625 1% in symbol reading. */
627 objfile->per_bfd->demangled_names_hash = htab_create_alloc
628 (256, hash_demangled_name_entry, eq_demangled_name_entry,
629 NULL, xcalloc, xfree);
632 /* Try to determine the demangled name for a symbol, based on the
633 language of that symbol. If the language is set to language_auto,
634 it will attempt to find any demangling algorithm that works and
635 then set the language appropriately. The returned name is allocated
636 by the demangler and should be xfree'd. */
639 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
642 char *demangled = NULL;
644 if (gsymbol->language == language_unknown)
645 gsymbol->language = language_auto;
647 if (gsymbol->language == language_objc
648 || gsymbol->language == language_auto)
651 objc_demangle (mangled, 0);
652 if (demangled != NULL)
654 gsymbol->language = language_objc;
658 if (gsymbol->language == language_cplus
659 || gsymbol->language == language_auto)
662 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
663 if (demangled != NULL)
665 gsymbol->language = language_cplus;
669 if (gsymbol->language == language_java)
672 gdb_demangle (mangled,
673 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
674 if (demangled != NULL)
676 gsymbol->language = language_java;
680 if (gsymbol->language == language_d
681 || gsymbol->language == language_auto)
683 demangled = d_demangle(mangled, 0);
684 if (demangled != NULL)
686 gsymbol->language = language_d;
690 /* FIXME(dje): Continually adding languages here is clumsy.
691 Better to just call la_demangle if !auto, and if auto then call
692 a utility routine that tries successive languages in turn and reports
693 which one it finds. I realize the la_demangle options may be different
694 for different languages but there's already a FIXME for that. */
695 if (gsymbol->language == language_go
696 || gsymbol->language == language_auto)
698 demangled = go_demangle (mangled, 0);
699 if (demangled != NULL)
701 gsymbol->language = language_go;
706 /* We could support `gsymbol->language == language_fortran' here to provide
707 module namespaces also for inferiors with only minimal symbol table (ELF
708 symbols). Just the mangling standard is not standardized across compilers
709 and there is no DW_AT_producer available for inferiors with only the ELF
710 symbols to check the mangling kind. */
712 /* Check for Ada symbols last. See comment below explaining why. */
714 if (gsymbol->language == language_auto)
716 const char *demangled = ada_decode (mangled);
718 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
720 /* Set the gsymbol language to Ada, but still return NULL.
721 Two reasons for that:
723 1. For Ada, we prefer computing the symbol's decoded name
724 on the fly rather than pre-compute it, in order to save
725 memory (Ada projects are typically very large).
727 2. There are some areas in the definition of the GNAT
728 encoding where, with a bit of bad luck, we might be able
729 to decode a non-Ada symbol, generating an incorrect
730 demangled name (Eg: names ending with "TB" for instance
731 are identified as task bodies and so stripped from
732 the decoded name returned).
734 Returning NULL, here, helps us get a little bit of
735 the best of both worlds. Because we're last, we should
736 not affect any of the other languages that were able to
737 demangle the symbol before us; we get to correctly tag
738 Ada symbols as such; and even if we incorrectly tagged
739 a non-Ada symbol, which should be rare, any routing
740 through the Ada language should be transparent (Ada
741 tries to behave much like C/C++ with non-Ada symbols). */
742 gsymbol->language = language_ada;
750 /* Set both the mangled and demangled (if any) names for GSYMBOL based
751 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
752 objfile's obstack; but if COPY_NAME is 0 and if NAME is
753 NUL-terminated, then this function assumes that NAME is already
754 correctly saved (either permanently or with a lifetime tied to the
755 objfile), and it will not be copied.
757 The hash table corresponding to OBJFILE is used, and the memory
758 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
759 so the pointer can be discarded after calling this function. */
761 /* We have to be careful when dealing with Java names: when we run
762 into a Java minimal symbol, we don't know it's a Java symbol, so it
763 gets demangled as a C++ name. This is unfortunate, but there's not
764 much we can do about it: but when demangling partial symbols and
765 regular symbols, we'd better not reuse the wrong demangled name.
766 (See PR gdb/1039.) We solve this by putting a distinctive prefix
767 on Java names when storing them in the hash table. */
769 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
770 don't mind the Java prefix so much: different languages have
771 different demangling requirements, so it's only natural that we
772 need to keep language data around in our demangling cache. But
773 it's not good that the minimal symbol has the wrong demangled name.
774 Unfortunately, I can't think of any easy solution to that
777 #define JAVA_PREFIX "##JAVA$$"
778 #define JAVA_PREFIX_LEN 8
781 symbol_set_names (struct general_symbol_info *gsymbol,
782 const char *linkage_name, int len, int copy_name,
783 struct objfile *objfile)
785 struct demangled_name_entry **slot;
786 /* A 0-terminated copy of the linkage name. */
787 const char *linkage_name_copy;
788 /* A copy of the linkage name that might have a special Java prefix
789 added to it, for use when looking names up in the hash table. */
790 const char *lookup_name;
791 /* The length of lookup_name. */
793 struct demangled_name_entry entry;
794 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
796 if (gsymbol->language == language_ada)
798 /* In Ada, we do the symbol lookups using the mangled name, so
799 we can save some space by not storing the demangled name.
801 As a side note, we have also observed some overlap between
802 the C++ mangling and Ada mangling, similarly to what has
803 been observed with Java. Because we don't store the demangled
804 name with the symbol, we don't need to use the same trick
807 gsymbol->name = linkage_name;
810 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
812 memcpy (name, linkage_name, len);
814 gsymbol->name = name;
816 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
821 if (per_bfd->demangled_names_hash == NULL)
822 create_demangled_names_hash (objfile);
824 /* The stabs reader generally provides names that are not
825 NUL-terminated; most of the other readers don't do this, so we
826 can just use the given copy, unless we're in the Java case. */
827 if (gsymbol->language == language_java)
831 lookup_len = len + JAVA_PREFIX_LEN;
832 alloc_name = alloca (lookup_len + 1);
833 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
834 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
840 else if (linkage_name[len] != '\0')
845 alloc_name = alloca (lookup_len + 1);
846 memcpy (alloc_name, linkage_name, len);
847 alloc_name[lookup_len] = '\0';
849 lookup_name = alloc_name;
850 linkage_name_copy = alloc_name;
855 lookup_name = linkage_name;
856 linkage_name_copy = linkage_name;
859 entry.mangled = lookup_name;
860 slot = ((struct demangled_name_entry **)
861 htab_find_slot (per_bfd->demangled_names_hash,
864 /* If this name is not in the hash table, add it. */
866 /* A C version of the symbol may have already snuck into the table.
867 This happens to, e.g., main.init (__go_init_main). Cope. */
868 || (gsymbol->language == language_go
869 && (*slot)->demangled[0] == '\0'))
871 char *demangled_name = symbol_find_demangled_name (gsymbol,
873 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 lookup_name==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && lookup_name == linkage_name)
886 *slot = obstack_alloc (&per_bfd->storage_obstack,
887 offsetof (struct demangled_name_entry,
889 + demangled_len + 1);
890 (*slot)->mangled = lookup_name;
896 /* If we must copy the mangled name, put it directly after
897 the demangled name so we can have a single
899 *slot = obstack_alloc (&per_bfd->storage_obstack,
900 offsetof (struct demangled_name_entry,
902 + lookup_len + demangled_len + 2);
903 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
904 strcpy (mangled_ptr, lookup_name);
905 (*slot)->mangled = mangled_ptr;
908 if (demangled_name != NULL)
910 strcpy ((*slot)->demangled, demangled_name);
911 xfree (demangled_name);
914 (*slot)->demangled[0] = '\0';
917 gsymbol->name = (*slot)->mangled + lookup_len - len;
918 if ((*slot)->demangled[0] != '\0')
919 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
920 &per_bfd->storage_obstack);
922 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
925 /* Return the source code name of a symbol. In languages where
926 demangling is necessary, this is the demangled name. */
929 symbol_natural_name (const struct general_symbol_info *gsymbol)
931 switch (gsymbol->language)
938 case language_fortran:
939 if (symbol_get_demangled_name (gsymbol) != NULL)
940 return symbol_get_demangled_name (gsymbol);
943 return ada_decode_symbol (gsymbol);
947 return gsymbol->name;
950 /* Return the demangled name for a symbol based on the language for
951 that symbol. If no demangled name exists, return NULL. */
954 symbol_demangled_name (const struct general_symbol_info *gsymbol)
956 const char *dem_name = NULL;
958 switch (gsymbol->language)
965 case language_fortran:
966 dem_name = symbol_get_demangled_name (gsymbol);
969 dem_name = ada_decode_symbol (gsymbol);
977 /* Return the search name of a symbol---generally the demangled or
978 linkage name of the symbol, depending on how it will be searched for.
979 If there is no distinct demangled name, then returns the same value
980 (same pointer) as SYMBOL_LINKAGE_NAME. */
983 symbol_search_name (const struct general_symbol_info *gsymbol)
985 if (gsymbol->language == language_ada)
986 return gsymbol->name;
988 return symbol_natural_name (gsymbol);
991 /* Initialize the structure fields to zero values. */
994 init_sal (struct symtab_and_line *sal)
996 memset (sal, 0, sizeof (*sal));
1000 /* Return 1 if the two sections are the same, or if they could
1001 plausibly be copies of each other, one in an original object
1002 file and another in a separated debug file. */
1005 matching_obj_sections (struct obj_section *obj_first,
1006 struct obj_section *obj_second)
1008 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1009 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1010 struct objfile *obj;
1012 /* If they're the same section, then they match. */
1013 if (first == second)
1016 /* If either is NULL, give up. */
1017 if (first == NULL || second == NULL)
1020 /* This doesn't apply to absolute symbols. */
1021 if (first->owner == NULL || second->owner == NULL)
1024 /* If they're in the same object file, they must be different sections. */
1025 if (first->owner == second->owner)
1028 /* Check whether the two sections are potentially corresponding. They must
1029 have the same size, address, and name. We can't compare section indexes,
1030 which would be more reliable, because some sections may have been
1032 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1035 /* In-memory addresses may start at a different offset, relativize them. */
1036 if (bfd_get_section_vma (first->owner, first)
1037 - bfd_get_start_address (first->owner)
1038 != bfd_get_section_vma (second->owner, second)
1039 - bfd_get_start_address (second->owner))
1042 if (bfd_get_section_name (first->owner, first) == NULL
1043 || bfd_get_section_name (second->owner, second) == NULL
1044 || strcmp (bfd_get_section_name (first->owner, first),
1045 bfd_get_section_name (second->owner, second)) != 0)
1048 /* Otherwise check that they are in corresponding objfiles. */
1051 if (obj->obfd == first->owner)
1053 gdb_assert (obj != NULL);
1055 if (obj->separate_debug_objfile != NULL
1056 && obj->separate_debug_objfile->obfd == second->owner)
1058 if (obj->separate_debug_objfile_backlink != NULL
1059 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1066 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1068 struct objfile *objfile;
1069 struct bound_minimal_symbol msymbol;
1071 /* If we know that this is not a text address, return failure. This is
1072 necessary because we loop based on texthigh and textlow, which do
1073 not include the data ranges. */
1074 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1076 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1077 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1078 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1079 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1080 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1083 ALL_OBJFILES (objfile)
1085 struct symtab *result = NULL;
1088 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1097 /* Debug symbols usually don't have section information. We need to dig that
1098 out of the minimal symbols and stash that in the debug symbol. */
1101 fixup_section (struct general_symbol_info *ginfo,
1102 CORE_ADDR addr, struct objfile *objfile)
1104 struct minimal_symbol *msym;
1106 /* First, check whether a minimal symbol with the same name exists
1107 and points to the same address. The address check is required
1108 e.g. on PowerPC64, where the minimal symbol for a function will
1109 point to the function descriptor, while the debug symbol will
1110 point to the actual function code. */
1111 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1113 ginfo->section = MSYMBOL_SECTION (msym);
1116 /* Static, function-local variables do appear in the linker
1117 (minimal) symbols, but are frequently given names that won't
1118 be found via lookup_minimal_symbol(). E.g., it has been
1119 observed in frv-uclinux (ELF) executables that a static,
1120 function-local variable named "foo" might appear in the
1121 linker symbols as "foo.6" or "foo.3". Thus, there is no
1122 point in attempting to extend the lookup-by-name mechanism to
1123 handle this case due to the fact that there can be multiple
1126 So, instead, search the section table when lookup by name has
1127 failed. The ``addr'' and ``endaddr'' fields may have already
1128 been relocated. If so, the relocation offset (i.e. the
1129 ANOFFSET value) needs to be subtracted from these values when
1130 performing the comparison. We unconditionally subtract it,
1131 because, when no relocation has been performed, the ANOFFSET
1132 value will simply be zero.
1134 The address of the symbol whose section we're fixing up HAS
1135 NOT BEEN adjusted (relocated) yet. It can't have been since
1136 the section isn't yet known and knowing the section is
1137 necessary in order to add the correct relocation value. In
1138 other words, we wouldn't even be in this function (attempting
1139 to compute the section) if it were already known.
1141 Note that it is possible to search the minimal symbols
1142 (subtracting the relocation value if necessary) to find the
1143 matching minimal symbol, but this is overkill and much less
1144 efficient. It is not necessary to find the matching minimal
1145 symbol, only its section.
