1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support, using pieces from other GDB modules.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
36 #include "breakpoint.h"
38 #include "complaints.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
52 #include "parser-defs.h"
57 #include <sys/types.h>
59 #include "gdb_string.h"
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
75 static void clear_symtab_users_cleanup (void *ignore);
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
80 /* External variables and functions referenced. */
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
84 /* Functions this file defines */
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
91 static void load_command (char *, int);
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95 static void add_symbol_file_command (char *, int);
97 static void add_shared_symbol_files_command (char *, int);
99 static void reread_separate_symbols (struct objfile *objfile);
101 static void cashier_psymtab (struct partial_symtab *);
103 bfd *symfile_bfd_open (char *);
105 int get_section_index (struct objfile *, char *);
107 static struct sym_fns *find_sym_fns (bfd *);
109 static void decrement_reading_symtab (void *);
111 static void overlay_invalidate_all (void);
113 static int overlay_is_mapped (struct obj_section *);
115 void list_overlays_command (char *, int);
117 void map_overlay_command (char *, int);
119 void unmap_overlay_command (char *, int);
121 static void overlay_auto_command (char *, int);
123 static void overlay_manual_command (char *, int);
125 static void overlay_off_command (char *, int);
127 static void overlay_load_command (char *, int);
129 static void overlay_command (char *, int);
131 static void simple_free_overlay_table (void);
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
135 static int simple_read_overlay_table (void);
137 static int simple_overlay_update_1 (struct obj_section *);
139 static void add_filename_language (char *ext, enum language lang);
141 static void info_ext_lang_command (char *args, int from_tty);
143 static char *find_separate_debug_file (struct objfile *objfile);
145 static void init_filename_language_table (void);
147 static void symfile_find_segment_sections (struct objfile *objfile);
149 void _initialize_symfile (void);
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
155 static struct sym_fns *symtab_fns = NULL;
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163 int symbol_reloading = 0;
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
175 /* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
182 library symbols are not loaded, commands like "info fun" will *not*
183 report all the functions that are actually present. */
185 int auto_solib_add = 1;
187 /* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
195 int auto_solib_limit;
198 /* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
202 compare_psymbols (const void *s1p, const void *s2p)
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
212 sort_pst_symbols (struct partial_symtab *pst)
214 /* Sort the global list; don't sort the static list */
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
221 /* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
227 obsavestring (const char *ptr, int size, struct obstack *obstackp)
229 char *p = (char *) obstack_alloc (obstackp, size + 1);
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
234 const char *p1 = ptr;
236 const char *end = ptr + size;
244 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
248 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
259 /* True if we are nested inside psymtab_to_symtab. */
261 int currently_reading_symtab = 0;
264 decrement_reading_symtab (void *dummy)
266 currently_reading_symtab--;
269 /* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
275 psymtab_to_symtab (struct partial_symtab *pst)
277 /* If it's been looked up before, return it. */
281 /* If it has not yet been read in, read it. */
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
293 /* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
303 find_lowest_section (bfd *abfd, asection *sect, void *obj)
305 asection **lowest = (asection **) obj;
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
319 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
321 struct section_addr_info *
322 alloc_section_addr_info (size_t num_sections)
324 struct section_addr_info *sap;
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
337 /* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339 struct section_addr_info *
340 copy_section_addr_info (struct section_addr_info *addrs)
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
362 /* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
365 extern struct section_addr_info *
366 build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
369 struct section_addr_info *sap;
370 const struct section_table *stp;
373 sap = alloc_section_addr_info (end - start);
375 for (stp = start, oidx = 0; stp != end; stp++)
377 if (bfd_get_section_flags (stp->bfd,
378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
379 && oidx < end - start)
381 sap->other[oidx].addr = stp->addr;
382 sap->other[oidx].name
383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
393 /* Free all memory allocated by build_section_addr_info_from_section_table. */
396 free_section_addr_info (struct section_addr_info *sap)
400 for (idx = 0; idx < sap->num_sections; idx++)
401 if (sap->other[idx].name)
402 xfree (sap->other[idx].name);
407 /* Initialize OBJFILE's sect_index_* members. */
409 init_objfile_sect_indices (struct objfile *objfile)
414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
416 objfile->sect_index_text = sect->index;
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
420 objfile->sect_index_data = sect->index;
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
424 objfile->sect_index_bss = sect->index;
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
428 objfile->sect_index_rodata = sect->index;
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. First, check for a file with the standard
434 one or two segments. */
436 symfile_find_segment_sections (objfile);
438 /* Except when explicitly adding symbol files at some address,
439 section_offsets contains nothing but zeros, so it doesn't matter
440 which slot in section_offsets the individual sect_index_* members
441 index into. So if they are all zero, it is safe to just point
442 all the currently uninitialized indices to the first slot. But
443 beware: if this is the main executable, it may be relocated
444 later, e.g. by the remote qOffsets packet, and then this will
445 be wrong! That's why we try segments first. */
447 for (i = 0; i < objfile->num_sections; i++)
449 if (ANOFFSET (objfile->section_offsets, i) != 0)
454 if (i == objfile->num_sections)
456 if (objfile->sect_index_text == -1)
457 objfile->sect_index_text = 0;
458 if (objfile->sect_index_data == -1)
459 objfile->sect_index_data = 0;
460 if (objfile->sect_index_bss == -1)
461 objfile->sect_index_bss = 0;
462 if (objfile->sect_index_rodata == -1)
463 objfile->sect_index_rodata = 0;
467 /* The arguments to place_section. */
469 struct place_section_arg
471 struct section_offsets *offsets;
475 /* Find a unique offset to use for loadable section SECT if
476 the user did not provide an offset. */
479 place_section (bfd *abfd, asection *sect, void *obj)
481 struct place_section_arg *arg = obj;
482 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
484 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
486 /* We are only interested in allocated sections. */
487 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
490 /* If the user specified an offset, honor it. */
491 if (offsets[sect->index] != 0)
494 /* Otherwise, let's try to find a place for the section. */
495 start_addr = (arg->lowest + align - 1) & -align;
502 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
504 int indx = cur_sec->index;
505 CORE_ADDR cur_offset;
507 /* We don't need to compare against ourself. */
511 /* We can only conflict with allocated sections. */
512 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
531 /* Otherwise, we appear to be OK. So far. */
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
540 /* Parse the user's idea of an offset for dynamic linking, into our idea
541 of how to represent it for fast symbol reading. This is the default
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
547 default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
552 objfile->num_sections = bfd_count_sections (objfile->obfd);
553 objfile->section_offsets = (struct section_offsets *)
554 obstack_alloc (&objfile->objfile_obstack,
555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
556 memset (objfile->section_offsets, 0,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
559 /* Now calculate offsets for section that were specified by the
561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
563 struct other_sections *osp ;
565 osp = &addrs->other[i] ;
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
582 struct place_section_arg arg;
583 bfd *abfd = objfile->obfd;
585 CORE_ADDR lowest = 0;
587 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
588 /* We do not expect this to happen; just skip this step if the
589 relocatable file has a section with an assigned VMA. */
590 if (bfd_section_vma (abfd, cur_sec) != 0)
595 CORE_ADDR *offsets = objfile->section_offsets->offsets;
597 /* Pick non-overlapping offsets for sections the user did not
599 arg.offsets = objfile->section_offsets;
601 bfd_map_over_sections (objfile->obfd, place_section, &arg);
603 /* Correctly filling in the section offsets is not quite
604 enough. Relocatable files have two properties that
605 (most) shared objects do not:
607 - Their debug information will contain relocations. Some
608 shared libraries do also, but many do not, so this can not
611 - If there are multiple code sections they will be loaded
612 at different relative addresses in memory than they are
613 in the objfile, since all sections in the file will start
616 Because GDB has very limited ability to map from an
617 address in debug info to the correct code section,
618 it relies on adding SECT_OFF_TEXT to things which might be
619 code. If we clear all the section offsets, and set the
620 section VMAs instead, then symfile_relocate_debug_section
621 will return meaningful debug information pointing at the
624 GDB has too many different data structures for section
625 addresses - a bfd, objfile, and so_list all have section
626 tables, as does exec_ops. Some of these could probably
629 for (cur_sec = abfd->sections; cur_sec != NULL;
630 cur_sec = cur_sec->next)
632 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
635 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
636 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
637 offsets[cur_sec->index]);
638 offsets[cur_sec->index] = 0;
643 /* Remember the bfd indexes for the .text, .data, .bss and
645 init_objfile_sect_indices (objfile);
649 /* Divide the file into segments, which are individual relocatable units.
650 This is the default version of the sym_fns.sym_segments function for
651 symbol readers that do not have an explicit representation of segments.
652 It assumes that object files do not have segments, and fully linked
653 files have a single segment. */
655 struct symfile_segment_data *
656 default_symfile_segments (bfd *abfd)
660 struct symfile_segment_data *data;
663 /* Relocatable files contain enough information to position each
664 loadable section independently; they should not be relocated
666 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
669 /* Make sure there is at least one loadable section in the file. */
670 for (sect = abfd->sections; sect != NULL; sect = sect->next)
672 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
680 low = bfd_get_section_vma (abfd, sect);
681 high = low + bfd_get_section_size (sect);
683 data = XZALLOC (struct symfile_segment_data);
684 data->num_segments = 1;
685 data->segment_bases = XCALLOC (1, CORE_ADDR);
686 data->segment_sizes = XCALLOC (1, CORE_ADDR);
688 num_sections = bfd_count_sections (abfd);
689 data->segment_info = XCALLOC (num_sections, int);
691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
695 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
698 vma = bfd_get_section_vma (abfd, sect);
701 if (vma + bfd_get_section_size (sect) > high)
702 high = vma + bfd_get_section_size (sect);
704 data->segment_info[i] = 1;
707 data->segment_bases[0] = low;
708 data->segment_sizes[0] = high - low;
713 /* Process a symbol file, as either the main file or as a dynamically
716 OBJFILE is where the symbols are to be read from.
718 ADDRS is the list of section load addresses. If the user has given
719 an 'add-symbol-file' command, then this is the list of offsets and
720 addresses he or she provided as arguments to the command; or, if
721 we're handling a shared library, these are the actual addresses the
722 sections are loaded at, according to the inferior's dynamic linker
723 (as gleaned by GDB's shared library code). We convert each address
724 into an offset from the section VMA's as it appears in the object
725 file, and then call the file's sym_offsets function to convert this
726 into a format-specific offset table --- a `struct section_offsets'.
727 If ADDRS is non-zero, OFFSETS must be zero.
729 OFFSETS is a table of section offsets already in the right
730 format-specific representation. NUM_OFFSETS is the number of
731 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
732 assume this is the proper table the call to sym_offsets described
733 above would produce. Instead of calling sym_offsets, we just dump
734 it right into objfile->section_offsets. (When we're re-reading
735 symbols from an objfile, we don't have the original load address
736 list any more; all we have is the section offset table.) If
737 OFFSETS is non-zero, ADDRS must be zero.
739 MAINLINE is nonzero if this is the main symbol file, or zero if
740 it's an extra symbol file such as dynamically loaded code.
742 VERBO is nonzero if the caller has printed a verbose message about
743 the symbol reading (and complaints can be more terse about it). */
746 syms_from_objfile (struct objfile *objfile,
747 struct section_addr_info *addrs,
748 struct section_offsets *offsets,
753 struct section_addr_info *local_addr = NULL;
754 struct cleanup *old_chain;
756 gdb_assert (! (addrs && offsets));
758 init_entry_point_info (objfile);
759 objfile->sf = find_sym_fns (objfile->obfd);
761 if (objfile->sf == NULL)
762 return; /* No symbols. */
764 /* Make sure that partially constructed symbol tables will be cleaned up
765 if an error occurs during symbol reading. */
766 old_chain = make_cleanup_free_objfile (objfile);
768 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
769 list. We now establish the convention that an addr of zero means
770 no load address was specified. */
771 if (! addrs && ! offsets)
774 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
775 make_cleanup (xfree, local_addr);
779 /* Now either addrs or offsets is non-zero. */
783 /* We will modify the main symbol table, make sure that all its users
784 will be cleaned up if an error occurs during symbol reading. */
785 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
787 /* Since no error yet, throw away the old symbol table. */
789 if (symfile_objfile != NULL)
791 free_objfile (symfile_objfile);
792 symfile_objfile = NULL;
795 /* Currently we keep symbols from the add-symbol-file command.
