1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support, using pieces from other GDB modules.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "arch-utils.h"
37 #include "breakpoint.h"
39 #include "complaints.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
54 #include "parser-defs.h"
60 #include <sys/types.h>
62 #include "gdb_string.h"
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
79 static void clear_symtab_users_cleanup (void *ignore);
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
84 /* External variables and functions referenced. */
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
88 /* Functions this file defines */
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
95 static void load_command (char *, int);
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
99 static void add_symbol_file_command (char *, int);
101 bfd *symfile_bfd_open (char *);
103 int get_section_index (struct objfile *, char *);
105 static struct sym_fns *find_sym_fns (bfd *);
107 static void decrement_reading_symtab (void *);
109 static void overlay_invalidate_all (void);
111 void list_overlays_command (char *, int);
113 void map_overlay_command (char *, int);
115 void unmap_overlay_command (char *, int);
117 static void overlay_auto_command (char *, int);
119 static void overlay_manual_command (char *, int);
121 static void overlay_off_command (char *, int);
123 static void overlay_load_command (char *, int);
125 static void overlay_command (char *, int);
127 static void simple_free_overlay_table (void);
129 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
132 static int simple_read_overlay_table (void);
134 static int simple_overlay_update_1 (struct obj_section *);
136 static void add_filename_language (char *ext, enum language lang);
138 static void info_ext_lang_command (char *args, int from_tty);
140 static void init_filename_language_table (void);
142 static void symfile_find_segment_sections (struct objfile *objfile);
144 void _initialize_symfile (void);
146 /* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
150 static struct sym_fns *symtab_fns = NULL;
152 /* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
155 #ifdef SYMBOL_RELOADING_DEFAULT
156 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
158 int symbol_reloading = 0;
161 show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
164 fprintf_filtered (file, _("\
165 Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 /* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
176 library symbols are not loaded, commands like "info fun" will *not*
177 report all the functions that are actually present. */
179 int auto_solib_add = 1;
181 /* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
189 int auto_solib_limit;
192 /* Make a null terminated copy of the string at PTR with SIZE characters in
193 the obstack pointed to by OBSTACKP . Returns the address of the copy.
194 Note that the string at PTR does not have to be null terminated, I.E. it
195 may be part of a larger string and we are only saving a substring. */
198 obsavestring (const char *ptr, int size, struct obstack *obstackp)
200 char *p = (char *) obstack_alloc (obstackp, size + 1);
201 /* Open-coded memcpy--saves function call time. These strings are usually
202 short. FIXME: Is this really still true with a compiler that can
205 const char *p1 = ptr;
207 const char *end = ptr + size;
215 /* Concatenate NULL terminated variable argument list of `const char *' strings;
216 return the new string. Space is found in the OBSTACKP. Argument list must
217 be terminated by a sentinel expression `(char *) NULL'. */
220 obconcat (struct obstack *obstackp, ...)
224 va_start (ap, obstackp);
227 const char *s = va_arg (ap, const char *);
232 obstack_grow_str (obstackp, s);
235 obstack_1grow (obstackp, 0);
237 return obstack_finish (obstackp);
240 /* True if we are reading a symbol table. */
242 int currently_reading_symtab = 0;
245 decrement_reading_symtab (void *dummy)
247 currently_reading_symtab--;
250 /* Increment currently_reading_symtab and return a cleanup that can be
251 used to decrement it. */
253 increment_reading_symtab (void)
255 ++currently_reading_symtab;
256 return make_cleanup (decrement_reading_symtab, NULL);
259 /* Remember the lowest-addressed loadable section we've seen.
260 This function is called via bfd_map_over_sections.
262 In case of equal vmas, the section with the largest size becomes the
263 lowest-addressed loadable section.
265 If the vmas and sizes are equal, the last section is considered the
266 lowest-addressed loadable section. */
269 find_lowest_section (bfd *abfd, asection *sect, void *obj)
271 asection **lowest = (asection **) obj;
273 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
276 *lowest = sect; /* First loadable section */
277 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
278 *lowest = sect; /* A lower loadable section */
279 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
280 && (bfd_section_size (abfd, (*lowest))
281 <= bfd_section_size (abfd, sect)))
285 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
287 struct section_addr_info *
288 alloc_section_addr_info (size_t num_sections)
290 struct section_addr_info *sap;
293 size = (sizeof (struct section_addr_info)
294 + sizeof (struct other_sections) * (num_sections - 1));
295 sap = (struct section_addr_info *) xmalloc (size);
296 memset (sap, 0, size);
297 sap->num_sections = num_sections;
302 /* Build (allocate and populate) a section_addr_info struct from
303 an existing section table. */
305 extern struct section_addr_info *
306 build_section_addr_info_from_section_table (const struct target_section *start,
307 const struct target_section *end)
309 struct section_addr_info *sap;
310 const struct target_section *stp;
313 sap = alloc_section_addr_info (end - start);
315 for (stp = start, oidx = 0; stp != end; stp++)
317 if (bfd_get_section_flags (stp->bfd,
318 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
319 && oidx < end - start)
321 sap->other[oidx].addr = stp->addr;
322 sap->other[oidx].name
323 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
324 sap->other[oidx].sectindex = stp->the_bfd_section->index;
332 /* Create a section_addr_info from section offsets in ABFD. */
334 static struct section_addr_info *
335 build_section_addr_info_from_bfd (bfd *abfd)
337 struct section_addr_info *sap;
339 struct bfd_section *sec;
341 sap = alloc_section_addr_info (bfd_count_sections (abfd));
342 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
343 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
345 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
346 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
347 sap->other[i].sectindex = sec->index;
353 /* Create a section_addr_info from section offsets in OBJFILE. */
355 struct section_addr_info *
356 build_section_addr_info_from_objfile (const struct objfile *objfile)
358 struct section_addr_info *sap;
361 /* Before reread_symbols gets rewritten it is not safe to call:
362 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
364 sap = build_section_addr_info_from_bfd (objfile->obfd);
365 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
367 int sectindex = sap->other[i].sectindex;
369 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
374 /* Free all memory allocated by build_section_addr_info_from_section_table. */
377 free_section_addr_info (struct section_addr_info *sap)
381 for (idx = 0; idx < sap->num_sections; idx++)
382 if (sap->other[idx].name)
383 xfree (sap->other[idx].name);
388 /* Initialize OBJFILE's sect_index_* members. */
390 init_objfile_sect_indices (struct objfile *objfile)
395 sect = bfd_get_section_by_name (objfile->obfd, ".text");
397 objfile->sect_index_text = sect->index;
399 sect = bfd_get_section_by_name (objfile->obfd, ".data");
401 objfile->sect_index_data = sect->index;
403 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
405 objfile->sect_index_bss = sect->index;
407 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
409 objfile->sect_index_rodata = sect->index;
411 /* This is where things get really weird... We MUST have valid
412 indices for the various sect_index_* members or gdb will abort.
413 So if for example, there is no ".text" section, we have to
414 accomodate that. First, check for a file with the standard
415 one or two segments. */
417 symfile_find_segment_sections (objfile);
419 /* Except when explicitly adding symbol files at some address,
420 section_offsets contains nothing but zeros, so it doesn't matter
421 which slot in section_offsets the individual sect_index_* members
422 index into. So if they are all zero, it is safe to just point
423 all the currently uninitialized indices to the first slot. But
424 beware: if this is the main executable, it may be relocated
425 later, e.g. by the remote qOffsets packet, and then this will
426 be wrong! That's why we try segments first. */
428 for (i = 0; i < objfile->num_sections; i++)
430 if (ANOFFSET (objfile->section_offsets, i) != 0)
435 if (i == objfile->num_sections)
437 if (objfile->sect_index_text == -1)
438 objfile->sect_index_text = 0;
439 if (objfile->sect_index_data == -1)
440 objfile->sect_index_data = 0;
441 if (objfile->sect_index_bss == -1)
442 objfile->sect_index_bss = 0;
443 if (objfile->sect_index_rodata == -1)
444 objfile->sect_index_rodata = 0;
448 /* The arguments to place_section. */
450 struct place_section_arg
452 struct section_offsets *offsets;
456 /* Find a unique offset to use for loadable section SECT if
457 the user did not provide an offset. */
460 place_section (bfd *abfd, asection *sect, void *obj)
462 struct place_section_arg *arg = obj;
463 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
465 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
467 /* We are only interested in allocated sections. */
468 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
471 /* If the user specified an offset, honor it. */
472 if (offsets[sect->index] != 0)
475 /* Otherwise, let's try to find a place for the section. */
476 start_addr = (arg->lowest + align - 1) & -align;
483 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
485 int indx = cur_sec->index;
487 /* We don't need to compare against ourself. */
491 /* We can only conflict with allocated sections. */
492 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
495 /* If the section offset is 0, either the section has not been placed
496 yet, or it was the lowest section placed (in which case LOWEST
497 will be past its end). */
498 if (offsets[indx] == 0)
501 /* If this section would overlap us, then we must move up. */
502 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
503 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
505 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
506 start_addr = (start_addr + align - 1) & -align;
511 /* Otherwise, we appear to be OK. So far. */
516 offsets[sect->index] = start_addr;
517 arg->lowest = start_addr + bfd_get_section_size (sect);
520 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
521 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
525 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
527 struct section_addr_info *addrs)
531 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
533 /* Now calculate offsets for section that were specified by the caller. */
534 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
536 struct other_sections *osp;
538 osp = &addrs->other[i];
542 /* Record all sections in offsets */
543 /* The section_offsets in the objfile are here filled in using
545 section_offsets->offsets[osp->sectindex] = osp->addr;
549 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
550 their (name, sectindex) pair. sectindex makes the sort by name stable. */
553 addrs_section_compar (const void *ap, const void *bp)
555 const struct other_sections *a = *((struct other_sections **) ap);
556 const struct other_sections *b = *((struct other_sections **) bp);
557 int retval, a_idx, b_idx;
559 retval = strcmp (a->name, b->name);
563 /* SECTINDEX is undefined iff ADDR is zero. */
564 a_idx = a->addr == 0 ? 0 : a->sectindex;
565 b_idx = b->addr == 0 ? 0 : b->sectindex;
566 return a_idx - b_idx;
569 /* Provide sorted array of pointers to sections of ADDRS. The array is
570 terminated by NULL. Caller is responsible to call xfree for it. */
572 static struct other_sections **
573 addrs_section_sort (struct section_addr_info *addrs)
575 struct other_sections **array;
578 /* `+ 1' for the NULL terminator. */
579 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
580 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
581 array[i] = &addrs->other[i];
584 qsort (array, i, sizeof (*array), addrs_section_compar);
589 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
590 also SECTINDEXes specific to ABFD there. This function can be used to
591 rebase ADDRS to start referencing different BFD than before. */
594 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
596 asection *lower_sect;
597 CORE_ADDR lower_offset;
599 struct cleanup *my_cleanup;
600 struct section_addr_info *abfd_addrs;
601 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
602 struct other_sections **addrs_to_abfd_addrs;
604 /* Find lowest loadable section to be used as starting point for
605 continguous sections. */
607 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
608 if (lower_sect == NULL)
610 warning (_("no loadable sections found in added symbol-file %s"),
611 bfd_get_filename (abfd));
615 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
617 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
618 in ABFD. Section names are not unique - there can be multiple sections of
619 the same name. Also the sections of the same name do not have to be
620 adjacent to each other. Some sections may be present only in one of the
621 files. Even sections present in both files do not have to be in the same
624 Use stable sort by name for the sections in both files. Then linearly
625 scan both lists matching as most of the entries as possible. */
627 addrs_sorted = addrs_section_sort (addrs);
628 my_cleanup = make_cleanup (xfree, addrs_sorted);
630 abfd_addrs = build_section_addr_info_from_bfd (abfd);
631 make_cleanup_free_section_addr_info (abfd_addrs);
632 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
633 make_cleanup (xfree, abfd_addrs_sorted);
635 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
637 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
638 * addrs->num_sections);
639 make_cleanup (xfree, addrs_to_abfd_addrs);
641 while (*addrs_sorted)
643 const char *sect_name = (*addrs_sorted)->name;
645 while (*abfd_addrs_sorted
646 && strcmp ((*abfd_addrs_sorted)->name, sect_name) < 0)
649 if (*abfd_addrs_sorted
650 && strcmp ((*abfd_addrs_sorted)->name, sect_name) == 0)
654 /* Make the found item directly addressable from ADDRS. */
655 index_in_addrs = *addrs_sorted - addrs->other;
656 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
657 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
659 /* Never use the same ABFD entry twice. */
666 /* Calculate offsets for the loadable sections.