1147 Note that this technique (of doing a section table search)
1148 can fail when unrelocated section addresses overlap. For
1149 this reason, we still attempt a lookup by name prior to doing
1150 a search of the section table. */
1152 struct obj_section *s;
1155 ALL_OBJFILE_OSECTIONS (objfile, s)
1157 int idx = s - objfile->sections;
1158 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1163 if (obj_section_addr (s) - offset <= addr
1164 && addr < obj_section_endaddr (s) - offset)
1166 ginfo->section = idx;
1171 /* If we didn't find the section, assume it is in the first
1172 section. If there is no allocated section, then it hardly
1173 matters what we pick, so just pick zero. */
1177 ginfo->section = fallback;
1182 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1189 /* We either have an OBJFILE, or we can get at it from the sym's
1190 symtab. Anything else is a bug. */
1191 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1193 if (objfile == NULL)
1194 objfile = SYMBOL_SYMTAB (sym)->objfile;
1196 if (SYMBOL_OBJ_SECTION (objfile, sym))
1199 /* We should have an objfile by now. */
1200 gdb_assert (objfile);
1202 switch (SYMBOL_CLASS (sym))
1206 addr = SYMBOL_VALUE_ADDRESS (sym);
1209 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1213 /* Nothing else will be listed in the minsyms -- no use looking
1218 fixup_section (&sym->ginfo, addr, objfile);
1223 /* Compute the demangled form of NAME as used by the various symbol
1224 lookup functions. The result is stored in *RESULT_NAME. Returns a
1225 cleanup which can be used to clean up the result.
1227 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1228 Normally, Ada symbol lookups are performed using the encoded name
1229 rather than the demangled name, and so it might seem to make sense
1230 for this function to return an encoded version of NAME.
1231 Unfortunately, we cannot do this, because this function is used in
1232 circumstances where it is not appropriate to try to encode NAME.
1233 For instance, when displaying the frame info, we demangle the name
1234 of each parameter, and then perform a symbol lookup inside our
1235 function using that demangled name. In Ada, certain functions
1236 have internally-generated parameters whose name contain uppercase
1237 characters. Encoding those name would result in those uppercase
1238 characters to become lowercase, and thus cause the symbol lookup
1242 demangle_for_lookup (const char *name, enum language lang,
1243 const char **result_name)
1245 char *demangled_name = NULL;
1246 const char *modified_name = NULL;
1247 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1249 modified_name = name;
1251 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1252 lookup, so we can always binary search. */
1253 if (lang == language_cplus)
1255 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1258 modified_name = demangled_name;
1259 make_cleanup (xfree, demangled_name);
1263 /* If we were given a non-mangled name, canonicalize it
1264 according to the language (so far only for C++). */
1265 demangled_name = cp_canonicalize_string (name);
1268 modified_name = demangled_name;
1269 make_cleanup (xfree, demangled_name);
1273 else if (lang == language_java)
1275 demangled_name = gdb_demangle (name,
1276 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1279 modified_name = demangled_name;
1280 make_cleanup (xfree, demangled_name);
1283 else if (lang == language_d)
1285 demangled_name = d_demangle (name, 0);
1288 modified_name = demangled_name;
1289 make_cleanup (xfree, demangled_name);
1292 else if (lang == language_go)
1294 demangled_name = go_demangle (name, 0);
1297 modified_name = demangled_name;
1298 make_cleanup (xfree, demangled_name);
1302 *result_name = modified_name;
1306 /* Find the definition for a specified symbol name NAME
1307 in domain DOMAIN, visible from lexical block BLOCK.
1308 Returns the struct symbol pointer, or zero if no symbol is found.
1309 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1310 NAME is a field of the current implied argument `this'. If so set
1311 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1312 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1313 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1315 /* This function (or rather its subordinates) have a bunch of loops and
1316 it would seem to be attractive to put in some QUIT's (though I'm not really
1317 sure whether it can run long enough to be really important). But there
1318 are a few calls for which it would appear to be bad news to quit
1319 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1320 that there is C++ code below which can error(), but that probably
1321 doesn't affect these calls since they are looking for a known
1322 variable and thus can probably assume it will never hit the C++
1326 lookup_symbol_in_language (const char *name, const struct block *block,
1327 const domain_enum domain, enum language lang,
1328 struct field_of_this_result *is_a_field_of_this)
1330 const char *modified_name;
1331 struct symbol *returnval;
1332 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1334 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1335 is_a_field_of_this);
1336 do_cleanups (cleanup);
1341 /* Behave like lookup_symbol_in_language, but performed with the
1342 current language. */
1345 lookup_symbol (const char *name, const struct block *block,
1347 struct field_of_this_result *is_a_field_of_this)
1349 return lookup_symbol_in_language (name, block, domain,
1350 current_language->la_language,
1351 is_a_field_of_this);
1354 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1355 found, or NULL if not found. */
1358 lookup_language_this (const struct language_defn *lang,
1359 const struct block *block)
1361 if (lang->la_name_of_this == NULL || block == NULL)
1368 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1371 block_found = block;
1374 if (BLOCK_FUNCTION (block))
1376 block = BLOCK_SUPERBLOCK (block);
1382 /* Given TYPE, a structure/union,
1383 return 1 if the component named NAME from the ultimate target
1384 structure/union is defined, otherwise, return 0. */
1387 check_field (struct type *type, const char *name,
1388 struct field_of_this_result *is_a_field_of_this)
1392 /* The type may be a stub. */
1393 CHECK_TYPEDEF (type);
1395 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1397 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1399 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1401 is_a_field_of_this->type = type;
1402 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1407 /* C++: If it was not found as a data field, then try to return it
1408 as a pointer to a method. */
1410 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1412 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1414 is_a_field_of_this->type = type;
1415 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1420 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1421 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1427 /* Behave like lookup_symbol except that NAME is the natural name
1428 (e.g., demangled name) of the symbol that we're looking for. */
1430 static struct symbol *
1431 lookup_symbol_aux (const char *name, const struct block *block,
1432 const domain_enum domain, enum language language,
1433 struct field_of_this_result *is_a_field_of_this)
1436 const struct language_defn *langdef;
1438 /* Make sure we do something sensible with is_a_field_of_this, since
1439 the callers that set this parameter to some non-null value will
1440 certainly use it later. If we don't set it, the contents of
1441 is_a_field_of_this are undefined. */
1442 if (is_a_field_of_this != NULL)
1443 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1445 /* Search specified block and its superiors. Don't search
1446 STATIC_BLOCK or GLOBAL_BLOCK. */
1448 sym = lookup_symbol_aux_local (name, block, domain, language);
1452 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1453 check to see if NAME is a field of `this'. */
1455 langdef = language_def (language);
1457 /* Don't do this check if we are searching for a struct. It will
1458 not be found by check_field, but will be found by other
1460 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1462 struct symbol *sym = lookup_language_this (langdef, block);
1466 struct type *t = sym->type;
1468 /* I'm not really sure that type of this can ever
1469 be typedefed; just be safe. */
1471 if (TYPE_CODE (t) == TYPE_CODE_PTR
1472 || TYPE_CODE (t) == TYPE_CODE_REF)
1473 t = TYPE_TARGET_TYPE (t);
1475 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1476 && TYPE_CODE (t) != TYPE_CODE_UNION)
1477 error (_("Internal error: `%s' is not an aggregate"),
1478 langdef->la_name_of_this);
1480 if (check_field (t, name, is_a_field_of_this))
1485 /* Now do whatever is appropriate for LANGUAGE to look
1486 up static and global variables. */
1488 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1492 /* Now search all static file-level symbols. Not strictly correct,
1493 but more useful than an error. */
1495 return lookup_static_symbol_aux (name, domain);
1498 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1499 first, then check the psymtabs. If a psymtab indicates the existence of the
1500 desired name as a file-level static, then do psymtab-to-symtab conversion on
1501 the fly and return the found symbol. */
1504 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1506 struct objfile *objfile;
1509 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1513 ALL_OBJFILES (objfile)
1515 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1523 /* Check to see if the symbol is defined in BLOCK or its superiors.
1524 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1526 static struct symbol *
1527 lookup_symbol_aux_local (const char *name, const struct block *block,
1528 const domain_enum domain,
1529 enum language language)
1532 const struct block *static_block = block_static_block (block);
1533 const char *scope = block_scope (block);
1535 /* Check if either no block is specified or it's a global block. */
1537 if (static_block == NULL)
1540 while (block != static_block)
1542 sym = lookup_symbol_aux_block (name, block, domain);
1546 if (language == language_cplus || language == language_fortran)
1548 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1554 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1556 block = BLOCK_SUPERBLOCK (block);
1559 /* We've reached the edge of the function without finding a result. */
1564 /* Look up OBJFILE to BLOCK. */
1567 lookup_objfile_from_block (const struct block *block)
1569 struct objfile *obj;
1575 block = block_global_block (block);
1576 /* Go through SYMTABS. */
1577 ALL_SYMTABS (obj, s)
1578 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1580 if (obj->separate_debug_objfile_backlink)
1581 obj = obj->separate_debug_objfile_backlink;
1589 /* Look up a symbol in a block; if found, fixup the symbol, and set
1590 block_found appropriately. */
1593 lookup_symbol_aux_block (const char *name, const struct block *block,
1594 const domain_enum domain)
1598 sym = lookup_block_symbol (block, name, domain);
1601 block_found = block;
1602 return fixup_symbol_section (sym, NULL);
1608 /* Check all global symbols in OBJFILE in symtabs and
1612 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1614 const domain_enum domain)
1616 const struct objfile *objfile;
1618 const struct blockvector *bv;
1619 const struct block *block;
1622 for (objfile = main_objfile;
1624 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1626 /* Go through symtabs. */
1627 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1629 bv = BLOCKVECTOR (s);
1630 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1631 sym = lookup_block_symbol (block, name, domain);
1634 block_found = block;
1635 return fixup_symbol_section (sym, (struct objfile *)objfile);
1639 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1648 /* Check to see if the symbol is defined in one of the OBJFILE's
1649 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1650 depending on whether or not we want to search global symbols or
1653 static struct symbol *
1654 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1655 const char *name, const domain_enum domain)
1657 struct symbol *sym = NULL;
1658 const struct blockvector *bv;
1659 const struct block *block;
1662 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1664 bv = BLOCKVECTOR (s);
1665 block = BLOCKVECTOR_BLOCK (bv, block_index);
1666 sym = lookup_block_symbol (block, name, domain);
1669 block_found = block;
1670 return fixup_symbol_section (sym, objfile);
1677 /* Same as lookup_symbol_aux_objfile, except that it searches all
1678 objfiles. Return the first match found. */
1680 static struct symbol *
1681 lookup_symbol_aux_symtabs (int block_index, const char *name,
1682 const domain_enum domain)
1685 struct objfile *objfile;
1687 ALL_OBJFILES (objfile)
1689 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1697 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1698 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1699 and all related objfiles. */
1701 static struct symbol *
1702 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1703 const char *linkage_name,
1706 enum language lang = current_language->la_language;
1707 const char *modified_name;
1708 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1710 struct objfile *main_objfile, *cur_objfile;
1712 if (objfile->separate_debug_objfile_backlink)
1713 main_objfile = objfile->separate_debug_objfile_backlink;
1715 main_objfile = objfile;
1717 for (cur_objfile = main_objfile;
1719 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1723 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1724 modified_name, domain);
1726 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1727 modified_name, domain);
1730 do_cleanups (cleanup);
1735 do_cleanups (cleanup);
1739 /* A helper function that throws an exception when a symbol was found
1740 in a psymtab but not in a symtab. */
1742 static void ATTRIBUTE_NORETURN
1743 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1746 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1747 %s may be an inlined function, or may be a template function\n \
1748 (if a template, try specifying an instantiation: %s<type>)."),
1749 kind == GLOBAL_BLOCK ? "global" : "static",
1750 name, symtab_to_filename_for_display (symtab), name, name);
1753 /* A helper function for lookup_symbol_aux that interfaces with the
1754 "quick" symbol table functions. */
1756 static struct symbol *
1757 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1758 const char *name, const domain_enum domain)
1760 struct symtab *symtab;
1761 const struct blockvector *bv;
1762 const struct block *block;
1767 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1771 bv = BLOCKVECTOR (symtab);
1772 block = BLOCKVECTOR_BLOCK (bv, kind);
1773 sym = lookup_block_symbol (block, name, domain);
1775 error_in_psymtab_expansion (kind, name, symtab);
1776 return fixup_symbol_section (sym, objfile);
1779 /* A default version of lookup_symbol_nonlocal for use by languages
1780 that can't think of anything better to do. This implements the C
1784 basic_lookup_symbol_nonlocal (const char *name,
1785 const struct block *block,
1786 const domain_enum domain)
1790 /* NOTE: carlton/2003-05-19: The comments below were written when
1791 this (or what turned into this) was part of lookup_symbol_aux;
1792 I'm much less worried about these questions now, since these
1793 decisions have turned out well, but I leave these comments here
1796 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1797 not it would be appropriate to search the current global block
1798 here as well. (That's what this code used to do before the
1799 is_a_field_of_this check was moved up.) On the one hand, it's
1800 redundant with the lookup_symbol_aux_symtabs search that happens
1801 next. On the other hand, if decode_line_1 is passed an argument
1802 like filename:var, then the user presumably wants 'var' to be
1803 searched for in filename. On the third hand, there shouldn't be
1804 multiple global variables all of which are named 'var', and it's
1805 not like decode_line_1 has ever restricted its search to only
1806 global variables in a single filename. All in all, only
1807 searching the static block here seems best: it's correct and it's
1810 /* NOTE: carlton/2002-12-05: There's also a possible performance
1811 issue here: if you usually search for global symbols in the
1812 current file, then it would be slightly better to search the
1813 current global block before searching all the symtabs. But there
1814 are other factors that have a much greater effect on performance
1815 than that one, so I don't think we should worry about that for
1818 sym = lookup_symbol_static (name, block, domain);
1822 return lookup_symbol_global (name, block, domain);
1825 /* Lookup a symbol in the static block associated to BLOCK, if there
1826 is one; do nothing if BLOCK is NULL or a global block. */
1829 lookup_symbol_static (const char *name,
1830 const struct block *block,
1831 const domain_enum domain)
1833 const struct block *static_block = block_static_block (block);
1835 if (static_block != NULL)
1836 return lookup_symbol_aux_block (name, static_block, domain);
1841 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1843 struct global_sym_lookup_data
1845 /* The name of the symbol we are searching for. */
1848 /* The domain to use for our search. */
1851 /* The field where the callback should store the symbol if found.
