1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
35 #include "breakpoint.h"
37 #include "complaints.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
51 #include "parser-defs.h"
58 #include "cli/cli-utils.h"
60 #include <sys/types.h>
68 int (*deprecated_ui_load_progress_hook) (const char *section,
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
78 static void clear_symtab_users_cleanup (void *ignore);
80 /* Global variables owned by this file. */
81 int readnow_symbol_files; /* Read full symbols immediately. */
83 /* Functions this file defines. */
85 static void load_command (char *, int);
87 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 static void add_symbol_file_command (char *, int);
92 static const struct sym_fns *find_sym_fns (bfd *);
94 static void overlay_invalidate_all (void);
96 static void overlay_auto_command (char *, int);
98 static void overlay_manual_command (char *, int);
100 static void overlay_off_command (char *, int);
102 static void overlay_load_command (char *, int);
104 static void overlay_command (char *, int);
106 static void simple_free_overlay_table (void);
108 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 static int simple_read_overlay_table (void);
113 static int simple_overlay_update_1 (struct obj_section *);
115 static void info_ext_lang_command (char *args, int from_tty);
117 static void symfile_find_segment_sections (struct objfile *objfile);
119 void _initialize_symfile (void);
121 /* List of all available sym_fns. On gdb startup, each object file reader
122 calls add_symtab_fns() to register information on each format it is
127 /* BFD flavour that we handle. */
128 enum bfd_flavour sym_flavour;
130 /* The "vtable" of symbol functions. */
131 const struct sym_fns *sym_fns;
132 } registered_sym_fns;
134 DEF_VEC_O (registered_sym_fns);
136 static VEC (registered_sym_fns) *symtab_fns = NULL;
138 /* Values for "set print symbol-loading". */
140 const char print_symbol_loading_off[] = "off";
141 const char print_symbol_loading_brief[] = "brief";
142 const char print_symbol_loading_full[] = "full";
143 static const char *print_symbol_loading_enums[] =
145 print_symbol_loading_off,
146 print_symbol_loading_brief,
147 print_symbol_loading_full,
150 static const char *print_symbol_loading = print_symbol_loading_full;
152 /* If non-zero, shared library symbols will be added automatically
153 when the inferior is created, new libraries are loaded, or when
154 attaching to the inferior. This is almost always what users will
155 want to have happen; but for very large programs, the startup time
156 will be excessive, and so if this is a problem, the user can clear
157 this flag and then add the shared library symbols as needed. Note
158 that there is a potential for confusion, since if the shared
159 library symbols are not loaded, commands like "info fun" will *not*
160 report all the functions that are actually present. */
162 int auto_solib_add = 1;
165 /* Return non-zero if symbol-loading messages should be printed.
166 FROM_TTY is the standard from_tty argument to gdb commands.
167 If EXEC is non-zero the messages are for the executable.
168 Otherwise, messages are for shared libraries.
169 If FULL is non-zero then the caller is printing a detailed message.
170 E.g., the message includes the shared library name.
171 Otherwise, the caller is printing a brief "summary" message. */
174 print_symbol_loading_p (int from_tty, int exec, int full)
176 if (!from_tty && !info_verbose)
181 /* We don't check FULL for executables, there are few such
182 messages, therefore brief == full. */
183 return print_symbol_loading != print_symbol_loading_off;
186 return print_symbol_loading == print_symbol_loading_full;
187 return print_symbol_loading == print_symbol_loading_brief;
190 /* True if we are reading a symbol table. */
192 int currently_reading_symtab = 0;
194 /* Increment currently_reading_symtab and return a cleanup that can be
195 used to decrement it. */
197 scoped_restore_tmpl<int>
198 increment_reading_symtab (void)
200 gdb_assert (currently_reading_symtab >= 0);
201 return make_scoped_restore (¤tly_reading_symtab,
202 currently_reading_symtab + 1);
205 /* Remember the lowest-addressed loadable section we've seen.
206 This function is called via bfd_map_over_sections.
208 In case of equal vmas, the section with the largest size becomes the
209 lowest-addressed loadable section.
211 If the vmas and sizes are equal, the last section is considered the
212 lowest-addressed loadable section. */
215 find_lowest_section (bfd *abfd, asection *sect, void *obj)
217 asection **lowest = (asection **) obj;
219 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
222 *lowest = sect; /* First loadable section */
223 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
224 *lowest = sect; /* A lower loadable section */
225 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
226 && (bfd_section_size (abfd, (*lowest))
227 <= bfd_section_size (abfd, sect)))
231 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
232 new object's 'num_sections' field is set to 0; it must be updated
235 struct section_addr_info *
236 alloc_section_addr_info (size_t num_sections)
238 struct section_addr_info *sap;
241 size = (sizeof (struct section_addr_info)
242 + sizeof (struct other_sections) * (num_sections - 1));
243 sap = (struct section_addr_info *) xmalloc (size);
244 memset (sap, 0, size);
249 /* Build (allocate and populate) a section_addr_info struct from
250 an existing section table. */
252 extern struct section_addr_info *
253 build_section_addr_info_from_section_table (const struct target_section *start,
254 const struct target_section *end)
256 struct section_addr_info *sap;
257 const struct target_section *stp;
260 sap = alloc_section_addr_info (end - start);
262 for (stp = start, oidx = 0; stp != end; stp++)
264 struct bfd_section *asect = stp->the_bfd_section;
265 bfd *abfd = asect->owner;
267 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
268 && oidx < end - start)
270 sap->other[oidx].addr = stp->addr;
271 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
272 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
277 sap->num_sections = oidx;
282 /* Create a section_addr_info from section offsets in ABFD. */
284 static struct section_addr_info *
285 build_section_addr_info_from_bfd (bfd *abfd)
287 struct section_addr_info *sap;
289 struct bfd_section *sec;
291 sap = alloc_section_addr_info (bfd_count_sections (abfd));
292 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
293 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
295 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
296 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
297 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
301 sap->num_sections = i;
306 /* Create a section_addr_info from section offsets in OBJFILE. */
308 struct section_addr_info *
309 build_section_addr_info_from_objfile (const struct objfile *objfile)
311 struct section_addr_info *sap;
314 /* Before reread_symbols gets rewritten it is not safe to call:
315 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
317 sap = build_section_addr_info_from_bfd (objfile->obfd);
318 for (i = 0; i < sap->num_sections; i++)
320 int sectindex = sap->other[i].sectindex;
322 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
327 /* Free all memory allocated by build_section_addr_info_from_section_table. */
330 free_section_addr_info (struct section_addr_info *sap)
334 for (idx = 0; idx < sap->num_sections; idx++)
335 xfree (sap->other[idx].name);
339 /* Initialize OBJFILE's sect_index_* members. */
342 init_objfile_sect_indices (struct objfile *objfile)
347 sect = bfd_get_section_by_name (objfile->obfd, ".text");
349 objfile->sect_index_text = sect->index;
351 sect = bfd_get_section_by_name (objfile->obfd, ".data");
353 objfile->sect_index_data = sect->index;
355 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
357 objfile->sect_index_bss = sect->index;
359 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
361 objfile->sect_index_rodata = sect->index;
363 /* This is where things get really weird... We MUST have valid
364 indices for the various sect_index_* members or gdb will abort.
