1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support, using pieces from other GDB modules.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "arch-utils.h"
37 #include "breakpoint.h"
39 #include "complaints.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
54 #include "parser-defs.h"
60 #include <sys/types.h>
62 #include "gdb_string.h"
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
78 static void clear_symtab_users_cleanup (void *ignore);
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
83 /* External variables and functions referenced. */
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
87 /* Functions this file defines */
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
94 static void load_command (char *, int);
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98 static void add_symbol_file_command (char *, int);
100 static void reread_separate_symbols (struct objfile *objfile);
102 static void cashier_psymtab (struct partial_symtab *);
104 bfd *symfile_bfd_open (char *);
106 int get_section_index (struct objfile *, char *);
108 static struct sym_fns *find_sym_fns (bfd *);
110 static void decrement_reading_symtab (void *);
112 static void overlay_invalidate_all (void);
114 void list_overlays_command (char *, int);
116 void map_overlay_command (char *, int);
118 void unmap_overlay_command (char *, int);
120 static void overlay_auto_command (char *, int);
122 static void overlay_manual_command (char *, int);
124 static void overlay_off_command (char *, int);
126 static void overlay_load_command (char *, int);
128 static void overlay_command (char *, int);
130 static void simple_free_overlay_table (void);
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
135 static int simple_read_overlay_table (void);
137 static int simple_overlay_update_1 (struct obj_section *);
139 static void add_filename_language (char *ext, enum language lang);
141 static void info_ext_lang_command (char *args, int from_tty);
143 static char *find_separate_debug_file (struct objfile *objfile);
145 static void init_filename_language_table (void);
147 static void symfile_find_segment_sections (struct objfile *objfile);
149 void _initialize_symfile (void);
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
155 static struct sym_fns *symtab_fns = NULL;
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163 int symbol_reloading = 0;
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
174 /* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
179 int print_symbol_loading = 1;
181 /* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
188 library symbols are not loaded, commands like "info fun" will *not*
189 report all the functions that are actually present. */
191 int auto_solib_add = 1;
193 /* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
201 int auto_solib_limit;
204 /* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
208 compare_psymbols (const void *s1p, const void *s2p)
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
218 sort_pst_symbols (struct partial_symtab *pst)
220 /* Sort the global list; don't sort the static list */
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
227 /* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
233 obsavestring (const char *ptr, int size, struct obstack *obstackp)
235 char *p = (char *) obstack_alloc (obstackp, size + 1);
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
240 const char *p1 = ptr;
242 const char *end = ptr + size;
250 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
254 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
265 /* True if we are nested inside psymtab_to_symtab. */
267 int currently_reading_symtab = 0;
270 decrement_reading_symtab (void *dummy)
272 currently_reading_symtab--;
275 /* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
281 psymtab_to_symtab (struct partial_symtab *pst)
283 /* If it's been looked up before, return it. */
287 /* If it has not yet been read in, read it. */
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
299 /* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
309 find_lowest_section (bfd *abfd, asection *sect, void *obj)
311 asection **lowest = (asection **) obj;
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
325 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
327 struct section_addr_info *
328 alloc_section_addr_info (size_t num_sections)
330 struct section_addr_info *sap;
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
343 /* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345 struct section_addr_info *
346 copy_section_addr_info (struct section_addr_info *addrs)
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
368 /* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
371 extern struct section_addr_info *
372 build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
375 struct section_addr_info *sap;
376 const struct target_section *stp;
379 sap = alloc_section_addr_info (end - start);
381 for (stp = start, oidx = 0; stp != end; stp++)
383 if (bfd_get_section_flags (stp->bfd,
384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
385 && oidx < end - start)
387 sap->other[oidx].addr = stp->addr;
388 sap->other[oidx].name
389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
399 /* Free all memory allocated by build_section_addr_info_from_section_table. */
402 free_section_addr_info (struct section_addr_info *sap)
406 for (idx = 0; idx < sap->num_sections; idx++)
407 if (sap->other[idx].name)
408 xfree (sap->other[idx].name);
413 /* Initialize OBJFILE's sect_index_* members. */
415 init_objfile_sect_indices (struct objfile *objfile)
420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
422 objfile->sect_index_text = sect->index;
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
426 objfile->sect_index_data = sect->index;
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
430 objfile->sect_index_bss = sect->index;
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
434 objfile->sect_index_rodata = sect->index;
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
442 symfile_find_segment_sections (objfile);
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
453 for (i = 0; i < objfile->num_sections; i++)
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
460 if (i == objfile->num_sections)
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
473 /* The arguments to place_section. */
475 struct place_section_arg
477 struct section_offsets *offsets;
481 /* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
485 place_section (bfd *abfd, asection *sect, void *obj)
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
500 /* Otherwise, let's try to find a place for the section. */
501 start_addr = (arg->lowest + align - 1) & -align;
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
513 /* We don't need to compare against ourself. */
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
537 /* Otherwise, we appear to be OK. So far. */
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
546 /* Parse the user's idea of an offset for dynamic linking, into our idea
547 of how to represent it for fast symbol reading. This is the default
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
553 default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
558 objfile->num_sections = bfd_count_sections (objfile->obfd);
559 objfile->section_offsets = (struct section_offsets *)
560 obstack_alloc (&objfile->objfile_obstack,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562 memset (objfile->section_offsets, 0,
563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
565 /* Now calculate offsets for section that were specified by the
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 struct other_sections *osp ;
571 osp = &addrs->other[i] ;
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
588 struct place_section_arg arg;
589 bfd *abfd = objfile->obfd;
591 CORE_ADDR lowest = 0;
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
603 /* Pick non-overlapping offsets for sections the user did not
605 arg.offsets = objfile->section_offsets;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
644 offsets[cur_sec->index] = 0;
649 /* Remember the bfd indexes for the .text, .data, .bss and
651 init_objfile_sect_indices (objfile);
655 /* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
661 struct symfile_segment_data *
662 default_symfile_segments (bfd *abfd)
666 struct symfile_segment_data *data;
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
704 vma = bfd_get_section_vma (abfd, sect);
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
710 data->segment_info[i] = 1;
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
719 /* Process a symbol file, as either the main file or as a dynamically
722 OBJFILE is where the symbols are to be read from.
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
750 syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
756 struct section_addr_info *local_addr = NULL;
757 struct cleanup *old_chain;
758 const int mainline = add_flags & SYMFILE_MAINLINE;
760 gdb_assert (! (addrs && offsets));
762 init_entry_point_info (objfile);
763 objfile->sf = find_sym_fns (objfile->obfd);
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
770 old_chain = make_cleanup_free_objfile (objfile);
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
783 /* Now either addrs or offsets is non-zero. */
787 /* We will modify the main symbol table, make sure that all its users
788 will be cleaned up if an error occurs during symbol reading. */
789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
791 /* Since no error yet, throw away the old symbol table. */
793 if (symfile_objfile != NULL)
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
799 /* Currently we keep symbols from the add-symbol-file command.
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
804 (*objfile->sf->sym_new_init) (objfile);
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
809 and assume that <addr> is where that got loaded.
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
813 if (!mainline && addrs && addrs->other[0].name)
815 asection *lower_sect;
817 CORE_ADDR lower_offset;
820 /* Find lowest loadable section to be used as starting point for
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
827 if (lower_sect == NULL)
829 warning (_("no loadable sections found in added symbol-file %s"),
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
836 /* Calculate offsets for the loadable sections.
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
848 if (addrs->other[i].addr != 0)
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
862 warning (_("section %s not found in %s"),
863 addrs->other[i].name,
865 addrs->other[i].addr = 0;
869 addrs->other[i].addr = lower_offset;
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
877 (*objfile->sf->sym_init) (objfile);
878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
881 (*objfile->sf->sym_offsets) (objfile, addrs);
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
890 obstack_alloc (&objfile->objfile_obstack, size));
891 memcpy (objfile->section_offsets, offsets, size);
893 init_objfile_sect_indices (objfile);
896 (*objfile->sf->sym_read) (objfile, mainline);
898 /* Discard cleanups as symbol reading was successful. */
900 discard_cleanups (old_chain);
904 /* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
909 new_symfile_objfile (struct objfile *objfile, int add_flags)
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
915 if (add_flags & SYMFILE_MAINLINE)
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
920 clear_symtab_users ();
922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
924 breakpoint_re_set ();
927 /* We're done reading the symbol file; finish off complaints. */
928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
931 /* Process a symbol file, as either the main file or as a dynamically
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
947 static struct objfile *
948 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
957 char *debugfile = NULL;
958 struct section_addr_info *orig_addrs = NULL;
959 struct cleanup *my_cleanups;
960 const char *name = bfd_get_filename (abfd);
961 const int from_tty = add_flags & SYMFILE_VERBOSE;
963 my_cleanups = make_cleanup_bfd_close (abfd);
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
968 if ((have_full_symbols () || have_partial_symbols ())
969 && (add_flags & SYMFILE_MAINLINE)
971 && !query (_("Load new symbol table from \"%s\"? "), name))
972 error (_("Not confirmed."));
974 objfile = allocate_objfile (abfd, flags);
975 discard_cleanups (my_cleanups);
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
992 if (print_symbol_loading)
994 printf_unfiltered (_("Reading symbols from %s..."), name);
996 gdb_flush (gdb_stdout);
1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1010 if ((from_tty || info_verbose) && print_symbol_loading)
1012 printf_unfiltered (_("expanding to full symbols..."));
1014 gdb_flush (gdb_stdout);
1017 for (psymtab = objfile->psymtabs;
1019 psymtab = psymtab->next)
1021 psymtab_to_symtab (psymtab);
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
1034 objfile->separate_debug_objfile
1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1039 objfile->separate_debug_objfile
1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
1056 printf_unfiltered (_("(no debugging symbols found)"));
1057 if (from_tty || info_verbose)
1058 printf_unfiltered ("...");
1060 printf_unfiltered ("\n");
1064 if (from_tty || info_verbose)
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1078 gdb_flush (gdb_stdout);
1080 do_cleanups (my_cleanups);
1082 if (objfile->sf == NULL)
1083 return objfile; /* No symbols. */
1085 new_symfile_objfile (objfile, add_flags);
1087 observer_notify_new_objfile (objfile);
1089 bfd_cache_close_all ();
1094 /* Process the symbol file ABFD, as either the main file or as a
1095 dynamically loaded file.
1097 See symbol_file_add_with_addrs_or_offsets's comments for
1100 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1101 struct section_addr_info *addrs,
1104 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1109 /* Process a symbol file, as either the main file or as a dynamically
1110 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1113 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1116 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1121 /* Call symbol_file_add() with default values and update whatever is
1122 affected by the loading of a new main().
1123 Used when the file is supplied in the gdb command line
1124 and by some targets with special loading requirements.