1852 It should be initialized to NULL before the search is started. */
1853 struct symbol *result;
1856 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1857 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1858 OBJFILE. The arguments for the search are passed via CB_DATA,
1859 which in reality is a pointer to struct global_sym_lookup_data. */
1862 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1865 struct global_sym_lookup_data *data =
1866 (struct global_sym_lookup_data *) cb_data;
1868 gdb_assert (data->result == NULL);
1870 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1871 data->name, data->domain);
1872 if (data->result == NULL)
1873 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1874 data->name, data->domain);
1876 /* If we found a match, tell the iterator to stop. Otherwise,
1878 return (data->result != NULL);
1881 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1885 lookup_symbol_global (const char *name,
1886 const struct block *block,
1887 const domain_enum domain)
1889 struct symbol *sym = NULL;
1890 struct objfile *objfile = NULL;
1891 struct global_sym_lookup_data lookup_data;
1893 /* Call library-specific lookup procedure. */
1894 objfile = lookup_objfile_from_block (block);
1895 if (objfile != NULL)
1896 sym = solib_global_lookup (objfile, name, domain);
1900 memset (&lookup_data, 0, sizeof (lookup_data));
1901 lookup_data.name = name;
1902 lookup_data.domain = domain;
1903 gdbarch_iterate_over_objfiles_in_search_order
1904 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1905 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1907 return lookup_data.result;
1911 symbol_matches_domain (enum language symbol_language,
1912 domain_enum symbol_domain,
1915 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1916 A Java class declaration also defines a typedef for the class.
1917 Similarly, any Ada type declaration implicitly defines a typedef. */
1918 if (symbol_language == language_cplus
1919 || symbol_language == language_d
1920 || symbol_language == language_java
1921 || symbol_language == language_ada)
1923 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1924 && symbol_domain == STRUCT_DOMAIN)
1927 /* For all other languages, strict match is required. */
1928 return (symbol_domain == domain);
1931 /* Look up a type named NAME in the struct_domain. The type returned
1932 must not be opaque -- i.e., must have at least one field
1936 lookup_transparent_type (const char *name)
1938 return current_language->la_lookup_transparent_type (name);
1941 /* A helper for basic_lookup_transparent_type that interfaces with the
1942 "quick" symbol table functions. */
1944 static struct type *
1945 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1948 struct symtab *symtab;
1949 const struct blockvector *bv;
1950 struct block *block;
1955 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1959 bv = BLOCKVECTOR (symtab);
1960 block = BLOCKVECTOR_BLOCK (bv, kind);
1961 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1963 error_in_psymtab_expansion (kind, name, symtab);
1965 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1966 return SYMBOL_TYPE (sym);
1971 /* The standard implementation of lookup_transparent_type. This code
1972 was modeled on lookup_symbol -- the parts not relevant to looking
1973 up types were just left out. In particular it's assumed here that
1974 types are available in struct_domain and only at file-static or
1978 basic_lookup_transparent_type (const char *name)
1981 struct symtab *s = NULL;
1982 const struct blockvector *bv;
1983 struct objfile *objfile;
1984 struct block *block;
1987 /* Now search all the global symbols. Do the symtab's first, then
1988 check the psymtab's. If a psymtab indicates the existence
1989 of the desired name as a global, then do psymtab-to-symtab
1990 conversion on the fly and return the found symbol. */
1992 ALL_OBJFILES (objfile)
1994 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1996 bv = BLOCKVECTOR (s);
1997 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1998 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1999 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2001 return SYMBOL_TYPE (sym);
2006 ALL_OBJFILES (objfile)
2008 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2013 /* Now search the static file-level symbols.
2014 Not strictly correct, but more useful than an error.
2015 Do the symtab's first, then
2016 check the psymtab's. If a psymtab indicates the existence
2017 of the desired name as a file-level static, then do psymtab-to-symtab
2018 conversion on the fly and return the found symbol. */
2020 ALL_OBJFILES (objfile)
2022 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2024 bv = BLOCKVECTOR (s);
2025 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2026 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2027 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2029 return SYMBOL_TYPE (sym);
2034 ALL_OBJFILES (objfile)
2036 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2041 return (struct type *) 0;
2044 /* Search BLOCK for symbol NAME in DOMAIN.
2046 Note that if NAME is the demangled form of a C++ symbol, we will fail
2047 to find a match during the binary search of the non-encoded names, but
2048 for now we don't worry about the slight inefficiency of looking for
2049 a match we'll never find, since it will go pretty quick. Once the
2050 binary search terminates, we drop through and do a straight linear
2051 search on the symbols. Each symbol which is marked as being a ObjC/C++
2052 symbol (language_cplus or language_objc set) has both the encoded and
2053 non-encoded names tested for a match. */
2056 lookup_block_symbol (const struct block *block, const char *name,
2057 const domain_enum domain)
2059 struct block_iterator iter;
2062 if (!BLOCK_FUNCTION (block))
2064 for (sym = block_iter_name_first (block, name, &iter);
2066 sym = block_iter_name_next (name, &iter))
2068 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2069 SYMBOL_DOMAIN (sym), domain))
2076 /* Note that parameter symbols do not always show up last in the
2077 list; this loop makes sure to take anything else other than
2078 parameter symbols first; it only uses parameter symbols as a
2079 last resort. Note that this only takes up extra computation
2082 struct symbol *sym_found = NULL;
2084 for (sym = block_iter_name_first (block, name, &iter);
2086 sym = block_iter_name_next (name, &iter))
2088 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2089 SYMBOL_DOMAIN (sym), domain))
2092 if (!SYMBOL_IS_ARGUMENT (sym))
2098 return (sym_found); /* Will be NULL if not found. */
2102 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2104 For each symbol that matches, CALLBACK is called. The symbol and
2105 DATA are passed to the callback.
2107 If CALLBACK returns zero, the iteration ends. Otherwise, the
2108 search continues. */
2111 iterate_over_symbols (const struct block *block, const char *name,
2112 const domain_enum domain,
2113 symbol_found_callback_ftype *callback,
2116 struct block_iterator iter;
2119 for (sym = block_iter_name_first (block, name, &iter);
2121 sym = block_iter_name_next (name, &iter))
2123 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2124 SYMBOL_DOMAIN (sym), domain))
2126 if (!callback (sym, data))
2132 /* Find the symtab associated with PC and SECTION. Look through the
2133 psymtabs and read in another symtab if necessary. */
2136 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2139 const struct blockvector *bv;
2140 struct symtab *s = NULL;
2141 struct symtab *best_s = NULL;
2142 struct objfile *objfile;
2143 CORE_ADDR distance = 0;
2144 struct bound_minimal_symbol msymbol;
2146 /* If we know that this is not a text address, return failure. This is
2147 necessary because we loop based on the block's high and low code
2148 addresses, which do not include the data ranges, and because
2149 we call find_pc_sect_psymtab which has a similar restriction based
2150 on the partial_symtab's texthigh and textlow. */
2151 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2153 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2154 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2155 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2156 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2157 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2160 /* Search all symtabs for the one whose file contains our address, and which
2161 is the smallest of all the ones containing the address. This is designed
2162 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2163 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2164 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2166 This happens for native ecoff format, where code from included files
2167 gets its own symtab. The symtab for the included file should have
2168 been read in already via the dependency mechanism.
2169 It might be swifter to create several symtabs with the same name
2170 like xcoff does (I'm not sure).
2172 It also happens for objfiles that have their functions reordered.
2173 For these, the symtab we are looking for is not necessarily read in. */
2175 ALL_PRIMARY_SYMTABS (objfile, s)
2177 bv = BLOCKVECTOR (s);
2178 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2180 if (BLOCK_START (b) <= pc
2181 && BLOCK_END (b) > pc
2183 || BLOCK_END (b) - BLOCK_START (b) < distance))
2185 /* For an objfile that has its functions reordered,
2186 find_pc_psymtab will find the proper partial symbol table
2187 and we simply return its corresponding symtab. */
2188 /* In order to better support objfiles that contain both
2189 stabs and coff debugging info, we continue on if a psymtab
2191 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2193 struct symtab *result;
2196 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2205 struct block_iterator iter;
2206 struct symbol *sym = NULL;
2208 ALL_BLOCK_SYMBOLS (b, iter, sym)
2210 fixup_symbol_section (sym, objfile);
2211 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2216 continue; /* No symbol in this symtab matches
2219 distance = BLOCK_END (b) - BLOCK_START (b);
2227 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2229 ALL_OBJFILES (objfile)
2231 struct symtab *result;
2235 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2246 /* Find the symtab associated with PC. Look through the psymtabs and read
2247 in another symtab if necessary. Backward compatibility, no section. */
2250 find_pc_symtab (CORE_ADDR pc)
2252 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2256 /* Find the source file and line number for a given PC value and SECTION.
2257 Return a structure containing a symtab pointer, a line number,
2258 and a pc range for the entire source line.
2259 The value's .pc field is NOT the specified pc.
2260 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2261 use the line that ends there. Otherwise, in that case, the line
2262 that begins there is used. */
2264 /* The big complication here is that a line may start in one file, and end just
2265 before the start of another file. This usually occurs when you #include
2266 code in the middle of a subroutine. To properly find the end of a line's PC
2267 range, we must search all symtabs associated with this compilation unit, and
2268 find the one whose first PC is closer than that of the next line in this
2271 /* If it's worth the effort, we could be using a binary search. */
2273 struct symtab_and_line
2274 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2277 struct linetable *l;
2280 struct linetable_entry *item;
2281 struct symtab_and_line val;
2282 const struct blockvector *bv;
2283 struct bound_minimal_symbol msymbol;
2284 struct objfile *objfile;
2286 /* Info on best line seen so far, and where it starts, and its file. */
2288 struct linetable_entry *best = NULL;
2289 CORE_ADDR best_end = 0;
2290 struct symtab *best_symtab = 0;
2292 /* Store here the first line number
2293 of a file which contains the line at the smallest pc after PC.
2294 If we don't find a line whose range contains PC,
2295 we will use a line one less than this,
2296 with a range from the start of that file to the first line's pc. */
2297 struct linetable_entry *alt = NULL;
2299 /* Info on best line seen in this file. */
2301 struct linetable_entry *prev;
2303 /* If this pc is not from the current frame,
2304 it is the address of the end of a call instruction.
2305 Quite likely that is the start of the following statement.
2306 But what we want is the statement containing the instruction.
2307 Fudge the pc to make sure we get that. */
2309 init_sal (&val); /* initialize to zeroes */
2311 val.pspace = current_program_space;
2313 /* It's tempting to assume that, if we can't find debugging info for
2314 any function enclosing PC, that we shouldn't search for line
2315 number info, either. However, GAS can emit line number info for
2316 assembly files --- very helpful when debugging hand-written
2317 assembly code. In such a case, we'd have no debug info for the
2318 function, but we would have line info. */
2323 /* elz: added this because this function returned the wrong
2324 information if the pc belongs to a stub (import/export)
2325 to call a shlib function. This stub would be anywhere between
2326 two functions in the target, and the line info was erroneously
2327 taken to be the one of the line before the pc. */
2329 /* RT: Further explanation:
2331 * We have stubs (trampolines) inserted between procedures.
2333 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2334 * exists in the main image.
2336 * In the minimal symbol table, we have a bunch of symbols
2337 * sorted by start address. The stubs are marked as "trampoline",
2338 * the others appear as text. E.g.:
2340 * Minimal symbol table for main image
2341 * main: code for main (text symbol)
2342 * shr1: stub (trampoline symbol)
2343 * foo: code for foo (text symbol)
2345 * Minimal symbol table for "shr1" image:
2347 * shr1: code for shr1 (text symbol)
2350 * So the code below is trying to detect if we are in the stub
2351 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2352 * and if found, do the symbolization from the real-code address
2353 * rather than the stub address.
2355 * Assumptions being made about the minimal symbol table:
2356 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2357 * if we're really in the trampoline.s If we're beyond it (say
2358 * we're in "foo" in the above example), it'll have a closer
2359 * symbol (the "foo" text symbol for example) and will not
2360 * return the trampoline.
2361 * 2. lookup_minimal_symbol_text() will find a real text symbol
2362 * corresponding to the trampoline, and whose address will
2363 * be different than the trampoline address. I put in a sanity
2364 * check for the address being the same, to avoid an
2365 * infinite recursion.
2367 msymbol = lookup_minimal_symbol_by_pc (pc);
2368 if (msymbol.minsym != NULL)
2369 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2371 struct bound_minimal_symbol mfunsym
2372 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2375 if (mfunsym.minsym == NULL)
2376 /* I eliminated this warning since it is coming out
2377 * in the following situation:
2378 * gdb shmain // test program with shared libraries
2379 * (gdb) break shr1 // function in shared lib
2380 * Warning: In stub for ...