365 So if for example, there is no ".text" section, we have to
366 accomodate that. First, check for a file with the standard
367 one or two segments. */
369 symfile_find_segment_sections (objfile);
371 /* Except when explicitly adding symbol files at some address,
372 section_offsets contains nothing but zeros, so it doesn't matter
373 which slot in section_offsets the individual sect_index_* members
374 index into. So if they are all zero, it is safe to just point
375 all the currently uninitialized indices to the first slot. But
376 beware: if this is the main executable, it may be relocated
377 later, e.g. by the remote qOffsets packet, and then this will
378 be wrong! That's why we try segments first. */
380 for (i = 0; i < objfile->num_sections; i++)
382 if (ANOFFSET (objfile->section_offsets, i) != 0)
387 if (i == objfile->num_sections)
389 if (objfile->sect_index_text == -1)
390 objfile->sect_index_text = 0;
391 if (objfile->sect_index_data == -1)
392 objfile->sect_index_data = 0;
393 if (objfile->sect_index_bss == -1)
394 objfile->sect_index_bss = 0;
395 if (objfile->sect_index_rodata == -1)
396 objfile->sect_index_rodata = 0;
400 /* The arguments to place_section. */
402 struct place_section_arg
404 struct section_offsets *offsets;
408 /* Find a unique offset to use for loadable section SECT if
409 the user did not provide an offset. */
412 place_section (bfd *abfd, asection *sect, void *obj)
414 struct place_section_arg *arg = (struct place_section_arg *) obj;
415 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
417 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
419 /* We are only interested in allocated sections. */
420 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
423 /* If the user specified an offset, honor it. */
424 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
427 /* Otherwise, let's try to find a place for the section. */
428 start_addr = (arg->lowest + align - 1) & -align;
435 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
437 int indx = cur_sec->index;
439 /* We don't need to compare against ourself. */
443 /* We can only conflict with allocated sections. */
444 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
447 /* If the section offset is 0, either the section has not been placed
448 yet, or it was the lowest section placed (in which case LOWEST
449 will be past its end). */
450 if (offsets[indx] == 0)
453 /* If this section would overlap us, then we must move up. */
454 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
455 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
457 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
458 start_addr = (start_addr + align - 1) & -align;
463 /* Otherwise, we appear to be OK. So far. */
468 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
469 arg->lowest = start_addr + bfd_get_section_size (sect);
472 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
473 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
477 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
479 const struct section_addr_info *addrs)
483 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
485 /* Now calculate offsets for section that were specified by the caller. */
486 for (i = 0; i < addrs->num_sections; i++)
488 const struct other_sections *osp;
490 osp = &addrs->other[i];
491 if (osp->sectindex == -1)
494 /* Record all sections in offsets. */
495 /* The section_offsets in the objfile are here filled in using
497 section_offsets->offsets[osp->sectindex] = osp->addr;
501 /* Transform section name S for a name comparison. prelink can split section
502 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
503 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
504 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
505 (`.sbss') section has invalid (increased) virtual address. */
508 addr_section_name (const char *s)
510 if (strcmp (s, ".dynbss") == 0)
512 if (strcmp (s, ".sdynbss") == 0)
518 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
519 their (name, sectindex) pair. sectindex makes the sort by name stable. */
522 addrs_section_compar (const void *ap, const void *bp)
524 const struct other_sections *a = *((struct other_sections **) ap);
525 const struct other_sections *b = *((struct other_sections **) bp);
528 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
532 return a->sectindex - b->sectindex;
535 /* Provide sorted array of pointers to sections of ADDRS. The array is
536 terminated by NULL. Caller is responsible to call xfree for it. */
538 static struct other_sections **
539 addrs_section_sort (struct section_addr_info *addrs)
541 struct other_sections **array;
544 /* `+ 1' for the NULL terminator. */
545 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
546 for (i = 0; i < addrs->num_sections; i++)
547 array[i] = &addrs->other[i];
550 qsort (array, i, sizeof (*array), addrs_section_compar);
555 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
556 also SECTINDEXes specific to ABFD there. This function can be used to
557 rebase ADDRS to start referencing different BFD than before. */
560 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
562 asection *lower_sect;
563 CORE_ADDR lower_offset;
565 struct cleanup *my_cleanup;
566 struct section_addr_info *abfd_addrs;
567 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
568 struct other_sections **addrs_to_abfd_addrs;
570 /* Find lowest loadable section to be used as starting point for
571 continguous sections. */
573 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
574 if (lower_sect == NULL)
576 warning (_("no loadable sections found in added symbol-file %s"),
577 bfd_get_filename (abfd));
581 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
583 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
584 in ABFD. Section names are not unique - there can be multiple sections of
585 the same name. Also the sections of the same name do not have to be
586 adjacent to each other. Some sections may be present only in one of the
587 files. Even sections present in both files do not have to be in the same
590 Use stable sort by name for the sections in both files. Then linearly
591 scan both lists matching as most of the entries as possible. */
593 addrs_sorted = addrs_section_sort (addrs);
594 my_cleanup = make_cleanup (xfree, addrs_sorted);
596 abfd_addrs = build_section_addr_info_from_bfd (abfd);
597 make_cleanup_free_section_addr_info (abfd_addrs);
598 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
599 make_cleanup (xfree, abfd_addrs_sorted);
601 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
602 ABFD_ADDRS_SORTED. */
604 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
605 make_cleanup (xfree, addrs_to_abfd_addrs);
607 while (*addrs_sorted)
609 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
611 while (*abfd_addrs_sorted
612 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
616 if (*abfd_addrs_sorted
617 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
622 /* Make the found item directly addressable from ADDRS. */
623 index_in_addrs = *addrs_sorted - addrs->other;
624 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
625 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
627 /* Never use the same ABFD entry twice. */
634 /* Calculate offsets for the loadable sections.