1125 The auxiliary function, symbol_file_add_main_1(), has the flags
1126 argument for the switches that can only be specified in the symbol_file
1130 symbol_file_add_main (char *args, int from_tty)
1132 symbol_file_add_main_1 (args, from_tty, 0);
1136 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1138 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1139 symbol_file_add (args, add_flags, NULL, flags);
1141 /* Getting new symbols may change our opinion about
1142 what is frameless. */
1143 reinit_frame_cache ();
1145 set_initial_language ();
1149 symbol_file_clear (int from_tty)
1151 if ((have_full_symbols () || have_partial_symbols ())
1154 ? !query (_("Discard symbol table from `%s'? "),
1155 symfile_objfile->name)
1156 : !query (_("Discard symbol table? "))))
1157 error (_("Not confirmed."));
1159 free_all_objfiles ();
1161 /* solib descriptors may have handles to objfiles. Since their
1162 storage has just been released, we'd better wipe the solib
1163 descriptors as well. */
1164 no_shared_libraries (NULL, from_tty);
1166 symfile_objfile = NULL;
1168 printf_unfiltered (_("No symbol file now.\n"));
1177 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1179 static struct build_id *
1180 build_id_bfd_get (bfd *abfd)
1182 struct build_id *retval;
1184 if (!bfd_check_format (abfd, bfd_object)
1185 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1186 || elf_tdata (abfd)->build_id == NULL)
1189 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1190 retval->size = elf_tdata (abfd)->build_id_size;
1191 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1196 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1199 build_id_verify (const char *filename, struct build_id *check)
1202 struct build_id *found = NULL;
1205 /* We expect to be silent on the non-existing files. */
1206 if (remote_filename_p (filename))
1207 abfd = remote_bfd_open (filename, gnutarget);
1209 abfd = bfd_openr (filename, gnutarget);
1213 found = build_id_bfd_get (abfd);
1216 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1217 else if (found->size != check->size
1218 || memcmp (found->data, check->data, found->size) != 0)
1219 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1223 if (!bfd_close (abfd))
1224 warning (_("cannot close \"%s\": %s"), filename,
1225 bfd_errmsg (bfd_get_error ()));
1233 build_id_to_debug_filename (struct build_id *build_id)
1235 char *link, *s, *retval = NULL;
1236 gdb_byte *data = build_id->data;
1237 size_t size = build_id->size;
1239 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1240 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1241 + 2 * size + (sizeof ".debug" - 1) + 1);
1242 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1246 s += sprintf (s, "%02x", (unsigned) *data++);
1251 s += sprintf (s, "%02x", (unsigned) *data++);
1252 strcpy (s, ".debug");
1254 /* lrealpath() is expensive even for the usually non-existent files. */
1255 if (access (link, F_OK) == 0)
1256 retval = lrealpath (link);
1259 if (retval != NULL && !build_id_verify (retval, build_id))
1269 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1278 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1283 debuglink_size = bfd_section_size (objfile->obfd, sect);
1285 contents = xmalloc (debuglink_size);
1286 bfd_get_section_contents (objfile->obfd, sect, contents,
1287 (file_ptr)0, (bfd_size_type)debuglink_size);
1289 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1290 crc_offset = strlen (contents) + 1;
1291 crc_offset = (crc_offset + 3) & ~3;
1293 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1300 separate_debug_file_exists (const char *name, unsigned long crc)
1302 unsigned long file_crc = 0;
1304 gdb_byte buffer[8*1024];
1307 if (remote_filename_p (name))
1308 abfd = remote_bfd_open (name, gnutarget);
1310 abfd = bfd_openr (name, gnutarget);
1315 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1316 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320 return crc == file_crc;
1323 char *debug_file_directory = NULL;
1325 show_debug_file_directory (struct ui_file *file, int from_tty,
1326 struct cmd_list_element *c, const char *value)
1328 fprintf_filtered (file, _("\
1329 The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 #if ! defined (DEBUG_SUBDIRECTORY)
1334 #define DEBUG_SUBDIRECTORY ".debug"
1338 find_separate_debug_file (struct objfile *objfile)
1346 bfd_size_type debuglink_size;
1347 unsigned long crc32;
1349 struct build_id *build_id;
1351 build_id = build_id_bfd_get (objfile->obfd);
1352 if (build_id != NULL)
1354 char *build_id_name;
1356 build_id_name = build_id_to_debug_filename (build_id);
1358 /* Prevent looping on a stripped .debug file. */
1359 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1361 warning (_("\"%s\": separate debug info file has no debug info"),
1363 xfree (build_id_name);
1365 else if (build_id_name != NULL)
1366 return build_id_name;
1369 basename = get_debug_link_info (objfile, &crc32);
1371 if (basename == NULL)
1374 dir = xstrdup (objfile->name);
1376 /* Strip off the final filename part, leaving the directory name,
1377 followed by a slash. Objfile names should always be absolute and
1378 tilde-expanded, so there should always be a slash in there
1380 for (i = strlen(dir) - 1; i >= 0; i--)
1382 if (IS_DIR_SEPARATOR (dir[i]))
1385 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1388 debugfile = alloca (strlen (debug_file_directory) + 1
1390 + strlen (DEBUG_SUBDIRECTORY)
1395 /* First try in the same directory as the original file. */
1396 strcpy (debugfile, dir);
1397 strcat (debugfile, basename);
1399 if (separate_debug_file_exists (debugfile, crc32))
1403 return xstrdup (debugfile);
1406 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, DEBUG_SUBDIRECTORY);
1409 strcat (debugfile, "/");
1410 strcat (debugfile, basename);
1412 if (separate_debug_file_exists (debugfile, crc32))
1416 return xstrdup (debugfile);
1419 /* Then try in the global debugfile directory. */
1420 strcpy (debugfile, debug_file_directory);
1421 strcat (debugfile, "/");
1422 strcat (debugfile, dir);
1423 strcat (debugfile, basename);
1425 if (separate_debug_file_exists (debugfile, crc32))
1429 return xstrdup (debugfile);
1432 /* If the file is in the sysroot, try using its base path in the
1433 global debugfile directory. */
1434 canon_name = lrealpath (dir);
1436 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1437 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1439 strcpy (debugfile, debug_file_directory);
1440 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1441 strcat (debugfile, "/");
1442 strcat (debugfile, basename);
1444 if (separate_debug_file_exists (debugfile, crc32))
1449 return xstrdup (debugfile);
1462 /* This is the symbol-file command. Read the file, analyze its
1463 symbols, and add a struct symtab to a symtab list. The syntax of
1464 the command is rather bizarre:
1466 1. The function buildargv implements various quoting conventions
1467 which are undocumented and have little or nothing in common with
1468 the way things are quoted (or not quoted) elsewhere in GDB.
1470 2. Options are used, which are not generally used in GDB (perhaps
1471 "set mapped on", "set readnow on" would be better)
1473 3. The order of options matters, which is contrary to GNU
1474 conventions (because it is confusing and inconvenient). */
1477 symbol_file_command (char *args, int from_tty)
1483 symbol_file_clear (from_tty);
1487 char **argv = gdb_buildargv (args);
1488 int flags = OBJF_USERLOADED;
1489 struct cleanup *cleanups;
1492 cleanups = make_cleanup_freeargv (argv);
1493 while (*argv != NULL)
1495 if (strcmp (*argv, "-readnow") == 0)
1496 flags |= OBJF_READNOW;
1497 else if (**argv == '-')
1498 error (_("unknown option `%s'"), *argv);
1501 symbol_file_add_main_1 (*argv, from_tty, flags);
1509 error (_("no symbol file name was specified"));
1511 do_cleanups (cleanups);
1515 /* Set the initial language.
1517 FIXME: A better solution would be to record the language in the
1518 psymtab when reading partial symbols, and then use it (if known) to
1519 set the language. This would be a win for formats that encode the
1520 language in an easily discoverable place, such as DWARF. For
1521 stabs, we can jump through hoops looking for specially named
1522 symbols or try to intuit the language from the specific type of
1523 stabs we find, but we can't do that until later when we read in
1527 set_initial_language (void)
1529 struct partial_symtab *pst;
1530 enum language lang = language_unknown;
1532 pst = find_main_psymtab ();
1535 if (pst->filename != NULL)
1536 lang = deduce_language_from_filename (pst->filename);
1538 if (lang == language_unknown)
1540 /* Make C the default language */
1544 set_language (lang);
1545 expected_language = current_language; /* Don't warn the user. */
1549 /* Open the file specified by NAME and hand it off to BFD for
1550 preliminary analysis. Return a newly initialized bfd *, which
1551 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1552 absolute). In case of trouble, error() is called. */
1555 symfile_bfd_open (char *name)
1559 char *absolute_name;
1561 if (remote_filename_p (name))
1563 name = xstrdup (name);
1564 sym_bfd = remote_bfd_open (name, gnutarget);
1567 make_cleanup (xfree, name);
1568 error (_("`%s': can't open to read symbols: %s."), name,
1569 bfd_errmsg (bfd_get_error ()));
1572 if (!bfd_check_format (sym_bfd, bfd_object))
1574 bfd_close (sym_bfd);
1575 make_cleanup (xfree, name);
1576 error (_("`%s': can't read symbols: %s."), name,
1577 bfd_errmsg (bfd_get_error ()));
1583 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1585 /* Look down path for it, allocate 2nd new malloc'd copy. */
1586 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1587 O_RDONLY | O_BINARY, &absolute_name);
1588 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1591 char *exename = alloca (strlen (name) + 5);
1592 strcat (strcpy (exename, name), ".exe");
1593 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1594 O_RDONLY | O_BINARY, &absolute_name);
1599 make_cleanup (xfree, name);
1600 perror_with_name (name);
1603 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1604 bfd. It'll be freed in free_objfile(). */
1606 name = absolute_name;
1608 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1612 make_cleanup (xfree, name);
1613 error (_("`%s': can't open to read symbols: %s."), name,
1614 bfd_errmsg (bfd_get_error ()));
1616 bfd_set_cacheable (sym_bfd, 1);
1618 if (!bfd_check_format (sym_bfd, bfd_object))
1620 /* FIXME: should be checking for errors from bfd_close (for one
1621 thing, on error it does not free all the storage associated
1623 bfd_close (sym_bfd); /* This also closes desc. */
1624 make_cleanup (xfree, name);
1625 error (_("`%s': can't read symbols: %s."), name,
1626 bfd_errmsg (bfd_get_error ()));
1632 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1633 the section was not found. */
1636 get_section_index (struct objfile *objfile, char *section_name)
1638 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1646 /* Link SF into the global symtab_fns list. Called on startup by the
1647 _initialize routine in each object file format reader, to register
1648 information about each format the the reader is prepared to
1652 add_symtab_fns (struct sym_fns *sf)
1654 sf->next = symtab_fns;
1658 /* Initialize OBJFILE to read symbols from its associated BFD. It
1659 either returns or calls error(). The result is an initialized
1660 struct sym_fns in the objfile structure, that contains cached
1661 information about the symbol file. */
1663 static struct sym_fns *
1664 find_sym_fns (bfd *abfd)
1667 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1669 if (our_flavour == bfd_target_srec_flavour
1670 || our_flavour == bfd_target_ihex_flavour
1671 || our_flavour == bfd_target_tekhex_flavour)
1672 return NULL; /* No symbols. */
1674 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1675 if (our_flavour == sf->sym_flavour)
1678 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1679 bfd_get_target (abfd));
1683 /* This function runs the load command of our current target. */
1686 load_command (char *arg, int from_tty)
1688 /* The user might be reloading because the binary has changed. Take
1689 this opportunity to check. */
1690 reopen_exec_file ();
1698 parg = arg = get_exec_file (1);
1700 /* Count how many \ " ' tab space there are in the name. */
1701 while ((parg = strpbrk (parg, "\\\"'\t ")))
1709 /* We need to quote this string so buildargv can pull it apart. */
1710 char *temp = xmalloc (strlen (arg) + count + 1 );
1714 make_cleanup (xfree, temp);
1717 while ((parg = strpbrk (parg, "\\\"'\t ")))
1719 strncpy (ptemp, prev, parg - prev);
1720 ptemp += parg - prev;
1724 strcpy (ptemp, prev);
1730 target_load (arg, from_tty);
1732 /* After re-loading the executable, we don't really know which
1733 overlays are mapped any more. */
1734 overlay_cache_invalid = 1;
1737 /* This version of "load" should be usable for any target. Currently
1738 it is just used for remote targets, not inftarg.c or core files,
1739 on the theory that only in that case is it useful.