667 FIXME! Sections must be in order of increasing loadable section
668 so that contiguous sections can use the lower-offset!!!
670 Adjust offsets if the segments are not contiguous.
671 If the section is contiguous, its offset should be set to
672 the offset of the highest loadable section lower than it
673 (the loadable section directly below it in memory).
674 this_offset = lower_offset = lower_addr - lower_orig_addr */
676 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
678 const char *sect_name = addrs->other[i].name;
679 struct other_sections *sect = addrs_to_abfd_addrs[i];
683 /* This is the index used by BFD. */
684 addrs->other[i].sectindex = sect->sectindex;
686 if (addrs->other[i].addr != 0)
688 addrs->other[i].addr -= sect->addr;
689 lower_offset = addrs->other[i].addr;
692 addrs->other[i].addr = lower_offset;
696 /* This section does not exist in ABFD, which is normally
697 unexpected and we want to issue a warning.
699 However, the ELF prelinker does create a few sections which are
700 marked in the main executable as loadable (they are loaded in
701 memory from the DYNAMIC segment) and yet are not present in
702 separate debug info files. This is fine, and should not cause
703 a warning. Shared libraries contain just the section
704 ".gnu.liblist" but it is not marked as loadable there. There is
705 no other way to identify them than by their name as the sections
706 created by prelink have no special flags. */
708 if (!(strcmp (sect_name, ".gnu.liblist") == 0
709 || strcmp (sect_name, ".gnu.conflict") == 0
710 || strcmp (sect_name, ".dynbss") == 0
711 || strcmp (sect_name, ".sdynbss") == 0))
712 warning (_("section %s not found in %s"), sect_name,
713 bfd_get_filename (abfd));
715 addrs->other[i].addr = 0;
717 /* SECTINDEX is invalid if ADDR is zero. */
721 do_cleanups (my_cleanup);
724 /* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
731 default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
748 struct place_section_arg arg;
749 bfd *abfd = objfile->obfd;
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
762 /* Pick non-overlapping offsets for sections the user did not
764 arg.offsets = objfile->section_offsets;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
801 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
802 offsets[cur_sec->index]);
803 offsets[cur_sec->index] = 0;
808 /* Remember the bfd indexes for the .text, .data, .bss and
810 init_objfile_sect_indices (objfile);
814 /* Divide the file into segments, which are individual relocatable units.
815 This is the default version of the sym_fns.sym_segments function for
816 symbol readers that do not have an explicit representation of segments.
817 It assumes that object files do not have segments, and fully linked
818 files have a single segment. */
820 struct symfile_segment_data *
821 default_symfile_segments (bfd *abfd)
825 struct symfile_segment_data *data;
828 /* Relocatable files contain enough information to position each
829 loadable section independently; they should not be relocated
831 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
834 /* Make sure there is at least one loadable section in the file. */
835 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
845 low = bfd_get_section_vma (abfd, sect);
846 high = low + bfd_get_section_size (sect);
848 data = XZALLOC (struct symfile_segment_data);
849 data->num_segments = 1;
850 data->segment_bases = XCALLOC (1, CORE_ADDR);
851 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853 num_sections = bfd_count_sections (abfd);
854 data->segment_info = XCALLOC (num_sections, int);
856 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
860 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
863 vma = bfd_get_section_vma (abfd, sect);
866 if (vma + bfd_get_section_size (sect) > high)
867 high = vma + bfd_get_section_size (sect);
869 data->segment_info[i] = 1;
872 data->segment_bases[0] = low;
873 data->segment_sizes[0] = high - low;
878 /* Process a symbol file, as either the main file or as a dynamically
881 OBJFILE is where the symbols are to be read from.
883 ADDRS is the list of section load addresses. If the user has given
884 an 'add-symbol-file' command, then this is the list of offsets and
885 addresses he or she provided as arguments to the command; or, if
886 we're handling a shared library, these are the actual addresses the
887 sections are loaded at, according to the inferior's dynamic linker
888 (as gleaned by GDB's shared library code). We convert each address
889 into an offset from the section VMA's as it appears in the object
890 file, and then call the file's sym_offsets function to convert this
891 into a format-specific offset table --- a `struct section_offsets'.
892 If ADDRS is non-zero, OFFSETS must be zero.
894 OFFSETS is a table of section offsets already in the right
895 format-specific representation. NUM_OFFSETS is the number of
896 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
897 assume this is the proper table the call to sym_offsets described
898 above would produce. Instead of calling sym_offsets, we just dump
899 it right into objfile->section_offsets. (When we're re-reading
900 symbols from an objfile, we don't have the original load address
901 list any more; all we have is the section offset table.) If
902 OFFSETS is non-zero, ADDRS must be zero.
904 ADD_FLAGS encodes verbosity level, whether this is main symbol or
905 an extra symbol file such as dynamically loaded code, and wether
906 breakpoint reset should be deferred. */
909 syms_from_objfile (struct objfile *objfile,
910 struct section_addr_info *addrs,
911 struct section_offsets *offsets,
915 struct section_addr_info *local_addr = NULL;
916 struct cleanup *old_chain;
917 const int mainline = add_flags & SYMFILE_MAINLINE;
919 gdb_assert (! (addrs && offsets));
921 init_entry_point_info (objfile);
922 objfile->sf = find_sym_fns (objfile->obfd);
924 if (objfile->sf == NULL)
925 return; /* No symbols. */
927 /* Make sure that partially constructed symbol tables will be cleaned up
928 if an error occurs during symbol reading. */
929 old_chain = make_cleanup_free_objfile (objfile);
931 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
932 list. We now establish the convention that an addr of zero means
933 no load address was specified. */
934 if (! addrs && ! offsets)
937 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
938 make_cleanup (xfree, local_addr);
942 /* Now either addrs or offsets is non-zero. */
946 /* We will modify the main symbol table, make sure that all its users
947 will be cleaned up if an error occurs during symbol reading. */
948 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
950 /* Since no error yet, throw away the old symbol table. */
952 if (symfile_objfile != NULL)
954 free_objfile (symfile_objfile);
955 gdb_assert (symfile_objfile == NULL);
958 /* Currently we keep symbols from the add-symbol-file command.
959 If the user wants to get rid of them, they should do "symbol-file"
960 without arguments first. Not sure this is the best behavior
963 (*objfile->sf->sym_new_init) (objfile);
966 /* Convert addr into an offset rather than an absolute address.
967 We find the lowest address of a loaded segment in the objfile,
968 and assume that <addr> is where that got loaded.
970 We no longer warn if the lowest section is not a text segment (as
971 happens for the PA64 port. */
972 if (addrs && addrs->other[0].name)
973 addr_info_make_relative (addrs, objfile->obfd);
975 /* Initialize symbol reading routines for this objfile, allow complaints to
976 appear for this new file, and record how verbose to be, then do the
977 initial symbol reading for this file. */
979 (*objfile->sf->sym_init) (objfile);
980 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
983 (*objfile->sf->sym_offsets) (objfile, addrs);
986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988 /* Just copy in the offset table directly as given to us. */
989 objfile->num_sections = num_offsets;
990 objfile->section_offsets
991 = ((struct section_offsets *)
992 obstack_alloc (&objfile->objfile_obstack, size));
993 memcpy (objfile->section_offsets, offsets, size);
995 init_objfile_sect_indices (objfile);
998 (*objfile->sf->sym_read) (objfile, add_flags);
1000 /* Discard cleanups as symbol reading was successful. */
1002 discard_cleanups (old_chain);
1006 /* Perform required actions after either reading in the initial
1007 symbols for a new objfile, or mapping in the symbols from a reusable
1011 new_symfile_objfile (struct objfile *objfile, int add_flags)
1014 /* If this is the main symbol file we have to clean up all users of the
1015 old main symbol file. Otherwise it is sufficient to fixup all the
1016 breakpoints that may have been redefined by this symbol file. */
1017 if (add_flags & SYMFILE_MAINLINE)
1019 /* OK, make it the "real" symbol file. */
1020 symfile_objfile = objfile;
1022 clear_symtab_users ();
1024 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1026 breakpoint_re_set ();
1029 /* We're done reading the symbol file; finish off complaints. */
1030 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1033 /* Process a symbol file, as either the main file or as a dynamically
1036 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1037 This BFD will be closed on error, and is always consumed by this function.
1039 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1040 extra, such as dynamically loaded code, and what to do with breakpoins.
1042 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1043 syms_from_objfile, above.
1044 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1046 Upon success, returns a pointer to the objfile that was added.
1047 Upon failure, jumps back to command level (never returns). */
1049 static struct objfile *
1050 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1052 struct section_addr_info *addrs,
1053 struct section_offsets *offsets,
1057 struct objfile *objfile;
1058 struct cleanup *my_cleanups;
1059 const char *name = bfd_get_filename (abfd);
1060 const int from_tty = add_flags & SYMFILE_VERBOSE;
1062 my_cleanups = make_cleanup_bfd_close (abfd);
1064 /* Give user a chance to burp if we'd be
1065 interactively wiping out any existing symbols. */
1067 if ((have_full_symbols () || have_partial_symbols ())
1068 && (add_flags & SYMFILE_MAINLINE)
1070 && !query (_("Load new symbol table from \"%s\"? "), name))
1071 error (_("Not confirmed."));
1073 objfile = allocate_objfile (abfd, flags);
1074 discard_cleanups (my_cleanups);
1076 /* We either created a new mapped symbol table, mapped an existing
1077 symbol table file which has not had initial symbol reading
1078 performed, or need to read an unmapped symbol table. */
1079 if (from_tty || info_verbose)
1081 if (deprecated_pre_add_symbol_hook)
1082 deprecated_pre_add_symbol_hook (name);
1085 printf_unfiltered (_("Reading symbols from %s..."), name);
1087 gdb_flush (gdb_stdout);
1090 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1093 /* We now have at least a partial symbol table. Check to see if the
1094 user requested that all symbols be read on initial access via either
1095 the gdb startup command line or on a per symbol file basis. Expand
1096 all partial symbol tables for this objfile if so. */
1098 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1100 if (from_tty || info_verbose)
1102 printf_unfiltered (_("expanding to full symbols..."));
1104 gdb_flush (gdb_stdout);
1108 objfile->sf->qf->expand_all_symtabs (objfile);
1111 if ((from_tty || info_verbose)
1112 && !objfile_has_symbols (objfile))
1115 printf_unfiltered (_("(no debugging symbols found)..."));
1119 if (from_tty || info_verbose)
1121 if (deprecated_post_add_symbol_hook)
1122 deprecated_post_add_symbol_hook ();
1124 printf_unfiltered (_("done.\n"));
1127 /* We print some messages regardless of whether 'from_tty ||
1128 info_verbose' is true, so make sure they go out at the right
1130 gdb_flush (gdb_stdout);
1132 do_cleanups (my_cleanups);
1134 if (objfile->sf == NULL)
1136 observer_notify_new_objfile (objfile);
1137 return objfile; /* No symbols. */
1140 new_symfile_objfile (objfile, add_flags);
1142 observer_notify_new_objfile (objfile);
1144 bfd_cache_close_all ();
1148 /* Add BFD as a separate debug file for OBJFILE. */
1151 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1153 struct objfile *new_objfile;
1154 struct section_addr_info *sap;
1155 struct cleanup *my_cleanup;
1157 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1158 because sections of BFD may not match sections of OBJFILE and because
1159 vma may have been modified by tools such as prelink. */
1160 sap = build_section_addr_info_from_objfile (objfile);
1161 my_cleanup = make_cleanup_free_section_addr_info (sap);
1163 new_objfile = symbol_file_add_with_addrs_or_offsets
1164 (bfd, symfile_flags,
1166 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1167 | OBJF_USERLOADED));
1169 do_cleanups (my_cleanup);
1171 add_separate_debug_objfile (new_objfile, objfile);
1174 /* Process the symbol file ABFD, as either the main file or as a
1175 dynamically loaded file.