635 FIXME! Sections must be in order of increasing loadable section
636 so that contiguous sections can use the lower-offset!!!
638 Adjust offsets if the segments are not contiguous.
639 If the section is contiguous, its offset should be set to
640 the offset of the highest loadable section lower than it
641 (the loadable section directly below it in memory).
642 this_offset = lower_offset = lower_addr - lower_orig_addr */
644 for (i = 0; i < addrs->num_sections; i++)
646 struct other_sections *sect = addrs_to_abfd_addrs[i];
650 /* This is the index used by BFD. */
651 addrs->other[i].sectindex = sect->sectindex;
653 if (addrs->other[i].addr != 0)
655 addrs->other[i].addr -= sect->addr;
656 lower_offset = addrs->other[i].addr;
659 addrs->other[i].addr = lower_offset;
663 /* addr_section_name transformation is not used for SECT_NAME. */
664 const char *sect_name = addrs->other[i].name;
666 /* This section does not exist in ABFD, which is normally
667 unexpected and we want to issue a warning.
669 However, the ELF prelinker does create a few sections which are
670 marked in the main executable as loadable (they are loaded in
671 memory from the DYNAMIC segment) and yet are not present in
672 separate debug info files. This is fine, and should not cause
673 a warning. Shared libraries contain just the section
674 ".gnu.liblist" but it is not marked as loadable there. There is
675 no other way to identify them than by their name as the sections
676 created by prelink have no special flags.
678 For the sections `.bss' and `.sbss' see addr_section_name. */
680 if (!(strcmp (sect_name, ".gnu.liblist") == 0
681 || strcmp (sect_name, ".gnu.conflict") == 0
682 || (strcmp (sect_name, ".bss") == 0
684 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
685 && addrs_to_abfd_addrs[i - 1] != NULL)
686 || (strcmp (sect_name, ".sbss") == 0
688 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
689 && addrs_to_abfd_addrs[i - 1] != NULL)))
690 warning (_("section %s not found in %s"), sect_name,
691 bfd_get_filename (abfd));
693 addrs->other[i].addr = 0;
694 addrs->other[i].sectindex = -1;
698 do_cleanups (my_cleanup);
701 /* Parse the user's idea of an offset for dynamic linking, into our idea
702 of how to represent it for fast symbol reading. This is the default
703 version of the sym_fns.sym_offsets function for symbol readers that
704 don't need to do anything special. It allocates a section_offsets table
705 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
708 default_symfile_offsets (struct objfile *objfile,
709 const struct section_addr_info *addrs)
711 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
712 objfile->section_offsets = (struct section_offsets *)
713 obstack_alloc (&objfile->objfile_obstack,
714 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
715 relative_addr_info_to_section_offsets (objfile->section_offsets,
716 objfile->num_sections, addrs);
718 /* For relocatable files, all loadable sections will start at zero.
719 The zero is meaningless, so try to pick arbitrary addresses such
720 that no loadable sections overlap. This algorithm is quadratic,
721 but the number of sections in a single object file is generally
723 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
725 struct place_section_arg arg;
726 bfd *abfd = objfile->obfd;
729 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
730 /* We do not expect this to happen; just skip this step if the
731 relocatable file has a section with an assigned VMA. */
732 if (bfd_section_vma (abfd, cur_sec) != 0)
737 CORE_ADDR *offsets = objfile->section_offsets->offsets;
739 /* Pick non-overlapping offsets for sections the user did not
741 arg.offsets = objfile->section_offsets;
743 bfd_map_over_sections (objfile->obfd, place_section, &arg);
745 /* Correctly filling in the section offsets is not quite
746 enough. Relocatable files have two properties that
747 (most) shared objects do not:
749 - Their debug information will contain relocations. Some
750 shared libraries do also, but many do not, so this can not
753 - If there are multiple code sections they will be loaded
754 at different relative addresses in memory than they are
755 in the objfile, since all sections in the file will start
758 Because GDB has very limited ability to map from an
759 address in debug info to the correct code section,
760 it relies on adding SECT_OFF_TEXT to things which might be
761 code. If we clear all the section offsets, and set the
762 section VMAs instead, then symfile_relocate_debug_section
763 will return meaningful debug information pointing at the
766 GDB has too many different data structures for section
767 addresses - a bfd, objfile, and so_list all have section
768 tables, as does exec_ops. Some of these could probably
771 for (cur_sec = abfd->sections; cur_sec != NULL;
772 cur_sec = cur_sec->next)
774 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
777 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
778 exec_set_section_address (bfd_get_filename (abfd),
780 offsets[cur_sec->index]);
781 offsets[cur_sec->index] = 0;
786 /* Remember the bfd indexes for the .text, .data, .bss and
788 init_objfile_sect_indices (objfile);
791 /* Divide the file into segments, which are individual relocatable units.
792 This is the default version of the sym_fns.sym_segments function for
793 symbol readers that do not have an explicit representation of segments.