1741 Avoiding xmodem and the like seems like a win (a) because we don't have
1742 to worry about finding it, and (b) On VMS, fork() is very slow and so
1743 we don't want to run a subprocess. On the other hand, I'm not sure how
1744 performance compares. */
1746 static int validate_download = 0;
1748 /* Callback service function for generic_load (bfd_map_over_sections). */
1751 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1753 bfd_size_type *sum = data;
1755 *sum += bfd_get_section_size (asec);
1758 /* Opaque data for load_section_callback. */
1759 struct load_section_data {
1760 unsigned long load_offset;
1761 struct load_progress_data *progress_data;
1762 VEC(memory_write_request_s) *requests;
1765 /* Opaque data for load_progress. */
1766 struct load_progress_data {
1767 /* Cumulative data. */
1768 unsigned long write_count;
1769 unsigned long data_count;
1770 bfd_size_type total_size;
1773 /* Opaque data for load_progress for a single section. */
1774 struct load_progress_section_data {
1775 struct load_progress_data *cumulative;
1777 /* Per-section data. */
1778 const char *section_name;
1779 ULONGEST section_sent;
1780 ULONGEST section_size;
1785 /* Target write callback routine for progress reporting. */
1788 load_progress (ULONGEST bytes, void *untyped_arg)
1790 struct load_progress_section_data *args = untyped_arg;
1791 struct load_progress_data *totals;
1794 /* Writing padding data. No easy way to get at the cumulative
1795 stats, so just ignore this. */
1798 totals = args->cumulative;
1800 if (bytes == 0 && args->section_sent == 0)
1802 /* The write is just starting. Let the user know we've started
1804 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1805 args->section_name, hex_string (args->section_size),
1806 paddress (target_gdbarch, args->lma));
1810 if (validate_download)
1812 /* Broken memories and broken monitors manifest themselves here
1813 when bring new computers to life. This doubles already slow
1815 /* NOTE: cagney/1999-10-18: A more efficient implementation
1816 might add a verify_memory() method to the target vector and
1817 then use that. remote.c could implement that method using
1818 the ``qCRC'' packet. */
1819 gdb_byte *check = xmalloc (bytes);
1820 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1822 if (target_read_memory (args->lma, check, bytes) != 0)
1823 error (_("Download verify read failed at %s"),
1824 paddress (target_gdbarch, args->lma));
1825 if (memcmp (args->buffer, check, bytes) != 0)
1826 error (_("Download verify compare failed at %s"),
1827 paddress (target_gdbarch, args->lma));
1828 do_cleanups (verify_cleanups);
1830 totals->data_count += bytes;
1832 args->buffer += bytes;
1833 totals->write_count += 1;
1834 args->section_sent += bytes;
1836 || (deprecated_ui_load_progress_hook != NULL
1837 && deprecated_ui_load_progress_hook (args->section_name,
1838 args->section_sent)))
1839 error (_("Canceled the download"));
1841 if (deprecated_show_load_progress != NULL)
1842 deprecated_show_load_progress (args->section_name,
1846 totals->total_size);
1849 /* Callback service function for generic_load (bfd_map_over_sections). */
1852 load_section_callback (bfd *abfd, asection *asec, void *data)
1854 struct memory_write_request *new_request;
1855 struct load_section_data *args = data;
1856 struct load_progress_section_data *section_data;
1857 bfd_size_type size = bfd_get_section_size (asec);
1859 const char *sect_name = bfd_get_section_name (abfd, asec);
1861 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1867 new_request = VEC_safe_push (memory_write_request_s,
1868 args->requests, NULL);
1869 memset (new_request, 0, sizeof (struct memory_write_request));
1870 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1871 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1872 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1873 new_request->data = xmalloc (size);
1874 new_request->baton = section_data;
1876 buffer = new_request->data;
1878 section_data->cumulative = args->progress_data;
1879 section_data->section_name = sect_name;
1880 section_data->section_size = size;
1881 section_data->lma = new_request->begin;
1882 section_data->buffer = buffer;
1884 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1887 /* Clean up an entire memory request vector, including load
1888 data and progress records. */
1891 clear_memory_write_data (void *arg)
1893 VEC(memory_write_request_s) **vec_p = arg;
1894 VEC(memory_write_request_s) *vec = *vec_p;
1896 struct memory_write_request *mr;
1898 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1903 VEC_free (memory_write_request_s, vec);
1907 generic_load (char *args, int from_tty)
1910 struct timeval start_time, end_time;
1912 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1913 struct load_section_data cbdata;
1914 struct load_progress_data total_progress;
1919 memset (&cbdata, 0, sizeof (cbdata));
1920 memset (&total_progress, 0, sizeof (total_progress));
1921 cbdata.progress_data = &total_progress;
1923 make_cleanup (clear_memory_write_data, &cbdata.requests);
1926 error_no_arg (_("file to load"));
1928 argv = gdb_buildargv (args);
1929 make_cleanup_freeargv (argv);
1931 filename = tilde_expand (argv[0]);
1932 make_cleanup (xfree, filename);
1934 if (argv[1] != NULL)
1938 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1940 /* If the last word was not a valid number then
1941 treat it as a file name with spaces in. */
1942 if (argv[1] == endptr)
1943 error (_("Invalid download offset:%s."), argv[1]);
1945 if (argv[2] != NULL)
1946 error (_("Too many parameters."));
1949 /* Open the file for loading. */
1950 loadfile_bfd = bfd_openr (filename, gnutarget);
1951 if (loadfile_bfd == NULL)
1953 perror_with_name (filename);
1957 /* FIXME: should be checking for errors from bfd_close (for one thing,
1958 on error it does not free all the storage associated with the
1960 make_cleanup_bfd_close (loadfile_bfd);
1962 if (!bfd_check_format (loadfile_bfd, bfd_object))
1964 error (_("\"%s\" is not an object file: %s"), filename,
1965 bfd_errmsg (bfd_get_error ()));
1968 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1969 (void *) &total_progress.total_size);
1971 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1973 gettimeofday (&start_time, NULL);
1975 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1976 load_progress) != 0)
1977 error (_("Load failed"));
1979 gettimeofday (&end_time, NULL);
1981 entry = bfd_get_start_address (loadfile_bfd);
1982 ui_out_text (uiout, "Start address ");
1983 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1984 ui_out_text (uiout, ", load size ");
1985 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1986 ui_out_text (uiout, "\n");
1987 /* We were doing this in remote-mips.c, I suspect it is right
1988 for other targets too. */
1989 regcache_write_pc (get_current_regcache (), entry);
1991 /* FIXME: are we supposed to call symbol_file_add or not? According
1992 to a comment from remote-mips.c (where a call to symbol_file_add
1993 was commented out), making the call confuses GDB if more than one
1994 file is loaded in. Some targets do (e.g., remote-vx.c) but
1995 others don't (or didn't - perhaps they have all been deleted). */
1997 print_transfer_performance (gdb_stdout, total_progress.data_count,
1998 total_progress.write_count,
1999 &start_time, &end_time);
2001 do_cleanups (old_cleanups);
2004 /* Report how fast the transfer went. */
2006 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2007 replaced by print_transfer_performance (with a very different
2008 function signature). */
2011 report_transfer_performance (unsigned long data_count, time_t start_time,
2014 struct timeval start, end;
2016 start.tv_sec = start_time;
2018 end.tv_sec = end_time;
2021 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2025 print_transfer_performance (struct ui_file *stream,
2026 unsigned long data_count,
2027 unsigned long write_count,
2028 const struct timeval *start_time,
2029 const struct timeval *end_time)
2031 ULONGEST time_count;
2033 /* Compute the elapsed time in milliseconds, as a tradeoff between
2034 accuracy and overflow. */
2035 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2036 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2038 ui_out_text (uiout, "Transfer rate: ");
2041 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2043 if (ui_out_is_mi_like_p (uiout))
2045 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2046 ui_out_text (uiout, " bits/sec");
2048 else if (rate < 1024)
2050 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2051 ui_out_text (uiout, " bytes/sec");
2055 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2056 ui_out_text (uiout, " KB/sec");
2061 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2062 ui_out_text (uiout, " bits in <1 sec");
2064 if (write_count > 0)
2066 ui_out_text (uiout, ", ");
2067 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2068 ui_out_text (uiout, " bytes/write");
2070 ui_out_text (uiout, ".\n");
2073 /* This function allows the addition of incrementally linked object files.
2074 It does not modify any state in the target, only in the debugger. */
2075 /* Note: ezannoni 2000-04-13 This function/command used to have a
2076 special case syntax for the rombug target (Rombug is the boot
2077 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2078 rombug case, the user doesn't need to supply a text address,
2079 instead a call to target_link() (in target.c) would supply the
2080 value to use. We are now discontinuing this type of ad hoc syntax. */
2083 add_symbol_file_command (char *args, int from_tty)
2085 struct gdbarch *gdbarch = get_current_arch ();
2086 char *filename = NULL;
2087 int flags = OBJF_USERLOADED;
2089 int expecting_option = 0;
2090 int section_index = 0;
2094 int expecting_sec_name = 0;
2095 int expecting_sec_addr = 0;
2104 struct section_addr_info *section_addrs;
2105 struct sect_opt *sect_opts = NULL;
2106 size_t num_sect_opts = 0;
2107 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2110 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2111 * sizeof (struct sect_opt));
2116 error (_("add-symbol-file takes a file name and an address"));
2118 argv = gdb_buildargv (args);
2119 make_cleanup_freeargv (argv);
2121 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2123 /* Process the argument. */
2126 /* The first argument is the file name. */
2127 filename = tilde_expand (arg);
2128 make_cleanup (xfree, filename);
2133 /* The second argument is always the text address at which
2134 to load the program. */
2135 sect_opts[section_index].name = ".text";
2136 sect_opts[section_index].value = arg;
2137 if (++section_index >= num_sect_opts)
2140 sect_opts = ((struct sect_opt *)
2141 xrealloc (sect_opts,
2143 * sizeof (struct sect_opt)));
2148 /* It's an option (starting with '-') or it's an argument
2153 if (strcmp (arg, "-readnow") == 0)
2154 flags |= OBJF_READNOW;
2155 else if (strcmp (arg, "-s") == 0)
2157 expecting_sec_name = 1;
2158 expecting_sec_addr = 1;
2163 if (expecting_sec_name)
2165 sect_opts[section_index].name = arg;
2166 expecting_sec_name = 0;
2169 if (expecting_sec_addr)
2171 sect_opts[section_index].value = arg;
2172 expecting_sec_addr = 0;
2173 if (++section_index >= num_sect_opts)
2176 sect_opts = ((struct sect_opt *)
2177 xrealloc (sect_opts,
2179 * sizeof (struct sect_opt)));
2183 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2188 /* This command takes at least two arguments. The first one is a
2189 filename, and the second is the address where this file has been
2190 loaded. Abort now if this address hasn't been provided by the
2192 if (section_index < 1)
2193 error (_("The address where %s has been loaded is missing"), filename);
2195 /* Print the prompt for the query below. And save the arguments into
2196 a sect_addr_info structure to be passed around to other
2197 functions. We have to split this up into separate print
2198 statements because hex_string returns a local static
2201 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2202 section_addrs = alloc_section_addr_info (section_index);
2203 make_cleanup (xfree, section_addrs);
2204 for (i = 0; i < section_index; i++)
2207 char *val = sect_opts[i].value;
2208 char *sec = sect_opts[i].name;
2210 addr = parse_and_eval_address (val);
2212 /* Here we store the section offsets in the order they were
2213 entered on the command line. */
2214 section_addrs->other[sec_num].name = sec;
2215 section_addrs->other[sec_num].addr = addr;
2216 printf_unfiltered ("\t%s_addr = %s\n", sec,
2217 paddress (gdbarch, addr));
2220 /* The object's sections are initialized when a
2221 call is made to build_objfile_section_table (objfile).