2381 * In the above situation, the shared lib is not loaded yet,
2382 * so of course we can't find the real func/line info,
2383 * but the "break" still works, and the warning is annoying.
2384 * So I commented out the warning. RT */
2385 /* warning ("In stub for %s; unable to find real function/line info",
2386 SYMBOL_LINKAGE_NAME (msymbol)); */
2389 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2390 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2391 /* Avoid infinite recursion */
2392 /* See above comment about why warning is commented out. */
2393 /* warning ("In stub for %s; unable to find real function/line info",
2394 SYMBOL_LINKAGE_NAME (msymbol)); */
2398 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2402 s = find_pc_sect_symtab (pc, section);
2405 /* If no symbol information, return previous pc. */
2412 bv = BLOCKVECTOR (s);
2413 objfile = s->objfile;
2415 /* Look at all the symtabs that share this blockvector.
2416 They all have the same apriori range, that we found was right;
2417 but they have different line tables. */
2419 ALL_OBJFILE_SYMTABS (objfile, s)
2421 if (BLOCKVECTOR (s) != bv)
2424 /* Find the best line in this symtab. */
2431 /* I think len can be zero if the symtab lacks line numbers
2432 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2433 I'm not sure which, and maybe it depends on the symbol
2439 item = l->item; /* Get first line info. */
2441 /* Is this file's first line closer than the first lines of other files?
2442 If so, record this file, and its first line, as best alternate. */
2443 if (item->pc > pc && (!alt || item->pc < alt->pc))
2446 for (i = 0; i < len; i++, item++)
2448 /* Leave prev pointing to the linetable entry for the last line
2449 that started at or before PC. */
2456 /* At this point, prev points at the line whose start addr is <= pc, and
2457 item points at the next line. If we ran off the end of the linetable
2458 (pc >= start of the last line), then prev == item. If pc < start of
2459 the first line, prev will not be set. */
2461 /* Is this file's best line closer than the best in the other files?
2462 If so, record this file, and its best line, as best so far. Don't
2463 save prev if it represents the end of a function (i.e. line number
2464 0) instead of a real line. */
2466 if (prev && prev->line && (!best || prev->pc > best->pc))
2471 /* Discard BEST_END if it's before the PC of the current BEST. */
2472 if (best_end <= best->pc)
2476 /* If another line (denoted by ITEM) is in the linetable and its
2477 PC is after BEST's PC, but before the current BEST_END, then
2478 use ITEM's PC as the new best_end. */
2479 if (best && i < len && item->pc > best->pc
2480 && (best_end == 0 || best_end > item->pc))
2481 best_end = item->pc;
2486 /* If we didn't find any line number info, just return zeros.
2487 We used to return alt->line - 1 here, but that could be
2488 anywhere; if we don't have line number info for this PC,
2489 don't make some up. */
2492 else if (best->line == 0)
2494 /* If our best fit is in a range of PC's for which no line
2495 number info is available (line number is zero) then we didn't
2496 find any valid line information. */
2501 val.symtab = best_symtab;
2502 val.line = best->line;
2504 if (best_end && (!alt || best_end < alt->pc))
2509 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2511 val.section = section;
2515 /* Backward compatibility (no section). */
2517 struct symtab_and_line
2518 find_pc_line (CORE_ADDR pc, int notcurrent)
2520 struct obj_section *section;
2522 section = find_pc_overlay (pc);
2523 if (pc_in_unmapped_range (pc, section))
2524 pc = overlay_mapped_address (pc, section);
2525 return find_pc_sect_line (pc, section, notcurrent);
2528 /* Find line number LINE in any symtab whose name is the same as
2531 If found, return the symtab that contains the linetable in which it was
2532 found, set *INDEX to the index in the linetable of the best entry
2533 found, and set *EXACT_MATCH nonzero if the value returned is an
2536 If not found, return NULL. */
2539 find_line_symtab (struct symtab *symtab, int line,
2540 int *index, int *exact_match)
2542 int exact = 0; /* Initialized here to avoid a compiler warning. */
2544 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2548 struct linetable *best_linetable;
2549 struct symtab *best_symtab;
2551 /* First try looking it up in the given symtab. */
2552 best_linetable = LINETABLE (symtab);
2553 best_symtab = symtab;
2554 best_index = find_line_common (best_linetable, line, &exact, 0);
2555 if (best_index < 0 || !exact)
2557 /* Didn't find an exact match. So we better keep looking for
2558 another symtab with the same name. In the case of xcoff,
2559 multiple csects for one source file (produced by IBM's FORTRAN
2560 compiler) produce multiple symtabs (this is unavoidable
2561 assuming csects can be at arbitrary places in memory and that
2562 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2564 /* BEST is the smallest linenumber > LINE so far seen,
2565 or 0 if none has been seen so far.
2566 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2569 struct objfile *objfile;
2572 if (best_index >= 0)
2573 best = best_linetable->item[best_index].line;
2577 ALL_OBJFILES (objfile)
2580 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2581 symtab_to_fullname (symtab));
2584 ALL_SYMTABS (objfile, s)
2586 struct linetable *l;
2589 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2591 if (FILENAME_CMP (symtab_to_fullname (symtab),
2592 symtab_to_fullname (s)) != 0)
2595 ind = find_line_common (l, line, &exact, 0);
2605 if (best == 0 || l->item[ind].line < best)
2607 best = l->item[ind].line;
2620 *index = best_index;
2622 *exact_match = exact;
2627 /* Given SYMTAB, returns all the PCs function in the symtab that
2628 exactly match LINE. Returns NULL if there are no exact matches,
2629 but updates BEST_ITEM in this case. */
2632 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2633 struct linetable_entry **best_item)
2636 VEC (CORE_ADDR) *result = NULL;
2638 /* First, collect all the PCs that are at this line. */
2644 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2650 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2652 if (*best_item == NULL || item->line < (*best_item)->line)
2658 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2666 /* Set the PC value for a given source file and line number and return true.
2667 Returns zero for invalid line number (and sets the PC to 0).
2668 The source file is specified with a struct symtab. */
2671 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2673 struct linetable *l;
2680 symtab = find_line_symtab (symtab, line, &ind, NULL);
2683 l = LINETABLE (symtab);
2684 *pc = l->item[ind].pc;
2691 /* Find the range of pc values in a line.
2692 Store the starting pc of the line into *STARTPTR
2693 and the ending pc (start of next line) into *ENDPTR.
2694 Returns 1 to indicate success.
2695 Returns 0 if could not find the specified line. */
2698 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2701 CORE_ADDR startaddr;
2702 struct symtab_and_line found_sal;
2705 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2708 /* This whole function is based on address. For example, if line 10 has
2709 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2710 "info line *0x123" should say the line goes from 0x100 to 0x200
2711 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2712 This also insures that we never give a range like "starts at 0x134
2713 and ends at 0x12c". */
2715 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2716 if (found_sal.line != sal.line)
2718 /* The specified line (sal) has zero bytes. */
2719 *startptr = found_sal.pc;
2720 *endptr = found_sal.pc;
2724 *startptr = found_sal.pc;
2725 *endptr = found_sal.end;
2730 /* Given a line table and a line number, return the index into the line
2731 table for the pc of the nearest line whose number is >= the specified one.
2732 Return -1 if none is found. The value is >= 0 if it is an index.
2733 START is the index at which to start searching the line table.
2735 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2738 find_line_common (struct linetable *l, int lineno,
2739 int *exact_match, int start)
2744 /* BEST is the smallest linenumber > LINENO so far seen,
2745 or 0 if none has been seen so far.
2746 BEST_INDEX identifies the item for it. */
2748 int best_index = -1;
2759 for (i = start; i < len; i++)
2761 struct linetable_entry *item = &(l->item[i]);
2763 if (item->line == lineno)
2765 /* Return the first (lowest address) entry which matches. */
2770 if (item->line > lineno && (best == 0 || item->line < best))
2777 /* If we got here, we didn't get an exact match. */
2782 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2784 struct symtab_and_line sal;
2786 sal = find_pc_line (pc, 0);
2789 return sal.symtab != 0;
2792 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2793 address for that function that has an entry in SYMTAB's line info
2794 table. If such an entry cannot be found, return FUNC_ADDR
2798 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2800 CORE_ADDR func_start, func_end;
2801 struct linetable *l;
2804 /* Give up if this symbol has no lineinfo table. */
2805 l = LINETABLE (symtab);
2809 /* Get the range for the function's PC values, or give up if we
2810 cannot, for some reason. */
2811 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2814 /* Linetable entries are ordered by PC values, see the commentary in
2815 symtab.h where `struct linetable' is defined. Thus, the first
2816 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2817 address we are looking for. */
2818 for (i = 0; i < l->nitems; i++)
2820 struct linetable_entry *item = &(l->item[i]);
2822 /* Don't use line numbers of zero, they mark special entries in
2823 the table. See the commentary on symtab.h before the
2824 definition of struct linetable. */
2825 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2832 /* Given a function symbol SYM, find the symtab and line for the start
2834 If the argument FUNFIRSTLINE is nonzero, we want the first line
2835 of real code inside the function. */
2837 struct symtab_and_line
2838 find_function_start_sal (struct symbol *sym, int funfirstline)
2840 struct symtab_and_line sal;
2842 fixup_symbol_section (sym, NULL);
2843 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2844 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2846 /* We always should have a line for the function start address.
2847 If we don't, something is odd. Create a plain SAL refering
2848 just the PC and hope that skip_prologue_sal (if requested)
2849 can find a line number for after the prologue. */
2850 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2853 sal.pspace = current_program_space;
2854 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2855 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2859 skip_prologue_sal (&sal);
2864 /* Adjust SAL to the first instruction past the function prologue.
2865 If the PC was explicitly specified, the SAL is not changed.
2866 If the line number was explicitly specified, at most the SAL's PC
2867 is updated. If SAL is already past the prologue, then do nothing. */
2870 skip_prologue_sal (struct symtab_and_line *sal)
2873 struct symtab_and_line start_sal;
2874 struct cleanup *old_chain;
2875 CORE_ADDR pc, saved_pc;
2876 struct obj_section *section;
2878 struct objfile *objfile;
2879 struct gdbarch *gdbarch;
2880 const struct block *b, *function_block;
2881 int force_skip, skip;
2883 /* Do not change the SAL if PC was specified explicitly. */
2884 if (sal->explicit_pc)
2887 old_chain = save_current_space_and_thread ();
2888 switch_to_program_space_and_thread (sal->pspace);
2890 sym = find_pc_sect_function (sal->pc, sal->section);
2893 fixup_symbol_section (sym, NULL);
2895 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2896 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2897 name = SYMBOL_LINKAGE_NAME (sym);
2898 objfile = SYMBOL_SYMTAB (sym)->objfile;
2902 struct bound_minimal_symbol msymbol
2903 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2905 if (msymbol.minsym == NULL)
2907 do_cleanups (old_chain);
2911 objfile = msymbol.objfile;
2912 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2913 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2914 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2917 gdbarch = get_objfile_arch (objfile);
2919 /* Process the prologue in two passes. In the first pass try to skip the
2920 prologue (SKIP is true) and verify there is a real need for it (indicated
2921 by FORCE_SKIP). If no such reason was found run a second pass where the
2922 prologue is not skipped (SKIP is false). */
2927 /* Be conservative - allow direct PC (without skipping prologue) only if we
2928 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2929 have to be set by the caller so we use SYM instead. */
2930 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2938 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2939 so that gdbarch_skip_prologue has something unique to work on. */
2940 if (section_is_overlay (section) && !section_is_mapped (section))
2941 pc = overlay_unmapped_address (pc, section);
2943 /* Skip "first line" of function (which is actually its prologue). */
2944 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2945 if (gdbarch_skip_entrypoint_p (gdbarch))
2946 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2948 pc = gdbarch_skip_prologue (gdbarch, pc);
2950 /* For overlays, map pc back into its mapped VMA range. */
2951 pc = overlay_mapped_address (pc, section);
2953 /* Calculate line number. */
2954 start_sal = find_pc_sect_line (pc, section, 0);
2956 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2957 line is still part of the same function. */
2958 if (skip && start_sal.pc != pc
2959 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2960 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2961 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2962 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2964 /* First pc of next line */
2966 /* Recalculate the line number (might not be N+1). */
2967 start_sal = find_pc_sect_line (pc, section, 0);
2970 /* On targets with executable formats that don't have a concept of
2971 constructors (ELF with .init has, PE doesn't), gcc emits a call
2972 to `__main' in `main' between the prologue and before user
2974 if (gdbarch_skip_main_prologue_p (gdbarch)
2975 && name && strcmp_iw (name, "main") == 0)
2977 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2978 /* Recalculate the line number (might not be N+1). */
2979 start_sal = find_pc_sect_line (pc, section, 0);
2983 while (!force_skip && skip--);
2985 /* If we still don't have a valid source line, try to find the first
2986 PC in the lineinfo table that belongs to the same function. This
2987 happens with COFF debug info, which does not seem to have an
2988 entry in lineinfo table for the code after the prologue which has
2989 no direct relation to source. For example, this was found to be
2990 the case with the DJGPP target using "gcc -gcoff" when the
2991 compiler inserted code after the prologue to make sure the stack
2993 if (!force_skip && sym && start_sal.symtab == NULL)
2995 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2996 /* Recalculate the line number. */
2997 start_sal = find_pc_sect_line (pc, section, 0);
3000 do_cleanups (old_chain);
3002 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3003 forward SAL to the end of the prologue. */
3008 sal->section = section;
3010 /* Unless the explicit_line flag was set, update the SAL line
3011 and symtab to correspond to the modified PC location. */
3012 if (sal->explicit_line)
3015 sal->symtab = start_sal.symtab;
3016 sal->line = start_sal.line;
3017 sal->end = start_sal.end;
3019 /* Check if we are now inside an inlined function. If we can,
3020 use the call site of the function instead. */
3021 b = block_for_pc_sect (sal->pc, sal->section);
3022 function_block = NULL;
3025 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3027 else if (BLOCK_FUNCTION (b) != NULL)
3029 b = BLOCK_SUPERBLOCK (b);
3031 if (function_block != NULL
3032 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3034 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3035 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3039 /* If P is of the form "operator[ \t]+..." where `...' is
3040 some legitimate operator text, return a pointer to the
3041 beginning of the substring of the operator text.