794 It assumes that object files do not have segments, and fully linked
795 files have a single segment. */
797 struct symfile_segment_data *
798 default_symfile_segments (bfd *abfd)
802 struct symfile_segment_data *data;
805 /* Relocatable files contain enough information to position each
806 loadable section independently; they should not be relocated
808 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
811 /* Make sure there is at least one loadable section in the file. */
812 for (sect = abfd->sections; sect != NULL; sect = sect->next)
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
822 low = bfd_get_section_vma (abfd, sect);
823 high = low + bfd_get_section_size (sect);
825 data = XCNEW (struct symfile_segment_data);
826 data->num_segments = 1;
827 data->segment_bases = XCNEW (CORE_ADDR);
828 data->segment_sizes = XCNEW (CORE_ADDR);
830 num_sections = bfd_count_sections (abfd);
831 data->segment_info = XCNEWVEC (int, num_sections);
833 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
840 vma = bfd_get_section_vma (abfd, sect);
843 if (vma + bfd_get_section_size (sect) > high)
844 high = vma + bfd_get_section_size (sect);
846 data->segment_info[i] = 1;
849 data->segment_bases[0] = low;
850 data->segment_sizes[0] = high - low;
855 /* This is a convenience function to call sym_read for OBJFILE and
856 possibly force the partial symbols to be read. */
859 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
861 (*objfile->sf->sym_read) (objfile, add_flags);
862 objfile->per_bfd->minsyms_read = 1;
864 /* find_separate_debug_file_in_section should be called only if there is
865 single binary with no existing separate debug info file. */
866 if (!objfile_has_partial_symbols (objfile)
867 && objfile->separate_debug_objfile == NULL
868 && objfile->separate_debug_objfile_backlink == NULL)
870 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
874 /* find_separate_debug_file_in_section uses the same filename for the
875 virtual section-as-bfd like the bfd filename containing the
876 section. Therefore use also non-canonical name form for the same
877 file containing the section. */
878 symbol_file_add_separate (abfd.get (), objfile->original_name,
882 if ((add_flags & SYMFILE_NO_READ) == 0)
883 require_partial_symbols (objfile, 0);
886 /* Initialize entry point information for this objfile. */
889 init_entry_point_info (struct objfile *objfile)
891 struct entry_info *ei = &objfile->per_bfd->ei;
897 /* Save startup file's range of PC addresses to help blockframe.c
898 decide where the bottom of the stack is. */
900 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
902 /* Executable file -- record its entry point so we'll recognize
903 the startup file because it contains the entry point. */
904 ei->entry_point = bfd_get_start_address (objfile->obfd);
905 ei->entry_point_p = 1;
907 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
908 && bfd_get_start_address (objfile->obfd) != 0)
910 /* Some shared libraries may have entry points set and be
911 runnable. There's no clear way to indicate this, so just check
912 for values other than zero. */
913 ei->entry_point = bfd_get_start_address (objfile->obfd);
914 ei->entry_point_p = 1;
918 /* Examination of non-executable.o files. Short-circuit this stuff. */
919 ei->entry_point_p = 0;
922 if (ei->entry_point_p)
924 struct obj_section *osect;
925 CORE_ADDR entry_point = ei->entry_point;
928 /* Make certain that the address points at real code, and not a
929 function descriptor. */
931 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
935 /* Remove any ISA markers, so that this matches entries in the
938 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
941 ALL_OBJFILE_OSECTIONS (objfile, osect)
943 struct bfd_section *sect = osect->the_bfd_section;
945 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
946 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
947 + bfd_get_section_size (sect)))
949 ei->the_bfd_section_index
950 = gdb_bfd_section_index (objfile->obfd, sect);
957 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
961 /* Process a symbol file, as either the main file or as a dynamically
964 This function does not set the OBJFILE's entry-point info.
966 OBJFILE is where the symbols are to be read from.
968 ADDRS is the list of section load addresses. If the user has given
969 an 'add-symbol-file' command, then this is the list of offsets and
970 addresses he or she provided as arguments to the command; or, if
971 we're handling a shared library, these are the actual addresses the
972 sections are loaded at, according to the inferior's dynamic linker
973 (as gleaned by GDB's shared library code). We convert each address
974 into an offset from the section VMA's as it appears in the object
975 file, and then call the file's sym_offsets function to convert this
976 into a format-specific offset table --- a `struct section_offsets'.
978 ADD_FLAGS encodes verbosity level, whether this is main symbol or
979 an extra symbol file such as dynamically loaded code, and wether
980 breakpoint reset should be deferred. */
983 syms_from_objfile_1 (struct objfile *objfile,
984 struct section_addr_info *addrs,
985 symfile_add_flags add_flags)
987 struct section_addr_info *local_addr = NULL;
988 struct cleanup *old_chain;
989 const int mainline = add_flags & SYMFILE_MAINLINE;
991 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
993 if (objfile->sf == NULL)
995 /* No symbols to load, but we still need to make sure
996 that the section_offsets table is allocated. */
997 int num_sections = gdb_bfd_count_sections (objfile->obfd);
998 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1000 objfile->num_sections = num_sections;
1001 objfile->section_offsets
1002 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1004 memset (objfile->section_offsets, 0, size);
1008 /* Make sure that partially constructed symbol tables will be cleaned up
1009 if an error occurs during symbol reading. */
1010 old_chain = make_cleanup_free_objfile (objfile);
1012 /* If ADDRS is NULL, put together a dummy address list.
1013 We now establish the convention that an addr of zero means
1014 no load address was specified. */
1017 local_addr = alloc_section_addr_info (1);
1018 make_cleanup (xfree, local_addr);
1024 /* We will modify the main symbol table, make sure that all its users
1025 will be cleaned up if an error occurs during symbol reading. */
1026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1028 /* Since no error yet, throw away the old symbol table. */
1030 if (symfile_objfile != NULL)
1032 free_objfile (symfile_objfile);
1033 gdb_assert (symfile_objfile == NULL);
1036 /* Currently we keep symbols from the add-symbol-file command.
1037 If the user wants to get rid of them, they should do "symbol-file"
1038 without arguments first. Not sure this is the best behavior
1041 (*objfile->sf->sym_new_init) (objfile);
1044 /* Convert addr into an offset rather than an absolute address.
1045 We find the lowest address of a loaded segment in the objfile,
1046 and assume that <addr> is where that got loaded.
1048 We no longer warn if the lowest section is not a text segment (as
1049 happens for the PA64 port. */
1050 if (addrs->num_sections > 0)
1051 addr_info_make_relative (addrs, objfile->obfd);
1053 /* Initialize symbol reading routines for this objfile, allow complaints to
1054 appear for this new file, and record how verbose to be, then do the
1055 initial symbol reading for this file. */
1057 (*objfile->sf->sym_init) (objfile);
1058 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1060 (*objfile->sf->sym_offsets) (objfile, addrs);
1062 read_symbols (objfile, add_flags);
1064 /* Discard cleanups as symbol reading was successful. */
1066 discard_cleanups (old_chain);
1070 /* Same as syms_from_objfile_1, but also initializes the objfile
1071 entry-point info. */
1074 syms_from_objfile (struct objfile *objfile,
1075 struct section_addr_info *addrs,
1076 symfile_add_flags add_flags)
1078 syms_from_objfile_1 (objfile, addrs, add_flags);
1079 init_entry_point_info (objfile);
1082 /* Perform required actions after either reading in the initial
1083 symbols for a new objfile, or mapping in the symbols from a reusable
1084 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1087 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1089 /* If this is the main symbol file we have to clean up all users of the
1090 old main symbol file. Otherwise it is sufficient to fixup all the
1091 breakpoints that may have been redefined by this symbol file. */
1092 if (add_flags & SYMFILE_MAINLINE)
1094 /* OK, make it the "real" symbol file. */
1095 symfile_objfile = objfile;
1097 clear_symtab_users (add_flags);
1099 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1101 breakpoint_re_set ();
1104 /* We're done reading the symbol file; finish off complaints. */
1105 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1108 /* Process a symbol file, as either the main file or as a dynamically
1111 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1112 A new reference is acquired by this function.