2222 This happens in reread_symbols.
2223 At this point, we don't know what file type this is,
2224 so we can't determine what section names are valid. */
2227 if (from_tty && (!query ("%s", "")))
2228 error (_("Not confirmed."));
2230 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2231 section_addrs, flags);
2233 /* Getting new symbols may change our opinion about what is
2235 reinit_frame_cache ();
2236 do_cleanups (my_cleanups);
2240 /* Re-read symbols if a symbol-file has changed. */
2242 reread_symbols (void)
2244 struct objfile *objfile;
2247 struct stat new_statbuf;
2250 /* With the addition of shared libraries, this should be modified,
2251 the load time should be saved in the partial symbol tables, since
2252 different tables may come from different source files. FIXME.
2253 This routine should then walk down each partial symbol table
2254 and see if the symbol table that it originates from has been changed */
2256 for (objfile = object_files; objfile; objfile = objfile->next)
2260 #ifdef DEPRECATED_IBM6000_TARGET
2261 /* If this object is from a shared library, then you should
2262 stat on the library name, not member name. */
2264 if (objfile->obfd->my_archive)
2265 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2268 res = stat (objfile->name, &new_statbuf);
2271 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2272 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2276 new_modtime = new_statbuf.st_mtime;
2277 if (new_modtime != objfile->mtime)
2279 struct cleanup *old_cleanups;
2280 struct section_offsets *offsets;
2282 char *obfd_filename;
2284 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2287 /* There are various functions like symbol_file_add,
2288 symfile_bfd_open, syms_from_objfile, etc., which might
2289 appear to do what we want. But they have various other
2290 effects which we *don't* want. So we just do stuff
2291 ourselves. We don't worry about mapped files (for one thing,
2292 any mapped file will be out of date). */
2294 /* If we get an error, blow away this objfile (not sure if
2295 that is the correct response for things like shared
2297 old_cleanups = make_cleanup_free_objfile (objfile);
2298 /* We need to do this whenever any symbols go away. */
2299 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2301 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2302 bfd_get_filename (exec_bfd)) == 0)
2304 /* Reload EXEC_BFD without asking anything. */
2306 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2309 /* Clean up any state BFD has sitting around. We don't need
2310 to close the descriptor but BFD lacks a way of closing the
2311 BFD without closing the descriptor. */
2312 obfd_filename = bfd_get_filename (objfile->obfd);
2313 if (!bfd_close (objfile->obfd))
2314 error (_("Can't close BFD for %s: %s"), objfile->name,
2315 bfd_errmsg (bfd_get_error ()));
2316 if (remote_filename_p (obfd_filename))
2317 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2319 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2320 if (objfile->obfd == NULL)
2321 error (_("Can't open %s to read symbols."), objfile->name);
2322 /* bfd_openr sets cacheable to true, which is what we want. */
2323 if (!bfd_check_format (objfile->obfd, bfd_object))
2324 error (_("Can't read symbols from %s: %s."), objfile->name,
2325 bfd_errmsg (bfd_get_error ()));
2327 /* Save the offsets, we will nuke them with the rest of the
2329 num_offsets = objfile->num_sections;
2330 offsets = ((struct section_offsets *)
2331 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2332 memcpy (offsets, objfile->section_offsets,
2333 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2335 /* Remove any references to this objfile in the global
2337 preserve_values (objfile);
2339 /* Nuke all the state that we will re-read. Much of the following
2340 code which sets things to NULL really is necessary to tell
2341 other parts of GDB that there is nothing currently there.
2343 Try to keep the freeing order compatible with free_objfile. */
2345 if (objfile->sf != NULL)
2347 (*objfile->sf->sym_finish) (objfile);
2350 clear_objfile_data (objfile);
2352 /* FIXME: Do we have to free a whole linked list, or is this
2354 if (objfile->global_psymbols.list)
2355 xfree (objfile->global_psymbols.list);
2356 memset (&objfile->global_psymbols, 0,
2357 sizeof (objfile->global_psymbols));
2358 if (objfile->static_psymbols.list)
2359 xfree (objfile->static_psymbols.list);
2360 memset (&objfile->static_psymbols, 0,
2361 sizeof (objfile->static_psymbols));
2363 /* Free the obstacks for non-reusable objfiles */
2364 bcache_xfree (objfile->psymbol_cache);
2365 objfile->psymbol_cache = bcache_xmalloc ();
2366 bcache_xfree (objfile->macro_cache);
2367 objfile->macro_cache = bcache_xmalloc ();
2368 if (objfile->demangled_names_hash != NULL)
2370 htab_delete (objfile->demangled_names_hash);
2371 objfile->demangled_names_hash = NULL;
2373 obstack_free (&objfile->objfile_obstack, 0);
2374 objfile->sections = NULL;
2375 objfile->symtabs = NULL;
2376 objfile->psymtabs = NULL;
2377 objfile->psymtabs_addrmap = NULL;
2378 objfile->free_psymtabs = NULL;
2379 objfile->cp_namespace_symtab = NULL;
2380 objfile->msymbols = NULL;
2381 objfile->deprecated_sym_private = NULL;
2382 objfile->minimal_symbol_count = 0;
2383 memset (&objfile->msymbol_hash, 0,
2384 sizeof (objfile->msymbol_hash));
2385 memset (&objfile->msymbol_demangled_hash, 0,
2386 sizeof (objfile->msymbol_demangled_hash));
2388 objfile->psymbol_cache = bcache_xmalloc ();
2389 objfile->macro_cache = bcache_xmalloc ();
2390 /* obstack_init also initializes the obstack so it is
2391 empty. We could use obstack_specify_allocation but
2392 gdb_obstack.h specifies the alloc/dealloc
2394 obstack_init (&objfile->objfile_obstack);
2395 if (build_objfile_section_table (objfile))
2397 error (_("Can't find the file sections in `%s': %s"),
2398 objfile->name, bfd_errmsg (bfd_get_error ()));
2400 terminate_minimal_symbol_table (objfile);
2402 /* We use the same section offsets as from last time. I'm not
2403 sure whether that is always correct for shared libraries. */
2404 objfile->section_offsets = (struct section_offsets *)
2405 obstack_alloc (&objfile->objfile_obstack,
2406 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2407 memcpy (objfile->section_offsets, offsets,
2408 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2409 objfile->num_sections = num_offsets;
2411 /* What the hell is sym_new_init for, anyway? The concept of
2412 distinguishing between the main file and additional files
2413 in this way seems rather dubious. */
2414 if (objfile == symfile_objfile)
2416 (*objfile->sf->sym_new_init) (objfile);
2419 (*objfile->sf->sym_init) (objfile);
2420 clear_complaints (&symfile_complaints, 1, 1);
2421 /* The "mainline" parameter is a hideous hack; I think leaving it
2422 zero is OK since dbxread.c also does what it needs to do if
2423 objfile->global_psymbols.size is 0. */
2424 (*objfile->sf->sym_read) (objfile, 0);
2425 if (!have_partial_symbols () && !have_full_symbols ())
2428 printf_unfiltered (_("(no debugging symbols found)\n"));
2432 /* We're done reading the symbol file; finish off complaints. */
2433 clear_complaints (&symfile_complaints, 0, 1);
2435 /* Getting new symbols may change our opinion about what is
2438 reinit_frame_cache ();
2440 /* Discard cleanups as symbol reading was successful. */
2441 discard_cleanups (old_cleanups);
2443 /* If the mtime has changed between the time we set new_modtime
2444 and now, we *want* this to be out of date, so don't call stat
2446 objfile->mtime = new_modtime;
2448 reread_separate_symbols (objfile);
2449 init_entry_point_info (objfile);
2456 clear_symtab_users ();
2457 /* At least one objfile has changed, so we can consider that
2458 the executable we're debugging has changed too. */
2459 observer_notify_executable_changed ();
2465 /* Handle separate debug info for OBJFILE, which has just been
2467 - If we had separate debug info before, but now we don't, get rid
2468 of the separated objfile.
2469 - If we didn't have separated debug info before, but now we do,
2470 read in the new separated debug info file.
2471 - If the debug link points to a different file, toss the old one
2472 and read the new one.
2473 This function does *not* handle the case where objfile is still
2474 using the same separate debug info file, but that file's timestamp
2475 has changed. That case should be handled by the loop in
2476 reread_symbols already. */
2478 reread_separate_symbols (struct objfile *objfile)
2481 unsigned long crc32;
2483 /* Does the updated objfile's debug info live in a
2485 debug_file = find_separate_debug_file (objfile);
2487 if (objfile->separate_debug_objfile)
2489 /* There are two cases where we need to get rid of
2490 the old separated debug info objfile:
2491 - if the new primary objfile doesn't have
2492 separated debug info, or
2493 - if the new primary objfile has separate debug
2494 info, but it's under a different filename.
2496 If the old and new objfiles both have separate
2497 debug info, under the same filename, then we're
2498 okay --- if the separated file's contents have
2499 changed, we will have caught that when we
2500 visited it in this function's outermost
2503 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2504 free_objfile (objfile->separate_debug_objfile);
2507 /* If the new objfile has separate debug info, and we
2508 haven't loaded it already, do so now. */
2510 && ! objfile->separate_debug_objfile)
2512 /* Use the same section offset table as objfile itself.