3042 Otherwise, return "". */
3045 operator_chars (const char *p, const char **end)
3048 if (strncmp (p, "operator", 8))
3052 /* Don't get faked out by `operator' being part of a longer
3054 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3057 /* Allow some whitespace between `operator' and the operator symbol. */
3058 while (*p == ' ' || *p == '\t')
3061 /* Recognize 'operator TYPENAME'. */
3063 if (isalpha (*p) || *p == '_' || *p == '$')
3065 const char *q = p + 1;
3067 while (isalnum (*q) || *q == '_' || *q == '$')
3076 case '\\': /* regexp quoting */
3079 if (p[2] == '=') /* 'operator\*=' */
3081 else /* 'operator\*' */
3085 else if (p[1] == '[')
3088 error (_("mismatched quoting on brackets, "
3089 "try 'operator\\[\\]'"));
3090 else if (p[2] == '\\' && p[3] == ']')
3092 *end = p + 4; /* 'operator\[\]' */
3096 error (_("nothing is allowed between '[' and ']'"));
3100 /* Gratuitous qoute: skip it and move on. */
3122 if (p[0] == '-' && p[1] == '>')
3124 /* Struct pointer member operator 'operator->'. */
3127 *end = p + 3; /* 'operator->*' */
3130 else if (p[2] == '\\')
3132 *end = p + 4; /* Hopefully 'operator->\*' */
3137 *end = p + 2; /* 'operator->' */
3141 if (p[1] == '=' || p[1] == p[0])
3152 error (_("`operator ()' must be specified "
3153 "without whitespace in `()'"));
3158 error (_("`operator ?:' must be specified "
3159 "without whitespace in `?:'"));
3164 error (_("`operator []' must be specified "
3165 "without whitespace in `[]'"));
3169 error (_("`operator %s' not supported"), p);
3178 /* Cache to watch for file names already seen by filename_seen. */
3180 struct filename_seen_cache
3182 /* Table of files seen so far. */
3184 /* Initial size of the table. It automagically grows from here. */
3185 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3188 /* filename_seen_cache constructor. */
3190 static struct filename_seen_cache *
3191 create_filename_seen_cache (void)
3193 struct filename_seen_cache *cache;
3195 cache = XNEW (struct filename_seen_cache);
3196 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3197 filename_hash, filename_eq,
3198 NULL, xcalloc, xfree);
3203 /* Empty the cache, but do not delete it. */
3206 clear_filename_seen_cache (struct filename_seen_cache *cache)
3208 htab_empty (cache->tab);
3211 /* filename_seen_cache destructor.
3212 This takes a void * argument as it is generally used as a cleanup. */
3215 delete_filename_seen_cache (void *ptr)
3217 struct filename_seen_cache *cache = ptr;
3219 htab_delete (cache->tab);
3223 /* If FILE is not already in the table of files in CACHE, return zero;
3224 otherwise return non-zero. Optionally add FILE to the table if ADD
3227 NOTE: We don't manage space for FILE, we assume FILE lives as long
3228 as the caller needs. */
3231 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3235 /* Is FILE in tab? */
3236 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3240 /* No; maybe add it to tab. */
3242 *slot = (char *) file;
3247 /* Data structure to maintain printing state for output_source_filename. */
3249 struct output_source_filename_data
3251 /* Cache of what we've seen so far. */
3252 struct filename_seen_cache *filename_seen_cache;
3254 /* Flag of whether we're printing the first one. */
3258 /* Slave routine for sources_info. Force line breaks at ,'s.
3259 NAME is the name to print.
3260 DATA contains the state for printing and watching for duplicates. */
3263 output_source_filename (const char *name,
3264 struct output_source_filename_data *data)
3266 /* Since a single source file can result in several partial symbol
3267 tables, we need to avoid printing it more than once. Note: if
3268 some of the psymtabs are read in and some are not, it gets
3269 printed both under "Source files for which symbols have been
3270 read" and "Source files for which symbols will be read in on
3271 demand". I consider this a reasonable way to deal with the
3272 situation. I'm not sure whether this can also happen for
3273 symtabs; it doesn't hurt to check. */
3275 /* Was NAME already seen? */
3276 if (filename_seen (data->filename_seen_cache, name, 1))
3278 /* Yes; don't print it again. */
3282 /* No; print it and reset *FIRST. */
3284 printf_filtered (", ");
3288 fputs_filtered (name, gdb_stdout);
3291 /* A callback for map_partial_symbol_filenames. */
3294 output_partial_symbol_filename (const char *filename, const char *fullname,
3297 output_source_filename (fullname ? fullname : filename, data);
3301 sources_info (char *ignore, int from_tty)
3304 struct objfile *objfile;
3305 struct output_source_filename_data data;
3306 struct cleanup *cleanups;
3308 if (!have_full_symbols () && !have_partial_symbols ())
3310 error (_("No symbol table is loaded. Use the \"file\" command."));
3313 data.filename_seen_cache = create_filename_seen_cache ();
3314 cleanups = make_cleanup (delete_filename_seen_cache,
3315 data.filename_seen_cache);
3317 printf_filtered ("Source files for which symbols have been read in:\n\n");
3320 ALL_SYMTABS (objfile, s)
3322 const char *fullname = symtab_to_fullname (s);
3324 output_source_filename (fullname, &data);
3326 printf_filtered ("\n\n");
3328 printf_filtered ("Source files for which symbols "
3329 "will be read in on demand:\n\n");
3331 clear_filename_seen_cache (data.filename_seen_cache);
3333 map_symbol_filenames (output_partial_symbol_filename, &data,
3334 1 /*need_fullname*/);
3335 printf_filtered ("\n");
3337 do_cleanups (cleanups);
3340 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3341 non-zero compare only lbasename of FILES. */
3344 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3348 if (file != NULL && nfiles != 0)
3350 for (i = 0; i < nfiles; i++)
3352 if (compare_filenames_for_search (file, (basenames
3353 ? lbasename (files[i])
3358 else if (nfiles == 0)
3363 /* Free any memory associated with a search. */
3366 free_search_symbols (struct symbol_search *symbols)
3368 struct symbol_search *p;
3369 struct symbol_search *next;
3371 for (p = symbols; p != NULL; p = next)
3379 do_free_search_symbols_cleanup (void *symbolsp)
3381 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3383 free_search_symbols (symbols);
3387 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3389 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3392 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3393 sort symbols, not minimal symbols. */
3396 compare_search_syms (const void *sa, const void *sb)
3398 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3399 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3402 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3406 if (sym_a->block != sym_b->block)
3407 return sym_a->block - sym_b->block;
3409 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3410 SYMBOL_PRINT_NAME (sym_b->symbol));
3413 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3414 The duplicates are freed, and the new list is returned in
3415 *NEW_HEAD, *NEW_TAIL. */
3418 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3419 struct symbol_search **new_head,
3420 struct symbol_search **new_tail)
3422 struct symbol_search **symbols, *symp, *old_next;
3425 gdb_assert (found != NULL && nfound > 0);
3427 /* Build an array out of the list so we can easily sort them. */
3428 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3431 for (i = 0; i < nfound; i++)
3433 gdb_assert (symp != NULL);
3434 gdb_assert (symp->block >= 0 && symp->block <= 1);
3438 gdb_assert (symp == NULL);
3440 qsort (symbols, nfound, sizeof (struct symbol_search *),
3441 compare_search_syms);
3443 /* Collapse out the dups. */
3444 for (i = 1, j = 1; i < nfound; ++i)
3446 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3447 symbols[j++] = symbols[i];
3452 symbols[j - 1]->next = NULL;
3454 /* Rebuild the linked list. */
3455 for (i = 0; i < nunique - 1; i++)
3456 symbols[i]->next = symbols[i + 1];
3457 symbols[nunique - 1]->next = NULL;
3459 *new_head = symbols[0];
3460 *new_tail = symbols[nunique - 1];
3464 /* An object of this type is passed as the user_data to the
3465 expand_symtabs_matching method. */
3466 struct search_symbols_data
3471 /* It is true if PREG contains valid data, false otherwise. */
3472 unsigned preg_p : 1;
3476 /* A callback for expand_symtabs_matching. */
3479 search_symbols_file_matches (const char *filename, void *user_data,
3482 struct search_symbols_data *data = user_data;
3484 return file_matches (filename, data->files, data->nfiles, basenames);
3487 /* A callback for expand_symtabs_matching. */
3490 search_symbols_name_matches (const char *symname, void *user_data)
3492 struct search_symbols_data *data = user_data;
3494 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3497 /* Search the symbol table for matches to the regular expression REGEXP,
3498 returning the results in *MATCHES.
3500 Only symbols of KIND are searched:
3501 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3502 and constants (enums)
3503 FUNCTIONS_DOMAIN - search all functions
3504 TYPES_DOMAIN - search all type names
3505 ALL_DOMAIN - an internal error for this function
3507 free_search_symbols should be called when *MATCHES is no longer needed.
3509 Within each file the results are sorted locally; each symtab's global and
3510 static blocks are separately alphabetized.
3511 Duplicate entries are removed. */
3514 search_symbols (const char *regexp, enum search_domain kind,
3515 int nfiles, const char *files[],
3516 struct symbol_search **matches)
3519 const struct blockvector *bv;
3522 struct block_iterator iter;
3524 struct objfile *objfile;
3525 struct minimal_symbol *msymbol;
3527 static const enum minimal_symbol_type types[]
3528 = {mst_data, mst_text, mst_abs};
3529 static const enum minimal_symbol_type types2[]
3530 = {mst_bss, mst_file_text, mst_abs};
3531 static const enum minimal_symbol_type types3[]
3532 = {mst_file_data, mst_solib_trampoline, mst_abs};
3533 static const enum minimal_symbol_type types4[]
3534 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3535 enum minimal_symbol_type ourtype;
3536 enum minimal_symbol_type ourtype2;
3537 enum minimal_symbol_type ourtype3;
3538 enum minimal_symbol_type ourtype4;
3539 struct symbol_search *found;
3540 struct symbol_search *tail;
3541 struct search_symbols_data datum;
3544 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3545 CLEANUP_CHAIN is freed only in the case of an error. */
3546 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3547 struct cleanup *retval_chain;
3549 gdb_assert (kind <= TYPES_DOMAIN);
3551 ourtype = types[kind];
3552 ourtype2 = types2[kind];
3553 ourtype3 = types3[kind];
3554 ourtype4 = types4[kind];
3561 /* Make sure spacing is right for C++ operators.
3562 This is just a courtesy to make the matching less sensitive
3563 to how many spaces the user leaves between 'operator'
3564 and <TYPENAME> or <OPERATOR>. */
3566 const char *opname = operator_chars (regexp, &opend);
3571 int fix = -1; /* -1 means ok; otherwise number of
3574 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3576 /* There should 1 space between 'operator' and 'TYPENAME'. */
3577 if (opname[-1] != ' ' || opname[-2] == ' ')
3582 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3583 if (opname[-1] == ' ')
3586 /* If wrong number of spaces, fix it. */
3589 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3591 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3596 errcode = regcomp (&datum.preg, regexp,
3597 REG_NOSUB | (case_sensitivity == case_sensitive_off
3601 char *err = get_regcomp_error (errcode, &datum.preg);
3603 make_cleanup (xfree, err);
3604 error (_("Invalid regexp (%s): %s"), err, regexp);
3607 make_regfree_cleanup (&datum.preg);
3610 /* Search through the partial symtabs *first* for all symbols
3611 matching the regexp. That way we don't have to reproduce all of
3612 the machinery below. */
3614 datum.nfiles = nfiles;
3615 datum.files = files;
3616 expand_symtabs_matching ((nfiles == 0
3618 : search_symbols_file_matches),
3619 search_symbols_name_matches,
3622 /* Here, we search through the minimal symbol tables for functions
3623 and variables that match, and force their symbols to be read.
3624 This is in particular necessary for demangled variable names,
3625 which are no longer put into the partial symbol tables.
3626 The symbol will then be found during the scan of symtabs below.
3628 For functions, find_pc_symtab should succeed if we have debug info
3629 for the function, for variables we have to call
3630 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3632 If the lookup fails, set found_misc so that we will rescan to print
3633 any matching symbols without debug info.