796 If the user wants to get rid of them, they should do "symbol-file"
797 without arguments first. Not sure this is the best behavior
800 (*objfile->sf->sym_new_init) (objfile);
803 /* Convert addr into an offset rather than an absolute address.
804 We find the lowest address of a loaded segment in the objfile,
805 and assume that <addr> is where that got loaded.
807 We no longer warn if the lowest section is not a text segment (as
808 happens for the PA64 port. */
809 if (!mainline && addrs && addrs->other[0].name)
811 asection *lower_sect;
813 CORE_ADDR lower_offset;
816 /* Find lowest loadable section to be used as starting point for
817 continguous sections. FIXME!! won't work without call to find
818 .text first, but this assumes text is lowest section. */
819 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
820 if (lower_sect == NULL)
821 bfd_map_over_sections (objfile->obfd, find_lowest_section,
823 if (lower_sect == NULL)
825 warning (_("no loadable sections found in added symbol-file %s"),
830 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
832 /* Calculate offsets for the loadable sections.
833 FIXME! Sections must be in order of increasing loadable section
834 so that contiguous sections can use the lower-offset!!!
836 Adjust offsets if the segments are not contiguous.
837 If the section is contiguous, its offset should be set to
838 the offset of the highest loadable section lower than it
839 (the loadable section directly below it in memory).
840 this_offset = lower_offset = lower_addr - lower_orig_addr */
842 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
844 if (addrs->other[i].addr != 0)
846 sect = bfd_get_section_by_name (objfile->obfd,
847 addrs->other[i].name);
851 -= bfd_section_vma (objfile->obfd, sect);
852 lower_offset = addrs->other[i].addr;
853 /* This is the index used by BFD. */
854 addrs->other[i].sectindex = sect->index ;
858 warning (_("section %s not found in %s"),
859 addrs->other[i].name,
861 addrs->other[i].addr = 0;
865 addrs->other[i].addr = lower_offset;
869 /* Initialize symbol reading routines for this objfile, allow complaints to
870 appear for this new file, and record how verbose to be, then do the
871 initial symbol reading for this file. */
873 (*objfile->sf->sym_init) (objfile);
874 clear_complaints (&symfile_complaints, 1, verbo);
877 (*objfile->sf->sym_offsets) (objfile, addrs);
880 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
882 /* Just copy in the offset table directly as given to us. */
883 objfile->num_sections = num_offsets;
884 objfile->section_offsets
885 = ((struct section_offsets *)
886 obstack_alloc (&objfile->objfile_obstack, size));
887 memcpy (objfile->section_offsets, offsets, size);
889 init_objfile_sect_indices (objfile);
892 #ifndef DEPRECATED_IBM6000_TARGET
893 /* This is a SVR4/SunOS specific hack, I think. In any event, it
894 screws RS/6000. sym_offsets should be doing this sort of thing,
895 because it knows the mapping between bfd sections and
897 /* This is a hack. As far as I can tell, section offsets are not
898 target dependent. They are all set to addr with a couple of
899 exceptions. The exceptions are sysvr4 shared libraries, whose
900 offsets are kept in solib structures anyway and rs6000 xcoff
901 which handles shared libraries in a completely unique way.
903 Section offsets are built similarly, except that they are built
904 by adding addr in all cases because there is no clear mapping
905 from section_offsets into actual sections. Note that solib.c
906 has a different algorithm for finding section offsets.
908 These should probably all be collapsed into some target
909 independent form of shared library support. FIXME. */
913 struct obj_section *s;
915 /* Map section offsets in "addr" back to the object's
916 sections by comparing the section names with bfd's
917 section names. Then adjust the section address by
918 the offset. */ /* for gdb/13815 */
920 ALL_OBJFILE_OSECTIONS (objfile, s)
922 CORE_ADDR s_addr = 0;
926 !s_addr && i < addrs->num_sections && addrs->other[i].name;
928 if (strcmp (bfd_section_name (s->objfile->obfd,
930 addrs->other[i].name) == 0)
931 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
933 s->addr -= s->offset;
935 s->endaddr -= s->offset;
936 s->endaddr += s_addr;
940 #endif /* not DEPRECATED_IBM6000_TARGET */
942 (*objfile->sf->sym_read) (objfile, mainline);
944 /* Don't allow char * to have a typename (else would get caddr_t).
945 Ditto void *. FIXME: Check whether this is now done by all the
946 symbol readers themselves (many of them now do), and if so remove
949 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
950 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
952 /* Mark the objfile has having had initial symbol read attempted. Note
953 that this does not mean we found any symbols... */
955 objfile->flags |= OBJF_SYMS;
957 /* Discard cleanups as symbol reading was successful. */
959 discard_cleanups (old_chain);
962 /* Perform required actions after either reading in the initial
963 symbols for a new objfile, or mapping in the symbols from a reusable
967 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
970 /* If this is the main symbol file we have to clean up all users of the
971 old main symbol file. Otherwise it is sufficient to fixup all the
972 breakpoints that may have been redefined by this symbol file. */
975 /* OK, make it the "real" symbol file. */
976 symfile_objfile = objfile;
978 clear_symtab_users ();
982 breakpoint_re_set ();
985 /* We're done reading the symbol file; finish off complaints. */
986 clear_complaints (&symfile_complaints, 0, verbo);
989 /* Process a symbol file, as either the main file or as a dynamically
992 ABFD is a BFD already open on the file, as from symfile_bfd_open.
993 This BFD will be closed on error, and is always consumed by this function.
995 FROM_TTY says how verbose to be.
997 MAINLINE specifies whether this is the main symbol file, or whether
998 it's an extra symbol file such as dynamically loaded code.
1000 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1001 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1004 Upon success, returns a pointer to the objfile that was added.
1005 Upon failure, jumps back to command level (never returns). */
1006 static struct objfile *
1007 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1008 struct section_addr_info *addrs,
1009 struct section_offsets *offsets,
1011 int mainline, int flags)
1013 struct objfile *objfile;
1014 struct partial_symtab *psymtab;
1015 char *debugfile = NULL;
1016 struct section_addr_info *orig_addrs = NULL;
1017 struct cleanup *my_cleanups;
1018 const char *name = bfd_get_filename (abfd);
1020 my_cleanups = make_cleanup_bfd_close (abfd);
1022 /* Give user a chance to burp if we'd be
1023 interactively wiping out any existing symbols. */
1025 if ((have_full_symbols () || have_partial_symbols ())
1028 && !query ("Load new symbol table from \"%s\"? ", name))
1029 error (_("Not confirmed."));
1031 objfile = allocate_objfile (abfd, flags);
1032 discard_cleanups (my_cleanups);
1036 orig_addrs = copy_section_addr_info (addrs);
1037 make_cleanup_free_section_addr_info (orig_addrs);
1040 /* We either created a new mapped symbol table, mapped an existing
1041 symbol table file which has not had initial symbol reading
1042 performed, or need to read an unmapped symbol table. */
1043 if (from_tty || info_verbose)
1045 if (deprecated_pre_add_symbol_hook)
1046 deprecated_pre_add_symbol_hook (name);
1049 printf_unfiltered (_("Reading symbols from %s..."), name);
1051 gdb_flush (gdb_stdout);
1054 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1055 mainline, from_tty);
1057 /* We now have at least a partial symbol table. Check to see if the
1058 user requested that all symbols be read on initial access via either
1059 the gdb startup command line or on a per symbol file basis. Expand
1060 all partial symbol tables for this objfile if so. */
1062 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1064 if (from_tty || info_verbose)
1066 printf_unfiltered (_("expanding to full symbols..."));
1068 gdb_flush (gdb_stdout);
1071 for (psymtab = objfile->psymtabs;
1073 psymtab = psymtab->next)
1075 psymtab_to_symtab (psymtab);
1079 /* If the file has its own symbol tables it has no separate debug info.
1080 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1081 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1082 if (objfile->psymtabs == NULL)
1083 debugfile = find_separate_debug_file (objfile);
1088 objfile->separate_debug_objfile
1089 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1093 objfile->separate_debug_objfile
1094 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1096 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1099 /* Put the separate debug object before the normal one, this is so that
1100 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1101 put_objfile_before (objfile->separate_debug_objfile, objfile);
1106 if (!have_partial_symbols () && !have_full_symbols ())
1109 printf_filtered (_("(no debugging symbols found)"));
1110 if (from_tty || info_verbose)
1111 printf_filtered ("...");
1113 printf_filtered ("\n");
1117 if (from_tty || info_verbose)
1119 if (deprecated_post_add_symbol_hook)
1120 deprecated_post_add_symbol_hook ();
1123 printf_unfiltered (_("done.\n"));
1127 /* We print some messages regardless of whether 'from_tty ||
1128 info_verbose' is true, so make sure they go out at the right
1130 gdb_flush (gdb_stdout);
1132 do_cleanups (my_cleanups);
1134 if (objfile->sf == NULL)
1135 return objfile; /* No symbols. */
1137 new_symfile_objfile (objfile, mainline, from_tty);
1139 observer_notify_new_objfile (objfile);
1141 bfd_cache_close_all ();
1146 /* Process the symbol file ABFD, as either the main file or as a
1147 dynamically loaded file.
1149 See symbol_file_add_with_addrs_or_offsets's comments for
1152 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1153 struct section_addr_info *addrs,
1154 int mainline, int flags)
1156 return symbol_file_add_with_addrs_or_offsets (abfd,
1157 from_tty, addrs, 0, 0,
1162 /* Process a symbol file, as either the main file or as a dynamically
1163 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1166 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1167 int mainline, int flags)
1169 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1170 addrs, mainline, flags);
1174 /* Call symbol_file_add() with default values and update whatever is
1175 affected by the loading of a new main().
1176 Used when the file is supplied in the gdb command line
1177 and by some targets with special loading requirements.
1178 The auxiliary function, symbol_file_add_main_1(), has the flags
1179 argument for the switches that can only be specified in the symbol_file
1183 symbol_file_add_main (char *args, int from_tty)
1185 symbol_file_add_main_1 (args, from_tty, 0);
1189 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1191 symbol_file_add (args, from_tty, NULL, 1, flags);
1193 /* Getting new symbols may change our opinion about
1194 what is frameless. */
1195 reinit_frame_cache ();
1197 set_initial_language ();
1201 symbol_file_clear (int from_tty)
1203 if ((have_full_symbols () || have_partial_symbols ())
1206 ? !query (_("Discard symbol table from `%s'? "),
1207 symfile_objfile->name)
1208 : !query (_("Discard symbol table? "))))
1209 error (_("Not confirmed."));
1210 free_all_objfiles ();
1212 /* solib descriptors may have handles to objfiles. Since their
1213 storage has just been released, we'd better wipe the solib
1214 descriptors as well.