2513 Preserve the flags from objfile that make sense. */
2514 objfile->separate_debug_objfile
2515 = (symbol_file_add_with_addrs_or_offsets
2516 (symfile_bfd_open (debug_file),
2517 info_verbose ? SYMFILE_VERBOSE : 0,
2518 0, /* No addr table. */
2519 objfile->section_offsets, objfile->num_sections,
2520 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2521 | OBJF_USERLOADED)));
2522 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2540 static filename_language *filename_language_table;
2541 static int fl_table_size, fl_table_next;
2544 add_filename_language (char *ext, enum language lang)
2546 if (fl_table_next >= fl_table_size)
2548 fl_table_size += 10;
2549 filename_language_table =
2550 xrealloc (filename_language_table,
2551 fl_table_size * sizeof (*filename_language_table));
2554 filename_language_table[fl_table_next].ext = xstrdup (ext);
2555 filename_language_table[fl_table_next].lang = lang;
2559 static char *ext_args;
2561 show_ext_args (struct ui_file *file, int from_tty,
2562 struct cmd_list_element *c, const char *value)
2564 fprintf_filtered (file, _("\
2565 Mapping between filename extension and source language is \"%s\".\n"),
2570 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2573 char *cp = ext_args;
2576 /* First arg is filename extension, starting with '.' */
2578 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2580 /* Find end of first arg. */
2581 while (*cp && !isspace (*cp))
2585 error (_("'%s': two arguments required -- filename extension and language"),
2588 /* Null-terminate first arg */
2591 /* Find beginning of second arg, which should be a source language. */
2592 while (*cp && isspace (*cp))
2596 error (_("'%s': two arguments required -- filename extension and language"),
2599 /* Lookup the language from among those we know. */
2600 lang = language_enum (cp);
2602 /* Now lookup the filename extension: do we already know it? */
2603 for (i = 0; i < fl_table_next; i++)
2604 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2607 if (i >= fl_table_next)
2609 /* new file extension */
2610 add_filename_language (ext_args, lang);
2614 /* redefining a previously known filename extension */
2617 /* query ("Really make files of type %s '%s'?", */
2618 /* ext_args, language_str (lang)); */
2620 xfree (filename_language_table[i].ext);
2621 filename_language_table[i].ext = xstrdup (ext_args);
2622 filename_language_table[i].lang = lang;
2627 info_ext_lang_command (char *args, int from_tty)
2631 printf_filtered (_("Filename extensions and the languages they represent:"));
2632 printf_filtered ("\n\n");
2633 for (i = 0; i < fl_table_next; i++)
2634 printf_filtered ("\t%s\t- %s\n",
2635 filename_language_table[i].ext,
2636 language_str (filename_language_table[i].lang));
2640 init_filename_language_table (void)
2642 if (fl_table_size == 0) /* protect against repetition */
2646 filename_language_table =
2647 xmalloc (fl_table_size * sizeof (*filename_language_table));
2648 add_filename_language (".c", language_c);
2649 add_filename_language (".C", language_cplus);
2650 add_filename_language (".cc", language_cplus);
2651 add_filename_language (".cp", language_cplus);
2652 add_filename_language (".cpp", language_cplus);
2653 add_filename_language (".cxx", language_cplus);
2654 add_filename_language (".c++", language_cplus);
2655 add_filename_language (".java", language_java);
2656 add_filename_language (".class", language_java);
2657 add_filename_language (".m", language_objc);
2658 add_filename_language (".f", language_fortran);
2659 add_filename_language (".F", language_fortran);
2660 add_filename_language (".s", language_asm);
2661 add_filename_language (".sx", language_asm);
2662 add_filename_language (".S", language_asm);
2663 add_filename_language (".pas", language_pascal);
2664 add_filename_language (".p", language_pascal);
2665 add_filename_language (".pp", language_pascal);
2666 add_filename_language (".adb", language_ada);
2667 add_filename_language (".ads", language_ada);
2668 add_filename_language (".a", language_ada);
2669 add_filename_language (".ada", language_ada);
2674 deduce_language_from_filename (char *filename)
2679 if (filename != NULL)
2680 if ((cp = strrchr (filename, '.')) != NULL)
2681 for (i = 0; i < fl_table_next; i++)
2682 if (strcmp (cp, filename_language_table[i].ext) == 0)
2683 return filename_language_table[i].lang;
2685 return language_unknown;
2690 Allocate and partly initialize a new symbol table. Return a pointer
2691 to it. error() if no space.
2693 Caller must set these fields:
2699 possibly free_named_symtabs (symtab->filename);
2703 allocate_symtab (char *filename, struct objfile *objfile)
2705 struct symtab *symtab;
2707 symtab = (struct symtab *)
2708 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2709 memset (symtab, 0, sizeof (*symtab));
2710 symtab->filename = obsavestring (filename, strlen (filename),
2711 &objfile->objfile_obstack);
2712 symtab->fullname = NULL;
2713 symtab->language = deduce_language_from_filename (filename);
2714 symtab->debugformat = obsavestring ("unknown", 7,
2715 &objfile->objfile_obstack);
2717 /* Hook it to the objfile it comes from */
2719 symtab->objfile = objfile;
2720 symtab->next = objfile->symtabs;
2721 objfile->symtabs = symtab;
2726 struct partial_symtab *
2727 allocate_psymtab (char *filename, struct objfile *objfile)
2729 struct partial_symtab *psymtab;
2731 if (objfile->free_psymtabs)
2733 psymtab = objfile->free_psymtabs;
2734 objfile->free_psymtabs = psymtab->next;
2737 psymtab = (struct partial_symtab *)
2738 obstack_alloc (&objfile->objfile_obstack,
2739 sizeof (struct partial_symtab));
2741 memset (psymtab, 0, sizeof (struct partial_symtab));
2742 psymtab->filename = obsavestring (filename, strlen (filename),
2743 &objfile->objfile_obstack);
2744 psymtab->symtab = NULL;
2746 /* Prepend it to the psymtab list for the objfile it belongs to.
2747 Psymtabs are searched in most recent inserted -> least recent
2750 psymtab->objfile = objfile;
2751 psymtab->next = objfile->psymtabs;
2752 objfile->psymtabs = psymtab;
2755 struct partial_symtab **prev_pst;
2756 psymtab->objfile = objfile;
2757 psymtab->next = NULL;
2758 prev_pst = &(objfile->psymtabs);
2759 while ((*prev_pst) != NULL)
2760 prev_pst = &((*prev_pst)->next);
2761 (*prev_pst) = psymtab;
2769 discard_psymtab (struct partial_symtab *pst)
2771 struct partial_symtab **prev_pst;
2774 Empty psymtabs happen as a result of header files which don't
2775 have any symbols in them. There can be a lot of them. But this
2776 check is wrong, in that a psymtab with N_SLINE entries but
2777 nothing else is not empty, but we don't realize that. Fixing
2778 that without slowing things down might be tricky. */
2780 /* First, snip it out of the psymtab chain */
2782 prev_pst = &(pst->objfile->psymtabs);
2783 while ((*prev_pst) != pst)
2784 prev_pst = &((*prev_pst)->next);
2785 (*prev_pst) = pst->next;
2787 /* Next, put it on a free list for recycling */
2789 pst->next = pst->objfile->free_psymtabs;
2790 pst->objfile->free_psymtabs = pst;
2794 /* Reset all data structures in gdb which may contain references to symbol
2798 clear_symtab_users (void)
2800 /* Someday, we should do better than this, by only blowing away
2801 the things that really need to be blown. */
2803 /* Clear the "current" symtab first, because it is no longer valid.
2804 breakpoint_re_set may try to access the current symtab. */
2805 clear_current_source_symtab_and_line ();
2808 breakpoint_re_set ();
2809 set_default_breakpoint (0, 0, 0, 0);
2810 clear_pc_function_cache ();
2811 observer_notify_new_objfile (NULL);
2813 /* Clear globals which might have pointed into a removed objfile.
2814 FIXME: It's not clear which of these are supposed to persist
2815 between expressions and which ought to be reset each time. */
2816 expression_context_block = NULL;
2817 innermost_block = NULL;
2819 /* Varobj may refer to old symbols, perform a cleanup. */
2820 varobj_invalidate ();
2825 clear_symtab_users_cleanup (void *ignore)
2827 clear_symtab_users ();
2830 /* clear_symtab_users_once:
2832 This function is run after symbol reading, or from a cleanup.
2833 If an old symbol table was obsoleted, the old symbol table
2834 has been blown away, but the other GDB data structures that may
2835 reference it have not yet been cleared or re-directed. (The old
2836 symtab was zapped, and the cleanup queued, in free_named_symtab()
2839 This function can be queued N times as a cleanup, or called
2840 directly; it will do all the work the first time, and then will be a
2841 no-op until the next time it is queued. This works by bumping a
2842 counter at queueing time. Much later when the cleanup is run, or at
2843 the end of symbol processing (in case the cleanup is discarded), if
2844 the queued count is greater than the "done-count", we do the work
2845 and set the done-count to the queued count. If the queued count is
2846 less than or equal to the done-count, we just ignore the call. This
2847 is needed because reading a single .o file will often replace many
2848 symtabs (one per .h file, for example), and we don't want to reset
2849 the breakpoints N times in the user's face.
2851 The reason we both queue a cleanup, and call it directly after symbol
2852 reading, is because the cleanup protects us in case of errors, but is
2853 discarded if symbol reading is successful. */
2856 /* FIXME: As free_named_symtabs is currently a big noop this function
2857 is no longer needed. */
2858 static void clear_symtab_users_once (void);
2860 static int clear_symtab_users_queued;
2861 static int clear_symtab_users_done;
2864 clear_symtab_users_once (void)
2866 /* Enforce once-per-`do_cleanups'-semantics */
2867 if (clear_symtab_users_queued <= clear_symtab_users_done)
2869 clear_symtab_users_done = clear_symtab_users_queued;
2871 clear_symtab_users ();
2875 /* Delete the specified psymtab, and any others that reference it. */
2878 cashier_psymtab (struct partial_symtab *pst)
2880 struct partial_symtab *ps, *pprev = NULL;
2883 /* Find its previous psymtab in the chain */
2884 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2893 /* Unhook it from the chain. */
2894 if (ps == pst->objfile->psymtabs)
2895 pst->objfile->psymtabs = ps->next;
2897 pprev->next = ps->next;
2899 /* FIXME, we can't conveniently deallocate the entries in the
2900 partial_symbol lists (global_psymbols/static_psymbols) that
2901 this psymtab points to. These just take up space until all
2902 the psymtabs are reclaimed. Ditto the dependencies list and
2903 filename, which are all in the objfile_obstack. */
2905 /* We need to cashier any psymtab that has this one as a dependency... */
2907 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2909 for (i = 0; i < ps->number_of_dependencies; i++)
2911 if (ps->dependencies[i] == pst)
2913 cashier_psymtab (ps);
2914 goto again; /* Must restart, chain has been munged. */
2921 /* If a symtab or psymtab for filename NAME is found, free it along
2922 with any dependent breakpoints, displays, etc.
2923 Used when loading new versions of object modules with the "add-file"
2924 command. This is only called on the top-level symtab or psymtab's name;
2925 it is not called for subsidiary files such as .h files.