1114 For NAME description see allocate_objfile's definition.
1116 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1117 extra, such as dynamically loaded code, and what to do with breakpoins.
1119 ADDRS is as described for syms_from_objfile_1, above.
1120 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1122 PARENT is the original objfile if ABFD is a separate debug info file.
1123 Otherwise PARENT is NULL.
1125 Upon success, returns a pointer to the objfile that was added.
1126 Upon failure, jumps back to command level (never returns). */
1128 static struct objfile *
1129 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1130 symfile_add_flags add_flags,
1131 struct section_addr_info *addrs,
1132 objfile_flags flags, struct objfile *parent)
1134 struct objfile *objfile;
1135 const int from_tty = add_flags & SYMFILE_VERBOSE;
1136 const int mainline = add_flags & SYMFILE_MAINLINE;
1137 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1138 && (readnow_symbol_files
1139 || (add_flags & SYMFILE_NO_READ) == 0));
1141 if (readnow_symbol_files)
1143 flags |= OBJF_READNOW;
1144 add_flags &= ~SYMFILE_NO_READ;
1147 /* Give user a chance to burp if we'd be
1148 interactively wiping out any existing symbols. */
1150 if ((have_full_symbols () || have_partial_symbols ())
1153 && !query (_("Load new symbol table from \"%s\"? "), name))
1154 error (_("Not confirmed."));
1157 flags |= OBJF_MAINLINE;
1158 objfile = allocate_objfile (abfd, name, flags);
1161 add_separate_debug_objfile (objfile, parent);
1163 /* We either created a new mapped symbol table, mapped an existing
1164 symbol table file which has not had initial symbol reading
1165 performed, or need to read an unmapped symbol table. */
1168 if (deprecated_pre_add_symbol_hook)
1169 deprecated_pre_add_symbol_hook (name);
1172 printf_unfiltered (_("Reading symbols from %s..."), name);
1174 gdb_flush (gdb_stdout);
1177 syms_from_objfile (objfile, addrs, add_flags);
1179 /* We now have at least a partial symbol table. Check to see if the
1180 user requested that all symbols be read on initial access via either
1181 the gdb startup command line or on a per symbol file basis. Expand
1182 all partial symbol tables for this objfile if so. */
1184 if ((flags & OBJF_READNOW))
1188 printf_unfiltered (_("expanding to full symbols..."));
1190 gdb_flush (gdb_stdout);
1194 objfile->sf->qf->expand_all_symtabs (objfile);
1197 if (should_print && !objfile_has_symbols (objfile))
1200 printf_unfiltered (_("(no debugging symbols found)..."));
1206 if (deprecated_post_add_symbol_hook)
1207 deprecated_post_add_symbol_hook ();
1209 printf_unfiltered (_("done.\n"));
1212 /* We print some messages regardless of whether 'from_tty ||
1213 info_verbose' is true, so make sure they go out at the right
1215 gdb_flush (gdb_stdout);
1217 if (objfile->sf == NULL)
1219 observer_notify_new_objfile (objfile);
1220 return objfile; /* No symbols. */
1223 finish_new_objfile (objfile, add_flags);
1225 observer_notify_new_objfile (objfile);
1227 bfd_cache_close_all ();
1231 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1232 see allocate_objfile's definition. */
1235 symbol_file_add_separate (bfd *bfd, const char *name,
1236 symfile_add_flags symfile_flags,
1237 struct objfile *objfile)
1239 struct section_addr_info *sap;
1240 struct cleanup *my_cleanup;
1242 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1243 because sections of BFD may not match sections of OBJFILE and because
1244 vma may have been modified by tools such as prelink. */
1245 sap = build_section_addr_info_from_objfile (objfile);
1246 my_cleanup = make_cleanup_free_section_addr_info (sap);
1248 symbol_file_add_with_addrs
1249 (bfd, name, symfile_flags, sap,
1250 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1254 do_cleanups (my_cleanup);
1257 /* Process the symbol file ABFD, as either the main file or as a
1258 dynamically loaded file.
1259 See symbol_file_add_with_addrs's comments for details. */
1262 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1263 symfile_add_flags add_flags,
1264 struct section_addr_info *addrs,
1265 objfile_flags flags, struct objfile *parent)
1267 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1271 /* Process a symbol file, as either the main file or as a dynamically
1272 loaded file. See symbol_file_add_with_addrs's comments for details. */
1275 symbol_file_add (const char *name, symfile_add_flags add_flags,
1276 struct section_addr_info *addrs, objfile_flags flags)
1278 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1280 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1284 /* Call symbol_file_add() with default values and update whatever is
1285 affected by the loading of a new main().
1286 Used when the file is supplied in the gdb command line
1287 and by some targets with special loading requirements.
1288 The auxiliary function, symbol_file_add_main_1(), has the flags
1289 argument for the switches that can only be specified in the symbol_file
1293 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1295 symbol_file_add_main_1 (args, add_flags, 0);
1299 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1300 objfile_flags flags)
1302 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1304 symbol_file_add (args, add_flags, NULL, flags);
1306 /* Getting new symbols may change our opinion about
1307 what is frameless. */
1308 reinit_frame_cache ();
1310 if ((add_flags & SYMFILE_NO_READ) == 0)
1311 set_initial_language ();
1315 symbol_file_clear (int from_tty)
1317 if ((have_full_symbols () || have_partial_symbols ())
1320 ? !query (_("Discard symbol table from `%s'? "),
1321 objfile_name (symfile_objfile))
1322 : !query (_("Discard symbol table? "))))
1323 error (_("Not confirmed."));
1325 /* solib descriptors may have handles to objfiles. Wipe them before their
1326 objfiles get stale by free_all_objfiles. */
1327 no_shared_libraries (NULL, from_tty);
1329 free_all_objfiles ();
1331 gdb_assert (symfile_objfile == NULL);
1333 printf_unfiltered (_("No symbol file now.\n"));
1336 /* See symfile.h. */
1338 int separate_debug_file_debug = 0;
1341 separate_debug_file_exists (const char *name, unsigned long crc,
1342 struct objfile *parent_objfile)
1344 unsigned long file_crc;
1346 struct stat parent_stat, abfd_stat;
1347 int verified_as_different;
1349 /* Find a separate debug info file as if symbols would be present in
1350 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1351 section can contain just the basename of PARENT_OBJFILE without any
1352 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1353 the separate debug infos with the same basename can exist. */
1355 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1358 if (separate_debug_file_debug)
1359 printf_unfiltered (_(" Trying %s\n"), name);
1361 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1366 /* Verify symlinks were not the cause of filename_cmp name difference above.