1216 no_shared_libraries (NULL, from_tty);
1218 symfile_objfile = NULL;
1220 printf_unfiltered (_("No symbol file now.\n"));
1229 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1231 static struct build_id *
1232 build_id_bfd_get (bfd *abfd)
1234 struct build_id *retval;
1236 if (!bfd_check_format (abfd, bfd_object)
1237 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1238 || elf_tdata (abfd)->build_id == NULL)
1241 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1242 retval->size = elf_tdata (abfd)->build_id_size;
1243 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1248 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1251 build_id_verify (const char *filename, struct build_id *check)
1254 struct build_id *found = NULL;
1257 /* We expect to be silent on the non-existing files. */
1258 abfd = bfd_openr (filename, gnutarget);
1262 found = build_id_bfd_get (abfd);
1265 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1266 else if (found->size != check->size
1267 || memcmp (found->data, check->data, found->size) != 0)
1268 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1272 if (!bfd_close (abfd))
1273 warning (_("cannot close \"%s\": %s"), filename,
1274 bfd_errmsg (bfd_get_error ()));
1279 build_id_to_debug_filename (struct build_id *build_id)
1281 char *link, *s, *retval = NULL;
1282 gdb_byte *data = build_id->data;
1283 size_t size = build_id->size;
1285 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1286 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1287 + 2 * size + (sizeof ".debug" - 1) + 1);
1288 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1292 s += sprintf (s, "%02x", (unsigned) *data++);
1297 s += sprintf (s, "%02x", (unsigned) *data++);
1298 strcpy (s, ".debug");
1300 /* lrealpath() is expensive even for the usually non-existent files. */
1301 if (access (link, F_OK) == 0)
1302 retval = lrealpath (link);
1305 if (retval != NULL && !build_id_verify (retval, build_id))
1315 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1318 bfd_size_type debuglink_size;
1319 unsigned long crc32;
1324 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1329 debuglink_size = bfd_section_size (objfile->obfd, sect);
1331 contents = xmalloc (debuglink_size);
1332 bfd_get_section_contents (objfile->obfd, sect, contents,
1333 (file_ptr)0, (bfd_size_type)debuglink_size);
1335 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1336 crc_offset = strlen (contents) + 1;
1337 crc_offset = (crc_offset + 3) & ~3;
1339 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1346 separate_debug_file_exists (const char *name, unsigned long crc)
1348 unsigned long file_crc = 0;
1350 gdb_byte buffer[8*1024];
1353 fd = open (name, O_RDONLY | O_BINARY);
1357 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1358 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1362 return crc == file_crc;
1365 char *debug_file_directory = NULL;
1367 show_debug_file_directory (struct ui_file *file, int from_tty,
1368 struct cmd_list_element *c, const char *value)
1370 fprintf_filtered (file, _("\
1371 The directory where separate debug symbols are searched for is \"%s\".\n"),
1375 #if ! defined (DEBUG_SUBDIRECTORY)
1376 #define DEBUG_SUBDIRECTORY ".debug"
1380 find_separate_debug_file (struct objfile *objfile)
1388 bfd_size_type debuglink_size;
1389 unsigned long crc32;
1391 struct build_id *build_id;
1393 build_id = build_id_bfd_get (objfile->obfd);
1394 if (build_id != NULL)
1396 char *build_id_name;
1398 build_id_name = build_id_to_debug_filename (build_id);
1400 /* Prevent looping on a stripped .debug file. */
1401 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1403 warning (_("\"%s\": separate debug info file has no debug info"),
1405 xfree (build_id_name);
1407 else if (build_id_name != NULL)
1408 return build_id_name;
1411 basename = get_debug_link_info (objfile, &crc32);
1413 if (basename == NULL)
1416 dir = xstrdup (objfile->name);
1418 /* Strip off the final filename part, leaving the directory name,
1419 followed by a slash. Objfile names should always be absolute and
1420 tilde-expanded, so there should always be a slash in there
1422 for (i = strlen(dir) - 1; i >= 0; i--)
1424 if (IS_DIR_SEPARATOR (dir[i]))
1427 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1430 debugfile = alloca (strlen (debug_file_directory) + 1
1432 + strlen (DEBUG_SUBDIRECTORY)
1437 /* First try in the same directory as the original file. */
1438 strcpy (debugfile, dir);
1439 strcat (debugfile, basename);
1441 if (separate_debug_file_exists (debugfile, crc32))
1445 return xstrdup (debugfile);
1448 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1449 strcpy (debugfile, dir);
1450 strcat (debugfile, DEBUG_SUBDIRECTORY);
1451 strcat (debugfile, "/");
1452 strcat (debugfile, basename);
1454 if (separate_debug_file_exists (debugfile, crc32))
1458 return xstrdup (debugfile);
1461 /* Then try in the global debugfile directory. */
1462 strcpy (debugfile, debug_file_directory);
1463 strcat (debugfile, "/");
1464 strcat (debugfile, dir);
1465 strcat (debugfile, basename);
1467 if (separate_debug_file_exists (debugfile, crc32))
1471 return xstrdup (debugfile);
1474 /* If the file is in the sysroot, try using its base path in the
1475 global debugfile directory. */
1476 canon_name = lrealpath (dir);
1478 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1479 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1481 strcpy (debugfile, debug_file_directory);
1482 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1483 strcat (debugfile, "/");
1484 strcat (debugfile, basename);
1486 if (separate_debug_file_exists (debugfile, crc32))
1491 return xstrdup (debugfile);
1504 /* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
1506 the command is rather bizarre:
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1515 3. The order of options matters, which is contrary to GNU
1516 conventions (because it is confusing and inconvenient). */
1519 symbol_file_command (char *args, int from_tty)
1525 symbol_file_clear (from_tty);
1529 char **argv = buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1537 cleanups = make_cleanup_freeargv (argv);
1538 while (*argv != NULL)
1540 if (strcmp (*argv, "-readnow") == 0)
1541 flags |= OBJF_READNOW;
1542 else if (**argv == '-')
1543 error (_("unknown option `%s'"), *argv);
1546 symbol_file_add_main_1 (*argv, from_tty, flags);
1554 error (_("no symbol file name was specified"));
1556 do_cleanups (cleanups);
1560 /* Set the initial language.
1562 FIXME: A better solution would be to record the language in the
1563 psymtab when reading partial symbols, and then use it (if known) to
1564 set the language. This would be a win for formats that encode the
1565 language in an easily discoverable place, such as DWARF. For
1566 stabs, we can jump through hoops looking for specially named
1567 symbols or try to intuit the language from the specific type of
1568 stabs we find, but we can't do that until later when we read in
1572 set_initial_language (void)
1574 struct partial_symtab *pst;
1575 enum language lang = language_unknown;
1577 pst = find_main_psymtab ();
1580 if (pst->filename != NULL)
1581 lang = deduce_language_from_filename (pst->filename);
1583 if (lang == language_unknown)
1585 /* Make C the default language */
1589 set_language (lang);
1590 expected_language = current_language; /* Don't warn the user. */
1594 /* Open the file specified by NAME and hand it off to BFD for
1595 preliminary analysis. Return a newly initialized bfd *, which
1596 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1597 absolute). In case of trouble, error() is called. */
1600 symfile_bfd_open (char *name)
1604 char *absolute_name;
1606 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1608 /* Look down path for it, allocate 2nd new malloc'd copy. */
1609 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1610 O_RDONLY | O_BINARY, 0, &absolute_name);
1611 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1614 char *exename = alloca (strlen (name) + 5);
1615 strcat (strcpy (exename, name), ".exe");
1616 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1617 O_RDONLY | O_BINARY, 0, &absolute_name);
1622 make_cleanup (xfree, name);
1623 perror_with_name (name);
1626 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1627 bfd. It'll be freed in free_objfile(). */
1629 name = absolute_name;
1631 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1635 make_cleanup (xfree, name);
1636 error (_("\"%s\": can't open to read symbols: %s."), name,
1637 bfd_errmsg (bfd_get_error ()));
1639 bfd_set_cacheable (sym_bfd, 1);
1641 if (!bfd_check_format (sym_bfd, bfd_object))
1643 /* FIXME: should be checking for errors from bfd_close (for one
1644 thing, on error it does not free all the storage associated
1646 bfd_close (sym_bfd); /* This also closes desc. */
1647 make_cleanup (xfree, name);
1648 error (_("\"%s\": can't read symbols: %s."), name,
1649 bfd_errmsg (bfd_get_error ()));
1655 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1656 the section was not found. */
1659 get_section_index (struct objfile *objfile, char *section_name)
1661 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1669 /* Link SF into the global symtab_fns list. Called on startup by the
1670 _initialize routine in each object file format reader, to register
1671 information about each format the the reader is prepared to
1675 add_symtab_fns (struct sym_fns *sf)
1677 sf->next = symtab_fns;
1681 /* Initialize OBJFILE to read symbols from its associated BFD. It
1682 either returns or calls error(). The result is an initialized
1683 struct sym_fns in the objfile structure, that contains cached
1684 information about the symbol file. */
1686 static struct sym_fns *
1687 find_sym_fns (bfd *abfd)
1690 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1692 if (our_flavour == bfd_target_srec_flavour
1693 || our_flavour == bfd_target_ihex_flavour
1694 || our_flavour == bfd_target_tekhex_flavour)
1695 return NULL; /* No symbols. */
1697 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1698 if (our_flavour == sf->sym_flavour)
1701 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1702 bfd_get_target (abfd));
1706 /* This function runs the load command of our current target. */
1709 load_command (char *arg, int from_tty)
1716 parg = arg = get_exec_file (1);
1718 /* Count how many \ " ' tab space there are in the name. */
1719 while ((parg = strpbrk (parg, "\\\"'\t ")))
1727 /* We need to quote this string so buildargv can pull it apart. */
1728 char *temp = xmalloc (strlen (arg) + count + 1 );
1732 make_cleanup (xfree, temp);
1735 while ((parg = strpbrk (parg, "\\\"'\t ")))
1737 strncpy (ptemp, prev, parg - prev);
1738 ptemp += parg - prev;
1742 strcpy (ptemp, prev);
1748 /* The user might be reloading because the binary has changed. Take
1749 this opportunity to check. */
1750 reopen_exec_file ();
1753 target_load (arg, from_tty);
1755 /* After re-loading the executable, we don't really know which
1756 overlays are mapped any more. */
1757 overlay_cache_invalid = 1;
1760 /* This version of "load" should be usable for any target. Currently
1761 it is just used for remote targets, not inftarg.c or core files,
1762 on the theory that only in that case is it useful.