2927 Return value is 1 if we blew away the environment, 0 if not.
2928 FIXME. The return value appears to never be used.
2930 FIXME. I think this is not the best way to do this. We should
2931 work on being gentler to the environment while still cleaning up
2932 all stray pointers into the freed symtab. */
2935 free_named_symtabs (char *name)
2938 /* FIXME: With the new method of each objfile having it's own
2939 psymtab list, this function needs serious rethinking. In particular,
2940 why was it ever necessary to toss psymtabs with specific compilation
2941 unit filenames, as opposed to all psymtabs from a particular symbol
2943 Well, the answer is that some systems permit reloading of particular
2944 compilation units. We want to blow away any old info about these
2945 compilation units, regardless of which objfiles they arrived in. --gnu. */
2948 struct symtab *prev;
2949 struct partial_symtab *ps;
2950 struct blockvector *bv;
2953 /* We only wack things if the symbol-reload switch is set. */
2954 if (!symbol_reloading)
2957 /* Some symbol formats have trouble providing file names... */
2958 if (name == 0 || *name == '\0')
2961 /* Look for a psymtab with the specified name. */
2964 for (ps = partial_symtab_list; ps; ps = ps->next)
2966 if (strcmp (name, ps->filename) == 0)
2968 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2969 goto again2; /* Must restart, chain has been munged */
2973 /* Look for a symtab with the specified name. */
2975 for (s = symtab_list; s; s = s->next)
2977 if (strcmp (name, s->filename) == 0)
2984 if (s == symtab_list)
2985 symtab_list = s->next;
2987 prev->next = s->next;
2989 /* For now, queue a delete for all breakpoints, displays, etc., whether
2990 or not they depend on the symtab being freed. This should be
2991 changed so that only those data structures affected are deleted. */
2993 /* But don't delete anything if the symtab is empty.
2994 This test is necessary due to a bug in "dbxread.c" that
2995 causes empty symtabs to be created for N_SO symbols that
2996 contain the pathname of the object file. (This problem
2997 has been fixed in GDB 3.9x). */
2999 bv = BLOCKVECTOR (s);
3000 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3001 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3002 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3004 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3006 clear_symtab_users_queued++;
3007 make_cleanup (clear_symtab_users_once, 0);
3011 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3018 /* It is still possible that some breakpoints will be affected
3019 even though no symtab was found, since the file might have
3020 been compiled without debugging, and hence not be associated
3021 with a symtab. In order to handle this correctly, we would need
3022 to keep a list of text address ranges for undebuggable files.
3023 For now, we do nothing, since this is a fairly obscure case. */
3027 /* FIXME, what about the minimal symbol table? */
3034 /* Allocate and partially fill a partial symtab. It will be
3035 completely filled at the end of the symbol list.
3037 FILENAME is the name of the symbol-file we are reading from. */
3039 struct partial_symtab *
3040 start_psymtab_common (struct objfile *objfile,
3041 struct section_offsets *section_offsets, char *filename,
3042 CORE_ADDR textlow, struct partial_symbol **global_syms,
3043 struct partial_symbol **static_syms)
3045 struct partial_symtab *psymtab;
3047 psymtab = allocate_psymtab (filename, objfile);
3048 psymtab->section_offsets = section_offsets;
3049 psymtab->textlow = textlow;
3050 psymtab->texthigh = psymtab->textlow; /* default */
3051 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3052 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3056 /* Helper function, initialises partial symbol structure and stashes
3057 it into objfile's bcache. Note that our caching mechanism will
3058 use all fields of struct partial_symbol to determine hash value of the
3059 structure. In other words, having two symbols with the same name but
3060 different domain (or address) is possible and correct. */
3062 static const struct partial_symbol *
3063 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3064 enum address_class class,
3065 long val, /* Value as a long */
3066 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3067 enum language language, struct objfile *objfile,
3071 /* psymbol is static so that there will be no uninitialized gaps in the
3072 structure which might contain random data, causing cache misses in
3074 static struct partial_symbol psymbol;
3076 if (name[namelength] != '\0')
3078 buf = alloca (namelength + 1);
3079 /* Create local copy of the partial symbol */
3080 memcpy (buf, name, namelength);
3081 buf[namelength] = '\0';
3083 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3086 SYMBOL_VALUE (&psymbol) = val;
3090 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3092 SYMBOL_SECTION (&psymbol) = 0;
3093 SYMBOL_LANGUAGE (&psymbol) = language;
3094 PSYMBOL_DOMAIN (&psymbol) = domain;
3095 PSYMBOL_CLASS (&psymbol) = class;
3097 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3099 /* Stash the partial symbol away in the cache */
3100 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3101 objfile->psymbol_cache, added);
3104 /* Helper function, adds partial symbol to the given partial symbol
3108 append_psymbol_to_list (struct psymbol_allocation_list *list,
3109 const struct partial_symbol *psym,
3110 struct objfile *objfile)
3112 if (list->next >= list->list + list->size)
3113 extend_psymbol_list (list, objfile);
3114 *list->next++ = (struct partial_symbol *) psym;
3115 OBJSTAT (objfile, n_psyms++);
3118 /* Add a symbol with a long value to a psymtab.
3119 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3120 Return the partial symbol that has been added. */
3122 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3123 symbol is so that callers can get access to the symbol's demangled
3124 name, which they don't have any cheap way to determine otherwise.
3125 (Currenly, dwarf2read.c is the only file who uses that information,
3126 though it's possible that other readers might in the future.)
3127 Elena wasn't thrilled about that, and I don't blame her, but we
3128 couldn't come up with a better way to get that information. If
3129 it's needed in other situations, we could consider breaking up
3130 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3133 const struct partial_symbol *
3134 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3135 enum address_class class,
3136 struct psymbol_allocation_list *list,
3137 long val, /* Value as a long */
3138 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3139 enum language language, struct objfile *objfile)
3141 const struct partial_symbol *psym;
3145 /* Stash the partial symbol away in the cache */
3146 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3147 val, coreaddr, language, objfile, &added);
3149 /* Do not duplicate global partial symbols. */
3150 if (list == &objfile->global_psymbols
3154 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3155 append_psymbol_to_list (list, psym, objfile);
3159 /* Initialize storage for partial symbols. */
3162 init_psymbol_list (struct objfile *objfile, int total_symbols)
3164 /* Free any previously allocated psymbol lists. */
3166 if (objfile->global_psymbols.list)
3168 xfree (objfile->global_psymbols.list);
3170 if (objfile->static_psymbols.list)
3172 xfree (objfile->static_psymbols.list);
3175 /* Current best guess is that approximately a twentieth
3176 of the total symbols (in a debugging file) are global or static
3179 objfile->global_psymbols.size = total_symbols / 10;
3180 objfile->static_psymbols.size = total_symbols / 10;
3182 if (objfile->global_psymbols.size > 0)
3184 objfile->global_psymbols.next =
3185 objfile->global_psymbols.list = (struct partial_symbol **)
3186 xmalloc ((objfile->global_psymbols.size
3187 * sizeof (struct partial_symbol *)));
3189 if (objfile->static_psymbols.size > 0)
3191 objfile->static_psymbols.next =
3192 objfile->static_psymbols.list = (struct partial_symbol **)
3193 xmalloc ((objfile->static_psymbols.size
3194 * sizeof (struct partial_symbol *)));
3199 The following code implements an abstraction for debugging overlay sections.
3201 The target model is as follows:
3202 1) The gnu linker will permit multiple sections to be mapped into the
3203 same VMA, each with its own unique LMA (or load address).
3204 2) It is assumed that some runtime mechanism exists for mapping the
3205 sections, one by one, from the load address into the VMA address.
3206 3) This code provides a mechanism for gdb to keep track of which
3207 sections should be considered to be mapped from the VMA to the LMA.
3208 This information is used for symbol lookup, and memory read/write.
3209 For instance, if a section has been mapped then its contents
3210 should be read from the VMA, otherwise from the LMA.
3212 Two levels of debugger support for overlays are available. One is
3213 "manual", in which the debugger relies on the user to tell it which
3214 overlays are currently mapped. This level of support is
3215 implemented entirely in the core debugger, and the information about
3216 whether a section is mapped is kept in the objfile->obj_section table.
3218 The second level of support is "automatic", and is only available if
3219 the target-specific code provides functionality to read the target's
3220 overlay mapping table, and translate its contents for the debugger
3221 (by updating the mapped state information in the obj_section tables).
3223 The interface is as follows:
3225 overlay map <name> -- tell gdb to consider this section mapped
3226 overlay unmap <name> -- tell gdb to consider this section unmapped
3227 overlay list -- list the sections that GDB thinks are mapped
3228 overlay read-target -- get the target's state of what's mapped
3229 overlay off/manual/auto -- set overlay debugging state
3230 Functional interface:
3231 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3232 section, return that section.
3233 find_pc_overlay(pc): find any overlay section that contains
3234 the pc, either in its VMA or its LMA
3235 section_is_mapped(sect): true if overlay is marked as mapped
3236 section_is_overlay(sect): true if section's VMA != LMA
3237 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3238 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3239 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3240 overlay_mapped_address(...): map an address from section's LMA to VMA
3241 overlay_unmapped_address(...): map an address from section's VMA to LMA
3242 symbol_overlayed_address(...): Return a "current" address for symbol:
3243 either in VMA or LMA depending on whether
3244 the symbol's section is currently mapped
3247 /* Overlay debugging state: */
3249 enum overlay_debugging_state overlay_debugging = ovly_off;
3250 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3252 /* Function: section_is_overlay (SECTION)
3253 Returns true if SECTION has VMA not equal to LMA, ie.
3254 SECTION is loaded at an address different from where it will "run". */
3257 section_is_overlay (struct obj_section *section)
3259 if (overlay_debugging && section)
3261 bfd *abfd = section->objfile->obfd;
3262 asection *bfd_section = section->the_bfd_section;
3264 if (bfd_section_lma (abfd, bfd_section) != 0
3265 && bfd_section_lma (abfd, bfd_section)
3266 != bfd_section_vma (abfd, bfd_section))
3273 /* Function: overlay_invalidate_all (void)
3274 Invalidate the mapped state of all overlay sections (mark it as stale). */
3277 overlay_invalidate_all (void)
3279 struct objfile *objfile;
3280 struct obj_section *sect;
3282 ALL_OBJSECTIONS (objfile, sect)
3283 if (section_is_overlay (sect))
3284 sect->ovly_mapped = -1;
3287 /* Function: section_is_mapped (SECTION)
3288 Returns true if section is an overlay, and is currently mapped.
3290 Access to the ovly_mapped flag is restricted to this function, so
3291 that we can do automatic update. If the global flag
3292 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3293 overlay_invalidate_all. If the mapped state of the particular
3294 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3297 section_is_mapped (struct obj_section *osect)
3299 struct gdbarch *gdbarch;
3301 if (osect == 0 || !section_is_overlay (osect))
3304 switch (overlay_debugging)
3308 return 0; /* overlay debugging off */
3309 case ovly_auto: /* overlay debugging automatic */
3310 /* Unles there is a gdbarch_overlay_update function,
3311 there's really nothing useful to do here (can't really go auto) */
3312 gdbarch = get_objfile_arch (osect->objfile);
3313 if (gdbarch_overlay_update_p (gdbarch))
3315 if (overlay_cache_invalid)
3317 overlay_invalidate_all ();
3318 overlay_cache_invalid = 0;
3320 if (osect->ovly_mapped == -1)
3321 gdbarch_overlay_update (gdbarch, osect);
3323 /* fall thru to manual case */
3324 case ovly_on: /* overlay debugging manual */
3325 return osect->ovly_mapped == 1;
3329 /* Function: pc_in_unmapped_range
3330 If PC falls into the lma range of SECTION, return true, else false. */
3333 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3335 if (section_is_overlay (section))
3337 bfd *abfd = section->objfile->obfd;
3338 asection *bfd_section = section->the_bfd_section;
3340 /* We assume the LMA is relocated by the same offset as the VMA. */
3341 bfd_vma size = bfd_get_section_size (bfd_section);
3342 CORE_ADDR offset = obj_section_offset (section);
3344 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3345 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3352 /* Function: pc_in_mapped_range
3353 If PC falls into the vma range of SECTION, return true, else false. */
3356 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3358 if (section_is_overlay (section))
3360 if (obj_section_addr (section) <= pc
3361 && pc < obj_section_endaddr (section))
3369 /* Return true if the mapped ranges of sections A and B overlap, false
3372 sections_overlap (struct obj_section *a, struct obj_section *b)
3374 CORE_ADDR a_start = obj_section_addr (a);
3375 CORE_ADDR a_end = obj_section_endaddr (a);
3376 CORE_ADDR b_start = obj_section_addr (b);
3377 CORE_ADDR b_end = obj_section_endaddr (b);
3379 return (a_start < b_end && b_start < a_end);
3382 /* Function: overlay_unmapped_address (PC, SECTION)