3634 We only search the objfile the msymbol came from, we no longer search
3635 all objfiles. In large programs (1000s of shared libs) searching all
3636 objfiles is not worth the pain. */
3638 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3640 ALL_MSYMBOLS (objfile, msymbol)
3644 if (msymbol->created_by_gdb)
3647 if (MSYMBOL_TYPE (msymbol) == ourtype
3648 || MSYMBOL_TYPE (msymbol) == ourtype2
3649 || MSYMBOL_TYPE (msymbol) == ourtype3
3650 || MSYMBOL_TYPE (msymbol) == ourtype4)
3653 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3656 /* Note: An important side-effect of these lookup functions
3657 is to expand the symbol table if msymbol is found, for the
3658 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3659 if (kind == FUNCTIONS_DOMAIN
3660 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3662 : (lookup_symbol_in_objfile_from_linkage_name
3663 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3674 retval_chain = make_cleanup_free_search_symbols (&found);
3676 ALL_PRIMARY_SYMTABS (objfile, s)
3678 bv = BLOCKVECTOR (s);
3679 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3681 b = BLOCKVECTOR_BLOCK (bv, i);
3682 ALL_BLOCK_SYMBOLS (b, iter, sym)
3684 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3688 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3689 a substring of symtab_to_fullname as it may contain "./" etc. */
3690 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3691 || ((basenames_may_differ
3692 || file_matches (lbasename (real_symtab->filename),
3694 && file_matches (symtab_to_fullname (real_symtab),
3697 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3699 && ((kind == VARIABLES_DOMAIN
3700 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3701 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3702 && SYMBOL_CLASS (sym) != LOC_BLOCK
3703 /* LOC_CONST can be used for more than just enums,
3704 e.g., c++ static const members.
3705 We only want to skip enums here. */
3706 && !(SYMBOL_CLASS (sym) == LOC_CONST
3707 && TYPE_CODE (SYMBOL_TYPE (sym))
3709 || (kind == FUNCTIONS_DOMAIN
3710 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3711 || (kind == TYPES_DOMAIN
3712 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3715 struct symbol_search *psr = (struct symbol_search *)
3716 xmalloc (sizeof (struct symbol_search));
3718 psr->symtab = real_symtab;
3720 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3735 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3736 /* Note: nfound is no longer useful beyond this point. */
3739 /* If there are no eyes, avoid all contact. I mean, if there are
3740 no debug symbols, then print directly from the msymbol_vector. */
3742 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3744 ALL_MSYMBOLS (objfile, msymbol)
3748 if (msymbol->created_by_gdb)
3751 if (MSYMBOL_TYPE (msymbol) == ourtype
3752 || MSYMBOL_TYPE (msymbol) == ourtype2
3753 || MSYMBOL_TYPE (msymbol) == ourtype3
3754 || MSYMBOL_TYPE (msymbol) == ourtype4)
3757 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3760 /* For functions we can do a quick check of whether the
3761 symbol might be found via find_pc_symtab. */
3762 if (kind != FUNCTIONS_DOMAIN
3763 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3766 if (lookup_symbol_in_objfile_from_linkage_name
3767 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3771 struct symbol_search *psr = (struct symbol_search *)
3772 xmalloc (sizeof (struct symbol_search));
3774 psr->msymbol.minsym = msymbol;
3775 psr->msymbol.objfile = objfile;
3791 discard_cleanups (retval_chain);
3792 do_cleanups (old_chain);
3796 /* Helper function for symtab_symbol_info, this function uses
3797 the data returned from search_symbols() to print information
3798 regarding the match to gdb_stdout. */
3801 print_symbol_info (enum search_domain kind,
3802 struct symtab *s, struct symbol *sym,
3803 int block, const char *last)
3805 const char *s_filename = symtab_to_filename_for_display (s);
3807 if (last == NULL || filename_cmp (last, s_filename) != 0)
3809 fputs_filtered ("\nFile ", gdb_stdout);
3810 fputs_filtered (s_filename, gdb_stdout);
3811 fputs_filtered (":\n", gdb_stdout);
3814 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3815 printf_filtered ("static ");
3817 /* Typedef that is not a C++ class. */
3818 if (kind == TYPES_DOMAIN
3819 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3820 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3821 /* variable, func, or typedef-that-is-c++-class. */
3822 else if (kind < TYPES_DOMAIN
3823 || (kind == TYPES_DOMAIN
3824 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3826 type_print (SYMBOL_TYPE (sym),
3827 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3828 ? "" : SYMBOL_PRINT_NAME (sym)),
3831 printf_filtered (";\n");
3835 /* This help function for symtab_symbol_info() prints information
3836 for non-debugging symbols to gdb_stdout. */
3839 print_msymbol_info (struct bound_minimal_symbol msymbol)
3841 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3844 if (gdbarch_addr_bit (gdbarch) <= 32)
3845 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3846 & (CORE_ADDR) 0xffffffff,
3849 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3851 printf_filtered ("%s %s\n",
3852 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3855 /* This is the guts of the commands "info functions", "info types", and
3856 "info variables". It calls search_symbols to find all matches and then
3857 print_[m]symbol_info to print out some useful information about the
3861 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3863 static const char * const classnames[] =
3864 {"variable", "function", "type"};
3865 struct symbol_search *symbols;
3866 struct symbol_search *p;
3867 struct cleanup *old_chain;
3868 const char *last_filename = NULL;
3871 gdb_assert (kind <= TYPES_DOMAIN);
3873 /* Must make sure that if we're interrupted, symbols gets freed. */
3874 search_symbols (regexp, kind, 0, NULL, &symbols);
3875 old_chain = make_cleanup_free_search_symbols (&symbols);
3878 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3879 classnames[kind], regexp);
3881 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3883 for (p = symbols; p != NULL; p = p->next)
3887 if (p->msymbol.minsym != NULL)
3891 printf_filtered (_("\nNon-debugging symbols:\n"));
3894 print_msymbol_info (p->msymbol);
3898 print_symbol_info (kind,
3903 last_filename = symtab_to_filename_for_display (p->symtab);
3907 do_cleanups (old_chain);
3911 variables_info (char *regexp, int from_tty)
3913 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3917 functions_info (char *regexp, int from_tty)
3919 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3924 types_info (char *regexp, int from_tty)
3926 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3929 /* Breakpoint all functions matching regular expression. */
3932 rbreak_command_wrapper (char *regexp, int from_tty)
3934 rbreak_command (regexp, from_tty);
3937 /* A cleanup function that calls end_rbreak_breakpoints. */
3940 do_end_rbreak_breakpoints (void *ignore)
3942 end_rbreak_breakpoints ();
3946 rbreak_command (char *regexp, int from_tty)
3948 struct symbol_search *ss;
3949 struct symbol_search *p;
3950 struct cleanup *old_chain;
3951 char *string = NULL;
3953 const char **files = NULL;
3954 const char *file_name;
3959 char *colon = strchr (regexp, ':');
3961 if (colon && *(colon + 1) != ':')
3966 colon_index = colon - regexp;
3967 local_name = alloca (colon_index + 1);
3968 memcpy (local_name, regexp, colon_index);
3969 local_name[colon_index--] = 0;
3970 while (isspace (local_name[colon_index]))
3971 local_name[colon_index--] = 0;
3972 file_name = local_name;
3975 regexp = skip_spaces (colon + 1);
3979 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3980 old_chain = make_cleanup_free_search_symbols (&ss);
3981 make_cleanup (free_current_contents, &string);
3983 start_rbreak_breakpoints ();
3984 make_cleanup (do_end_rbreak_breakpoints, NULL);
3985 for (p = ss; p != NULL; p = p->next)
3987 if (p->msymbol.minsym == NULL)
3989 const char *fullname = symtab_to_fullname (p->symtab);
3991 int newlen = (strlen (fullname)
3992 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3997 string = xrealloc (string, newlen);
4000 strcpy (string, fullname);
4001 strcat (string, ":'");
4002 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4003 strcat (string, "'");
4004 break_command (string, from_tty);
4005 print_symbol_info (FUNCTIONS_DOMAIN,
4009 symtab_to_filename_for_display (p->symtab));
4013 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4017 string = xrealloc (string, newlen);
4020 strcpy (string, "'");
4021 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4022 strcat (string, "'");
4024 break_command (string, from_tty);
4025 printf_filtered ("<function, no debug info> %s;\n",
4026 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4030 do_cleanups (old_chain);
4034 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4036 Either sym_text[sym_text_len] != '(' and then we search for any
4037 symbol starting with SYM_TEXT text.
4039 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4040 be terminated at that point. Partial symbol tables do not have parameters
4044 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4046 int (*ncmp) (const char *, const char *, size_t);
4048 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4050 if (ncmp (name, sym_text, sym_text_len) != 0)
4053 if (sym_text[sym_text_len] == '(')
4055 /* User searches for `name(someth...'. Require NAME to be terminated.
4056 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4057 present but accept even parameters presence. In this case this
4058 function is in fact strcmp_iw but whitespace skipping is not supported
4059 for tab completion. */
4061 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4068 /* Free any memory associated with a completion list. */
4071 free_completion_list (VEC (char_ptr) **list_ptr)
4076 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4078 VEC_free (char_ptr, *list_ptr);
4081 /* Callback for make_cleanup. */
4084 do_free_completion_list (void *list)
4086 free_completion_list (list);
4089 /* Helper routine for make_symbol_completion_list. */
4091 static VEC (char_ptr) *return_val;
4093 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4094 completion_list_add_name \
4095 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4097 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4098 completion_list_add_name \
4099 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4101 /* Test to see if the symbol specified by SYMNAME (which is already
4102 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4103 characters. If so, add it to the current completion list. */
4106 completion_list_add_name (const char *symname,
4107 const char *sym_text, int sym_text_len,
4108 const char *text, const char *word)
4110 /* Clip symbols that cannot match. */
4111 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4114 /* We have a match for a completion, so add SYMNAME to the current list
4115 of matches. Note that the name is moved to freshly malloc'd space. */
4120 if (word == sym_text)
4122 new = xmalloc (strlen (symname) + 5);
4123 strcpy (new, symname);
4125 else if (word > sym_text)
4127 /* Return some portion of symname. */
4128 new = xmalloc (strlen (symname) + 5);
4129 strcpy (new, symname + (word - sym_text));
4133 /* Return some of SYM_TEXT plus symname. */
4134 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4135 strncpy (new, word, sym_text - word);
4136 new[sym_text - word] = '\0';
4137 strcat (new, symname);
4140 VEC_safe_push (char_ptr, return_val, new);
4144 /* ObjC: In case we are completing on a selector, look as the msymbol
4145 again and feed all the selectors into the mill. */
4148 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4149 const char *sym_text, int sym_text_len,
4150 const char *text, const char *word)
4152 static char *tmp = NULL;
4153 static unsigned int tmplen = 0;
4155 const char *method, *category, *selector;
4158 method = MSYMBOL_NATURAL_NAME (msymbol);
4160 /* Is it a method? */
4161 if ((method[0] != '-') && (method[0] != '+'))
4164 if (sym_text[0] == '[')
4165 /* Complete on shortened method method. */
4166 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4168 while ((strlen (method) + 1) >= tmplen)
4174 tmp = xrealloc (tmp, tmplen);
4176 selector = strchr (method, ' ');
4177 if (selector != NULL)
4180 category = strchr (method, '(');
4182 if ((category != NULL) && (selector != NULL))
4184 memcpy (tmp, method, (category - method));
4185 tmp[category - method] = ' ';
4186 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4187 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4188 if (sym_text[0] == '[')
4189 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4192 if (selector != NULL)
4194 /* Complete on selector only. */
4195 strcpy (tmp, selector);
4196 tmp2 = strchr (tmp, ']');
4200 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4204 /* Break the non-quoted text based on the characters which are in
4205 symbols. FIXME: This should probably be language-specific. */
4208 language_search_unquoted_string (const char *text, const char *p)
4210 for (; p > text; --p)
4212 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4216 if ((current_language->la_language == language_objc))
4218 if (p[-1] == ':') /* Might be part of a method name. */
4220 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4221 p -= 2; /* Beginning of a method name. */
4222 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4223 { /* Might be part of a method name. */
4226 /* Seeing a ' ' or a '(' is not conclusive evidence
4227 that we are in the middle of a method name. However,
4228 finding "-[" or "+[" should be pretty un-ambiguous.
4229 Unfortunately we have to find it now to decide. */
4232 if (isalnum (t[-1]) || t[-1] == '_' ||
4233 t[-1] == ' ' || t[-1] == ':' ||
4234 t[-1] == '(' || t[-1] == ')')
4239 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4240 p = t - 2; /* Method name detected. */
4241 /* Else we leave with p unchanged. */
4251 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4252 int sym_text_len, const char *text,
4255 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4257 struct type *t = SYMBOL_TYPE (sym);
4258 enum type_code c = TYPE_CODE (t);
4261 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4262 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4263 if (TYPE_FIELD_NAME (t, j))
4264 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4265 sym_text, sym_text_len, text, word);
4269 /* Type of the user_data argument passed to add_macro_name or
4270 symbol_completion_matcher. The contents are simply whatever is
4271 needed by completion_list_add_name. */
4272 struct add_name_data
4274 const char *sym_text;
4280 /* A callback used with macro_for_each and macro_for_each_in_scope.