1764 Avoiding xmodem and the like seems like a win (a) because we don't have
1765 to worry about finding it, and (b) On VMS, fork() is very slow and so
1766 we don't want to run a subprocess. On the other hand, I'm not sure how
1767 performance compares. */
1769 static int validate_download = 0;
1771 /* Callback service function for generic_load (bfd_map_over_sections). */
1774 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1776 bfd_size_type *sum = data;
1778 *sum += bfd_get_section_size (asec);
1781 /* Opaque data for load_section_callback. */
1782 struct load_section_data {
1783 unsigned long load_offset;
1784 struct load_progress_data *progress_data;
1785 VEC(memory_write_request_s) *requests;
1788 /* Opaque data for load_progress. */
1789 struct load_progress_data {
1790 /* Cumulative data. */
1791 unsigned long write_count;
1792 unsigned long data_count;
1793 bfd_size_type total_size;
1796 /* Opaque data for load_progress for a single section. */
1797 struct load_progress_section_data {
1798 struct load_progress_data *cumulative;
1800 /* Per-section data. */
1801 const char *section_name;
1802 ULONGEST section_sent;
1803 ULONGEST section_size;
1808 /* Target write callback routine for progress reporting. */
1811 load_progress (ULONGEST bytes, void *untyped_arg)
1813 struct load_progress_section_data *args = untyped_arg;
1814 struct load_progress_data *totals;
1817 /* Writing padding data. No easy way to get at the cumulative
1818 stats, so just ignore this. */
1821 totals = args->cumulative;
1823 if (bytes == 0 && args->section_sent == 0)
1825 /* The write is just starting. Let the user know we've started
1827 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1828 args->section_name, paddr_nz (args->section_size),
1829 paddr_nz (args->lma));
1833 if (validate_download)
1835 /* Broken memories and broken monitors manifest themselves here
1836 when bring new computers to life. This doubles already slow
1838 /* NOTE: cagney/1999-10-18: A more efficient implementation
1839 might add a verify_memory() method to the target vector and
1840 then use that. remote.c could implement that method using
1841 the ``qCRC'' packet. */
1842 gdb_byte *check = xmalloc (bytes);
1843 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1845 if (target_read_memory (args->lma, check, bytes) != 0)
1846 error (_("Download verify read failed at 0x%s"),
1848 if (memcmp (args->buffer, check, bytes) != 0)
1849 error (_("Download verify compare failed at 0x%s"),
1851 do_cleanups (verify_cleanups);
1853 totals->data_count += bytes;
1855 args->buffer += bytes;
1856 totals->write_count += 1;
1857 args->section_sent += bytes;
1859 || (deprecated_ui_load_progress_hook != NULL
1860 && deprecated_ui_load_progress_hook (args->section_name,
1861 args->section_sent)))
1862 error (_("Canceled the download"));
1864 if (deprecated_show_load_progress != NULL)
1865 deprecated_show_load_progress (args->section_name,
1869 totals->total_size);
1872 /* Callback service function for generic_load (bfd_map_over_sections). */
1875 load_section_callback (bfd *abfd, asection *asec, void *data)
1877 struct memory_write_request *new_request;
1878 struct load_section_data *args = data;
1879 struct load_progress_section_data *section_data;
1880 bfd_size_type size = bfd_get_section_size (asec);
1882 const char *sect_name = bfd_get_section_name (abfd, asec);
1884 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1890 new_request = VEC_safe_push (memory_write_request_s,
1891 args->requests, NULL);
1892 memset (new_request, 0, sizeof (struct memory_write_request));
1893 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1894 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1895 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1896 new_request->data = xmalloc (size);
1897 new_request->baton = section_data;
1899 buffer = new_request->data;
1901 section_data->cumulative = args->progress_data;
1902 section_data->section_name = sect_name;
1903 section_data->section_size = size;
1904 section_data->lma = new_request->begin;
1905 section_data->buffer = buffer;
1907 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1910 /* Clean up an entire memory request vector, including load
1911 data and progress records. */
1914 clear_memory_write_data (void *arg)
1916 VEC(memory_write_request_s) **vec_p = arg;
1917 VEC(memory_write_request_s) *vec = *vec_p;
1919 struct memory_write_request *mr;
1921 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1926 VEC_free (memory_write_request_s, vec);
1930 generic_load (char *args, int from_tty)
1933 struct timeval start_time, end_time;
1935 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1936 struct load_section_data cbdata;
1937 struct load_progress_data total_progress;
1942 memset (&cbdata, 0, sizeof (cbdata));
1943 memset (&total_progress, 0, sizeof (total_progress));
1944 cbdata.progress_data = &total_progress;
1946 make_cleanup (clear_memory_write_data, &cbdata.requests);
1948 argv = buildargv (args);
1953 make_cleanup_freeargv (argv);
1955 filename = tilde_expand (argv[0]);
1956 make_cleanup (xfree, filename);
1958 if (argv[1] != NULL)
1962 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1964 /* If the last word was not a valid number then
1965 treat it as a file name with spaces in. */
1966 if (argv[1] == endptr)
1967 error (_("Invalid download offset:%s."), argv[1]);
1969 if (argv[2] != NULL)
1970 error (_("Too many parameters."));
1973 /* Open the file for loading. */
1974 loadfile_bfd = bfd_openr (filename, gnutarget);
1975 if (loadfile_bfd == NULL)
1977 perror_with_name (filename);
1981 /* FIXME: should be checking for errors from bfd_close (for one thing,
1982 on error it does not free all the storage associated with the
1984 make_cleanup_bfd_close (loadfile_bfd);
1986 if (!bfd_check_format (loadfile_bfd, bfd_object))
1988 error (_("\"%s\" is not an object file: %s"), filename,
1989 bfd_errmsg (bfd_get_error ()));
1992 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1993 (void *) &total_progress.total_size);
1995 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1997 gettimeofday (&start_time, NULL);
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
2003 gettimeofday (&end_time, NULL);
2005 entry = bfd_get_start_address (loadfile_bfd);
2006 ui_out_text (uiout, "Start address ");
2007 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2008 ui_out_text (uiout, ", load size ");
2009 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2010 ui_out_text (uiout, "\n");
2011 /* We were doing this in remote-mips.c, I suspect it is right
2012 for other targets too. */
2015 /* FIXME: are we supposed to call symbol_file_add or not? According
2016 to a comment from remote-mips.c (where a call to symbol_file_add
2017 was commented out), making the call confuses GDB if more than one
2018 file is loaded in. Some targets do (e.g., remote-vx.c) but
2019 others don't (or didn't - perhaps they have all been deleted). */
2021 print_transfer_performance (gdb_stdout, total_progress.data_count,
2022 total_progress.write_count,
2023 &start_time, &end_time);
2025 do_cleanups (old_cleanups);
2028 /* Report how fast the transfer went. */
2030 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2031 replaced by print_transfer_performance (with a very different
2032 function signature). */
2035 report_transfer_performance (unsigned long data_count, time_t start_time,
2038 struct timeval start, end;
2040 start.tv_sec = start_time;
2042 end.tv_sec = end_time;
2045 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2049 print_transfer_performance (struct ui_file *stream,
2050 unsigned long data_count,
2051 unsigned long write_count,
2052 const struct timeval *start_time,
2053 const struct timeval *end_time)
2055 ULONGEST time_count;
2057 /* Compute the elapsed time in milliseconds, as a tradeoff between
2058 accuracy and overflow. */
2059 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2060 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2062 ui_out_text (uiout, "Transfer rate: ");
2065 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2067 if (ui_out_is_mi_like_p (uiout))
2069 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2070 ui_out_text (uiout, " bits/sec");
2072 else if (rate < 1024)
2074 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2075 ui_out_text (uiout, " bytes/sec");
2079 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2080 ui_out_text (uiout, " KB/sec");
2085 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2086 ui_out_text (uiout, " bits in <1 sec");
2088 if (write_count > 0)
2090 ui_out_text (uiout, ", ");
2091 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2092 ui_out_text (uiout, " bytes/write");
2094 ui_out_text (uiout, ".\n");
2097 /* This function allows the addition of incrementally linked object files.
2098 It does not modify any state in the target, only in the debugger. */
2099 /* Note: ezannoni 2000-04-13 This function/command used to have a
2100 special case syntax for the rombug target (Rombug is the boot
2101 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2102 rombug case, the user doesn't need to supply a text address,
2103 instead a call to target_link() (in target.c) would supply the
2104 value to use. We are now discontinuing this type of ad hoc syntax. */
2107 add_symbol_file_command (char *args, int from_tty)
2109 char *filename = NULL;
2110 int flags = OBJF_USERLOADED;
2112 int expecting_option = 0;
2113 int section_index = 0;
2117 int expecting_sec_name = 0;
2118 int expecting_sec_addr = 0;
2127 struct section_addr_info *section_addrs;
2128 struct sect_opt *sect_opts = NULL;
2129 size_t num_sect_opts = 0;
2130 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2133 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2134 * sizeof (struct sect_opt));
2139 error (_("add-symbol-file takes a file name and an address"));
2141 argv = buildargv (args);
2142 make_cleanup_freeargv (argv);
2147 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2149 /* Process the argument. */
2152 /* The first argument is the file name. */
2153 filename = tilde_expand (arg);
2154 make_cleanup (xfree, filename);
2159 /* The second argument is always the text address at which
2160 to load the program. */
2161 sect_opts[section_index].name = ".text";
2162 sect_opts[section_index].value = arg;
2163 if (++section_index >= num_sect_opts)
2166 sect_opts = ((struct sect_opt *)
2167 xrealloc (sect_opts,
2169 * sizeof (struct sect_opt)));
2174 /* It's an option (starting with '-') or it's an argument
2179 if (strcmp (arg, "-readnow") == 0)
2180 flags |= OBJF_READNOW;
2181 else if (strcmp (arg, "-s") == 0)
2183 expecting_sec_name = 1;
2184 expecting_sec_addr = 1;
2189 if (expecting_sec_name)
2191 sect_opts[section_index].name = arg;
2192 expecting_sec_name = 0;
2195 if (expecting_sec_addr)
2197 sect_opts[section_index].value = arg;
2198 expecting_sec_addr = 0;
2199 if (++section_index >= num_sect_opts)
2202 sect_opts = ((struct sect_opt *)
2203 xrealloc (sect_opts,
2205 * sizeof (struct sect_opt)));
2209 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2214 /* This command takes at least two arguments. The first one is a
2215 filename, and the second is the address where this file has been
2216 loaded. Abort now if this address hasn't been provided by the
2218 if (section_index < 1)
2219 error (_("The address where %s has been loaded is missing"), filename);
2221 /* Print the prompt for the query below. And save the arguments into
2222 a sect_addr_info structure to be passed around to other
2223 functions. We have to split this up into separate print
2224 statements because hex_string returns a local static
2227 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2228 section_addrs = alloc_section_addr_info (section_index);
2229 make_cleanup (xfree, section_addrs);
2230 for (i = 0; i < section_index; i++)
2233 char *val = sect_opts[i].value;
2234 char *sec = sect_opts[i].name;
2236 addr = parse_and_eval_address (val);
2238 /* Here we store the section offsets in the order they were
2239 entered on the command line. */
2240 section_addrs->other[sec_num].name = sec;
2241 section_addrs->other[sec_num].addr = addr;
2242 printf_unfiltered ("\t%s_addr = %s\n",
2243 sec, hex_string ((unsigned long)addr));
2246 /* The object's sections are initialized when a
2247 call is made to build_objfile_section_table (objfile).
2248 This happens in reread_symbols.
2249 At this point, we don't know what file type this is,
2250 so we can't determine what section names are valid. */
2253 if (from_tty && (!query ("%s", "")))
2254 error (_("Not confirmed."));
2256 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2258 /* Getting new symbols may change our opinion about what is
2260 reinit_frame_cache ();
2261 do_cleanups (my_cleanups);
2265 add_shared_symbol_files_command (char *args, int from_tty)
2267 #ifdef ADD_SHARED_SYMBOL_FILES
2268 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2270 error (_("This command is not available in this configuration of GDB."));
2274 /* Re-read symbols if a symbol-file has changed. */
2276 reread_symbols (void)
2278 struct objfile *objfile;
2281 struct stat new_statbuf;
2284 /* With the addition of shared libraries, this should be modified,
2285 the load time should be saved in the partial symbol tables, since
2286 different tables may come from different source files. FIXME.
2287 This routine should then walk down each partial symbol table
2288 and see if the symbol table that it originates from has been changed */
2290 for (objfile = object_files; objfile; objfile = objfile->next)
2294 #ifdef DEPRECATED_IBM6000_TARGET
2295 /* If this object is from a shared library, then you should
2296 stat on the library name, not member name. */
2298 if (objfile->obfd->my_archive)
2299 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2302 res = stat (objfile->name, &new_statbuf);
2305 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2306 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2310 new_modtime = new_statbuf.st_mtime;
2311 if (new_modtime != objfile->mtime)
2313 struct cleanup *old_cleanups;
2314 struct section_offsets *offsets;
2316 char *obfd_filename;
2318 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2321 /* There are various functions like symbol_file_add,
2322 symfile_bfd_open, syms_from_objfile, etc., which might
2323 appear to do what we want. But they have various other
2324 effects which we *don't* want. So we just do stuff
2325 ourselves. We don't worry about mapped files (for one thing,
2326 any mapped file will be out of date). */
2328 /* If we get an error, blow away this objfile (not sure if
2329 that is the correct response for things like shared
2331 old_cleanups = make_cleanup_free_objfile (objfile);
2332 /* We need to do this whenever any symbols go away. */
2333 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2335 /* Clean up any state BFD has sitting around. We don't need
2336 to close the descriptor but BFD lacks a way of closing the
2337 BFD without closing the descriptor. */
2338 obfd_filename = bfd_get_filename (objfile->obfd);
2339 if (!bfd_close (objfile->obfd))
2340 error (_("Can't close BFD for %s: %s"), objfile->name,
2341 bfd_errmsg (bfd_get_error ()));
2342 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2343 if (objfile->obfd == NULL)
2344 error (_("Can't open %s to read symbols."), objfile->name);
2345 /* bfd_openr sets cacheable to true, which is what we want. */
2346 if (!bfd_check_format (objfile->obfd, bfd_object))
2347 error (_("Can't read symbols from %s: %s."), objfile->name,
2348 bfd_errmsg (bfd_get_error ()));
2350 /* Save the offsets, we will nuke them with the rest of the
2352 num_offsets = objfile->num_sections;
2353 offsets = ((struct section_offsets *)
2354 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2355 memcpy (offsets, objfile->section_offsets,
2356 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2358 /* Remove any references to this objfile in the global
2360 preserve_values (objfile);
2362 /* Nuke all the state that we will re-read. Much of the following
2363 code which sets things to NULL really is necessary to tell
2364 other parts of GDB that there is nothing currently there. */
2366 /* FIXME: Do we have to free a whole linked list, or is this
2368 if (objfile->global_psymbols.list)
2369 xfree (objfile->global_psymbols.list);
2370 memset (&objfile->global_psymbols, 0,
2371 sizeof (objfile->global_psymbols));
2372 if (objfile->static_psymbols.list)
2373 xfree (objfile->static_psymbols.list);
2374 memset (&objfile->static_psymbols, 0,
2375 sizeof (objfile->static_psymbols));
2377 /* Free the obstacks for non-reusable objfiles */
2378 bcache_xfree (objfile->psymbol_cache);
2379 objfile->psymbol_cache = bcache_xmalloc ();
2380 bcache_xfree (objfile->macro_cache);
2381 objfile->macro_cache = bcache_xmalloc ();
2382 if (objfile->demangled_names_hash != NULL)
2384 htab_delete (objfile->demangled_names_hash);
2385 objfile->demangled_names_hash = NULL;
2387 obstack_free (&objfile->objfile_obstack, 0);
2388 objfile->sections = NULL;
2389 objfile->symtabs = NULL;
2390 objfile->psymtabs = NULL;
2391 objfile->free_psymtabs = NULL;
2392 objfile->cp_namespace_symtab = NULL;
2393 objfile->msymbols = NULL;
2394 objfile->deprecated_sym_private = NULL;
2395 objfile->minimal_symbol_count = 0;
2396 memset (&objfile->msymbol_hash, 0,
2397 sizeof (objfile->msymbol_hash));
2398 memset (&objfile->msymbol_demangled_hash, 0,
2399 sizeof (objfile->msymbol_demangled_hash));
2400 clear_objfile_data (objfile);
2401 if (objfile->sf != NULL)
2403 (*objfile->sf->sym_finish) (objfile);
2406 /* We never make this a mapped file. */
2408 objfile->psymbol_cache = bcache_xmalloc ();
2409 objfile->macro_cache = bcache_xmalloc ();
2410 /* obstack_init also initializes the obstack so it is
2411 empty. We could use obstack_specify_allocation but
2412 gdb_obstack.h specifies the alloc/dealloc
2414 obstack_init (&objfile->objfile_obstack);
2415 if (build_objfile_section_table (objfile))
2417 error (_("Can't find the file sections in `%s': %s"),
2418 objfile->name, bfd_errmsg (bfd_get_error ()));
2420 terminate_minimal_symbol_table (objfile);
2422 /* We use the same section offsets as from last time. I'm not
2423 sure whether that is always correct for shared libraries. */
2424 objfile->section_offsets = (struct section_offsets *)
2425 obstack_alloc (&objfile->objfile_obstack,
2426 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2427 memcpy (objfile->section_offsets, offsets,
2428 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2429 objfile->num_sections = num_offsets;
2431 /* What the hell is sym_new_init for, anyway? The concept of
2432 distinguishing between the main file and additional files
2433 in this way seems rather dubious. */
2434 if (objfile == symfile_objfile)
2436 (*objfile->sf->sym_new_init) (objfile);
2439 (*objfile->sf->sym_init) (objfile);
2440 clear_complaints (&symfile_complaints, 1, 1);
2441 /* The "mainline" parameter is a hideous hack; I think leaving it
2442 zero is OK since dbxread.c also does what it needs to do if
2443 objfile->global_psymbols.size is 0. */
2444 (*objfile->sf->sym_read) (objfile, 0);
2445 if (!have_partial_symbols () && !have_full_symbols ())
2448 printf_unfiltered (_("(no debugging symbols found)\n"));
2451 objfile->flags |= OBJF_SYMS;
2453 /* We're done reading the symbol file; finish off complaints. */
2454 clear_complaints (&symfile_complaints, 0, 1);
2456 /* Getting new symbols may change our opinion about what is
2459 reinit_frame_cache ();
2461 /* Discard cleanups as symbol reading was successful. */
2462 discard_cleanups (old_cleanups);
2464 /* If the mtime has changed between the time we set new_modtime
2465 and now, we *want* this to be out of date, so don't call stat
2467 objfile->mtime = new_modtime;
2469 reread_separate_symbols (objfile);
2476 clear_symtab_users ();
2477 /* At least one objfile has changed, so we can consider that
2478 the executable we're debugging has changed too. */
2479 observer_notify_executable_changed (NULL);
2485 /* Handle separate debug info for OBJFILE, which has just been
2487 - If we had separate debug info before, but now we don't, get rid
2488 of the separated objfile.