3383 Returns the address corresponding to PC in the unmapped (load) range.
3384 May be the same as PC. */
3387 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3389 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3391 bfd *abfd = section->objfile->obfd;
3392 asection *bfd_section = section->the_bfd_section;
3394 return pc + bfd_section_lma (abfd, bfd_section)
3395 - bfd_section_vma (abfd, bfd_section);
3401 /* Function: overlay_mapped_address (PC, SECTION)
3402 Returns the address corresponding to PC in the mapped (runtime) range.
3403 May be the same as PC. */
3406 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3408 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3410 bfd *abfd = section->objfile->obfd;
3411 asection *bfd_section = section->the_bfd_section;
3413 return pc + bfd_section_vma (abfd, bfd_section)
3414 - bfd_section_lma (abfd, bfd_section);
3421 /* Function: symbol_overlayed_address
3422 Return one of two addresses (relative to the VMA or to the LMA),
3423 depending on whether the section is mapped or not. */
3426 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3428 if (overlay_debugging)
3430 /* If the symbol has no section, just return its regular address. */
3433 /* If the symbol's section is not an overlay, just return its address */
3434 if (!section_is_overlay (section))
3436 /* If the symbol's section is mapped, just return its address */
3437 if (section_is_mapped (section))
3440 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3441 * then return its LOADED address rather than its vma address!!
3443 return overlay_unmapped_address (address, section);
3448 /* Function: find_pc_overlay (PC)
3449 Return the best-match overlay section for PC:
3450 If PC matches a mapped overlay section's VMA, return that section.
3451 Else if PC matches an unmapped section's VMA, return that section.
3452 Else if PC matches an unmapped section's LMA, return that section. */
3454 struct obj_section *
3455 find_pc_overlay (CORE_ADDR pc)
3457 struct objfile *objfile;
3458 struct obj_section *osect, *best_match = NULL;
3460 if (overlay_debugging)
3461 ALL_OBJSECTIONS (objfile, osect)
3462 if (section_is_overlay (osect))
3464 if (pc_in_mapped_range (pc, osect))
3466 if (section_is_mapped (osect))
3471 else if (pc_in_unmapped_range (pc, osect))
3477 /* Function: find_pc_mapped_section (PC)
3478 If PC falls into the VMA address range of an overlay section that is
3479 currently marked as MAPPED, return that section. Else return NULL. */
3481 struct obj_section *
3482 find_pc_mapped_section (CORE_ADDR pc)
3484 struct objfile *objfile;
3485 struct obj_section *osect;
3487 if (overlay_debugging)
3488 ALL_OBJSECTIONS (objfile, osect)
3489 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3495 /* Function: list_overlays_command
3496 Print a list of mapped sections and their PC ranges */
3499 list_overlays_command (char *args, int from_tty)
3502 struct objfile *objfile;
3503 struct obj_section *osect;
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
3507 if (section_is_mapped (osect))
3509 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3514 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3515 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3516 size = bfd_get_section_size (osect->the_bfd_section);
3517 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3519 printf_filtered ("Section %s, loaded at ", name);
3520 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3521 puts_filtered (" - ");
3522 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3523 printf_filtered (", mapped at ");
3524 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3525 puts_filtered (" - ");
3526 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3527 puts_filtered ("\n");
3532 printf_filtered (_("No sections are mapped.\n"));
3535 /* Function: map_overlay_command
3536 Mark the named section as mapped (ie. residing at its VMA address). */
3539 map_overlay_command (char *args, int from_tty)
3541 struct objfile *objfile, *objfile2;
3542 struct obj_section *sec, *sec2;
3544 if (!overlay_debugging)
3546 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3547 the 'overlay manual' command."));
3549 if (args == 0 || *args == 0)
3550 error (_("Argument required: name of an overlay section"));
3552 /* First, find a section matching the user supplied argument */
3553 ALL_OBJSECTIONS (objfile, sec)
3554 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3556 /* Now, check to see if the section is an overlay. */
3557 if (!section_is_overlay (sec))
3558 continue; /* not an overlay section */
3560 /* Mark the overlay as "mapped" */
3561 sec->ovly_mapped = 1;
3563 /* Next, make a pass and unmap any sections that are
3564 overlapped by this new section: */
3565 ALL_OBJSECTIONS (objfile2, sec2)
3566 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3569 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3570 bfd_section_name (objfile->obfd,
3571 sec2->the_bfd_section));
3572 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3576 error (_("No overlay section called %s"), args);
3579 /* Function: unmap_overlay_command
3580 Mark the overlay section as unmapped
3581 (ie. resident in its LMA address range, rather than the VMA range). */
3584 unmap_overlay_command (char *args, int from_tty)
3586 struct objfile *objfile;
3587 struct obj_section *sec;
3589 if (!overlay_debugging)
3591 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3592 the 'overlay manual' command."));
3594 if (args == 0 || *args == 0)
3595 error (_("Argument required: name of an overlay section"));
3597 /* First, find a section matching the user supplied argument */
3598 ALL_OBJSECTIONS (objfile, sec)
3599 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3601 if (!sec->ovly_mapped)
3602 error (_("Section %s is not mapped"), args);
3603 sec->ovly_mapped = 0;
3606 error (_("No overlay section called %s"), args);
3609 /* Function: overlay_auto_command
3610 A utility command to turn on overlay debugging.
3611 Possibly this should be done via a set/show command. */
3614 overlay_auto_command (char *args, int from_tty)
3616 overlay_debugging = ovly_auto;
3617 enable_overlay_breakpoints ();
3619 printf_unfiltered (_("Automatic overlay debugging enabled."));
3622 /* Function: overlay_manual_command
3623 A utility command to turn on overlay debugging.
3624 Possibly this should be done via a set/show command. */
3627 overlay_manual_command (char *args, int from_tty)
3629 overlay_debugging = ovly_on;
3630 disable_overlay_breakpoints ();
3632 printf_unfiltered (_("Overlay debugging enabled."));
3635 /* Function: overlay_off_command
3636 A utility command to turn on overlay debugging.
3637 Possibly this should be done via a set/show command. */
3640 overlay_off_command (char *args, int from_tty)
3642 overlay_debugging = ovly_off;
3643 disable_overlay_breakpoints ();
3645 printf_unfiltered (_("Overlay debugging disabled."));
3649 overlay_load_command (char *args, int from_tty)
3651 struct gdbarch *gdbarch = get_current_arch ();
3653 if (gdbarch_overlay_update_p (gdbarch))
3654 gdbarch_overlay_update (gdbarch, NULL);
3656 error (_("This target does not know how to read its overlay state."));
3659 /* Function: overlay_command
3660 A place-holder for a mis-typed command */
3662 /* Command list chain containing all defined "overlay" subcommands. */
3663 struct cmd_list_element *overlaylist;
3666 overlay_command (char *args, int from_tty)
3669 ("\"overlay\" must be followed by the name of an overlay command.\n");
3670 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3674 /* Target Overlays for the "Simplest" overlay manager:
3676 This is GDB's default target overlay layer. It works with the
3677 minimal overlay manager supplied as an example by Cygnus. The
3678 entry point is via a function pointer "gdbarch_overlay_update",
3679 so targets that use a different runtime overlay manager can
3680 substitute their own overlay_update function and take over the
3683 The overlay_update function pokes around in the target's data structures
3684 to see what overlays are mapped, and updates GDB's overlay mapping with
3687 In this simple implementation, the target data structures are as follows:
3688 unsigned _novlys; /# number of overlay sections #/
3689 unsigned _ovly_table[_novlys][4] = {
3690 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3691 {..., ..., ..., ...},
3693 unsigned _novly_regions; /# number of overlay regions #/
3694 unsigned _ovly_region_table[_novly_regions][3] = {
3695 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3698 These functions will attempt to update GDB's mappedness state in the
3699 symbol section table, based on the target's mappedness state.
3701 To do this, we keep a cached copy of the target's _ovly_table, and
3702 attempt to detect when the cached copy is invalidated. The main
3703 entry point is "simple_overlay_update(SECT), which looks up SECT in
3704 the cached table and re-reads only the entry for that section from
3705 the target (whenever possible).
3708 /* Cached, dynamically allocated copies of the target data structures: */
3709 static unsigned (*cache_ovly_table)[4] = 0;
3711 static unsigned (*cache_ovly_region_table)[3] = 0;
3713 static unsigned cache_novlys = 0;
3715 static unsigned cache_novly_regions = 0;
3717 static CORE_ADDR cache_ovly_table_base = 0;
3719 static CORE_ADDR cache_ovly_region_table_base = 0;
3723 VMA, SIZE, LMA, MAPPED
3726 /* Throw away the cached copy of _ovly_table */
3728 simple_free_overlay_table (void)
3730 if (cache_ovly_table)
3731 xfree (cache_ovly_table);
3733 cache_ovly_table = NULL;
3734 cache_ovly_table_base = 0;
3738 /* Throw away the cached copy of _ovly_region_table */
3740 simple_free_overlay_region_table (void)
3742 if (cache_ovly_region_table)
3743 xfree (cache_ovly_region_table);
3744 cache_novly_regions = 0;
3745 cache_ovly_region_table = NULL;
3746 cache_ovly_region_table_base = 0;
3750 /* Read an array of ints of size SIZE from the target into a local buffer.