1177 See symbol_file_add_with_addrs_or_offsets's comments for
1180 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1181 struct section_addr_info *addrs,
1184 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1189 /* Process a symbol file, as either the main file or as a dynamically
1190 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1193 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1196 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1201 /* Call symbol_file_add() with default values and update whatever is
1202 affected by the loading of a new main().
1203 Used when the file is supplied in the gdb command line
1204 and by some targets with special loading requirements.
1205 The auxiliary function, symbol_file_add_main_1(), has the flags
1206 argument for the switches that can only be specified in the symbol_file
1210 symbol_file_add_main (char *args, int from_tty)
1212 symbol_file_add_main_1 (args, from_tty, 0);
1216 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1218 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1219 symbol_file_add (args, add_flags, NULL, flags);
1221 /* Getting new symbols may change our opinion about
1222 what is frameless. */
1223 reinit_frame_cache ();
1225 set_initial_language ();
1229 symbol_file_clear (int from_tty)
1231 if ((have_full_symbols () || have_partial_symbols ())
1234 ? !query (_("Discard symbol table from `%s'? "),
1235 symfile_objfile->name)
1236 : !query (_("Discard symbol table? "))))
1237 error (_("Not confirmed."));
1239 /* solib descriptors may have handles to objfiles. Wipe them before their
1240 objfiles get stale by free_all_objfiles. */
1241 no_shared_libraries (NULL, from_tty);
1243 free_all_objfiles ();
1245 gdb_assert (symfile_objfile == NULL);
1247 printf_unfiltered (_("No symbol file now.\n"));
1251 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1254 bfd_size_type debuglink_size;
1255 unsigned long crc32;
1259 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1264 debuglink_size = bfd_section_size (objfile->obfd, sect);
1266 contents = xmalloc (debuglink_size);
1267 bfd_get_section_contents (objfile->obfd, sect, contents,
1268 (file_ptr)0, (bfd_size_type)debuglink_size);
1270 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1271 crc_offset = strlen (contents) + 1;
1272 crc_offset = (crc_offset + 3) & ~3;
1274 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1281 separate_debug_file_exists (const char *name, unsigned long crc,
1282 struct objfile *parent_objfile)
1284 unsigned long file_crc = 0;
1286 gdb_byte buffer[8*1024];
1288 struct stat parent_stat, abfd_stat;
1290 /* Find a separate debug info file as if symbols would be present in
1291 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1292 section can contain just the basename of PARENT_OBJFILE without any
1293 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1294 the separate debug infos with the same basename can exist. */
1296 if (strcmp (name, parent_objfile->name) == 0)
1299 abfd = bfd_open_maybe_remote (name);
1304 /* Verify symlinks were not the cause of strcmp name difference above.
1306 Some operating systems, e.g. Windows, do not provide a meaningful
1307 st_ino; they always set it to zero. (Windows does provide a
1308 meaningful st_dev.) Do not indicate a duplicate library in that
1309 case. While there is no guarantee that a system that provides
1310 meaningful inode numbers will never set st_ino to zero, this is
1311 merely an optimization, so we do not need to worry about false
1314 if (bfd_stat (abfd, &abfd_stat) == 0
1315 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1316 && abfd_stat.st_dev == parent_stat.st_dev
1317 && abfd_stat.st_ino == parent_stat.st_ino
1318 && abfd_stat.st_ino != 0)
1324 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1325 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329 if (crc != file_crc)
1331 warning (_("the debug information found in \"%s\""
1332 " does not match \"%s\" (CRC mismatch).\n"),
1333 name, parent_objfile->name);
1340 char *debug_file_directory = NULL;
1342 show_debug_file_directory (struct ui_file *file, int from_tty,
1343 struct cmd_list_element *c, const char *value)
1345 fprintf_filtered (file, _("\
1346 The directory where separate debug symbols are searched for is \"%s\".\n"),
1350 #if ! defined (DEBUG_SUBDIRECTORY)
1351 #define DEBUG_SUBDIRECTORY ".debug"
1355 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1357 char *basename, *debugdir;
1359 char *debugfile = NULL;
1360 char *canon_name = NULL;
1361 unsigned long crc32;
1364 basename = get_debug_link_info (objfile, &crc32);
1366 if (basename == NULL)
1367 /* There's no separate debug info, hence there's no way we could
1368 load it => no warning. */
1369 goto cleanup_return_debugfile;
1371 dir = xstrdup (objfile->name);
1373 /* Strip off the final filename part, leaving the directory name,
1374 followed by a slash. Objfile names should always be absolute and
1375 tilde-expanded, so there should always be a slash in there
1377 for (i = strlen(dir) - 1; i >= 0; i--)
1379 if (IS_DIR_SEPARATOR (dir[i]))
1382 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1385 /* Set I to max (strlen (canon_name), strlen (dir)). */
1386 canon_name = lrealpath (dir);
1388 if (canon_name && strlen (canon_name) > i)
1389 i = strlen (canon_name);
1391 debugfile = xmalloc (strlen (debug_file_directory) + 1
1393 + strlen (DEBUG_SUBDIRECTORY)
1398 /* First try in the same directory as the original file. */
1399 strcpy (debugfile, dir);
1400 strcat (debugfile, basename);
1402 if (separate_debug_file_exists (debugfile, crc32, objfile))
1403 goto cleanup_return_debugfile;
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 strcpy (debugfile, dir);
1407 strcat (debugfile, DEBUG_SUBDIRECTORY);
1408 strcat (debugfile, "/");
1409 strcat (debugfile, basename);
1411 if (separate_debug_file_exists (debugfile, crc32, objfile))
1412 goto cleanup_return_debugfile;
1414 /* Then try in the global debugfile directories.
1416 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1417 cause "/..." lookups. */
1419 debugdir = debug_file_directory;
1424 while (*debugdir == DIRNAME_SEPARATOR)
1427 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1428 if (debugdir_end == NULL)
1429 debugdir_end = &debugdir[strlen (debugdir)];
1431 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1432 debugfile[debugdir_end - debugdir] = 0;
1433 strcat (debugfile, "/");
1434 strcat (debugfile, dir);
1435 strcat (debugfile, basename);
1437 if (separate_debug_file_exists (debugfile, crc32, objfile))
1438 goto cleanup_return_debugfile;
1440 /* If the file is in the sysroot, try using its base path in the
1441 global debugfile directory. */
1443 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1444 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1446 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1447 debugfile[debugdir_end - debugdir] = 0;
1448 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1449 strcat (debugfile, "/");
1450 strcat (debugfile, basename);
1452 if (separate_debug_file_exists (debugfile, crc32, objfile))
1453 goto cleanup_return_debugfile;
1456 debugdir = debugdir_end;
1458 while (*debugdir != 0);
1463 cleanup_return_debugfile:
1471 /* This is the symbol-file command. Read the file, analyze its
1472 symbols, and add a struct symtab to a symtab list. The syntax of
1473 the command is rather bizarre:
1475 1. The function buildargv implements various quoting conventions
1476 which are undocumented and have little or nothing in common with
1477 the way things are quoted (or not quoted) elsewhere in GDB.
1479 2. Options are used, which are not generally used in GDB (perhaps
1480 "set mapped on", "set readnow on" would be better)
1482 3. The order of options matters, which is contrary to GNU
1483 conventions (because it is confusing and inconvenient). */
1486 symbol_file_command (char *args, int from_tty)
1492 symbol_file_clear (from_tty);
1496 char **argv = gdb_buildargv (args);
1497 int flags = OBJF_USERLOADED;
1498 struct cleanup *cleanups;
1501 cleanups = make_cleanup_freeargv (argv);
1502 while (*argv != NULL)
1504 if (strcmp (*argv, "-readnow") == 0)
1505 flags |= OBJF_READNOW;
1506 else if (**argv == '-')
1507 error (_("unknown option `%s'"), *argv);
1510 symbol_file_add_main_1 (*argv, from_tty, flags);
1518 error (_("no symbol file name was specified"));
1520 do_cleanups (cleanups);
1524 /* Set the initial language.