2489 - If we didn't have separated debug info before, but now we do,
2490 read in the new separated debug info file.
2491 - If the debug link points to a different file, toss the old one
2492 and read the new one.
2493 This function does *not* handle the case where objfile is still
2494 using the same separate debug info file, but that file's timestamp
2495 has changed. That case should be handled by the loop in
2496 reread_symbols already. */
2498 reread_separate_symbols (struct objfile *objfile)
2501 unsigned long crc32;
2503 /* Does the updated objfile's debug info live in a
2505 debug_file = find_separate_debug_file (objfile);
2507 if (objfile->separate_debug_objfile)
2509 /* There are two cases where we need to get rid of
2510 the old separated debug info objfile:
2511 - if the new primary objfile doesn't have
2512 separated debug info, or
2513 - if the new primary objfile has separate debug
2514 info, but it's under a different filename.
2516 If the old and new objfiles both have separate
2517 debug info, under the same filename, then we're
2518 okay --- if the separated file's contents have
2519 changed, we will have caught that when we
2520 visited it in this function's outermost
2523 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2524 free_objfile (objfile->separate_debug_objfile);
2527 /* If the new objfile has separate debug info, and we
2528 haven't loaded it already, do so now. */
2530 && ! objfile->separate_debug_objfile)
2532 /* Use the same section offset table as objfile itself.
2533 Preserve the flags from objfile that make sense. */
2534 objfile->separate_debug_objfile
2535 = (symbol_file_add_with_addrs_or_offsets
2536 (symfile_bfd_open (debug_file),
2537 info_verbose, /* from_tty: Don't override the default. */
2538 0, /* No addr table. */
2539 objfile->section_offsets, objfile->num_sections,
2540 0, /* Not mainline. See comments about this above. */
2541 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2542 | OBJF_USERLOADED)));
2543 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2561 static filename_language *filename_language_table;
2562 static int fl_table_size, fl_table_next;
2565 add_filename_language (char *ext, enum language lang)
2567 if (fl_table_next >= fl_table_size)
2569 fl_table_size += 10;
2570 filename_language_table =
2571 xrealloc (filename_language_table,
2572 fl_table_size * sizeof (*filename_language_table));
2575 filename_language_table[fl_table_next].ext = xstrdup (ext);
2576 filename_language_table[fl_table_next].lang = lang;
2580 static char *ext_args;
2582 show_ext_args (struct ui_file *file, int from_tty,
2583 struct cmd_list_element *c, const char *value)
2585 fprintf_filtered (file, _("\
2586 Mapping between filename extension and source language is \"%s\".\n"),
2591 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2594 char *cp = ext_args;
2597 /* First arg is filename extension, starting with '.' */
2599 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2601 /* Find end of first arg. */
2602 while (*cp && !isspace (*cp))
2606 error (_("'%s': two arguments required -- filename extension and language"),
2609 /* Null-terminate first arg */
2612 /* Find beginning of second arg, which should be a source language. */
2613 while (*cp && isspace (*cp))
2617 error (_("'%s': two arguments required -- filename extension and language"),
2620 /* Lookup the language from among those we know. */
2621 lang = language_enum (cp);
2623 /* Now lookup the filename extension: do we already know it? */
2624 for (i = 0; i < fl_table_next; i++)
2625 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2628 if (i >= fl_table_next)
2630 /* new file extension */
2631 add_filename_language (ext_args, lang);
2635 /* redefining a previously known filename extension */
2638 /* query ("Really make files of type %s '%s'?", */
2639 /* ext_args, language_str (lang)); */
2641 xfree (filename_language_table[i].ext);
2642 filename_language_table[i].ext = xstrdup (ext_args);
2643 filename_language_table[i].lang = lang;
2648 info_ext_lang_command (char *args, int from_tty)
2652 printf_filtered (_("Filename extensions and the languages they represent:"));
2653 printf_filtered ("\n\n");
2654 for (i = 0; i < fl_table_next; i++)
2655 printf_filtered ("\t%s\t- %s\n",
2656 filename_language_table[i].ext,
2657 language_str (filename_language_table[i].lang));
2661 init_filename_language_table (void)
2663 if (fl_table_size == 0) /* protect against repetition */
2667 filename_language_table =
2668 xmalloc (fl_table_size * sizeof (*filename_language_table));
2669 add_filename_language (".c", language_c);
2670 add_filename_language (".C", language_cplus);
2671 add_filename_language (".cc", language_cplus);
2672 add_filename_language (".cp", language_cplus);
2673 add_filename_language (".cpp", language_cplus);
2674 add_filename_language (".cxx", language_cplus);
2675 add_filename_language (".c++", language_cplus);
2676 add_filename_language (".java", language_java);
2677 add_filename_language (".class", language_java);
2678 add_filename_language (".m", language_objc);
2679 add_filename_language (".f", language_fortran);
2680 add_filename_language (".F", language_fortran);
2681 add_filename_language (".s", language_asm);
2682 add_filename_language (".sx", language_asm);
2683 add_filename_language (".S", language_asm);
2684 add_filename_language (".pas", language_pascal);
2685 add_filename_language (".p", language_pascal);
2686 add_filename_language (".pp", language_pascal);
2687 add_filename_language (".adb", language_ada);
2688 add_filename_language (".ads", language_ada);
2689 add_filename_language (".a", language_ada);
2690 add_filename_language (".ada", language_ada);
2695 deduce_language_from_filename (char *filename)
2700 if (filename != NULL)
2701 if ((cp = strrchr (filename, '.')) != NULL)
2702 for (i = 0; i < fl_table_next; i++)
2703 if (strcmp (cp, filename_language_table[i].ext) == 0)
2704 return filename_language_table[i].lang;
2706 return language_unknown;
2711 Allocate and partly initialize a new symbol table. Return a pointer
2712 to it. error() if no space.
2714 Caller must set these fields:
2720 possibly free_named_symtabs (symtab->filename);
2724 allocate_symtab (char *filename, struct objfile *objfile)
2726 struct symtab *symtab;
2728 symtab = (struct symtab *)
2729 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2730 memset (symtab, 0, sizeof (*symtab));
2731 symtab->filename = obsavestring (filename, strlen (filename),
2732 &objfile->objfile_obstack);
2733 symtab->fullname = NULL;
2734 symtab->language = deduce_language_from_filename (filename);
2735 symtab->debugformat = obsavestring ("unknown", 7,
2736 &objfile->objfile_obstack);
2738 /* Hook it to the objfile it comes from */
2740 symtab->objfile = objfile;
2741 symtab->next = objfile->symtabs;
2742 objfile->symtabs = symtab;
2747 struct partial_symtab *
2748 allocate_psymtab (char *filename, struct objfile *objfile)
2750 struct partial_symtab *psymtab;
2752 if (objfile->free_psymtabs)
2754 psymtab = objfile->free_psymtabs;
2755 objfile->free_psymtabs = psymtab->next;
2758 psymtab = (struct partial_symtab *)
2759 obstack_alloc (&objfile->objfile_obstack,
2760 sizeof (struct partial_symtab));
2762 memset (psymtab, 0, sizeof (struct partial_symtab));
2763 psymtab->filename = obsavestring (filename, strlen (filename),
2764 &objfile->objfile_obstack);
2765 psymtab->symtab = NULL;
2767 /* Prepend it to the psymtab list for the objfile it belongs to.
2768 Psymtabs are searched in most recent inserted -> least recent
2771 psymtab->objfile = objfile;
2772 psymtab->next = objfile->psymtabs;
2773 objfile->psymtabs = psymtab;
2776 struct partial_symtab **prev_pst;
2777 psymtab->objfile = objfile;
2778 psymtab->next = NULL;
2779 prev_pst = &(objfile->psymtabs);
2780 while ((*prev_pst) != NULL)
2781 prev_pst = &((*prev_pst)->next);
2782 (*prev_pst) = psymtab;
2790 discard_psymtab (struct partial_symtab *pst)
2792 struct partial_symtab **prev_pst;
2795 Empty psymtabs happen as a result of header files which don't
2796 have any symbols in them. There can be a lot of them. But this
2797 check is wrong, in that a psymtab with N_SLINE entries but
2798 nothing else is not empty, but we don't realize that. Fixing
2799 that without slowing things down might be tricky. */
2801 /* First, snip it out of the psymtab chain */
2803 prev_pst = &(pst->objfile->psymtabs);
2804 while ((*prev_pst) != pst)
2805 prev_pst = &((*prev_pst)->next);
2806 (*prev_pst) = pst->next;
2808 /* Next, put it on a free list for recycling */
2810 pst->next = pst->objfile->free_psymtabs;
2811 pst->objfile->free_psymtabs = pst;
2815 /* Reset all data structures in gdb which may contain references to symbol
2819 clear_symtab_users (void)
2821 /* Someday, we should do better than this, by only blowing away
2822 the things that really need to be blown. */
2824 /* Clear the "current" symtab first, because it is no longer valid.