3751 Convert to host order. int LEN is number of ints */
3753 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3754 int len, int size, enum bfd_endian byte_order)
3756 /* FIXME (alloca): Not safe if array is very large. */
3757 gdb_byte *buf = alloca (len * size);
3760 read_memory (memaddr, buf, len * size);
3761 for (i = 0; i < len; i++)
3762 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3765 /* Find and grab a copy of the target _ovly_table
3766 (and _novlys, which is needed for the table's size) */
3768 simple_read_overlay_table (void)
3770 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3771 struct gdbarch *gdbarch;
3773 enum bfd_endian byte_order;
3775 simple_free_overlay_table ();
3776 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3779 error (_("Error reading inferior's overlay table: "
3780 "couldn't find `_novlys' variable\n"
3781 "in inferior. Use `overlay manual' mode."));
3785 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3786 if (! ovly_table_msym)
3788 error (_("Error reading inferior's overlay table: couldn't find "
3789 "`_ovly_table' array\n"
3790 "in inferior. Use `overlay manual' mode."));
3794 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3795 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3796 byte_order = gdbarch_byte_order (gdbarch);
3798 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3801 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3802 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3803 read_target_long_array (cache_ovly_table_base,
3804 (unsigned int *) cache_ovly_table,
3805 cache_novlys * 4, word_size, byte_order);
3807 return 1; /* SUCCESS */
3811 /* Find and grab a copy of the target _ovly_region_table
3812 (and _novly_regions, which is needed for the table's size) */
3814 simple_read_overlay_region_table (void)
3816 struct minimal_symbol *msym;
3817 struct gdbarch *gdbarch;
3819 enum bfd_endian byte_order;
3821 simple_free_overlay_region_table ();
3822 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3824 return 0; /* failure */
3826 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3827 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3828 byte_order = gdbarch_byte_order (gdbarch);
3830 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3833 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3834 if (cache_ovly_region_table != NULL)
3836 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3839 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3840 read_target_long_array (cache_ovly_region_table_base,
3841 (unsigned int *) cache_ovly_region_table,
3842 cache_novly_regions * 3,
3843 word_size, byte_order);
3846 return 0; /* failure */
3849 return 0; /* failure */
3850 return 1; /* SUCCESS */
3854 /* Function: simple_overlay_update_1
3855 A helper function for simple_overlay_update. Assuming a cached copy
3856 of _ovly_table exists, look through it to find an entry whose vma,
3857 lma and size match those of OSECT. Re-read the entry and make sure
3858 it still matches OSECT (else the table may no longer be valid).
3859 Set OSECT's mapped state to match the entry. Return: 1 for
3860 success, 0 for failure. */
3863 simple_overlay_update_1 (struct obj_section *osect)
3866 bfd *obfd = osect->objfile->obfd;
3867 asection *bsect = osect->the_bfd_section;
3868 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3869 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3872 size = bfd_get_section_size (osect->the_bfd_section);
3873 for (i = 0; i < cache_novlys; i++)
3874 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3875 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3876 /* && cache_ovly_table[i][SIZE] == size */ )
3878 read_target_long_array (cache_ovly_table_base + i * word_size,
3879 (unsigned int *) cache_ovly_table[i],
3880 4, word_size, byte_order);
3881 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3882 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3883 /* && cache_ovly_table[i][SIZE] == size */ )
3885 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3888 else /* Warning! Warning! Target's ovly table has changed! */
3894 /* Function: simple_overlay_update
3895 If OSECT is NULL, then update all sections' mapped state
3896 (after re-reading the entire target _ovly_table).
3897 If OSECT is non-NULL, then try to find a matching entry in the
3898 cached ovly_table and update only OSECT's mapped state.
3899 If a cached entry can't be found or the cache isn't valid, then
3900 re-read the entire cache, and go ahead and update all sections. */
3903 simple_overlay_update (struct obj_section *osect)
3905 struct objfile *objfile;
3907 /* Were we given an osect to look up? NULL means do all of them. */
3909 /* Have we got a cached copy of the target's overlay table? */
3910 if (cache_ovly_table != NULL)
3911 /* Does its cached location match what's currently in the symtab? */
3912 if (cache_ovly_table_base ==
3913 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3914 /* Then go ahead and try to look up this single section in the cache */
3915 if (simple_overlay_update_1 (osect))
3916 /* Found it! We're done. */
3919 /* Cached table no good: need to read the entire table anew.
3920 Or else we want all the sections, in which case it's actually
3921 more efficient to read the whole table in one block anyway. */
3923 if (! simple_read_overlay_table ())
3926 /* Now may as well update all sections, even if only one was requested. */
3927 ALL_OBJSECTIONS (objfile, osect)
3928 if (section_is_overlay (osect))
3931 bfd *obfd = osect->objfile->obfd;
3932 asection *bsect = osect->the_bfd_section;
3934 size = bfd_get_section_size (bsect);
3935 for (i = 0; i < cache_novlys; i++)
3936 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3937 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3938 /* && cache_ovly_table[i][SIZE] == size */ )
3939 { /* obj_section matches i'th entry in ovly_table */
3940 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3941 break; /* finished with inner for loop: break out */
3946 /* Set the output sections and output offsets for section SECTP in
3947 ABFD. The relocation code in BFD will read these offsets, so we
3948 need to be sure they're initialized. We map each section to itself,
3949 with no offset; this means that SECTP->vma will be honored. */
3952 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3954 sectp->output_section = sectp;
3955 sectp->output_offset = 0;
3958 /* Relocate the contents of a debug section SECTP in ABFD. The
3959 contents are stored in BUF if it is non-NULL, or returned in a
3960 malloc'd buffer otherwise.
3962 For some platforms and debug info formats, shared libraries contain
3963 relocations against the debug sections (particularly for DWARF-2;
3964 one affected platform is PowerPC GNU/Linux, although it depends on
3965 the version of the linker in use). Also, ELF object files naturally
3966 have unresolved relocations for their debug sections. We need to apply
3967 the relocations in order to get the locations of symbols correct.
3968 Another example that may require relocation processing, is the
3969 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3973 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3975 /* We're only interested in sections with relocation
3977 if ((sectp->flags & SEC_RELOC) == 0)
3980 /* We will handle section offsets properly elsewhere, so relocate as if
3981 all sections begin at 0. */
3982 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3984 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3987 struct symfile_segment_data *
3988 get_symfile_segment_data (bfd *abfd)
3990 struct sym_fns *sf = find_sym_fns (abfd);
3995 return sf->sym_segments (abfd);
3999 free_symfile_segment_data (struct symfile_segment_data *data)
4001 xfree (data->segment_bases);
4002 xfree (data->segment_sizes);
4003 xfree (data->segment_info);
4009 - DATA, containing segment addresses from the object file ABFD, and
4010 the mapping from ABFD's sections onto the segments that own them,
4012 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4013 segment addresses reported by the target,
4014 store the appropriate offsets for each section in OFFSETS.
4016 If there are fewer entries in SEGMENT_BASES than there are segments
4017 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4019 If there are more entries, then ignore the extra. The target may
4020 not be able to distinguish between an empty data segment and a
4021 missing data segment; a missing text segment is less plausible. */
4023 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4024 struct section_offsets *offsets,
4025 int num_segment_bases,
4026 const CORE_ADDR *segment_bases)
4031 /* It doesn't make sense to call this function unless you have some
4032 segment base addresses. */
4033 gdb_assert (segment_bases > 0);
4035 /* If we do not have segment mappings for the object file, we
4036 can not relocate it by segments. */
4037 gdb_assert (data != NULL);
4038 gdb_assert (data->num_segments > 0);
4040 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4042 int which = data->segment_info[i];
4044 gdb_assert (0 <= which && which <= data->num_segments);
4046 /* Don't bother computing offsets for sections that aren't
4047 loaded as part of any segment. */
4051 /* Use the last SEGMENT_BASES entry as the address of any extra
4052 segments mentioned in DATA->segment_info. */
4053 if (which > num_segment_bases)
4054 which = num_segment_bases;
4056 offsets->offsets[i] = (segment_bases[which - 1]
4057 - data->segment_bases[which - 1]);
4064 symfile_find_segment_sections (struct objfile *objfile)
4066 bfd *abfd = objfile->obfd;
4069 struct symfile_segment_data *data;
4071 data = get_symfile_segment_data (objfile->obfd);
4075 if (data->num_segments != 1 && data->num_segments != 2)
4077 free_symfile_segment_data (data);
4081 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4084 int which = data->segment_info[i];
4088 if (objfile->sect_index_text == -1)
4089 objfile->sect_index_text = sect->index;
4091 if (objfile->sect_index_rodata == -1)
4092 objfile->sect_index_rodata = sect->index;
4094 else if (which == 2)
4096 if (objfile->sect_index_data == -1)
4097 objfile->sect_index_data = sect->index;
4099 if (objfile->sect_index_bss == -1)
4100 objfile->sect_index_bss = sect->index;
4104 free_symfile_segment_data (data);
4108 _initialize_symfile (void)
4110 struct cmd_list_element *c;
4112 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4113 Load symbol table from executable file FILE.\n\
4114 The `file' command can also load symbol tables, as well as setting the file\n\
4115 to execute."), &cmdlist);
4116 set_cmd_completer (c, filename_completer);
4118 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4119 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4120 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4121 ADDR is the starting address of the file's text.\n\
4122 The optional arguments are section-name section-address pairs and\n\
4123 should be specified if the data and bss segments are not contiguous\n\
4124 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4126 set_cmd_completer (c, filename_completer);
4128 c = add_cmd ("load", class_files, load_command, _("\
4129 Dynamically load FILE into the running program, and record its symbols\n\
4130 for access from GDB.\n\
4131 A load OFFSET may also be given."), &cmdlist);
4132 set_cmd_completer (c, filename_completer);
4134 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4135 &symbol_reloading, _("\
4136 Set dynamic symbol table reloading multiple times in one run."), _("\
4137 Show dynamic symbol table reloading multiple times in one run."), NULL,
4139 show_symbol_reloading,
4140 &setlist, &showlist);
4142 add_prefix_cmd ("overlay", class_support, overlay_command,
4143 _("Commands for debugging overlays."), &overlaylist,
4144 "overlay ", 0, &cmdlist);
4146 add_com_alias ("ovly", "overlay", class_alias, 1);
4147 add_com_alias ("ov", "overlay", class_alias, 1);
4149 add_cmd ("map-overlay", class_support, map_overlay_command,
4150 _("Assert that an overlay section is mapped."), &overlaylist);
4152 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4153 _("Assert that an overlay section is unmapped."), &overlaylist);
4155 add_cmd ("list-overlays", class_support, list_overlays_command,
4156 _("List mappings of overlay sections."), &overlaylist);
4158 add_cmd ("manual", class_support, overlay_manual_command,
4159 _("Enable overlay debugging."), &overlaylist);
4160 add_cmd ("off", class_support, overlay_off_command,
4161 _("Disable overlay debugging."), &overlaylist);
4162 add_cmd ("auto", class_support, overlay_auto_command,
4163 _("Enable automatic overlay debugging."), &overlaylist);
4164 add_cmd ("load-target", class_support, overlay_load_command,
4165 _("Read the overlay mapping state from the target."), &overlaylist);
4167 /* Filename extension to source language lookup table: */
4168 init_filename_language_table ();
4169 add_setshow_string_noescape_cmd ("extension-language", class_files,
4171 Set mapping between filename extension and source language."), _("\
4172 Show mapping between filename extension and source language."), _("\
4173 Usage: set extension-language .foo bar"),
4174 set_ext_lang_command,
4176 &setlist, &showlist);
4178 add_info ("extensions", info_ext_lang_command,
4179 _("All filename extensions associated with a source language."));
4181 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4182 &debug_file_directory, _("\
4183 Set the directory where separate debug symbols are searched for."), _("\
4184 Show the directory where separate debug symbols are searched for."), _("\
4185 Separate debug symbols are first searched for in the same\n\
4186 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4187 and lastly at the path of the directory of the binary with\n\
4188 the global debug-file directory prepended."),
4190 show_debug_file_directory,
4191 &setlist, &showlist);
4193 add_setshow_boolean_cmd ("symbol-loading", no_class,
4194 &print_symbol_loading, _("\
4195 Set printing of symbol loading messages."), _("\
4196 Show printing of symbol loading messages."), NULL,
4199 &setprintlist, &showprintlist);