1526 FIXME: A better solution would be to record the language in the
1527 psymtab when reading partial symbols, and then use it (if known) to
1528 set the language. This would be a win for formats that encode the
1529 language in an easily discoverable place, such as DWARF. For
1530 stabs, we can jump through hoops looking for specially named
1531 symbols or try to intuit the language from the specific type of
1532 stabs we find, but we can't do that until later when we read in
1536 set_initial_language (void)
1539 enum language lang = language_unknown;
1541 filename = find_main_filename ();
1542 if (filename != NULL)
1543 lang = deduce_language_from_filename (filename);
1545 if (lang == language_unknown)
1547 /* Make C the default language */
1551 set_language (lang);
1552 expected_language = current_language; /* Don't warn the user. */
1555 /* If NAME is a remote name open the file using remote protocol, otherwise
1556 open it normally. */
1559 bfd_open_maybe_remote (const char *name)
1561 if (remote_filename_p (name))
1562 return remote_bfd_open (name, gnutarget);
1564 return bfd_openr (name, gnutarget);
1568 /* Open the file specified by NAME and hand it off to BFD for
1569 preliminary analysis. Return a newly initialized bfd *, which
1570 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1571 absolute). In case of trouble, error() is called. */
1574 symfile_bfd_open (char *name)
1578 char *absolute_name;
1580 if (remote_filename_p (name))
1582 name = xstrdup (name);
1583 sym_bfd = remote_bfd_open (name, gnutarget);
1586 make_cleanup (xfree, name);
1587 error (_("`%s': can't open to read symbols: %s."), name,
1588 bfd_errmsg (bfd_get_error ()));
1591 if (!bfd_check_format (sym_bfd, bfd_object))
1593 bfd_close (sym_bfd);
1594 make_cleanup (xfree, name);
1595 error (_("`%s': can't read symbols: %s."), name,
1596 bfd_errmsg (bfd_get_error ()));
1602 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1604 /* Look down path for it, allocate 2nd new malloc'd copy. */
1605 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1606 O_RDONLY | O_BINARY, &absolute_name);
1607 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1610 char *exename = alloca (strlen (name) + 5);
1611 strcat (strcpy (exename, name), ".exe");
1612 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1613 O_RDONLY | O_BINARY, &absolute_name);
1618 make_cleanup (xfree, name);
1619 perror_with_name (name);
1622 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1623 bfd. It'll be freed in free_objfile(). */
1625 name = absolute_name;
1627 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1631 make_cleanup (xfree, name);
1632 error (_("`%s': can't open to read symbols: %s."), name,
1633 bfd_errmsg (bfd_get_error ()));
1635 bfd_set_cacheable (sym_bfd, 1);
1637 if (!bfd_check_format (sym_bfd, bfd_object))
1639 /* FIXME: should be checking for errors from bfd_close (for one
1640 thing, on error it does not free all the storage associated
1642 bfd_close (sym_bfd); /* This also closes desc. */
1643 make_cleanup (xfree, name);
1644 error (_("`%s': can't read symbols: %s."), name,
1645 bfd_errmsg (bfd_get_error ()));
1648 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1649 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1654 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1655 the section was not found. */
1658 get_section_index (struct objfile *objfile, char *section_name)
1660 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1668 /* Link SF into the global symtab_fns list. Called on startup by the
1669 _initialize routine in each object file format reader, to register
1670 information about each format the the reader is prepared to
1674 add_symtab_fns (struct sym_fns *sf)
1676 sf->next = symtab_fns;
1680 /* Initialize OBJFILE to read symbols from its associated BFD. It
1681 either returns or calls error(). The result is an initialized
1682 struct sym_fns in the objfile structure, that contains cached
1683 information about the symbol file. */
1685 static struct sym_fns *
1686 find_sym_fns (bfd *abfd)
1689 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1691 if (our_flavour == bfd_target_srec_flavour
1692 || our_flavour == bfd_target_ihex_flavour
1693 || our_flavour == bfd_target_tekhex_flavour)
1694 return NULL; /* No symbols. */
1696 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1697 if (our_flavour == sf->sym_flavour)
1700 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1701 bfd_get_target (abfd));
1705 /* This function runs the load command of our current target. */
1708 load_command (char *arg, int from_tty)
1710 /* The user might be reloading because the binary has changed. Take
1711 this opportunity to check. */
1712 reopen_exec_file ();
1720 parg = arg = get_exec_file (1);
1722 /* Count how many \ " ' tab space there are in the name. */
1723 while ((parg = strpbrk (parg, "\\\"'\t ")))
1731 /* We need to quote this string so buildargv can pull it apart. */
1732 char *temp = xmalloc (strlen (arg) + count + 1 );
1736 make_cleanup (xfree, temp);
1739 while ((parg = strpbrk (parg, "\\\"'\t ")))
1741 strncpy (ptemp, prev, parg - prev);
1742 ptemp += parg - prev;
1746 strcpy (ptemp, prev);
1752 target_load (arg, from_tty);
1754 /* After re-loading the executable, we don't really know which
1755 overlays are mapped any more. */
1756 overlay_cache_invalid = 1;
1759 /* This version of "load" should be usable for any target. Currently
1760 it is just used for remote targets, not inftarg.c or core files,
1761 on the theory that only in that case is it useful.
1763 Avoiding xmodem and the like seems like a win (a) because we don't have
1764 to worry about finding it, and (b) On VMS, fork() is very slow and so
1765 we don't want to run a subprocess. On the other hand, I'm not sure how
1766 performance compares. */
1768 static int validate_download = 0;
1770 /* Callback service function for generic_load (bfd_map_over_sections). */
1773 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1775 bfd_size_type *sum = data;
1777 *sum += bfd_get_section_size (asec);
1780 /* Opaque data for load_section_callback. */
1781 struct load_section_data {
1782 unsigned long load_offset;
1783 struct load_progress_data *progress_data;
1784 VEC(memory_write_request_s) *requests;
1787 /* Opaque data for load_progress. */
1788 struct load_progress_data {
1789 /* Cumulative data. */
1790 unsigned long write_count;
1791 unsigned long data_count;
1792 bfd_size_type total_size;
1795 /* Opaque data for load_progress for a single section. */
1796 struct load_progress_section_data {
1797 struct load_progress_data *cumulative;
1799 /* Per-section data. */
1800 const char *section_name;
1801 ULONGEST section_sent;
1802 ULONGEST section_size;
1807 /* Target write callback routine for progress reporting. */
1810 load_progress (ULONGEST bytes, void *untyped_arg)
1812 struct load_progress_section_data *args = untyped_arg;
1813 struct load_progress_data *totals;
1816 /* Writing padding data. No easy way to get at the cumulative
1817 stats, so just ignore this. */
1820 totals = args->cumulative;
1822 if (bytes == 0 && args->section_sent == 0)
1824 /* The write is just starting. Let the user know we've started
1826 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1827 args->section_name, hex_string (args->section_size),
1828 paddress (target_gdbarch, args->lma));
1832 if (validate_download)
1834 /* Broken memories and broken monitors manifest themselves here
1835 when bring new computers to life. This doubles already slow
1837 /* NOTE: cagney/1999-10-18: A more efficient implementation
1838 might add a verify_memory() method to the target vector and
1839 then use that. remote.c could implement that method using
1840 the ``qCRC'' packet. */
1841 gdb_byte *check = xmalloc (bytes);
1842 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1844 if (target_read_memory (args->lma, check, bytes) != 0)
1845 error (_("Download verify read failed at %s"),
1846 paddress (target_gdbarch, args->lma));
1847 if (memcmp (args->buffer, check, bytes) != 0)
1848 error (_("Download verify compare failed at %s"),
1849 paddress (target_gdbarch, args->lma));
1850 do_cleanups (verify_cleanups);
1852 totals->data_count += bytes;
1854 args->buffer += bytes;
1855 totals->write_count += 1;
1856 args->section_sent += bytes;
1858 || (deprecated_ui_load_progress_hook != NULL
1859 && deprecated_ui_load_progress_hook (args->section_name,
1860 args->section_sent)))
1861 error (_("Canceled the download"));
1863 if (deprecated_show_load_progress != NULL)
1864 deprecated_show_load_progress (args->section_name,
1868 totals->total_size);
1871 /* Callback service function for generic_load (bfd_map_over_sections). */
1874 load_section_callback (bfd *abfd, asection *asec, void *data)
1876 struct memory_write_request *new_request;
1877 struct load_section_data *args = data;
1878 struct load_progress_section_data *section_data;
1879 bfd_size_type size = bfd_get_section_size (asec);
1881 const char *sect_name = bfd_get_section_name (abfd, asec);
1883 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1889 new_request = VEC_safe_push (memory_write_request_s,
1890 args->requests, NULL);
1891 memset (new_request, 0, sizeof (struct memory_write_request));
1892 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1893 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1894 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1895 new_request->data = xmalloc (size);
1896 new_request->baton = section_data;
1898 buffer = new_request->data;
1900 section_data->cumulative = args->progress_data;
1901 section_data->section_name = sect_name;
1902 section_data->section_size = size;
1903 section_data->lma = new_request->begin;
1904 section_data->buffer = buffer;
1906 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1909 /* Clean up an entire memory request vector, including load
1910 data and progress records. */
1913 clear_memory_write_data (void *arg)
1915 VEC(memory_write_request_s) **vec_p = arg;
1916 VEC(memory_write_request_s) *vec = *vec_p;
1918 struct memory_write_request *mr;
1920 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1925 VEC_free (memory_write_request_s, vec);
1929 generic_load (char *args, int from_tty)
1932 struct timeval start_time, end_time;
1934 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1935 struct load_section_data cbdata;
1936 struct load_progress_data total_progress;
1941 memset (&cbdata, 0, sizeof (cbdata));
1942 memset (&total_progress, 0, sizeof (total_progress));
1943 cbdata.progress_data = &total_progress;
1945 make_cleanup (clear_memory_write_data, &cbdata.requests);
1948 error_no_arg (_("file to load"));
1950 argv = gdb_buildargv (args);
1951 make_cleanup_freeargv (argv);
1953 filename = tilde_expand (argv[0]);
1954 make_cleanup (xfree, filename);
1956 if (argv[1] != NULL)
1960 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1962 /* If the last word was not a valid number then
1963 treat it as a file name with spaces in. */
1964 if (argv[1] == endptr)
1965 error (_("Invalid download offset:%s."), argv[1]);
1967 if (argv[2] != NULL)
1968 error (_("Too many parameters."));
1971 /* Open the file for loading. */
1972 loadfile_bfd = bfd_openr (filename, gnutarget);
1973 if (loadfile_bfd == NULL)
1975 perror_with_name (filename);
1979 /* FIXME: should be checking for errors from bfd_close (for one thing,
1980 on error it does not free all the storage associated with the
1982 make_cleanup_bfd_close (loadfile_bfd);
1984 if (!bfd_check_format (loadfile_bfd, bfd_object))
1986 error (_("\"%s\" is not an object file: %s"), filename,
1987 bfd_errmsg (bfd_get_error ()));
1990 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1991 (void *) &total_progress.total_size);
1993 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1995 gettimeofday (&start_time, NULL);
1997 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1998 load_progress) != 0)
1999 error (_("Load failed"));
2001 gettimeofday (&end_time, NULL);
2003 entry = bfd_get_start_address (loadfile_bfd);
2004 ui_out_text (uiout, "Start address ");
2005 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2006 ui_out_text (uiout, ", load size ");
2007 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2008 ui_out_text (uiout, "\n");
2009 /* We were doing this in remote-mips.c, I suspect it is right
2010 for other targets too. */
2011 regcache_write_pc (get_current_regcache (), entry);
2013 /* Reset breakpoints, now that we have changed the load image. For
2014 instance, breakpoints may have been set (or reset, by
2015 post_create_inferior) while connected to the target but before we
2016 loaded the program. In that case, the prologue analyzer could
2017 have read instructions from the target to find the right
2018 breakpoint locations. Loading has changed the contents of that
2021 breakpoint_re_set ();
2023 /* FIXME: are we supposed to call symbol_file_add or not? According
2024 to a comment from remote-mips.c (where a call to symbol_file_add
2025 was commented out), making the call confuses GDB if more than one
2026 file is loaded in. Some targets do (e.g., remote-vx.c) but
2027 others don't (or didn't - perhaps they have all been deleted). */
2029 print_transfer_performance (gdb_stdout, total_progress.data_count,
2030 total_progress.write_count,
2031 &start_time, &end_time);
2033 do_cleanups (old_cleanups);
2036 /* Report how fast the transfer went. */
2038 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2039 replaced by print_transfer_performance (with a very different
2040 function signature). */
2043 report_transfer_performance (unsigned long data_count, time_t start_time,
2046 struct timeval start, end;
2048 start.tv_sec = start_time;
2050 end.tv_sec = end_time;
2053 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2057 print_transfer_performance (struct ui_file *stream,
2058 unsigned long data_count,
2059 unsigned long write_count,
2060 const struct timeval *start_time,
2061 const struct timeval *end_time)
2063 ULONGEST time_count;
2065 /* Compute the elapsed time in milliseconds, as a tradeoff between
2066 accuracy and overflow. */
2067 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2068 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2070 ui_out_text (uiout, "Transfer rate: ");
2073 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2075 if (ui_out_is_mi_like_p (uiout))
2077 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2078 ui_out_text (uiout, " bits/sec");
2080 else if (rate < 1024)
2082 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2083 ui_out_text (uiout, " bytes/sec");
2087 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2088 ui_out_text (uiout, " KB/sec");
2093 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2094 ui_out_text (uiout, " bits in <1 sec");
2096 if (write_count > 0)
2098 ui_out_text (uiout, ", ");
2099 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2100 ui_out_text (uiout, " bytes/write");
2102 ui_out_text (uiout, ".\n");
2105 /* This function allows the addition of incrementally linked object files.