2825 breakpoint_re_set may try to access the current symtab. */
2826 clear_current_source_symtab_and_line ();
2829 breakpoint_re_set ();
2830 set_default_breakpoint (0, 0, 0, 0);
2831 clear_pc_function_cache ();
2832 observer_notify_new_objfile (NULL);
2834 /* Clear globals which might have pointed into a removed objfile.
2835 FIXME: It's not clear which of these are supposed to persist
2836 between expressions and which ought to be reset each time. */
2837 expression_context_block = NULL;
2838 innermost_block = NULL;
2840 /* Varobj may refer to old symbols, perform a cleanup. */
2841 varobj_invalidate ();
2846 clear_symtab_users_cleanup (void *ignore)
2848 clear_symtab_users ();
2851 /* clear_symtab_users_once:
2853 This function is run after symbol reading, or from a cleanup.
2854 If an old symbol table was obsoleted, the old symbol table
2855 has been blown away, but the other GDB data structures that may
2856 reference it have not yet been cleared or re-directed. (The old
2857 symtab was zapped, and the cleanup queued, in free_named_symtab()
2860 This function can be queued N times as a cleanup, or called
2861 directly; it will do all the work the first time, and then will be a
2862 no-op until the next time it is queued. This works by bumping a
2863 counter at queueing time. Much later when the cleanup is run, or at
2864 the end of symbol processing (in case the cleanup is discarded), if
2865 the queued count is greater than the "done-count", we do the work
2866 and set the done-count to the queued count. If the queued count is
2867 less than or equal to the done-count, we just ignore the call. This
2868 is needed because reading a single .o file will often replace many
2869 symtabs (one per .h file, for example), and we don't want to reset
2870 the breakpoints N times in the user's face.
2872 The reason we both queue a cleanup, and call it directly after symbol
2873 reading, is because the cleanup protects us in case of errors, but is
2874 discarded if symbol reading is successful. */
2877 /* FIXME: As free_named_symtabs is currently a big noop this function
2878 is no longer needed. */
2879 static void clear_symtab_users_once (void);
2881 static int clear_symtab_users_queued;
2882 static int clear_symtab_users_done;
2885 clear_symtab_users_once (void)
2887 /* Enforce once-per-`do_cleanups'-semantics */
2888 if (clear_symtab_users_queued <= clear_symtab_users_done)
2890 clear_symtab_users_done = clear_symtab_users_queued;
2892 clear_symtab_users ();
2896 /* Delete the specified psymtab, and any others that reference it. */
2899 cashier_psymtab (struct partial_symtab *pst)
2901 struct partial_symtab *ps, *pprev = NULL;
2904 /* Find its previous psymtab in the chain */
2905 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2914 /* Unhook it from the chain. */
2915 if (ps == pst->objfile->psymtabs)
2916 pst->objfile->psymtabs = ps->next;
2918 pprev->next = ps->next;
2920 /* FIXME, we can't conveniently deallocate the entries in the
2921 partial_symbol lists (global_psymbols/static_psymbols) that
2922 this psymtab points to. These just take up space until all
2923 the psymtabs are reclaimed. Ditto the dependencies list and
2924 filename, which are all in the objfile_obstack. */
2926 /* We need to cashier any psymtab that has this one as a dependency... */
2928 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2930 for (i = 0; i < ps->number_of_dependencies; i++)
2932 if (ps->dependencies[i] == pst)
2934 cashier_psymtab (ps);
2935 goto again; /* Must restart, chain has been munged. */
2942 /* If a symtab or psymtab for filename NAME is found, free it along
2943 with any dependent breakpoints, displays, etc.
2944 Used when loading new versions of object modules with the "add-file"
2945 command. This is only called on the top-level symtab or psymtab's name;
2946 it is not called for subsidiary files such as .h files.
2948 Return value is 1 if we blew away the environment, 0 if not.
2949 FIXME. The return value appears to never be used.
2951 FIXME. I think this is not the best way to do this. We should
2952 work on being gentler to the environment while still cleaning up
2953 all stray pointers into the freed symtab. */
2956 free_named_symtabs (char *name)
2959 /* FIXME: With the new method of each objfile having it's own
2960 psymtab list, this function needs serious rethinking. In particular,
2961 why was it ever necessary to toss psymtabs with specific compilation
2962 unit filenames, as opposed to all psymtabs from a particular symbol
2964 Well, the answer is that some systems permit reloading of particular
2965 compilation units. We want to blow away any old info about these
2966 compilation units, regardless of which objfiles they arrived in. --gnu. */
2969 struct symtab *prev;
2970 struct partial_symtab *ps;
2971 struct blockvector *bv;
2974 /* We only wack things if the symbol-reload switch is set. */
2975 if (!symbol_reloading)
2978 /* Some symbol formats have trouble providing file names... */
2979 if (name == 0 || *name == '\0')
2982 /* Look for a psymtab with the specified name. */
2985 for (ps = partial_symtab_list; ps; ps = ps->next)
2987 if (strcmp (name, ps->filename) == 0)
2989 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2990 goto again2; /* Must restart, chain has been munged */
2994 /* Look for a symtab with the specified name. */
2996 for (s = symtab_list; s; s = s->next)
2998 if (strcmp (name, s->filename) == 0)
3005 if (s == symtab_list)
3006 symtab_list = s->next;
3008 prev->next = s->next;
3010 /* For now, queue a delete for all breakpoints, displays, etc., whether
3011 or not they depend on the symtab being freed. This should be
3012 changed so that only those data structures affected are deleted. */
3014 /* But don't delete anything if the symtab is empty.
3015 This test is necessary due to a bug in "dbxread.c" that
3016 causes empty symtabs to be created for N_SO symbols that
3017 contain the pathname of the object file. (This problem
3018 has been fixed in GDB 3.9x). */
3020 bv = BLOCKVECTOR (s);
3021 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3022 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3023 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3025 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3027 clear_symtab_users_queued++;
3028 make_cleanup (clear_symtab_users_once, 0);
3032 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3039 /* It is still possible that some breakpoints will be affected
3040 even though no symtab was found, since the file might have
3041 been compiled without debugging, and hence not be associated
3042 with a symtab. In order to handle this correctly, we would need
3043 to keep a list of text address ranges for undebuggable files.
3044 For now, we do nothing, since this is a fairly obscure case. */
3048 /* FIXME, what about the minimal symbol table? */
3055 /* Allocate and partially fill a partial symtab. It will be
3056 completely filled at the end of the symbol list.
3058 FILENAME is the name of the symbol-file we are reading from. */
3060 struct partial_symtab *
3061 start_psymtab_common (struct objfile *objfile,
3062 struct section_offsets *section_offsets, char *filename,
3063 CORE_ADDR textlow, struct partial_symbol **global_syms,
3064 struct partial_symbol **static_syms)
3066 struct partial_symtab *psymtab;
3068 psymtab = allocate_psymtab (filename, objfile);
3069 psymtab->section_offsets = section_offsets;
3070 psymtab->textlow = textlow;
3071 psymtab->texthigh = psymtab->textlow; /* default */
3072 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3073 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3077 /* Add a symbol with a long value to a psymtab.
3078 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3079 Return the partial symbol that has been added. */
3081 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3082 symbol is so that callers can get access to the symbol's demangled
3083 name, which they don't have any cheap way to determine otherwise.
3084 (Currenly, dwarf2read.c is the only file who uses that information,
3085 though it's possible that other readers might in the future.)
3086 Elena wasn't thrilled about that, and I don't blame her, but we
3087 couldn't come up with a better way to get that information. If
3088 it's needed in other situations, we could consider breaking up
3089 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3092 const struct partial_symbol *
3093 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3094 enum address_class class,
3095 struct psymbol_allocation_list *list, long val, /* Value as a long */
3096 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3097 enum language language, struct objfile *objfile)
3099 struct partial_symbol *psym;
3100 char *buf = alloca (namelength + 1);
3101 /* psymbol is static so that there will be no uninitialized gaps in the
3102 structure which might contain random data, causing cache misses in
3104 static struct partial_symbol psymbol;
3106 /* Create local copy of the partial symbol */
3107 memcpy (buf, name, namelength);
3108 buf[namelength] = '\0';
3109 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3112 SYMBOL_VALUE (&psymbol) = val;
3116 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3118 SYMBOL_SECTION (&psymbol) = 0;
3119 SYMBOL_LANGUAGE (&psymbol) = language;
3120 PSYMBOL_DOMAIN (&psymbol) = domain;
3121 PSYMBOL_CLASS (&psymbol) = class;
3123 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3125 /* Stash the partial symbol away in the cache */
3126 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3127 objfile->psymbol_cache);
3129 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3130 if (list->next >= list->list + list->size)
3132 extend_psymbol_list (list, objfile);
3134 *list->next++ = psym;
3135 OBJSTAT (objfile, n_psyms++);
3140 /* Initialize storage for partial symbols. */
3143 init_psymbol_list (struct objfile *objfile, int total_symbols)
3145 /* Free any previously allocated psymbol lists. */
3147 if (objfile->global_psymbols.list)
3149 xfree (objfile->global_psymbols.list);
3151 if (objfile->static_psymbols.list)
3153 xfree (objfile->static_psymbols.list);
3156 /* Current best guess is that approximately a twentieth
3157 of the total symbols (in a debugging file) are global or static
3160 objfile->global_psymbols.size = total_symbols / 10;
3161 objfile->static_psymbols.size = total_symbols / 10;
3163 if (objfile->global_psymbols.size > 0)
3165 objfile->global_psymbols.next =
3166 objfile->global_psymbols.list = (struct partial_symbol **)
3167 xmalloc ((objfile->global_psymbols.size
3168 * sizeof (struct partial_symbol *)));
3170 if (objfile->static_psymbols.size > 0)
3172 objfile->static_psymbols.next =
3173 objfile->static_psymbols.list = (struct partial_symbol **)
3174 xmalloc ((objfile->static_psymbols.size
3175 * sizeof (struct partial_symbol *)));
3180 The following code implements an abstraction for debugging overlay sections.
3182 The target model is as follows:
3183 1) The gnu linker will permit multiple sections to be mapped into the
3184 same VMA, each with its own unique LMA (or load address).
3185 2) It is assumed that some runtime mechanism exists for mapping the
3186 sections, one by one, from the load address into the VMA address.
3187 3) This code provides a mechanism for gdb to keep track of which
3188 sections should be considered to be mapped from the VMA to the LMA.
3189 This information is used for symbol lookup, and memory read/write.
3190 For instance, if a section has been mapped then its contents
3191 should be read from the VMA, otherwise from the LMA.
3193 Two levels of debugger support for overlays are available. One is
3194 "manual", in which the debugger relies on the user to tell it which
3195 overlays are currently mapped. This level of support is
3196 implemented entirely in the core debugger, and the information about
3197 whether a section is mapped is kept in the objfile->obj_section table.
3199 The second level of support is "automatic", and is only available if
3200 the target-specific code provides functionality to read the target's
3201 overlay mapping table, and translate its contents for the debugger
3202 (by updating the mapped state information in the obj_section tables).
3204 The interface is as follows:
3206 overlay map <name> -- tell gdb to consider this section mapped
3207 overlay unmap <name> -- tell gdb to consider this section unmapped
3208 overlay list -- list the sections that GDB thinks are mapped
3209 overlay read-target -- get the target's state of what's mapped
3210 overlay off/manual/auto -- set overlay debugging state
3211 Functional interface:
3212 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3213 section, return that section.