1368 Some operating systems, e.g. Windows, do not provide a meaningful
1369 st_ino; they always set it to zero. (Windows does provide a
1370 meaningful st_dev.) Files accessed from gdbservers that do not
1371 support the vFile:fstat packet will also have st_ino set to zero.
1372 Do not indicate a duplicate library in either case. While there
1373 is no guarantee that a system that provides meaningful inode
1374 numbers will never set st_ino to zero, this is merely an
1375 optimization, so we do not need to worry about false negatives. */
1377 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1378 && abfd_stat.st_ino != 0
1379 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1381 if (abfd_stat.st_dev == parent_stat.st_dev
1382 && abfd_stat.st_ino == parent_stat.st_ino)
1384 verified_as_different = 1;
1387 verified_as_different = 0;
1389 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1394 if (crc != file_crc)
1396 unsigned long parent_crc;
1398 /* If the files could not be verified as different with
1399 bfd_stat then we need to calculate the parent's CRC
1400 to verify whether the files are different or not. */
1402 if (!verified_as_different)
1404 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1408 if (verified_as_different || parent_crc != file_crc)
1409 warning (_("the debug information found in \"%s\""
1410 " does not match \"%s\" (CRC mismatch).\n"),
1411 name, objfile_name (parent_objfile));
1419 char *debug_file_directory = NULL;
1421 show_debug_file_directory (struct ui_file *file, int from_tty,
1422 struct cmd_list_element *c, const char *value)
1424 fprintf_filtered (file,
1425 _("The directory where separate debug "
1426 "symbols are searched for is \"%s\".\n"),
1430 #if ! defined (DEBUG_SUBDIRECTORY)
1431 #define DEBUG_SUBDIRECTORY ".debug"
1434 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1435 where the original file resides (may not be the same as
1436 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1437 looking for. CANON_DIR is the "realpath" form of DIR.
1438 DIR must contain a trailing '/'.
1439 Returns the path of the file with separate debug info, of NULL. */
1442 find_separate_debug_file (const char *dir,
1443 const char *canon_dir,
1444 const char *debuglink,
1445 unsigned long crc32, struct objfile *objfile)
1450 VEC (char_ptr) *debugdir_vec;
1451 struct cleanup *back_to;
1454 if (separate_debug_file_debug)
1455 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1456 "%s\n"), objfile_name (objfile));
1458 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1460 if (canon_dir != NULL && strlen (canon_dir) > i)
1461 i = strlen (canon_dir);
1464 = (char *) xmalloc (strlen (debug_file_directory) + 1
1466 + strlen (DEBUG_SUBDIRECTORY)
1468 + strlen (debuglink)
1471 /* First try in the same directory as the original file. */
1472 strcpy (debugfile, dir);
1473 strcat (debugfile, debuglink);
1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1478 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1479 strcpy (debugfile, dir);
1480 strcat (debugfile, DEBUG_SUBDIRECTORY);
1481 strcat (debugfile, "/");
1482 strcat (debugfile, debuglink);
1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1487 /* Then try in the global debugfile directories.
1489 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1490 cause "/..." lookups. */
1492 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1493 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1495 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1497 strcpy (debugfile, debugdir);
1498 strcat (debugfile, "/");
1499 strcat (debugfile, dir);
1500 strcat (debugfile, debuglink);
1502 if (separate_debug_file_exists (debugfile, crc32, objfile))
1504 do_cleanups (back_to);
1508 /* If the file is in the sysroot, try using its base path in the
1509 global debugfile directory. */
1510 if (canon_dir != NULL
1511 && filename_ncmp (canon_dir, gdb_sysroot,
1512 strlen (gdb_sysroot)) == 0
1513 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1515 strcpy (debugfile, debugdir);
1516 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1517 strcat (debugfile, "/");
1518 strcat (debugfile, debuglink);
1520 if (separate_debug_file_exists (debugfile, crc32, objfile))
1522 do_cleanups (back_to);
1528 do_cleanups (back_to);
1533 /* Modify PATH to contain only "[/]directory/" part of PATH.
1534 If there were no directory separators in PATH, PATH will be empty
1535 string on return. */
1538 terminate_after_last_dir_separator (char *path)
1542 /* Strip off the final filename part, leaving the directory name,
1543 followed by a slash. The directory can be relative or absolute. */
1544 for (i = strlen(path) - 1; i >= 0; i--)
1545 if (IS_DIR_SEPARATOR (path[i]))
1548 /* If I is -1 then no directory is present there and DIR will be "". */
1552 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1553 Returns pathname, or NULL. */
1556 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1559 char *dir, *canon_dir;
1561 unsigned long crc32;
1562 struct cleanup *cleanups;
1564 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1566 if (debuglink == NULL)
1568 /* There's no separate debug info, hence there's no way we could
1569 load it => no warning. */
1573 cleanups = make_cleanup (xfree, debuglink);
1574 dir = xstrdup (objfile_name (objfile));
1575 make_cleanup (xfree, dir);
1576 terminate_after_last_dir_separator (dir);
1577 canon_dir = lrealpath (dir);
1579 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1583 if (debugfile == NULL)
1585 /* For PR gdb/9538, try again with realpath (if different from the
1590 if (lstat (objfile_name (objfile), &st_buf) == 0
1591 && S_ISLNK (st_buf.st_mode))
1595 symlink_dir = lrealpath (objfile_name (objfile));
1596 if (symlink_dir != NULL)
1598 make_cleanup (xfree, symlink_dir);
1599 terminate_after_last_dir_separator (symlink_dir);
1600 if (strcmp (dir, symlink_dir) != 0)
1602 /* Different directory, so try using it. */
1603 debugfile = find_separate_debug_file (symlink_dir,
1613 do_cleanups (cleanups);
1617 /* This is the symbol-file command. Read the file, analyze its
1618 symbols, and add a struct symtab to a symtab list. The syntax of
1619 the command is rather bizarre:
1621 1. The function buildargv implements various quoting conventions
1622 which are undocumented and have little or nothing in common with
1623 the way things are quoted (or not quoted) elsewhere in GDB.