2106 It does not modify any state in the target, only in the debugger. */
2107 /* Note: ezannoni 2000-04-13 This function/command used to have a
2108 special case syntax for the rombug target (Rombug is the boot
2109 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2110 rombug case, the user doesn't need to supply a text address,
2111 instead a call to target_link() (in target.c) would supply the
2112 value to use. We are now discontinuing this type of ad hoc syntax. */
2115 add_symbol_file_command (char *args, int from_tty)
2117 struct gdbarch *gdbarch = get_current_arch ();
2118 char *filename = NULL;
2119 int flags = OBJF_USERLOADED;
2121 int section_index = 0;
2125 int expecting_sec_name = 0;
2126 int expecting_sec_addr = 0;
2135 struct section_addr_info *section_addrs;
2136 struct sect_opt *sect_opts = NULL;
2137 size_t num_sect_opts = 0;
2138 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2141 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2142 * sizeof (struct sect_opt));
2147 error (_("add-symbol-file takes a file name and an address"));
2149 argv = gdb_buildargv (args);
2150 make_cleanup_freeargv (argv);
2152 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2154 /* Process the argument. */
2157 /* The first argument is the file name. */
2158 filename = tilde_expand (arg);
2159 make_cleanup (xfree, filename);
2164 /* The second argument is always the text address at which
2165 to load the program. */
2166 sect_opts[section_index].name = ".text";
2167 sect_opts[section_index].value = arg;
2168 if (++section_index >= num_sect_opts)
2171 sect_opts = ((struct sect_opt *)
2172 xrealloc (sect_opts,
2174 * sizeof (struct sect_opt)));
2179 /* It's an option (starting with '-') or it's an argument
2184 if (strcmp (arg, "-readnow") == 0)
2185 flags |= OBJF_READNOW;
2186 else if (strcmp (arg, "-s") == 0)
2188 expecting_sec_name = 1;
2189 expecting_sec_addr = 1;
2194 if (expecting_sec_name)
2196 sect_opts[section_index].name = arg;
2197 expecting_sec_name = 0;
2200 if (expecting_sec_addr)
2202 sect_opts[section_index].value = arg;
2203 expecting_sec_addr = 0;
2204 if (++section_index >= num_sect_opts)
2207 sect_opts = ((struct sect_opt *)
2208 xrealloc (sect_opts,
2210 * sizeof (struct sect_opt)));
2214 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2219 /* This command takes at least two arguments. The first one is a
2220 filename, and the second is the address where this file has been
2221 loaded. Abort now if this address hasn't been provided by the
2223 if (section_index < 1)
2224 error (_("The address where %s has been loaded is missing"), filename);
2226 /* Print the prompt for the query below. And save the arguments into
2227 a sect_addr_info structure to be passed around to other
2228 functions. We have to split this up into separate print
2229 statements because hex_string returns a local static
2232 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2233 section_addrs = alloc_section_addr_info (section_index);
2234 make_cleanup (xfree, section_addrs);
2235 for (i = 0; i < section_index; i++)
2238 char *val = sect_opts[i].value;
2239 char *sec = sect_opts[i].name;
2241 addr = parse_and_eval_address (val);
2243 /* Here we store the section offsets in the order they were
2244 entered on the command line. */
2245 section_addrs->other[sec_num].name = sec;
2246 section_addrs->other[sec_num].addr = addr;
2247 printf_unfiltered ("\t%s_addr = %s\n", sec,
2248 paddress (gdbarch, addr));
2251 /* The object's sections are initialized when a
2252 call is made to build_objfile_section_table (objfile).
2253 This happens in reread_symbols.
2254 At this point, we don't know what file type this is,
2255 so we can't determine what section names are valid. */
2258 if (from_tty && (!query ("%s", "")))
2259 error (_("Not confirmed."));
2261 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2262 section_addrs, flags);
2264 /* Getting new symbols may change our opinion about what is
2266 reinit_frame_cache ();
2267 do_cleanups (my_cleanups);
2271 /* Re-read symbols if a symbol-file has changed. */
2273 reread_symbols (void)
2275 struct objfile *objfile;
2278 struct stat new_statbuf;
2281 /* With the addition of shared libraries, this should be modified,
2282 the load time should be saved in the partial symbol tables, since
2283 different tables may come from different source files. FIXME.
2284 This routine should then walk down each partial symbol table
2285 and see if the symbol table that it originates from has been changed */
2287 for (objfile = object_files; objfile; objfile = objfile->next)
2289 /* solib-sunos.c creates one objfile with obfd. */
2290 if (objfile->obfd == NULL)
2293 /* Separate debug objfiles are handled in the main objfile. */
2294 if (objfile->separate_debug_objfile_backlink)
2297 /* If this object is from an archive (what you usually create with
2298 `ar', often called a `static library' on most systems, though
2299 a `shared library' on AIX is also an archive), then you should
2300 stat on the archive name, not member name. */
2301 if (objfile->obfd->my_archive)
2302 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2304 res = stat (objfile->name, &new_statbuf);
2307 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2308 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2312 new_modtime = new_statbuf.st_mtime;
2313 if (new_modtime != objfile->mtime)
2315 struct cleanup *old_cleanups;
2316 struct section_offsets *offsets;
2318 char *obfd_filename;
2320 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2323 /* There are various functions like symbol_file_add,
2324 symfile_bfd_open, syms_from_objfile, etc., which might
2325 appear to do what we want. But they have various other
2326 effects which we *don't* want. So we just do stuff
2327 ourselves. We don't worry about mapped files (for one thing,
2328 any mapped file will be out of date). */
2330 /* If we get an error, blow away this objfile (not sure if
2331 that is the correct response for things like shared
2333 old_cleanups = make_cleanup_free_objfile (objfile);
2334 /* We need to do this whenever any symbols go away. */
2335 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2337 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2338 bfd_get_filename (exec_bfd)) == 0)
2340 /* Reload EXEC_BFD without asking anything. */
2342 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2345 /* Clean up any state BFD has sitting around. We don't need
2346 to close the descriptor but BFD lacks a way of closing the
2347 BFD without closing the descriptor. */
2348 obfd_filename = bfd_get_filename (objfile->obfd);
2349 if (!bfd_close (objfile->obfd))
2350 error (_("Can't close BFD for %s: %s"), objfile->name,
2351 bfd_errmsg (bfd_get_error ()));
2352 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2353 if (objfile->obfd == NULL)
2354 error (_("Can't open %s to read symbols."), objfile->name);
2356 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2357 /* bfd_openr sets cacheable to true, which is what we want. */
2358 if (!bfd_check_format (objfile->obfd, bfd_object))
2359 error (_("Can't read symbols from %s: %s."), objfile->name,
2360 bfd_errmsg (bfd_get_error ()));
2362 /* Save the offsets, we will nuke them with the rest of the
2364 num_offsets = objfile->num_sections;
2365 offsets = ((struct section_offsets *)
2366 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2367 memcpy (offsets, objfile->section_offsets,
2368 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2370 /* Remove any references to this objfile in the global
2372 preserve_values (objfile);
2374 /* Nuke all the state that we will re-read. Much of the following
2375 code which sets things to NULL really is necessary to tell
2376 other parts of GDB that there is nothing currently there.
2378 Try to keep the freeing order compatible with free_objfile. */
2380 if (objfile->sf != NULL)
2382 (*objfile->sf->sym_finish) (objfile);
2385 clear_objfile_data (objfile);
2387 /* Free the separate debug objfiles. It will be
2388 automatically recreated by sym_read. */
2389 free_objfile_separate_debug (objfile);
2391 /* FIXME: Do we have to free a whole linked list, or is this
2393 if (objfile->global_psymbols.list)
2394 xfree (objfile->global_psymbols.list);
2395 memset (&objfile->global_psymbols, 0,
2396 sizeof (objfile->global_psymbols));
2397 if (objfile->static_psymbols.list)
2398 xfree (objfile->static_psymbols.list);
2399 memset (&objfile->static_psymbols, 0,
2400 sizeof (objfile->static_psymbols));
2402 /* Free the obstacks for non-reusable objfiles */
2403 bcache_xfree (objfile->psymbol_cache);
2404 objfile->psymbol_cache = bcache_xmalloc ();
2405 bcache_xfree (objfile->macro_cache);
2406 objfile->macro_cache = bcache_xmalloc ();
2407 bcache_xfree (objfile->filename_cache);
2408 objfile->filename_cache = bcache_xmalloc ();
2409 if (objfile->demangled_names_hash != NULL)
2411 htab_delete (objfile->demangled_names_hash);
2412 objfile->demangled_names_hash = NULL;
2414 obstack_free (&objfile->objfile_obstack, 0);
2415 objfile->sections = NULL;
2416 objfile->symtabs = NULL;
2417 objfile->psymtabs = NULL;
2418 objfile->psymtabs_addrmap = NULL;
2419 objfile->free_psymtabs = NULL;
2420 objfile->cp_namespace_symtab = NULL;
2421 objfile->msymbols = NULL;
2422 objfile->deprecated_sym_private = NULL;
2423 objfile->minimal_symbol_count = 0;
2424 memset (&objfile->msymbol_hash, 0,
2425 sizeof (objfile->msymbol_hash));
2426 memset (&objfile->msymbol_demangled_hash, 0,
2427 sizeof (objfile->msymbol_demangled_hash));
2429 objfile->psymbol_cache = bcache_xmalloc ();
2430 objfile->macro_cache = bcache_xmalloc ();
2431 objfile->filename_cache = bcache_xmalloc ();
2432 /* obstack_init also initializes the obstack so it is
2433 empty. We could use obstack_specify_allocation but
2434 gdb_obstack.h specifies the alloc/dealloc
2436 obstack_init (&objfile->objfile_obstack);
2437 if (build_objfile_section_table (objfile))
2439 error (_("Can't find the file sections in `%s': %s"),
2440 objfile->name, bfd_errmsg (bfd_get_error ()));
2442 terminate_minimal_symbol_table (objfile);
2444 /* We use the same section offsets as from last time. I'm not
2445 sure whether that is always correct for shared libraries. */
2446 objfile->section_offsets = (struct section_offsets *)
2447 obstack_alloc (&objfile->objfile_obstack,
2448 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2449 memcpy (objfile->section_offsets, offsets,
2450 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2451 objfile->num_sections = num_offsets;
2453 /* What the hell is sym_new_init for, anyway? The concept of
2454 distinguishing between the main file and additional files
2455 in this way seems rather dubious. */
2456 if (objfile == symfile_objfile)
2458 (*objfile->sf->sym_new_init) (objfile);
2461 (*objfile->sf->sym_init) (objfile);
2462 clear_complaints (&symfile_complaints, 1, 1);
2463 /* Do not set flags as this is safe and we don't want to be
2465 (*objfile->sf->sym_read) (objfile, 0);
2466 if (!objfile_has_symbols (objfile))
2469 printf_unfiltered (_("(no debugging symbols found)\n"));
2473 /* We're done reading the symbol file; finish off complaints. */
2474 clear_complaints (&symfile_complaints, 0, 1);
2476 /* Getting new symbols may change our opinion about what is
2479 reinit_frame_cache ();
2481 /* Discard cleanups as symbol reading was successful. */
2482 discard_cleanups (old_cleanups);
2484 /* If the mtime has changed between the time we set new_modtime
2485 and now, we *want* this to be out of date, so don't call stat
2487 objfile->mtime = new_modtime;
2489 init_entry_point_info (objfile);
2495 /* Notify objfiles that we've modified objfile sections. */
2496 objfiles_changed ();
2498 clear_symtab_users ();
2499 /* At least one objfile has changed, so we can consider that
2500 the executable we're debugging has changed too. */
2501 observer_notify_executable_changed ();