4281 This adds a macro's name to the current completion list. */
4284 add_macro_name (const char *name, const struct macro_definition *ignore,
4285 struct macro_source_file *ignore2, int ignore3,
4288 struct add_name_data *datum = (struct add_name_data *) user_data;
4290 completion_list_add_name (name,
4291 datum->sym_text, datum->sym_text_len,
4292 datum->text, datum->word);
4295 /* A callback for expand_symtabs_matching. */
4298 symbol_completion_matcher (const char *name, void *user_data)
4300 struct add_name_data *datum = (struct add_name_data *) user_data;
4302 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4306 default_make_symbol_completion_list_break_on (const char *text,
4308 const char *break_on,
4309 enum type_code code)
4311 /* Problem: All of the symbols have to be copied because readline
4312 frees them. I'm not going to worry about this; hopefully there
4313 won't be that many. */
4317 struct minimal_symbol *msymbol;
4318 struct objfile *objfile;
4319 const struct block *b;
4320 const struct block *surrounding_static_block, *surrounding_global_block;
4321 struct block_iterator iter;
4322 /* The symbol we are completing on. Points in same buffer as text. */
4323 const char *sym_text;
4324 /* Length of sym_text. */
4326 struct add_name_data datum;
4327 struct cleanup *back_to;
4329 /* Now look for the symbol we are supposed to complete on. */
4333 const char *quote_pos = NULL;
4335 /* First see if this is a quoted string. */
4337 for (p = text; *p != '\0'; ++p)
4339 if (quote_found != '\0')
4341 if (*p == quote_found)
4342 /* Found close quote. */
4344 else if (*p == '\\' && p[1] == quote_found)
4345 /* A backslash followed by the quote character
4346 doesn't end the string. */
4349 else if (*p == '\'' || *p == '"')
4355 if (quote_found == '\'')
4356 /* A string within single quotes can be a symbol, so complete on it. */
4357 sym_text = quote_pos + 1;
4358 else if (quote_found == '"')
4359 /* A double-quoted string is never a symbol, nor does it make sense
4360 to complete it any other way. */
4366 /* It is not a quoted string. Break it based on the characters
4367 which are in symbols. */
4370 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4371 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4380 sym_text_len = strlen (sym_text);
4382 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4384 if (current_language->la_language == language_cplus
4385 || current_language->la_language == language_java
4386 || current_language->la_language == language_fortran)
4388 /* These languages may have parameters entered by user but they are never
4389 present in the partial symbol tables. */
4391 const char *cs = memchr (sym_text, '(', sym_text_len);
4394 sym_text_len = cs - sym_text;
4396 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4399 back_to = make_cleanup (do_free_completion_list, &return_val);
4401 datum.sym_text = sym_text;
4402 datum.sym_text_len = sym_text_len;
4406 /* Look through the partial symtabs for all symbols which begin
4407 by matching SYM_TEXT. Expand all CUs that you find to the list.
4408 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4409 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4412 /* At this point scan through the misc symbol vectors and add each
4413 symbol you find to the list. Eventually we want to ignore
4414 anything that isn't a text symbol (everything else will be
4415 handled by the psymtab code above). */
4417 if (code == TYPE_CODE_UNDEF)
4419 ALL_MSYMBOLS (objfile, msymbol)
4422 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4425 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4430 /* Search upwards from currently selected frame (so that we can
4431 complete on local vars). Also catch fields of types defined in
4432 this places which match our text string. Only complete on types
4433 visible from current context. */
4435 b = get_selected_block (0);
4436 surrounding_static_block = block_static_block (b);
4437 surrounding_global_block = block_global_block (b);
4438 if (surrounding_static_block != NULL)
4439 while (b != surrounding_static_block)
4443 ALL_BLOCK_SYMBOLS (b, iter, sym)
4445 if (code == TYPE_CODE_UNDEF)
4447 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4449 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4452 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4453 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4454 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4458 /* Stop when we encounter an enclosing function. Do not stop for
4459 non-inlined functions - the locals of the enclosing function
4460 are in scope for a nested function. */
4461 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4463 b = BLOCK_SUPERBLOCK (b);
4466 /* Add fields from the file's types; symbols will be added below. */
4468 if (code == TYPE_CODE_UNDEF)
4470 if (surrounding_static_block != NULL)
4471 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4472 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4474 if (surrounding_global_block != NULL)
4475 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4476 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4479 /* Go through the symtabs and check the externs and statics for
4480 symbols which match. */
4482 ALL_PRIMARY_SYMTABS (objfile, s)
4485 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4486 ALL_BLOCK_SYMBOLS (b, iter, sym)
4488 if (code == TYPE_CODE_UNDEF
4489 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4490 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4491 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4495 ALL_PRIMARY_SYMTABS (objfile, s)
4498 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4499 ALL_BLOCK_SYMBOLS (b, iter, sym)
4501 if (code == TYPE_CODE_UNDEF
4502 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4503 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4504 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4508 /* Skip macros if we are completing a struct tag -- arguable but
4509 usually what is expected. */
4510 if (current_language->la_macro_expansion == macro_expansion_c
4511 && code == TYPE_CODE_UNDEF)
4513 struct macro_scope *scope;
4515 /* Add any macros visible in the default scope. Note that this
4516 may yield the occasional wrong result, because an expression
4517 might be evaluated in a scope other than the default. For
4518 example, if the user types "break file:line if <TAB>", the
4519 resulting expression will be evaluated at "file:line" -- but
4520 at there does not seem to be a way to detect this at
4522 scope = default_macro_scope ();
4525 macro_for_each_in_scope (scope->file, scope->line,
4526 add_macro_name, &datum);
4530 /* User-defined macros are always visible. */
4531 macro_for_each (macro_user_macros, add_macro_name, &datum);
4534 discard_cleanups (back_to);
4535 return (return_val);
4539 default_make_symbol_completion_list (const char *text, const char *word,
4540 enum type_code code)
4542 return default_make_symbol_completion_list_break_on (text, word, "", code);
4545 /* Return a vector of all symbols (regardless of class) which begin by
4546 matching TEXT. If the answer is no symbols, then the return value
4550 make_symbol_completion_list (const char *text, const char *word)
4552 return current_language->la_make_symbol_completion_list (text, word,
4556 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4557 symbols whose type code is CODE. */
4560 make_symbol_completion_type (const char *text, const char *word,
4561 enum type_code code)
4563 gdb_assert (code == TYPE_CODE_UNION
4564 || code == TYPE_CODE_STRUCT
4565 || code == TYPE_CODE_CLASS
4566 || code == TYPE_CODE_ENUM);
4567 return current_language->la_make_symbol_completion_list (text, word, code);
4570 /* Like make_symbol_completion_list, but suitable for use as a
4571 completion function. */
4574 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4575 const char *text, const char *word)
4577 return make_symbol_completion_list (text, word);
4580 /* Like make_symbol_completion_list, but returns a list of symbols
4581 defined in a source file FILE. */
4584 make_file_symbol_completion_list (const char *text, const char *word,
4585 const char *srcfile)
4590 struct block_iterator iter;
4591 /* The symbol we are completing on. Points in same buffer as text. */
4592 const char *sym_text;
4593 /* Length of sym_text. */
4596 /* Now look for the symbol we are supposed to complete on.
4597 FIXME: This should be language-specific. */
4601 const char *quote_pos = NULL;
4603 /* First see if this is a quoted string. */
4605 for (p = text; *p != '\0'; ++p)
4607 if (quote_found != '\0')
4609 if (*p == quote_found)
4610 /* Found close quote. */
4612 else if (*p == '\\' && p[1] == quote_found)
4613 /* A backslash followed by the quote character
4614 doesn't end the string. */
4617 else if (*p == '\'' || *p == '"')
4623 if (quote_found == '\'')
4624 /* A string within single quotes can be a symbol, so complete on it. */
4625 sym_text = quote_pos + 1;
4626 else if (quote_found == '"')
4627 /* A double-quoted string is never a symbol, nor does it make sense
4628 to complete it any other way. */
4634 /* Not a quoted string. */
4635 sym_text = language_search_unquoted_string (text, p);
4639 sym_text_len = strlen (sym_text);
4643 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4645 s = lookup_symtab (srcfile);
4648 /* Maybe they typed the file with leading directories, while the
4649 symbol tables record only its basename. */
4650 const char *tail = lbasename (srcfile);
4653 s = lookup_symtab (tail);
4656 /* If we have no symtab for that file, return an empty list. */
4658 return (return_val);
4660 /* Go through this symtab and check the externs and statics for
4661 symbols which match. */
4663 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4664 ALL_BLOCK_SYMBOLS (b, iter, sym)
4666 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4669 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4670 ALL_BLOCK_SYMBOLS (b, iter, sym)
4672 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4675 return (return_val);
4678 /* A helper function for make_source_files_completion_list. It adds
4679 another file name to a list of possible completions, growing the
4680 list as necessary. */
4683 add_filename_to_list (const char *fname, const char *text, const char *word,
4684 VEC (char_ptr) **list)
4687 size_t fnlen = strlen (fname);
4691 /* Return exactly fname. */
4692 new = xmalloc (fnlen + 5);
4693 strcpy (new, fname);
4695 else if (word > text)
4697 /* Return some portion of fname. */
4698 new = xmalloc (fnlen + 5);
4699 strcpy (new, fname + (word - text));
4703 /* Return some of TEXT plus fname. */
4704 new = xmalloc (fnlen + (text - word) + 5);
4705 strncpy (new, word, text - word);
4706 new[text - word] = '\0';
4707 strcat (new, fname);
4709 VEC_safe_push (char_ptr, *list, new);
4713 not_interesting_fname (const char *fname)
4715 static const char *illegal_aliens[] = {
4716 "_globals_", /* inserted by coff_symtab_read */
4721 for (i = 0; illegal_aliens[i]; i++)
4723 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4729 /* An object of this type is passed as the user_data argument to
4730 map_partial_symbol_filenames. */
4731 struct add_partial_filename_data
4733 struct filename_seen_cache *filename_seen_cache;
4737 VEC (char_ptr) **list;
4740 /* A callback for map_partial_symbol_filenames. */
4743 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4746 struct add_partial_filename_data *data = user_data;
4748 if (not_interesting_fname (filename))
4750 if (!filename_seen (data->filename_seen_cache, filename, 1)
4751 && filename_ncmp (filename, data->text, data->text_len) == 0)
4753 /* This file matches for a completion; add it to the
4754 current list of matches. */
4755 add_filename_to_list (filename, data->text, data->word, data->list);
4759 const char *base_name = lbasename (filename);
4761 if (base_name != filename
4762 && !filename_seen (data->filename_seen_cache, base_name, 1)
4763 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4764 add_filename_to_list (base_name, data->text, data->word, data->list);
4768 /* Return a vector of all source files whose names begin with matching
4769 TEXT. The file names are looked up in the symbol tables of this
4770 program. If the answer is no matchess, then the return value is
4774 make_source_files_completion_list (const char *text, const char *word)
4777 struct objfile *objfile;
4778 size_t text_len = strlen (text);
4779 VEC (char_ptr) *list = NULL;
4780 const char *base_name;
4781 struct add_partial_filename_data datum;
4782 struct filename_seen_cache *filename_seen_cache;
4783 struct cleanup *back_to, *cache_cleanup;
4785 if (!have_full_symbols () && !have_partial_symbols ())
4788 back_to = make_cleanup (do_free_completion_list, &list);
4790 filename_seen_cache = create_filename_seen_cache ();
4791 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4792 filename_seen_cache);
4794 ALL_SYMTABS (objfile, s)
4796 if (not_interesting_fname (s->filename))
4798 if (!filename_seen (filename_seen_cache, s->filename, 1)
4799 && filename_ncmp (s->filename, text, text_len) == 0)
4801 /* This file matches for a completion; add it to the current
4803 add_filename_to_list (s->filename, text, word, &list);
4807 /* NOTE: We allow the user to type a base name when the
4808 debug info records leading directories, but not the other
4809 way around. This is what subroutines of breakpoint
4810 command do when they parse file names. */
4811 base_name = lbasename (s->filename);
4812 if (base_name != s->filename
4813 && !filename_seen (filename_seen_cache, base_name, 1)
4814 && filename_ncmp (base_name, text, text_len) == 0)
4815 add_filename_to_list (base_name, text, word, &list);
4819 datum.filename_seen_cache = filename_seen_cache;
4822 datum.text_len = text_len;
4824 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4825 0 /*need_fullname*/);
4827 do_cleanups (cache_cleanup);
4828 discard_cleanups (back_to);
4833 /* Determine if PC is in the prologue of a function. The prologue is the area
4834 between the first instruction of a function, and the first executable line.
4835 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4837 If non-zero, func_start is where we think the prologue starts, possibly
4838 by previous examination of symbol table information. */
4841 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4843 struct symtab_and_line sal;
4844 CORE_ADDR func_addr, func_end;
4846 /* We have several sources of information we can consult to figure
4848 - Compilers usually emit line number info that marks the prologue
4849 as its own "source line". So the ending address of that "line"
4850 is the end of the prologue. If available, this is the most
4852 - The minimal symbols and partial symbols, which can usually tell
4853 us the starting and ending addresses of a function.
4854 - If we know the function's start address, we can call the
4855 architecture-defined gdbarch_skip_prologue function to analyze the
4856 instruction stream and guess where the prologue ends.
4857 - Our `func_start' argument; if non-zero, this is the caller's
4858 best guess as to the function's entry point. At the time of
4859 this writing, handle_inferior_event doesn't get this right, so
4860 it should be our last resort. */
4862 /* Consult the partial symbol table, to find which function
4864 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4866 CORE_ADDR prologue_end;
4868 /* We don't even have minsym information, so fall back to using
4869 func_start, if given. */
4871 return 1; /* We *might* be in a prologue. */
4873 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4875 return func_start <= pc && pc < prologue_end;
4878 /* If we have line number information for the function, that's
4879 usually pretty reliable. */
4880 sal = find_pc_line (func_addr, 0);
4882 /* Now sal describes the source line at the function's entry point,
4883 which (by convention) is the prologue. The end of that "line",
4884 sal.end, is the end of the prologue.
4886 Note that, for functions whose source code is all on a single
4887 line, the line number information doesn't always end up this way.