3214 find_pc_overlay(pc): find any overlay section that contains
3215 the pc, either in its VMA or its LMA
3216 overlay_is_mapped(sect): true if overlay is marked as mapped
3217 section_is_overlay(sect): true if section's VMA != LMA
3218 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3219 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3220 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3221 overlay_mapped_address(...): map an address from section's LMA to VMA
3222 overlay_unmapped_address(...): map an address from section's VMA to LMA
3223 symbol_overlayed_address(...): Return a "current" address for symbol:
3224 either in VMA or LMA depending on whether
3225 the symbol's section is currently mapped
3228 /* Overlay debugging state: */
3230 enum overlay_debugging_state overlay_debugging = ovly_off;
3231 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3233 /* Function: section_is_overlay (SECTION)
3234 Returns true if SECTION has VMA not equal to LMA, ie.
3235 SECTION is loaded at an address different from where it will "run". */
3238 section_is_overlay (asection *section)
3240 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3242 if (overlay_debugging)
3243 if (section && section->lma != 0 &&
3244 section->vma != section->lma)
3250 /* Function: overlay_invalidate_all (void)
3251 Invalidate the mapped state of all overlay sections (mark it as stale). */
3254 overlay_invalidate_all (void)
3256 struct objfile *objfile;
3257 struct obj_section *sect;
3259 ALL_OBJSECTIONS (objfile, sect)
3260 if (section_is_overlay (sect->the_bfd_section))
3261 sect->ovly_mapped = -1;
3264 /* Function: overlay_is_mapped (SECTION)
3265 Returns true if section is an overlay, and is currently mapped.
3266 Private: public access is thru function section_is_mapped.
3268 Access to the ovly_mapped flag is restricted to this function, so
3269 that we can do automatic update. If the global flag
3270 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3271 overlay_invalidate_all. If the mapped state of the particular
3272 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3275 overlay_is_mapped (struct obj_section *osect)
3277 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3280 switch (overlay_debugging)
3284 return 0; /* overlay debugging off */
3285 case ovly_auto: /* overlay debugging automatic */
3286 /* Unles there is a gdbarch_overlay_update function,
3287 there's really nothing useful to do here (can't really go auto) */
3288 if (gdbarch_overlay_update_p (current_gdbarch))
3290 if (overlay_cache_invalid)
3292 overlay_invalidate_all ();
3293 overlay_cache_invalid = 0;
3295 if (osect->ovly_mapped == -1)
3296 gdbarch_overlay_update (current_gdbarch, osect);
3298 /* fall thru to manual case */
3299 case ovly_on: /* overlay debugging manual */
3300 return osect->ovly_mapped == 1;
3304 /* Function: section_is_mapped
3305 Returns true if section is an overlay, and is currently mapped. */
3308 section_is_mapped (asection *section)
3310 struct objfile *objfile;
3311 struct obj_section *osect;
3313 if (overlay_debugging)
3314 if (section && section_is_overlay (section))
3315 ALL_OBJSECTIONS (objfile, osect)
3316 if (osect->the_bfd_section == section)
3317 return overlay_is_mapped (osect);
3322 /* Function: pc_in_unmapped_range
3323 If PC falls into the lma range of SECTION, return true, else false. */
3326 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3328 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3332 if (overlay_debugging)
3333 if (section && section_is_overlay (section))
3335 size = bfd_get_section_size (section);
3336 if (section->lma <= pc && pc < section->lma + size)
3342 /* Function: pc_in_mapped_range
3343 If PC falls into the vma range of SECTION, return true, else false. */
3346 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3348 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3352 if (overlay_debugging)
3353 if (section && section_is_overlay (section))
3355 size = bfd_get_section_size (section);
3356 if (section->vma <= pc && pc < section->vma + size)
3363 /* Return true if the mapped ranges of sections A and B overlap, false
3366 sections_overlap (asection *a, asection *b)
3368 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3370 CORE_ADDR a_start = a->vma;
3371 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3372 CORE_ADDR b_start = b->vma;
3373 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3375 return (a_start < b_end && b_start < a_end);
3378 /* Function: overlay_unmapped_address (PC, SECTION)
3379 Returns the address corresponding to PC in the unmapped (load) range.
3380 May be the same as PC. */
3383 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3385 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3387 if (overlay_debugging)
3388 if (section && section_is_overlay (section) &&
3389 pc_in_mapped_range (pc, section))
3390 return pc + section->lma - section->vma;
3395 /* Function: overlay_mapped_address (PC, SECTION)
3396 Returns the address corresponding to PC in the mapped (runtime) range.
3397 May be the same as PC. */
3400 overlay_mapped_address (CORE_ADDR pc, asection *section)
3402 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3404 if (overlay_debugging)
3405 if (section && section_is_overlay (section) &&
3406 pc_in_unmapped_range (pc, section))
3407 return pc + section->vma - section->lma;
3413 /* Function: symbol_overlayed_address
3414 Return one of two addresses (relative to the VMA or to the LMA),
3415 depending on whether the section is mapped or not. */
3418 symbol_overlayed_address (CORE_ADDR address, asection *section)
3420 if (overlay_debugging)
3422 /* If the symbol has no section, just return its regular address. */
3425 /* If the symbol's section is not an overlay, just return its address */
3426 if (!section_is_overlay (section))
3428 /* If the symbol's section is mapped, just return its address */
3429 if (section_is_mapped (section))
3432 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3433 * then return its LOADED address rather than its vma address!!
3435 return overlay_unmapped_address (address, section);
3440 /* Function: find_pc_overlay (PC)
3441 Return the best-match overlay section for PC:
3442 If PC matches a mapped overlay section's VMA, return that section.
3443 Else if PC matches an unmapped section's VMA, return that section.
3444 Else if PC matches an unmapped section's LMA, return that section. */
3447 find_pc_overlay (CORE_ADDR pc)
3449 struct objfile *objfile;
3450 struct obj_section *osect, *best_match = NULL;
3452 if (overlay_debugging)
3453 ALL_OBJSECTIONS (objfile, osect)
3454 if (section_is_overlay (osect->the_bfd_section))
3456 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3458 if (overlay_is_mapped (osect))
3459 return osect->the_bfd_section;
3463 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3466 return best_match ? best_match->the_bfd_section : NULL;
3469 /* Function: find_pc_mapped_section (PC)
3470 If PC falls into the VMA address range of an overlay section that is
3471 currently marked as MAPPED, return that section. Else return NULL. */
3474 find_pc_mapped_section (CORE_ADDR pc)
3476 struct objfile *objfile;
3477 struct obj_section *osect;
3479 if (overlay_debugging)
3480 ALL_OBJSECTIONS (objfile, osect)
3481 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3482 overlay_is_mapped (osect))
3483 return osect->the_bfd_section;
3488 /* Function: list_overlays_command
3489 Print a list of mapped sections and their PC ranges */
3492 list_overlays_command (char *args, int from_tty)
3495 struct objfile *objfile;
3496 struct obj_section *osect;
3498 if (overlay_debugging)
3499 ALL_OBJSECTIONS (objfile, osect)
3500 if (overlay_is_mapped (osect))
3506 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3507 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3508 size = bfd_get_section_size (osect->the_bfd_section);
3509 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3511 printf_filtered ("Section %s, loaded at ", name);
3512 fputs_filtered (paddress (lma), gdb_stdout);
3513 puts_filtered (" - ");
3514 fputs_filtered (paddress (lma + size), gdb_stdout);
3515 printf_filtered (", mapped at ");
3516 fputs_filtered (paddress (vma), gdb_stdout);
3517 puts_filtered (" - ");
3518 fputs_filtered (paddress (vma + size), gdb_stdout);
3519 puts_filtered ("\n");
3524 printf_filtered (_("No sections are mapped.\n"));
3527 /* Function: map_overlay_command
3528 Mark the named section as mapped (ie. residing at its VMA address). */
3531 map_overlay_command (char *args, int from_tty)
3533 struct objfile *objfile, *objfile2;
3534 struct obj_section *sec, *sec2;
3537 if (!overlay_debugging)
3539 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3540 the 'overlay manual' command."));
3542 if (args == 0 || *args == 0)
3543 error (_("Argument required: name of an overlay section"));
3545 /* First, find a section matching the user supplied argument */
3546 ALL_OBJSECTIONS (objfile, sec)
3547 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3549 /* Now, check to see if the section is an overlay. */
3550 bfdsec = sec->the_bfd_section;
3551 if (!section_is_overlay (bfdsec))
3552 continue; /* not an overlay section */
3554 /* Mark the overlay as "mapped" */
3555 sec->ovly_mapped = 1;
3557 /* Next, make a pass and unmap any sections that are
3558 overlapped by this new section: */
3559 ALL_OBJSECTIONS (objfile2, sec2)
3560 if (sec2->ovly_mapped
3562 && sec->the_bfd_section != sec2->the_bfd_section
3563 && sections_overlap (sec->the_bfd_section,
3564 sec2->the_bfd_section))
3567 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3568 bfd_section_name (objfile->obfd,
3569 sec2->the_bfd_section));
3570 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3574 error (_("No overlay section called %s"), args);
3577 /* Function: unmap_overlay_command
3578 Mark the overlay section as unmapped
3579 (ie. resident in its LMA address range, rather than the VMA range). */
3582 unmap_overlay_command (char *args, int from_tty)
3584 struct objfile *objfile;
3585 struct obj_section *sec;
3587 if (!overlay_debugging)
3589 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3590 the 'overlay manual' command."));
3592 if (args == 0 || *args == 0)
3593 error (_("Argument required: name of an overlay section"));
3595 /* First, find a section matching the user supplied argument */
3596 ALL_OBJSECTIONS (objfile, sec)
3597 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3599 if (!sec->ovly_mapped)
3600 error (_("Section %s is not mapped"), args);
3601 sec->ovly_mapped = 0;
3604 error (_("No overlay section called %s"), args);
3607 /* Function: overlay_auto_command
3608 A utility command to turn on overlay debugging.
3609 Possibly this should be done via a set/show command. */
3612 overlay_auto_command (char *args, int from_tty)
3614 overlay_debugging = ovly_auto;
3615 enable_overlay_breakpoints ();
3617 printf_unfiltered (_("Automatic overlay debugging enabled."));
3620 /* Function: overlay_manual_command
3621 A utility command to turn on overlay debugging.
3622 Possibly this should be done via a set/show command. */
3625 overlay_manual_command (char *args, int from_tty)
3627 overlay_debugging = ovly_on;
3628 disable_overlay_breakpoints ();
3630 printf_unfiltered (_("Overlay debugging enabled."));
3633 /* Function: overlay_off_command
3634 A utility command to turn on overlay debugging.
3635 Possibly this should be done via a set/show command. */
3638 overlay_off_command (char *args, int from_tty)
3640 overlay_debugging = ovly_off;
3641 disable_overlay_breakpoints ();
3643 printf_unfiltered (_("Overlay debugging disabled."));
3647 overlay_load_command (char *args, int from_tty)
3649 if (gdbarch_overlay_update_p (current_gdbarch))
3650 gdbarch_overlay_update (current_gdbarch, NULL);
3652 error (_("This target does not know how to read its overlay state."));
3655 /* Function: overlay_command
3656 A place-holder for a mis-typed command */
3658 /* Command list chain containing all defined "overlay" subcommands. */
3659 struct cmd_list_element *overlaylist;
3662 overlay_command (char *args, int from_tty)
3665 ("\"overlay\" must be followed by the name of an overlay command.\n");
3666 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3670 /* Target Overlays for the "Simplest" overlay manager:
3672 This is GDB's default target overlay layer. It works with the
3673 minimal overlay manager supplied as an example by Cygnus. The
3674 entry point is via a function pointer "gdbarch_overlay_update",
3675 so targets that use a different runtime overlay manager can
3676 substitute their own overlay_update function and take over the
3679 The overlay_update function pokes around in the target's data structures
3680 to see what overlays are mapped, and updates GDB's overlay mapping with
3683 In this simple implementation, the target data structures are as follows:
3684 unsigned _novlys; /# number of overlay sections #/
3685 unsigned _ovly_table[_novlys][4] = {
3686 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3687 {..., ..., ..., ...},
3689 unsigned _novly_regions; /# number of overlay regions #/
3690 unsigned _ovly_region_table[_novly_regions][3] = {
3691 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3694 These functions will attempt to update GDB's mappedness state in the
3695 symbol section table, based on the target's mappedness state.
3697 To do this, we keep a cached copy of the target's _ovly_table, and
3698 attempt to detect when the cached copy is invalidated. The main
3699 entry point is "simple_overlay_update(SECT), which looks up SECT in
3700 the cached table and re-reads only the entry for that section from
3701 the target (whenever possible).
3704 /* Cached, dynamically allocated copies of the target data structures: */
3705 static unsigned (*cache_ovly_table)[4] = 0;
3707 static unsigned (*cache_ovly_region_table)[3] = 0;
3709 static unsigned cache_novlys = 0;
3711 static unsigned cache_novly_regions = 0;
3713 static CORE_ADDR cache_ovly_table_base = 0;
3715 static CORE_ADDR cache_ovly_region_table_base = 0;
3719 VMA, SIZE, LMA, MAPPED
3721 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3724 /* Throw away the cached copy of _ovly_table */
3726 simple_free_overlay_table (void)
3728 if (cache_ovly_table)
3729 xfree (cache_ovly_table);
3731 cache_ovly_table = NULL;
3732 cache_ovly_table_base = 0;
3736 /* Throw away the cached copy of _ovly_region_table */
3738 simple_free_overlay_region_table (void)
3740 if (cache_ovly_region_table)
3741 xfree (cache_ovly_region_table);
3742 cache_novly_regions = 0;
3743 cache_ovly_region_table = NULL;
3744 cache_ovly_region_table_base = 0;
3748 /* Read an array of ints from the target into a local buffer.