2514 static filename_language *filename_language_table;
2515 static int fl_table_size, fl_table_next;
2518 add_filename_language (char *ext, enum language lang)
2520 if (fl_table_next >= fl_table_size)
2522 fl_table_size += 10;
2523 filename_language_table =
2524 xrealloc (filename_language_table,
2525 fl_table_size * sizeof (*filename_language_table));
2528 filename_language_table[fl_table_next].ext = xstrdup (ext);
2529 filename_language_table[fl_table_next].lang = lang;
2533 static char *ext_args;
2535 show_ext_args (struct ui_file *file, int from_tty,
2536 struct cmd_list_element *c, const char *value)
2538 fprintf_filtered (file, _("\
2539 Mapping between filename extension and source language is \"%s\".\n"),
2544 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2547 char *cp = ext_args;
2550 /* First arg is filename extension, starting with '.' */
2552 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2554 /* Find end of first arg. */
2555 while (*cp && !isspace (*cp))
2559 error (_("'%s': two arguments required -- filename extension and language"),
2562 /* Null-terminate first arg */
2565 /* Find beginning of second arg, which should be a source language. */
2566 while (*cp && isspace (*cp))
2570 error (_("'%s': two arguments required -- filename extension and language"),
2573 /* Lookup the language from among those we know. */
2574 lang = language_enum (cp);
2576 /* Now lookup the filename extension: do we already know it? */
2577 for (i = 0; i < fl_table_next; i++)
2578 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2581 if (i >= fl_table_next)
2583 /* new file extension */
2584 add_filename_language (ext_args, lang);
2588 /* redefining a previously known filename extension */
2591 /* query ("Really make files of type %s '%s'?", */
2592 /* ext_args, language_str (lang)); */
2594 xfree (filename_language_table[i].ext);
2595 filename_language_table[i].ext = xstrdup (ext_args);
2596 filename_language_table[i].lang = lang;
2601 info_ext_lang_command (char *args, int from_tty)
2605 printf_filtered (_("Filename extensions and the languages they represent:"));
2606 printf_filtered ("\n\n");
2607 for (i = 0; i < fl_table_next; i++)
2608 printf_filtered ("\t%s\t- %s\n",
2609 filename_language_table[i].ext,
2610 language_str (filename_language_table[i].lang));
2614 init_filename_language_table (void)
2616 if (fl_table_size == 0) /* protect against repetition */
2620 filename_language_table =
2621 xmalloc (fl_table_size * sizeof (*filename_language_table));
2622 add_filename_language (".c", language_c);
2623 add_filename_language (".d", language_d);
2624 add_filename_language (".C", language_cplus);
2625 add_filename_language (".cc", language_cplus);
2626 add_filename_language (".cp", language_cplus);
2627 add_filename_language (".cpp", language_cplus);
2628 add_filename_language (".cxx", language_cplus);
2629 add_filename_language (".c++", language_cplus);
2630 add_filename_language (".java", language_java);
2631 add_filename_language (".class", language_java);
2632 add_filename_language (".m", language_objc);
2633 add_filename_language (".f", language_fortran);
2634 add_filename_language (".F", language_fortran);
2635 add_filename_language (".s", language_asm);
2636 add_filename_language (".sx", language_asm);
2637 add_filename_language (".S", language_asm);
2638 add_filename_language (".pas", language_pascal);
2639 add_filename_language (".p", language_pascal);
2640 add_filename_language (".pp", language_pascal);
2641 add_filename_language (".adb", language_ada);
2642 add_filename_language (".ads", language_ada);
2643 add_filename_language (".a", language_ada);
2644 add_filename_language (".ada", language_ada);
2645 add_filename_language (".dg", language_ada);
2650 deduce_language_from_filename (char *filename)
2655 if (filename != NULL)
2656 if ((cp = strrchr (filename, '.')) != NULL)
2657 for (i = 0; i < fl_table_next; i++)
2658 if (strcmp (cp, filename_language_table[i].ext) == 0)
2659 return filename_language_table[i].lang;
2661 return language_unknown;
2666 Allocate and partly initialize a new symbol table. Return a pointer
2667 to it. error() if no space.
2669 Caller must set these fields:
2678 allocate_symtab (char *filename, struct objfile *objfile)
2680 struct symtab *symtab;
2682 symtab = (struct symtab *)
2683 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2684 memset (symtab, 0, sizeof (*symtab));
2685 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2686 objfile->filename_cache);
2687 symtab->fullname = NULL;
2688 symtab->language = deduce_language_from_filename (filename);
2689 symtab->debugformat = "unknown";
2691 /* Hook it to the objfile it comes from */
2693 symtab->objfile = objfile;
2694 symtab->next = objfile->symtabs;
2695 objfile->symtabs = symtab;
2701 /* Reset all data structures in gdb which may contain references to symbol
2705 clear_symtab_users (void)
2707 /* Someday, we should do better than this, by only blowing away
2708 the things that really need to be blown. */
2710 /* Clear the "current" symtab first, because it is no longer valid.
2711 breakpoint_re_set may try to access the current symtab. */
2712 clear_current_source_symtab_and_line ();
2715 breakpoint_re_set ();
2716 set_default_breakpoint (0, NULL, 0, 0, 0);
2717 clear_pc_function_cache ();
2718 observer_notify_new_objfile (NULL);
2720 /* Clear globals which might have pointed into a removed objfile.
2721 FIXME: It's not clear which of these are supposed to persist
2722 between expressions and which ought to be reset each time. */
2723 expression_context_block = NULL;
2724 innermost_block = NULL;
2726 /* Varobj may refer to old symbols, perform a cleanup. */
2727 varobj_invalidate ();
2732 clear_symtab_users_cleanup (void *ignore)
2734 clear_symtab_users ();
2738 The following code implements an abstraction for debugging overlay sections.
2740 The target model is as follows:
2741 1) The gnu linker will permit multiple sections to be mapped into the
2742 same VMA, each with its own unique LMA (or load address).
2743 2) It is assumed that some runtime mechanism exists for mapping the
2744 sections, one by one, from the load address into the VMA address.
2745 3) This code provides a mechanism for gdb to keep track of which
2746 sections should be considered to be mapped from the VMA to the LMA.
2747 This information is used for symbol lookup, and memory read/write.
2748 For instance, if a section has been mapped then its contents
2749 should be read from the VMA, otherwise from the LMA.
2751 Two levels of debugger support for overlays are available. One is
2752 "manual", in which the debugger relies on the user to tell it which
2753 overlays are currently mapped. This level of support is
2754 implemented entirely in the core debugger, and the information about
2755 whether a section is mapped is kept in the objfile->obj_section table.
2757 The second level of support is "automatic", and is only available if
2758 the target-specific code provides functionality to read the target's
2759 overlay mapping table, and translate its contents for the debugger
2760 (by updating the mapped state information in the obj_section tables).
2762 The interface is as follows:
2764 overlay map <name> -- tell gdb to consider this section mapped
2765 overlay unmap <name> -- tell gdb to consider this section unmapped
2766 overlay list -- list the sections that GDB thinks are mapped
2767 overlay read-target -- get the target's state of what's mapped
2768 overlay off/manual/auto -- set overlay debugging state
2769 Functional interface:
2770 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2771 section, return that section.
2772 find_pc_overlay(pc): find any overlay section that contains
2773 the pc, either in its VMA or its LMA
2774 section_is_mapped(sect): true if overlay is marked as mapped
2775 section_is_overlay(sect): true if section's VMA != LMA
2776 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2777 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2778 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2779 overlay_mapped_address(...): map an address from section's LMA to VMA
2780 overlay_unmapped_address(...): map an address from section's VMA to LMA
2781 symbol_overlayed_address(...): Return a "current" address for symbol:
2782 either in VMA or LMA depending on whether
2783 the symbol's section is currently mapped
2786 /* Overlay debugging state: */
2788 enum overlay_debugging_state overlay_debugging = ovly_off;
2789 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2791 /* Function: section_is_overlay (SECTION)
2792 Returns true if SECTION has VMA not equal to LMA, ie.
2793 SECTION is loaded at an address different from where it will "run". */
2796 section_is_overlay (struct obj_section *section)
2798 if (overlay_debugging && section)
2800 bfd *abfd = section->objfile->obfd;
2801 asection *bfd_section = section->the_bfd_section;
2803 if (bfd_section_lma (abfd, bfd_section) != 0
2804 && bfd_section_lma (abfd, bfd_section)
2805 != bfd_section_vma (abfd, bfd_section))
2812 /* Function: overlay_invalidate_all (void)
2813 Invalidate the mapped state of all overlay sections (mark it as stale). */
2816 overlay_invalidate_all (void)
2818 struct objfile *objfile;
2819 struct obj_section *sect;
2821 ALL_OBJSECTIONS (objfile, sect)
2822 if (section_is_overlay (sect))
2823 sect->ovly_mapped = -1;
2826 /* Function: section_is_mapped (SECTION)
2827 Returns true if section is an overlay, and is currently mapped.
2829 Access to the ovly_mapped flag is restricted to this function, so
2830 that we can do automatic update. If the global flag
2831 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2832 overlay_invalidate_all. If the mapped state of the particular
2833 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2836 section_is_mapped (struct obj_section *osect)
2838 struct gdbarch *gdbarch;
2840 if (osect == 0 || !section_is_overlay (osect))
2843 switch (overlay_debugging)
2847 return 0; /* overlay debugging off */
2848 case ovly_auto: /* overlay debugging automatic */
2849 /* Unles there is a gdbarch_overlay_update function,
2850 there's really nothing useful to do here (can't really go auto) */
2851 gdbarch = get_objfile_arch (osect->objfile);
2852 if (gdbarch_overlay_update_p (gdbarch))
2854 if (overlay_cache_invalid)
2856 overlay_invalidate_all ();
2857 overlay_cache_invalid = 0;
2859 if (osect->ovly_mapped == -1)
2860 gdbarch_overlay_update (gdbarch, osect);
2862 /* fall thru to manual case */
2863 case ovly_on: /* overlay debugging manual */
2864 return osect->ovly_mapped == 1;
2868 /* Function: pc_in_unmapped_range
2869 If PC falls into the lma range of SECTION, return true, else false. */
2872 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2874 if (section_is_overlay (section))
2876 bfd *abfd = section->objfile->obfd;
2877 asection *bfd_section = section->the_bfd_section;
2879 /* We assume the LMA is relocated by the same offset as the VMA. */
2880 bfd_vma size = bfd_get_section_size (bfd_section);
2881 CORE_ADDR offset = obj_section_offset (section);
2883 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2884 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2891 /* Function: pc_in_mapped_range
2892 If PC falls into the vma range of SECTION, return true, else false. */
2895 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2897 if (section_is_overlay (section))
2899 if (obj_section_addr (section) <= pc
2900 && pc < obj_section_endaddr (section))
2908 /* Return true if the mapped ranges of sections A and B overlap, false
2911 sections_overlap (struct obj_section *a, struct obj_section *b)
2913 CORE_ADDR a_start = obj_section_addr (a);
2914 CORE_ADDR a_end = obj_section_endaddr (a);
2915 CORE_ADDR b_start = obj_section_addr (b);
2916 CORE_ADDR b_end = obj_section_endaddr (b);
2918 return (a_start < b_end && b_start < a_end);
2921 /* Function: overlay_unmapped_address (PC, SECTION)