4888 So we must verify that our purported end-of-prologue address is
4889 *within* the function, not at its start or end. */
4891 || sal.end <= func_addr
4892 || func_end <= sal.end)
4894 /* We don't have any good line number info, so use the minsym
4895 information, together with the architecture-specific prologue
4897 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4899 return func_addr <= pc && pc < prologue_end;
4902 /* We have line number info, and it looks good. */
4903 return func_addr <= pc && pc < sal.end;
4906 /* Given PC at the function's start address, attempt to find the
4907 prologue end using SAL information. Return zero if the skip fails.
4909 A non-optimized prologue traditionally has one SAL for the function
4910 and a second for the function body. A single line function has
4911 them both pointing at the same line.
4913 An optimized prologue is similar but the prologue may contain
4914 instructions (SALs) from the instruction body. Need to skip those
4915 while not getting into the function body.
4917 The functions end point and an increasing SAL line are used as
4918 indicators of the prologue's endpoint.
4920 This code is based on the function refine_prologue_limit
4924 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4926 struct symtab_and_line prologue_sal;
4929 const struct block *bl;
4931 /* Get an initial range for the function. */
4932 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4933 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4935 prologue_sal = find_pc_line (start_pc, 0);
4936 if (prologue_sal.line != 0)
4938 /* For languages other than assembly, treat two consecutive line
4939 entries at the same address as a zero-instruction prologue.
4940 The GNU assembler emits separate line notes for each instruction
4941 in a multi-instruction macro, but compilers generally will not
4943 if (prologue_sal.symtab->language != language_asm)
4945 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4948 /* Skip any earlier lines, and any end-of-sequence marker
4949 from a previous function. */
4950 while (linetable->item[idx].pc != prologue_sal.pc
4951 || linetable->item[idx].line == 0)
4954 if (idx+1 < linetable->nitems
4955 && linetable->item[idx+1].line != 0
4956 && linetable->item[idx+1].pc == start_pc)
4960 /* If there is only one sal that covers the entire function,
4961 then it is probably a single line function, like
4963 if (prologue_sal.end >= end_pc)
4966 while (prologue_sal.end < end_pc)
4968 struct symtab_and_line sal;
4970 sal = find_pc_line (prologue_sal.end, 0);
4973 /* Assume that a consecutive SAL for the same (or larger)
4974 line mark the prologue -> body transition. */
4975 if (sal.line >= prologue_sal.line)
4977 /* Likewise if we are in a different symtab altogether
4978 (e.g. within a file included via #include). */
4979 if (sal.symtab != prologue_sal.symtab)
4982 /* The line number is smaller. Check that it's from the
4983 same function, not something inlined. If it's inlined,
4984 then there is no point comparing the line numbers. */
4985 bl = block_for_pc (prologue_sal.end);
4988 if (block_inlined_p (bl))
4990 if (BLOCK_FUNCTION (bl))
4995 bl = BLOCK_SUPERBLOCK (bl);
5000 /* The case in which compiler's optimizer/scheduler has
5001 moved instructions into the prologue. We look ahead in
5002 the function looking for address ranges whose
5003 corresponding line number is less the first one that we
5004 found for the function. This is more conservative then
5005 refine_prologue_limit which scans a large number of SALs
5006 looking for any in the prologue. */
5011 if (prologue_sal.end < end_pc)
5012 /* Return the end of this line, or zero if we could not find a
5014 return prologue_sal.end;
5016 /* Don't return END_PC, which is past the end of the function. */
5017 return prologue_sal.pc;
5022 /* Return the "main_info" object for the current program space. If
5023 the object has not yet been created, create it and fill in some
5026 static struct main_info *
5027 get_main_info (void)
5029 struct main_info *info = program_space_data (current_program_space,
5030 main_progspace_key);
5034 /* It may seem strange to store the main name in the progspace
5035 and also in whatever objfile happens to see a main name in
5036 its debug info. The reason for this is mainly historical:
5037 gdb returned "main" as the name even if no function named
5038 "main" was defined the program; and this approach lets us
5039 keep compatibility. */
5040 info = XCNEW (struct main_info);
5041 info->language_of_main = language_unknown;
5042 set_program_space_data (current_program_space, main_progspace_key,
5049 /* A cleanup to destroy a struct main_info when a progspace is
5053 main_info_cleanup (struct program_space *pspace, void *data)
5055 struct main_info *info = data;
5058 xfree (info->name_of_main);
5063 set_main_name (const char *name, enum language lang)
5065 struct main_info *info = get_main_info ();
5067 if (info->name_of_main != NULL)
5069 xfree (info->name_of_main);
5070 info->name_of_main = NULL;
5071 info->language_of_main = language_unknown;
5075 info->name_of_main = xstrdup (name);
5076 info->language_of_main = lang;
5080 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5084 find_main_name (void)
5086 const char *new_main_name;
5087 struct objfile *objfile;
5089 /* First check the objfiles to see whether a debuginfo reader has
5090 picked up the appropriate main name. Historically the main name
5091 was found in a more or less random way; this approach instead
5092 relies on the order of objfile creation -- which still isn't
5093 guaranteed to get the correct answer, but is just probably more
5095 ALL_OBJFILES (objfile)
5097 if (objfile->per_bfd->name_of_main != NULL)
5099 set_main_name (objfile->per_bfd->name_of_main,
5100 objfile->per_bfd->language_of_main);
5105 /* Try to see if the main procedure is in Ada. */
5106 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5107 be to add a new method in the language vector, and call this
5108 method for each language until one of them returns a non-empty
5109 name. This would allow us to remove this hard-coded call to
5110 an Ada function. It is not clear that this is a better approach
5111 at this point, because all methods need to be written in a way
5112 such that false positives never be returned. For instance, it is
5113 important that a method does not return a wrong name for the main
5114 procedure if the main procedure is actually written in a different
5115 language. It is easy to guaranty this with Ada, since we use a
5116 special symbol generated only when the main in Ada to find the name
5117 of the main procedure. It is difficult however to see how this can
5118 be guarantied for languages such as C, for instance. This suggests
5119 that order of call for these methods becomes important, which means
5120 a more complicated approach. */
5121 new_main_name = ada_main_name ();
5122 if (new_main_name != NULL)
5124 set_main_name (new_main_name, language_ada);
5128 new_main_name = d_main_name ();
5129 if (new_main_name != NULL)
5131 set_main_name (new_main_name, language_d);
5135 new_main_name = go_main_name ();
5136 if (new_main_name != NULL)
5138 set_main_name (new_main_name, language_go);
5142 new_main_name = pascal_main_name ();
5143 if (new_main_name != NULL)
5145 set_main_name (new_main_name, language_pascal);
5149 /* The languages above didn't identify the name of the main procedure.
5150 Fallback to "main". */
5151 set_main_name ("main", language_unknown);
5157 struct main_info *info = get_main_info ();
5159 if (info->name_of_main == NULL)
5162 return info->name_of_main;
5165 /* Return the language of the main function. If it is not known,
5166 return language_unknown. */
5169 main_language (void)
5171 struct main_info *info = get_main_info ();
5173 if (info->name_of_main == NULL)
5176 return info->language_of_main;
5179 /* Handle ``executable_changed'' events for the symtab module. */
5182 symtab_observer_executable_changed (void)
5184 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5185 set_main_name (NULL, language_unknown);
5188 /* Return 1 if the supplied producer string matches the ARM RealView
5189 compiler (armcc). */
5192 producer_is_realview (const char *producer)
5194 static const char *const arm_idents[] = {
5195 "ARM C Compiler, ADS",
5196 "Thumb C Compiler, ADS",
5197 "ARM C++ Compiler, ADS",
5198 "Thumb C++ Compiler, ADS",
5199 "ARM/Thumb C/C++ Compiler, RVCT",
5200 "ARM C/C++ Compiler, RVCT"
5204 if (producer == NULL)
5207 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5208 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5216 /* The next index to hand out in response to a registration request. */
5218 static int next_aclass_value = LOC_FINAL_VALUE;
5220 /* The maximum number of "aclass" registrations we support. This is
5221 constant for convenience. */
5222 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5224 /* The objects representing the various "aclass" values. The elements
5225 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5226 elements are those registered at gdb initialization time. */
5228 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5230 /* The globally visible pointer. This is separate from 'symbol_impl'
5231 so that it can be const. */
5233 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5235 /* Make sure we saved enough room in struct symbol. */
5237 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5239 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5240 is the ops vector associated with this index. This returns the new
5241 index, which should be used as the aclass_index field for symbols
5245 register_symbol_computed_impl (enum address_class aclass,
5246 const struct symbol_computed_ops *ops)
5248 int result = next_aclass_value++;
5250 gdb_assert (aclass == LOC_COMPUTED);
5251 gdb_assert (result < MAX_SYMBOL_IMPLS);
5252 symbol_impl[result].aclass = aclass;
5253 symbol_impl[result].ops_computed = ops;
5255 /* Sanity check OPS. */
5256 gdb_assert (ops != NULL);
5257 gdb_assert (ops->tracepoint_var_ref != NULL);
5258 gdb_assert (ops->describe_location != NULL);
5259 gdb_assert (ops->read_needs_frame != NULL);
5260 gdb_assert (ops->read_variable != NULL);
5265 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5266 OPS is the ops vector associated with this index. This returns the
5267 new index, which should be used as the aclass_index field for symbols
5271 register_symbol_block_impl (enum address_class aclass,
5272 const struct symbol_block_ops *ops)
5274 int result = next_aclass_value++;
5276 gdb_assert (aclass == LOC_BLOCK);
5277 gdb_assert (result < MAX_SYMBOL_IMPLS);
5278 symbol_impl[result].aclass = aclass;
5279 symbol_impl[result].ops_block = ops;
5281 /* Sanity check OPS. */
5282 gdb_assert (ops != NULL);
5283 gdb_assert (ops->find_frame_base_location != NULL);
5288 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5289 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5290 this index. This returns the new index, which should be used as
5291 the aclass_index field for symbols of this type. */
5294 register_symbol_register_impl (enum address_class aclass,
5295 const struct symbol_register_ops *ops)
5297 int result = next_aclass_value++;
5299 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5300 gdb_assert (result < MAX_SYMBOL_IMPLS);
5301 symbol_impl[result].aclass = aclass;
5302 symbol_impl[result].ops_register = ops;
5307 /* Initialize elements of 'symbol_impl' for the constants in enum
5311 initialize_ordinary_address_classes (void)
5315 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5316 symbol_impl[i].aclass = i;
5321 /* Initialize the symbol SYM. */
5324 initialize_symbol (struct symbol *sym)
5326 memset (sym, 0, sizeof (*sym));
5327 SYMBOL_SECTION (sym) = -1;
5330 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5334 allocate_symbol (struct objfile *objfile)
5336 struct symbol *result;
5338 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5339 SYMBOL_SECTION (result) = -1;
5344 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5347 struct template_symbol *
5348 allocate_template_symbol (struct objfile *objfile)
5350 struct template_symbol *result;
5352 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5353 SYMBOL_SECTION (&result->base) = -1;
5361 _initialize_symtab (void)
5363 initialize_ordinary_address_classes ();
5366 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5368 add_info ("variables", variables_info, _("\
5369 All global and static variable names, or those matching REGEXP."));
5371 add_com ("whereis", class_info, variables_info, _("\
5372 All global and static variable names, or those matching REGEXP."));
5374 add_info ("functions", functions_info,
5375 _("All function names, or those matching REGEXP."));
5377 /* FIXME: This command has at least the following problems:
5378 1. It prints builtin types (in a very strange and confusing fashion).
5379 2. It doesn't print right, e.g. with
5380 typedef struct foo *FOO
5381 type_print prints "FOO" when we want to make it (in this situation)
5382 print "struct foo *".
5383 I also think "ptype" or "whatis" is more likely to be useful (but if
5384 there is much disagreement "info types" can be fixed). */
5385 add_info ("types", types_info,
5386 _("All type names, or those matching REGEXP."));
5388 add_info ("sources", sources_info,
5389 _("Source files in the program."));
5391 add_com ("rbreak", class_breakpoint, rbreak_command,
5392 _("Set a breakpoint for all functions matching REGEXP."));
5396 add_com ("lf", class_info, sources_info,
5397 _("Source files in the program"));
5398 add_com ("lg", class_info, variables_info, _("\
5399 All global and static variable names, or those matching REGEXP."));
5402 add_setshow_enum_cmd ("multiple-symbols", no_class,
5403 multiple_symbols_modes, &multiple_symbols_mode,
5405 Set the debugger behavior when more than one symbol are possible matches\n\
5406 in an expression."), _("\
5407 Show how the debugger handles ambiguities in expressions."), _("\
5408 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5409 NULL, NULL, &setlist, &showlist);
5411 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5412 &basenames_may_differ, _("\
5413 Set whether a source file may have multiple base names."), _("\
5414 Show whether a source file may have multiple base names."), _("\
5415 (A \"base name\" is the name of a file with the directory part removed.\n\
5416 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5417 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5418 before comparing them. Canonicalization is an expensive operation,\n\
5419 but it allows the same file be known by more than one base name.\n\
5420 If not set (the default), all source files are assumed to have just\n\
5421 one base name, and gdb will do file name comparisons more efficiently."),
5423 &setlist, &showlist);
5425 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5426 _("Set debugging of symbol table creation."),
5427 _("Show debugging of symbol table creation."), _("\
5428 When enabled (non-zero), debugging messages are printed when building\n\
5429 symbol tables. A value of 1 (one) normally provides enough information.\n\
5430 A value greater than 1 provides more verbose information."),
5433 &setdebuglist, &showdebuglist);
5435 observer_attach_executable_changed (symtab_observer_executable_changed);