1625 2. Options are used, which are not generally used in GDB (perhaps
1626 "set mapped on", "set readnow on" would be better)
1628 3. The order of options matters, which is contrary to GNU
1629 conventions (because it is confusing and inconvenient). */
1632 symbol_file_command (char *args, int from_tty)
1638 symbol_file_clear (from_tty);
1642 char **argv = gdb_buildargv (args);
1643 objfile_flags flags = OBJF_USERLOADED;
1644 symfile_add_flags add_flags = 0;
1645 struct cleanup *cleanups;
1649 add_flags |= SYMFILE_VERBOSE;
1651 cleanups = make_cleanup_freeargv (argv);
1652 while (*argv != NULL)
1654 if (strcmp (*argv, "-readnow") == 0)
1655 flags |= OBJF_READNOW;
1656 else if (**argv == '-')
1657 error (_("unknown option `%s'"), *argv);
1660 symbol_file_add_main_1 (*argv, add_flags, flags);
1668 error (_("no symbol file name was specified"));
1670 do_cleanups (cleanups);
1674 /* Set the initial language.
1676 FIXME: A better solution would be to record the language in the
1677 psymtab when reading partial symbols, and then use it (if known) to
1678 set the language. This would be a win for formats that encode the
1679 language in an easily discoverable place, such as DWARF. For
1680 stabs, we can jump through hoops looking for specially named
1681 symbols or try to intuit the language from the specific type of
1682 stabs we find, but we can't do that until later when we read in
1686 set_initial_language (void)
1688 enum language lang = main_language ();
1690 if (lang == language_unknown)
1692 char *name = main_name ();
1693 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1696 lang = SYMBOL_LANGUAGE (sym);
1699 if (lang == language_unknown)
1701 /* Make C the default language */
1705 set_language (lang);
1706 expected_language = current_language; /* Don't warn the user. */
1709 /* Open the file specified by NAME and hand it off to BFD for
1710 preliminary analysis. Return a newly initialized bfd *, which
1711 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1712 absolute). In case of trouble, error() is called. */
1715 symfile_bfd_open (const char *name)
1718 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1720 if (!is_target_filename (name))
1722 char *expanded_name, *absolute_name;
1724 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1726 /* Look down path for it, allocate 2nd new malloc'd copy. */
1727 desc = openp (getenv ("PATH"),
1728 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1729 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1730 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1733 char *exename = (char *) alloca (strlen (expanded_name) + 5);
1735 strcat (strcpy (exename, expanded_name), ".exe");
1736 desc = openp (getenv ("PATH"),
1737 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1738 exename, O_RDONLY | O_BINARY, &absolute_name);
1743 make_cleanup (xfree, expanded_name);
1744 perror_with_name (expanded_name);
1747 xfree (expanded_name);
1748 make_cleanup (xfree, absolute_name);
1749 name = absolute_name;
1752 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1753 if (sym_bfd == NULL)
1754 error (_("`%s': can't open to read symbols: %s."), name,
1755 bfd_errmsg (bfd_get_error ()));
1757 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1758 bfd_set_cacheable (sym_bfd.get (), 1);
1760 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1761 error (_("`%s': can't read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
1764 do_cleanups (back_to);
1769 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1770 the section was not found. */
1773 get_section_index (struct objfile *objfile, const char *section_name)
1775 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1783 /* Link SF into the global symtab_fns list.
1784 FLAVOUR is the file format that SF handles.
1785 Called on startup by the _initialize routine in each object file format
1786 reader, to register information about each format the reader is prepared
1790 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1792 registered_sym_fns fns = { flavour, sf };
1794 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1797 /* Initialize OBJFILE to read symbols from its associated BFD. It
1798 either returns or calls error(). The result is an initialized
1799 struct sym_fns in the objfile structure, that contains cached
1800 information about the symbol file. */
1802 static const struct sym_fns *
1803 find_sym_fns (bfd *abfd)
1805 registered_sym_fns *rsf;
1806 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1809 if (our_flavour == bfd_target_srec_flavour
1810 || our_flavour == bfd_target_ihex_flavour
1811 || our_flavour == bfd_target_tekhex_flavour)
1812 return NULL; /* No symbols. */
1814 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1815 if (our_flavour == rsf->sym_flavour)
1816 return rsf->sym_fns;
1818 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1819 bfd_get_target (abfd));
1823 /* This function runs the load command of our current target. */
1826 load_command (char *arg, int from_tty)
1828 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1832 /* The user might be reloading because the binary has changed. Take
1833 this opportunity to check. */
1834 reopen_exec_file ();
1842 parg = arg = get_exec_file (1);
1844 /* Count how many \ " ' tab space there are in the name. */
1845 while ((parg = strpbrk (parg, "\\\"'\t ")))
1853 /* We need to quote this string so buildargv can pull it apart. */
1854 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1858 make_cleanup (xfree, temp);
1861 while ((parg = strpbrk (parg, "\\\"'\t ")))
1863 strncpy (ptemp, prev, parg - prev);
1864 ptemp += parg - prev;
1868 strcpy (ptemp, prev);
1874 target_load (arg, from_tty);
1876 /* After re-loading the executable, we don't really know which
1877 overlays are mapped any more. */
1878 overlay_cache_invalid = 1;
1880 do_cleanups (cleanup);
1883 /* This version of "load" should be usable for any target. Currently
1884 it is just used for remote targets, not inftarg.c or core files,
1885 on the theory that only in that case is it useful.