2922 Returns the address corresponding to PC in the unmapped (load) range.
2923 May be the same as PC. */
2926 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2928 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2930 bfd *abfd = section->objfile->obfd;
2931 asection *bfd_section = section->the_bfd_section;
2933 return pc + bfd_section_lma (abfd, bfd_section)
2934 - bfd_section_vma (abfd, bfd_section);
2940 /* Function: overlay_mapped_address (PC, SECTION)
2941 Returns the address corresponding to PC in the mapped (runtime) range.
2942 May be the same as PC. */
2945 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2947 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2949 bfd *abfd = section->objfile->obfd;
2950 asection *bfd_section = section->the_bfd_section;
2952 return pc + bfd_section_vma (abfd, bfd_section)
2953 - bfd_section_lma (abfd, bfd_section);
2960 /* Function: symbol_overlayed_address
2961 Return one of two addresses (relative to the VMA or to the LMA),
2962 depending on whether the section is mapped or not. */
2965 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
2967 if (overlay_debugging)
2969 /* If the symbol has no section, just return its regular address. */
2972 /* If the symbol's section is not an overlay, just return its address */
2973 if (!section_is_overlay (section))
2975 /* If the symbol's section is mapped, just return its address */
2976 if (section_is_mapped (section))
2979 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2980 * then return its LOADED address rather than its vma address!!
2982 return overlay_unmapped_address (address, section);
2987 /* Function: find_pc_overlay (PC)
2988 Return the best-match overlay section for PC:
2989 If PC matches a mapped overlay section's VMA, return that section.
2990 Else if PC matches an unmapped section's VMA, return that section.
2991 Else if PC matches an unmapped section's LMA, return that section. */
2993 struct obj_section *
2994 find_pc_overlay (CORE_ADDR pc)
2996 struct objfile *objfile;
2997 struct obj_section *osect, *best_match = NULL;
2999 if (overlay_debugging)
3000 ALL_OBJSECTIONS (objfile, osect)
3001 if (section_is_overlay (osect))
3003 if (pc_in_mapped_range (pc, osect))
3005 if (section_is_mapped (osect))
3010 else if (pc_in_unmapped_range (pc, osect))
3016 /* Function: find_pc_mapped_section (PC)
3017 If PC falls into the VMA address range of an overlay section that is
3018 currently marked as MAPPED, return that section. Else return NULL. */
3020 struct obj_section *
3021 find_pc_mapped_section (CORE_ADDR pc)
3023 struct objfile *objfile;
3024 struct obj_section *osect;
3026 if (overlay_debugging)
3027 ALL_OBJSECTIONS (objfile, osect)
3028 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3034 /* Function: list_overlays_command
3035 Print a list of mapped sections and their PC ranges */
3038 list_overlays_command (char *args, int from_tty)
3041 struct objfile *objfile;
3042 struct obj_section *osect;
3044 if (overlay_debugging)
3045 ALL_OBJSECTIONS (objfile, osect)
3046 if (section_is_mapped (osect))
3048 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3053 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3054 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3055 size = bfd_get_section_size (osect->the_bfd_section);
3056 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3058 printf_filtered ("Section %s, loaded at ", name);
3059 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3060 puts_filtered (" - ");
3061 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3062 printf_filtered (", mapped at ");
3063 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3064 puts_filtered (" - ");
3065 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3066 puts_filtered ("\n");
3071 printf_filtered (_("No sections are mapped.\n"));
3074 /* Function: map_overlay_command
3075 Mark the named section as mapped (ie. residing at its VMA address). */
3078 map_overlay_command (char *args, int from_tty)
3080 struct objfile *objfile, *objfile2;
3081 struct obj_section *sec, *sec2;
3083 if (!overlay_debugging)
3085 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3086 the 'overlay manual' command."));
3088 if (args == 0 || *args == 0)
3089 error (_("Argument required: name of an overlay section"));
3091 /* First, find a section matching the user supplied argument */
3092 ALL_OBJSECTIONS (objfile, sec)
3093 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3095 /* Now, check to see if the section is an overlay. */
3096 if (!section_is_overlay (sec))
3097 continue; /* not an overlay section */
3099 /* Mark the overlay as "mapped" */
3100 sec->ovly_mapped = 1;
3102 /* Next, make a pass and unmap any sections that are
3103 overlapped by this new section: */
3104 ALL_OBJSECTIONS (objfile2, sec2)
3105 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3108 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3109 bfd_section_name (objfile->obfd,
3110 sec2->the_bfd_section));
3111 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3115 error (_("No overlay section called %s"), args);
3118 /* Function: unmap_overlay_command
3119 Mark the overlay section as unmapped
3120 (ie. resident in its LMA address range, rather than the VMA range). */
3123 unmap_overlay_command (char *args, int from_tty)
3125 struct objfile *objfile;
3126 struct obj_section *sec;
3128 if (!overlay_debugging)
3130 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3131 the 'overlay manual' command."));
3133 if (args == 0 || *args == 0)
3134 error (_("Argument required: name of an overlay section"));
3136 /* First, find a section matching the user supplied argument */
3137 ALL_OBJSECTIONS (objfile, sec)
3138 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3140 if (!sec->ovly_mapped)
3141 error (_("Section %s is not mapped"), args);
3142 sec->ovly_mapped = 0;
3145 error (_("No overlay section called %s"), args);
3148 /* Function: overlay_auto_command
3149 A utility command to turn on overlay debugging.
3150 Possibly this should be done via a set/show command. */
3153 overlay_auto_command (char *args, int from_tty)
3155 overlay_debugging = ovly_auto;
3156 enable_overlay_breakpoints ();
3158 printf_unfiltered (_("Automatic overlay debugging enabled."));
3161 /* Function: overlay_manual_command
3162 A utility command to turn on overlay debugging.
3163 Possibly this should be done via a set/show command. */
3166 overlay_manual_command (char *args, int from_tty)
3168 overlay_debugging = ovly_on;
3169 disable_overlay_breakpoints ();
3171 printf_unfiltered (_("Overlay debugging enabled."));
3174 /* Function: overlay_off_command
3175 A utility command to turn on overlay debugging.
3176 Possibly this should be done via a set/show command. */
3179 overlay_off_command (char *args, int from_tty)
3181 overlay_debugging = ovly_off;
3182 disable_overlay_breakpoints ();
3184 printf_unfiltered (_("Overlay debugging disabled."));
3188 overlay_load_command (char *args, int from_tty)
3190 struct gdbarch *gdbarch = get_current_arch ();
3192 if (gdbarch_overlay_update_p (gdbarch))
3193 gdbarch_overlay_update (gdbarch, NULL);
3195 error (_("This target does not know how to read its overlay state."));
3198 /* Function: overlay_command
3199 A place-holder for a mis-typed command */
3201 /* Command list chain containing all defined "overlay" subcommands. */
3202 struct cmd_list_element *overlaylist;
3205 overlay_command (char *args, int from_tty)
3208 ("\"overlay\" must be followed by the name of an overlay command.\n");
3209 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3213 /* Target Overlays for the "Simplest" overlay manager:
3215 This is GDB's default target overlay layer. It works with the
3216 minimal overlay manager supplied as an example by Cygnus. The
3217 entry point is via a function pointer "gdbarch_overlay_update",
3218 so targets that use a different runtime overlay manager can
3219 substitute their own overlay_update function and take over the
3222 The overlay_update function pokes around in the target's data structures
3223 to see what overlays are mapped, and updates GDB's overlay mapping with
3226 In this simple implementation, the target data structures are as follows:
3227 unsigned _novlys; /# number of overlay sections #/
3228 unsigned _ovly_table[_novlys][4] = {
3229 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3230 {..., ..., ..., ...},
3232 unsigned _novly_regions; /# number of overlay regions #/
3233 unsigned _ovly_region_table[_novly_regions][3] = {
3234 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3237 These functions will attempt to update GDB's mappedness state in the
3238 symbol section table, based on the target's mappedness state.
3240 To do this, we keep a cached copy of the target's _ovly_table, and
3241 attempt to detect when the cached copy is invalidated. The main
3242 entry point is "simple_overlay_update(SECT), which looks up SECT in
3243 the cached table and re-reads only the entry for that section from
3244 the target (whenever possible).
3247 /* Cached, dynamically allocated copies of the target data structures: */
3248 static unsigned (*cache_ovly_table)[4] = 0;
3250 static unsigned (*cache_ovly_region_table)[3] = 0;
3252 static unsigned cache_novlys = 0;
3254 static unsigned cache_novly_regions = 0;
3256 static CORE_ADDR cache_ovly_table_base = 0;
3258 static CORE_ADDR cache_ovly_region_table_base = 0;
3262 VMA, SIZE, LMA, MAPPED
3265 /* Throw away the cached copy of _ovly_table */
3267 simple_free_overlay_table (void)
3269 if (cache_ovly_table)
3270 xfree (cache_ovly_table);
3272 cache_ovly_table = NULL;
3273 cache_ovly_table_base = 0;
3277 /* Throw away the cached copy of _ovly_region_table */
3279 simple_free_overlay_region_table (void)
3281 if (cache_ovly_region_table)
3282 xfree (cache_ovly_region_table);
3283 cache_novly_regions = 0;
3284 cache_ovly_region_table = NULL;
3285 cache_ovly_region_table_base = 0;
3289 /* Read an array of ints of size SIZE from the target into a local buffer.