3749 Convert to host order. int LEN is number of ints */
3751 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3753 /* FIXME (alloca): Not safe if array is very large. */
3754 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3757 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3758 for (i = 0; i < len; i++)
3759 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3763 /* Find and grab a copy of the target _ovly_table
3764 (and _novlys, which is needed for the table's size) */
3766 simple_read_overlay_table (void)
3768 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3770 simple_free_overlay_table ();
3771 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3774 error (_("Error reading inferior's overlay table: "
3775 "couldn't find `_novlys' variable\n"
3776 "in inferior. Use `overlay manual' mode."));
3780 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3781 if (! ovly_table_msym)
3783 error (_("Error reading inferior's overlay table: couldn't find "
3784 "`_ovly_table' array\n"
3785 "in inferior. Use `overlay manual' mode."));
3789 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3791 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3792 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3793 read_target_long_array (cache_ovly_table_base,
3794 (unsigned int *) cache_ovly_table,
3797 return 1; /* SUCCESS */
3801 /* Find and grab a copy of the target _ovly_region_table
3802 (and _novly_regions, which is needed for the table's size) */
3804 simple_read_overlay_region_table (void)
3806 struct minimal_symbol *msym;
3808 simple_free_overlay_region_table ();
3809 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3811 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3813 return 0; /* failure */
3814 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3815 if (cache_ovly_region_table != NULL)
3817 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3820 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3821 read_target_long_array (cache_ovly_region_table_base,
3822 (unsigned int *) cache_ovly_region_table,
3823 cache_novly_regions * 3);
3826 return 0; /* failure */
3829 return 0; /* failure */
3830 return 1; /* SUCCESS */
3834 /* Function: simple_overlay_update_1
3835 A helper function for simple_overlay_update. Assuming a cached copy
3836 of _ovly_table exists, look through it to find an entry whose vma,
3837 lma and size match those of OSECT. Re-read the entry and make sure
3838 it still matches OSECT (else the table may no longer be valid).
3839 Set OSECT's mapped state to match the entry. Return: 1 for
3840 success, 0 for failure. */
3843 simple_overlay_update_1 (struct obj_section *osect)
3846 bfd *obfd = osect->objfile->obfd;
3847 asection *bsect = osect->the_bfd_section;
3849 size = bfd_get_section_size (osect->the_bfd_section);
3850 for (i = 0; i < cache_novlys; i++)
3851 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3852 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3853 /* && cache_ovly_table[i][SIZE] == size */ )
3855 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3856 (unsigned int *) cache_ovly_table[i], 4);
3857 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3858 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3859 /* && cache_ovly_table[i][SIZE] == size */ )
3861 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3864 else /* Warning! Warning! Target's ovly table has changed! */
3870 /* Function: simple_overlay_update
3871 If OSECT is NULL, then update all sections' mapped state
3872 (after re-reading the entire target _ovly_table).
3873 If OSECT is non-NULL, then try to find a matching entry in the
3874 cached ovly_table and update only OSECT's mapped state.
3875 If a cached entry can't be found or the cache isn't valid, then
3876 re-read the entire cache, and go ahead and update all sections. */
3879 simple_overlay_update (struct obj_section *osect)
3881 struct objfile *objfile;
3883 /* Were we given an osect to look up? NULL means do all of them. */
3885 /* Have we got a cached copy of the target's overlay table? */
3886 if (cache_ovly_table != NULL)
3887 /* Does its cached location match what's currently in the symtab? */
3888 if (cache_ovly_table_base ==
3889 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3890 /* Then go ahead and try to look up this single section in the cache */
3891 if (simple_overlay_update_1 (osect))
3892 /* Found it! We're done. */
3895 /* Cached table no good: need to read the entire table anew.
3896 Or else we want all the sections, in which case it's actually
3897 more efficient to read the whole table in one block anyway. */
3899 if (! simple_read_overlay_table ())
3902 /* Now may as well update all sections, even if only one was requested. */
3903 ALL_OBJSECTIONS (objfile, osect)
3904 if (section_is_overlay (osect->the_bfd_section))
3907 bfd *obfd = osect->objfile->obfd;
3908 asection *bsect = osect->the_bfd_section;
3910 size = bfd_get_section_size (bsect);
3911 for (i = 0; i < cache_novlys; i++)
3912 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3913 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3914 /* && cache_ovly_table[i][SIZE] == size */ )
3915 { /* obj_section matches i'th entry in ovly_table */
3916 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3917 break; /* finished with inner for loop: break out */
3922 /* Set the output sections and output offsets for section SECTP in
3923 ABFD. The relocation code in BFD will read these offsets, so we
3924 need to be sure they're initialized. We map each section to itself,
3925 with no offset; this means that SECTP->vma will be honored. */
3928 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3930 sectp->output_section = sectp;
3931 sectp->output_offset = 0;
3934 /* Relocate the contents of a debug section SECTP in ABFD. The
3935 contents are stored in BUF if it is non-NULL, or returned in a
3936 malloc'd buffer otherwise.
3938 For some platforms and debug info formats, shared libraries contain
3939 relocations against the debug sections (particularly for DWARF-2;
3940 one affected platform is PowerPC GNU/Linux, although it depends on
3941 the version of the linker in use). Also, ELF object files naturally
3942 have unresolved relocations for their debug sections. We need to apply
3943 the relocations in order to get the locations of symbols correct. */
3946 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3948 /* We're only interested in debugging sections with relocation
3950 if ((sectp->flags & SEC_RELOC) == 0)
3952 if ((sectp->flags & SEC_DEBUGGING) == 0)
3955 /* We will handle section offsets properly elsewhere, so relocate as if
3956 all sections begin at 0. */
3957 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3959 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3962 struct symfile_segment_data *
3963 get_symfile_segment_data (bfd *abfd)
3965 struct sym_fns *sf = find_sym_fns (abfd);
3970 return sf->sym_segments (abfd);
3974 free_symfile_segment_data (struct symfile_segment_data *data)
3976 xfree (data->segment_bases);
3977 xfree (data->segment_sizes);
3978 xfree (data->segment_info);
3984 - DATA, containing segment addresses from the object file ABFD, and
3985 the mapping from ABFD's sections onto the segments that own them,
3987 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3988 segment addresses reported by the target,
3989 store the appropriate offsets for each section in OFFSETS.
3991 If there are fewer entries in SEGMENT_BASES than there are segments
3992 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3994 If there are more, then verify that all the excess addresses are
3995 the same as the last legitimate one, and then ignore them. This
3996 allows "TextSeg=X;DataSeg=X" qOffset replies for files which have
3997 only a single segment. */
3999 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4000 struct section_offsets *offsets,
4001 int num_segment_bases,
4002 const CORE_ADDR *segment_bases)
4007 /* It doesn't make sense to call this function unless you have some
4008 segment base addresses. */
4009 gdb_assert (segment_bases > 0);
4011 /* If we do not have segment mappings for the object file, we
4012 can not relocate it by segments. */
4013 gdb_assert (data != NULL);
4014 gdb_assert (data->num_segments > 0);
4016 /* Check any extra SEGMENT_BASES entries. */
4017 if (num_segment_bases > data->num_segments)
4018 for (i = data->num_segments; i < num_segment_bases; i++)
4019 if (segment_bases[i] != segment_bases[data->num_segments - 1])
4022 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4024 int which = data->segment_info[i];
4026 gdb_assert (0 <= which && which <= data->num_segments);
4028 /* Don't bother computing offsets for sections that aren't
4029 loaded as part of any segment. */
4033 /* Use the last SEGMENT_BASES entry as the address of any extra
4034 segments mentioned in DATA->segment_info. */
4035 if (which > num_segment_bases)
4036 which = num_segment_bases;
4038 offsets->offsets[i] = (segment_bases[which - 1]
4039 - data->segment_bases[which - 1]);
4046 symfile_find_segment_sections (struct objfile *objfile)
4048 bfd *abfd = objfile->obfd;
4051 struct symfile_segment_data *data;
4053 data = get_symfile_segment_data (objfile->obfd);
4057 if (data->num_segments != 1 && data->num_segments != 2)
4059 free_symfile_segment_data (data);
4063 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4066 int which = data->segment_info[i];
4070 if (objfile->sect_index_text == -1)
4071 objfile->sect_index_text = sect->index;
4073 if (objfile->sect_index_rodata == -1)
4074 objfile->sect_index_rodata = sect->index;
4076 else if (which == 2)
4078 if (objfile->sect_index_data == -1)
4079 objfile->sect_index_data = sect->index;
4081 if (objfile->sect_index_bss == -1)
4082 objfile->sect_index_bss = sect->index;
4086 free_symfile_segment_data (data);
4090 _initialize_symfile (void)
4092 struct cmd_list_element *c;
4094 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4095 Load symbol table from executable file FILE.\n\
4096 The `file' command can also load symbol tables, as well as setting the file\n\
4097 to execute."), &cmdlist);
4098 set_cmd_completer (c, filename_completer);
4100 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4101 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4102 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4103 ADDR is the starting address of the file's text.\n\
4104 The optional arguments are section-name section-address pairs and\n\
4105 should be specified if the data and bss segments are not contiguous\n\
4106 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4108 set_cmd_completer (c, filename_completer);
4110 c = add_cmd ("add-shared-symbol-files", class_files,
4111 add_shared_symbol_files_command, _("\
4112 Load the symbols from shared objects in the dynamic linker's link map."),
4114 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4117 c = add_cmd ("load", class_files, load_command, _("\
4118 Dynamically load FILE into the running program, and record its symbols\n\
4119 for access from GDB.\n\
4120 A load OFFSET may also be given."), &cmdlist);
4121 set_cmd_completer (c, filename_completer);
4123 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4124 &symbol_reloading, _("\
4125 Set dynamic symbol table reloading multiple times in one run."), _("\
4126 Show dynamic symbol table reloading multiple times in one run."), NULL,
4128 show_symbol_reloading,
4129 &setlist, &showlist);
4131 add_prefix_cmd ("overlay", class_support, overlay_command,
4132 _("Commands for debugging overlays."), &overlaylist,
4133 "overlay ", 0, &cmdlist);
4135 add_com_alias ("ovly", "overlay", class_alias, 1);
4136 add_com_alias ("ov", "overlay", class_alias, 1);
4138 add_cmd ("map-overlay", class_support, map_overlay_command,
4139 _("Assert that an overlay section is mapped."), &overlaylist);
4141 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4142 _("Assert that an overlay section is unmapped."), &overlaylist);
4144 add_cmd ("list-overlays", class_support, list_overlays_command,
4145 _("List mappings of overlay sections."), &overlaylist);
4147 add_cmd ("manual", class_support, overlay_manual_command,
4148 _("Enable overlay debugging."), &overlaylist);
4149 add_cmd ("off", class_support, overlay_off_command,
4150 _("Disable overlay debugging."), &overlaylist);
4151 add_cmd ("auto", class_support, overlay_auto_command,
4152 _("Enable automatic overlay debugging."), &overlaylist);
4153 add_cmd ("load-target", class_support, overlay_load_command,
4154 _("Read the overlay mapping state from the target."), &overlaylist);
4156 /* Filename extension to source language lookup table: */
4157 init_filename_language_table ();
4158 add_setshow_string_noescape_cmd ("extension-language", class_files,
4160 Set mapping between filename extension and source language."), _("\
4161 Show mapping between filename extension and source language."), _("\
4162 Usage: set extension-language .foo bar"),
4163 set_ext_lang_command,
4165 &setlist, &showlist);
4167 add_info ("extensions", info_ext_lang_command,
4168 _("All filename extensions associated with a source language."));
4170 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4171 &debug_file_directory, _("\
4172 Set the directory where separate debug symbols are searched for."), _("\
4173 Show the directory where separate debug symbols are searched for."), _("\
4174 Separate debug symbols are first searched for in the same\n\
4175 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4176 and lastly at the path of the directory of the binary with\n\
4177 the global debug-file directory prepended."),
4179 show_debug_file_directory,
4180 &setlist, &showlist);