3290 Convert to host order. int LEN is number of ints */
3292 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3293 int len, int size, enum bfd_endian byte_order)
3295 /* FIXME (alloca): Not safe if array is very large. */
3296 gdb_byte *buf = alloca (len * size);
3299 read_memory (memaddr, buf, len * size);
3300 for (i = 0; i < len; i++)
3301 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3304 /* Find and grab a copy of the target _ovly_table
3305 (and _novlys, which is needed for the table's size) */
3307 simple_read_overlay_table (void)
3309 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3310 struct gdbarch *gdbarch;
3312 enum bfd_endian byte_order;
3314 simple_free_overlay_table ();
3315 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3318 error (_("Error reading inferior's overlay table: "
3319 "couldn't find `_novlys' variable\n"
3320 "in inferior. Use `overlay manual' mode."));
3324 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3325 if (! ovly_table_msym)
3327 error (_("Error reading inferior's overlay table: couldn't find "
3328 "`_ovly_table' array\n"
3329 "in inferior. Use `overlay manual' mode."));
3333 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3334 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3335 byte_order = gdbarch_byte_order (gdbarch);
3337 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3340 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3341 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3342 read_target_long_array (cache_ovly_table_base,
3343 (unsigned int *) cache_ovly_table,
3344 cache_novlys * 4, word_size, byte_order);
3346 return 1; /* SUCCESS */
3350 /* Find and grab a copy of the target _ovly_region_table
3351 (and _novly_regions, which is needed for the table's size) */
3353 simple_read_overlay_region_table (void)
3355 struct minimal_symbol *msym;
3356 struct gdbarch *gdbarch;
3358 enum bfd_endian byte_order;
3360 simple_free_overlay_region_table ();
3361 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3363 return 0; /* failure */
3365 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3366 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3367 byte_order = gdbarch_byte_order (gdbarch);
3369 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3372 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3373 if (cache_ovly_region_table != NULL)
3375 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3378 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3379 read_target_long_array (cache_ovly_region_table_base,
3380 (unsigned int *) cache_ovly_region_table,
3381 cache_novly_regions * 3,
3382 word_size, byte_order);
3385 return 0; /* failure */
3388 return 0; /* failure */
3389 return 1; /* SUCCESS */
3393 /* Function: simple_overlay_update_1
3394 A helper function for simple_overlay_update. Assuming a cached copy
3395 of _ovly_table exists, look through it to find an entry whose vma,
3396 lma and size match those of OSECT. Re-read the entry and make sure
3397 it still matches OSECT (else the table may no longer be valid).
3398 Set OSECT's mapped state to match the entry. Return: 1 for
3399 success, 0 for failure. */
3402 simple_overlay_update_1 (struct obj_section *osect)
3405 bfd *obfd = osect->objfile->obfd;
3406 asection *bsect = osect->the_bfd_section;
3407 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3408 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3411 size = bfd_get_section_size (osect->the_bfd_section);
3412 for (i = 0; i < cache_novlys; i++)
3413 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3414 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3415 /* && cache_ovly_table[i][SIZE] == size */ )
3417 read_target_long_array (cache_ovly_table_base + i * word_size,
3418 (unsigned int *) cache_ovly_table[i],
3419 4, word_size, byte_order);
3420 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3421 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3422 /* && cache_ovly_table[i][SIZE] == size */ )
3424 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3427 else /* Warning! Warning! Target's ovly table has changed! */
3433 /* Function: simple_overlay_update
3434 If OSECT is NULL, then update all sections' mapped state
3435 (after re-reading the entire target _ovly_table).
3436 If OSECT is non-NULL, then try to find a matching entry in the
3437 cached ovly_table and update only OSECT's mapped state.
3438 If a cached entry can't be found or the cache isn't valid, then
3439 re-read the entire cache, and go ahead and update all sections. */
3442 simple_overlay_update (struct obj_section *osect)
3444 struct objfile *objfile;
3446 /* Were we given an osect to look up? NULL means do all of them. */
3448 /* Have we got a cached copy of the target's overlay table? */
3449 if (cache_ovly_table != NULL)
3450 /* Does its cached location match what's currently in the symtab? */
3451 if (cache_ovly_table_base ==
3452 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3453 /* Then go ahead and try to look up this single section in the cache */
3454 if (simple_overlay_update_1 (osect))
3455 /* Found it! We're done. */
3458 /* Cached table no good: need to read the entire table anew.
3459 Or else we want all the sections, in which case it's actually
3460 more efficient to read the whole table in one block anyway. */
3462 if (! simple_read_overlay_table ())
3465 /* Now may as well update all sections, even if only one was requested. */
3466 ALL_OBJSECTIONS (objfile, osect)
3467 if (section_is_overlay (osect))
3470 bfd *obfd = osect->objfile->obfd;
3471 asection *bsect = osect->the_bfd_section;
3473 size = bfd_get_section_size (bsect);
3474 for (i = 0; i < cache_novlys; i++)
3475 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3476 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3477 /* && cache_ovly_table[i][SIZE] == size */ )
3478 { /* obj_section matches i'th entry in ovly_table */
3479 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3480 break; /* finished with inner for loop: break out */
3485 /* Set the output sections and output offsets for section SECTP in
3486 ABFD. The relocation code in BFD will read these offsets, so we
3487 need to be sure they're initialized. We map each section to itself,
3488 with no offset; this means that SECTP->vma will be honored. */
3491 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3493 sectp->output_section = sectp;
3494 sectp->output_offset = 0;
3497 /* Default implementation for sym_relocate. */
3501 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3504 bfd *abfd = objfile->obfd;
3506 /* We're only interested in sections with relocation
3508 if ((sectp->flags & SEC_RELOC) == 0)
3511 /* We will handle section offsets properly elsewhere, so relocate as if
3512 all sections begin at 0. */
3513 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3515 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3518 /* Relocate the contents of a debug section SECTP in ABFD. The
3519 contents are stored in BUF if it is non-NULL, or returned in a
3520 malloc'd buffer otherwise.
3522 For some platforms and debug info formats, shared libraries contain
3523 relocations against the debug sections (particularly for DWARF-2;
3524 one affected platform is PowerPC GNU/Linux, although it depends on
3525 the version of the linker in use). Also, ELF object files naturally
3526 have unresolved relocations for their debug sections. We need to apply
3527 the relocations in order to get the locations of symbols correct.
3528 Another example that may require relocation processing, is the
3529 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3533 symfile_relocate_debug_section (struct objfile *objfile,
3534 asection *sectp, bfd_byte *buf)
3536 gdb_assert (objfile->sf->sym_relocate);
3538 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3541 struct symfile_segment_data *
3542 get_symfile_segment_data (bfd *abfd)
3544 struct sym_fns *sf = find_sym_fns (abfd);
3549 return sf->sym_segments (abfd);
3553 free_symfile_segment_data (struct symfile_segment_data *data)
3555 xfree (data->segment_bases);
3556 xfree (data->segment_sizes);
3557 xfree (data->segment_info);
3563 - DATA, containing segment addresses from the object file ABFD, and
3564 the mapping from ABFD's sections onto the segments that own them,
3566 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3567 segment addresses reported by the target,
3568 store the appropriate offsets for each section in OFFSETS.
3570 If there are fewer entries in SEGMENT_BASES than there are segments
3571 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3573 If there are more entries, then ignore the extra. The target may
3574 not be able to distinguish between an empty data segment and a
3575 missing data segment; a missing text segment is less plausible. */
3577 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3578 struct section_offsets *offsets,
3579 int num_segment_bases,
3580 const CORE_ADDR *segment_bases)
3585 /* It doesn't make sense to call this function unless you have some
3586 segment base addresses. */
3587 gdb_assert (num_segment_bases > 0);
3589 /* If we do not have segment mappings for the object file, we
3590 can not relocate it by segments. */
3591 gdb_assert (data != NULL);
3592 gdb_assert (data->num_segments > 0);
3594 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3596 int which = data->segment_info[i];
3598 gdb_assert (0 <= which && which <= data->num_segments);
3600 /* Don't bother computing offsets for sections that aren't
3601 loaded as part of any segment. */
3605 /* Use the last SEGMENT_BASES entry as the address of any extra
3606 segments mentioned in DATA->segment_info. */
3607 if (which > num_segment_bases)
3608 which = num_segment_bases;
3610 offsets->offsets[i] = (segment_bases[which - 1]
3611 - data->segment_bases[which - 1]);
3618 symfile_find_segment_sections (struct objfile *objfile)
3620 bfd *abfd = objfile->obfd;
3623 struct symfile_segment_data *data;
3625 data = get_symfile_segment_data (objfile->obfd);
3629 if (data->num_segments != 1 && data->num_segments != 2)
3631 free_symfile_segment_data (data);
3635 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3637 int which = data->segment_info[i];
3641 if (objfile->sect_index_text == -1)
3642 objfile->sect_index_text = sect->index;
3644 if (objfile->sect_index_rodata == -1)
3645 objfile->sect_index_rodata = sect->index;
3647 else if (which == 2)
3649 if (objfile->sect_index_data == -1)
3650 objfile->sect_index_data = sect->index;
3652 if (objfile->sect_index_bss == -1)
3653 objfile->sect_index_bss = sect->index;
3657 free_symfile_segment_data (data);
3661 _initialize_symfile (void)
3663 struct cmd_list_element *c;
3665 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3666 Load symbol table from executable file FILE.\n\
3667 The `file' command can also load symbol tables, as well as setting the file\n\
3668 to execute."), &cmdlist);
3669 set_cmd_completer (c, filename_completer);
3671 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3672 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3673 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3674 ADDR is the starting address of the file's text.\n\
3675 The optional arguments are section-name section-address pairs and\n\
3676 should be specified if the data and bss segments are not contiguous\n\
3677 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3679 set_cmd_completer (c, filename_completer);
3681 c = add_cmd ("load", class_files, load_command, _("\
3682 Dynamically load FILE into the running program, and record its symbols\n\
3683 for access from GDB.\n\
3684 A load OFFSET may also be given."), &cmdlist);
3685 set_cmd_completer (c, filename_completer);
3687 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3688 &symbol_reloading, _("\
3689 Set dynamic symbol table reloading multiple times in one run."), _("\
3690 Show dynamic symbol table reloading multiple times in one run."), NULL,
3692 show_symbol_reloading,
3693 &setlist, &showlist);
3695 add_prefix_cmd ("overlay", class_support, overlay_command,
3696 _("Commands for debugging overlays."), &overlaylist,
3697 "overlay ", 0, &cmdlist);
3699 add_com_alias ("ovly", "overlay", class_alias, 1);
3700 add_com_alias ("ov", "overlay", class_alias, 1);
3702 add_cmd ("map-overlay", class_support, map_overlay_command,
3703 _("Assert that an overlay section is mapped."), &overlaylist);
3705 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3706 _("Assert that an overlay section is unmapped."), &overlaylist);
3708 add_cmd ("list-overlays", class_support, list_overlays_command,
3709 _("List mappings of overlay sections."), &overlaylist);
3711 add_cmd ("manual", class_support, overlay_manual_command,
3712 _("Enable overlay debugging."), &overlaylist);
3713 add_cmd ("off", class_support, overlay_off_command,
3714 _("Disable overlay debugging."), &overlaylist);
3715 add_cmd ("auto", class_support, overlay_auto_command,
3716 _("Enable automatic overlay debugging."), &overlaylist);
3717 add_cmd ("load-target", class_support, overlay_load_command,
3718 _("Read the overlay mapping state from the target."), &overlaylist);
3720 /* Filename extension to source language lookup table: */
3721 init_filename_language_table ();
3722 add_setshow_string_noescape_cmd ("extension-language", class_files,
3724 Set mapping between filename extension and source language."), _("\
3725 Show mapping between filename extension and source language."), _("\
3726 Usage: set extension-language .foo bar"),
3727 set_ext_lang_command,
3729 &setlist, &showlist);
3731 add_info ("extensions", info_ext_lang_command,
3732 _("All filename extensions associated with a source language."));
3734 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3735 &debug_file_directory, _("\
3736 Set the directories where separate debug symbols are searched for."), _("\
3737 Show the directories where separate debug symbols are searched for."), _("\
3738 Separate debug symbols are first searched for in the same\n\
3739 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3740 and lastly at the path of the directory of the binary with\n\
3741 each global debug-file-directory component prepended."),
3743 show_debug_file_directory,
3744 &setlist, &showlist);