1887 Avoiding xmodem and the like seems like a win (a) because we don't have
1888 to worry about finding it, and (b) On VMS, fork() is very slow and so
1889 we don't want to run a subprocess. On the other hand, I'm not sure how
1890 performance compares. */
1892 static int validate_download = 0;
1894 /* Callback service function for generic_load (bfd_map_over_sections). */
1897 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1899 bfd_size_type *sum = (bfd_size_type *) data;
1901 *sum += bfd_get_section_size (asec);
1904 /* Opaque data for load_section_callback. */
1905 struct load_section_data {
1906 CORE_ADDR load_offset;
1907 struct load_progress_data *progress_data;
1908 VEC(memory_write_request_s) *requests;
1911 /* Opaque data for load_progress. */
1912 struct load_progress_data {
1913 /* Cumulative data. */
1914 unsigned long write_count;
1915 unsigned long data_count;
1916 bfd_size_type total_size;
1919 /* Opaque data for load_progress for a single section. */
1920 struct load_progress_section_data {
1921 struct load_progress_data *cumulative;
1923 /* Per-section data. */
1924 const char *section_name;
1925 ULONGEST section_sent;
1926 ULONGEST section_size;
1931 /* Target write callback routine for progress reporting. */
1934 load_progress (ULONGEST bytes, void *untyped_arg)
1936 struct load_progress_section_data *args
1937 = (struct load_progress_section_data *) untyped_arg;
1938 struct load_progress_data *totals;
1941 /* Writing padding data. No easy way to get at the cumulative
1942 stats, so just ignore this. */
1945 totals = args->cumulative;
1947 if (bytes == 0 && args->section_sent == 0)
1949 /* The write is just starting. Let the user know we've started
1951 current_uiout->message ("Loading section %s, size %s lma %s\n",
1953 hex_string (args->section_size),
1954 paddress (target_gdbarch (), args->lma));
1958 if (validate_download)
1960 /* Broken memories and broken monitors manifest themselves here
1961 when bring new computers to life. This doubles already slow
1963 /* NOTE: cagney/1999-10-18: A more efficient implementation
1964 might add a verify_memory() method to the target vector and
1965 then use that. remote.c could implement that method using
1966 the ``qCRC'' packet. */
1967 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1968 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1970 if (target_read_memory (args->lma, check, bytes) != 0)
1971 error (_("Download verify read failed at %s"),
1972 paddress (target_gdbarch (), args->lma));
1973 if (memcmp (args->buffer, check, bytes) != 0)
1974 error (_("Download verify compare failed at %s"),
1975 paddress (target_gdbarch (), args->lma));
1976 do_cleanups (verify_cleanups);
1978 totals->data_count += bytes;
1980 args->buffer += bytes;
1981 totals->write_count += 1;
1982 args->section_sent += bytes;
1983 if (check_quit_flag ()
1984 || (deprecated_ui_load_progress_hook != NULL
1985 && deprecated_ui_load_progress_hook (args->section_name,
1986 args->section_sent)))
1987 error (_("Canceled the download"));
1989 if (deprecated_show_load_progress != NULL)
1990 deprecated_show_load_progress (args->section_name,
1994 totals->total_size);
1997 /* Callback service function for generic_load (bfd_map_over_sections). */
2000 load_section_callback (bfd *abfd, asection *asec, void *data)
2002 struct memory_write_request *new_request;
2003 struct load_section_data *args = (struct load_section_data *) data;
2004 struct load_progress_section_data *section_data;
2005 bfd_size_type size = bfd_get_section_size (asec);
2007 const char *sect_name = bfd_get_section_name (abfd, asec);
2009 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2015 new_request = VEC_safe_push (memory_write_request_s,
2016 args->requests, NULL);
2017 memset (new_request, 0, sizeof (struct memory_write_request));
2018 section_data = XCNEW (struct load_progress_section_data);
2019 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2020 new_request->end = new_request->begin + size; /* FIXME Should size
2022 new_request->data = (gdb_byte *) xmalloc (size);
2023 new_request->baton = section_data;
2025 buffer = new_request->data;
2027 section_data->cumulative = args->progress_data;
2028 section_data->section_name = sect_name;
2029 section_data->section_size = size;
2030 section_data->lma = new_request->begin;
2031 section_data->buffer = buffer;
2033 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2036 /* Clean up an entire memory request vector, including load
2037 data and progress records. */
2040 clear_memory_write_data (void *arg)
2042 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2043 VEC(memory_write_request_s) *vec = *vec_p;
2045 struct memory_write_request *mr;
2047 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2052 VEC_free (memory_write_request_s, vec);
2055 static void print_transfer_performance (struct ui_file *stream,
2056 unsigned long data_count,
2057 unsigned long write_count,
2058 std::chrono::steady_clock::duration d);
2061 generic_load (const char *args, int from_tty)
2064 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2065 struct load_section_data cbdata;
2066 struct load_progress_data total_progress;
2067 struct ui_out *uiout = current_uiout;
2072 memset (&cbdata, 0, sizeof (cbdata));
2073 memset (&total_progress, 0, sizeof (total_progress));
2074 cbdata.progress_data = &total_progress;
2076 make_cleanup (clear_memory_write_data, &cbdata.requests);
2079 error_no_arg (_("file to load"));
2081 argv = gdb_buildargv (args);
2082 make_cleanup_freeargv (argv);
2084 filename = tilde_expand (argv[0]);
2085 make_cleanup (xfree, filename);
2087 if (argv[1] != NULL)
2091 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2093 /* If the last word was not a valid number then
2094 treat it as a file name with spaces in. */
2095 if (argv[1] == endptr)
2096 error (_("Invalid download offset:%s."), argv[1]);
2098 if (argv[2] != NULL)
2099 error (_("Too many parameters."));
2102 /* Open the file for loading. */
2103 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename, gnutarget, -1));
2104 if (loadfile_bfd == NULL)
2106 perror_with_name (filename);
2110 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2112 error (_("\"%s\" is not an object file: %s"), filename,
2113 bfd_errmsg (bfd_get_error ()));
2116 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2117 (void *) &total_progress.total_size);
2119 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2121 using namespace std::chrono;
2123 steady_clock::time_point start_time = steady_clock::now ();
2125 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2126 load_progress) != 0)
2127 error (_("Load failed"));
2129 steady_clock::time_point end_time = steady_clock::now ();
2131 entry = bfd_get_start_address (loadfile_bfd.get ());
2132 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2133 uiout->text ("Start address ");
2134 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2135 uiout->text (", load size ");
2136 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2138 regcache_write_pc (get_current_regcache (), entry);
2140 /* Reset breakpoints, now that we have changed the load image. For
2141 instance, breakpoints may have been set (or reset, by
2142 post_create_inferior) while connected to the target but before we
2143 loaded the program. In that case, the prologue analyzer could
2144 have read instructions from the target to find the right
2145 breakpoint locations. Loading has changed the contents of that
2148 breakpoint_re_set ();
2150 print_transfer_performance (gdb_stdout, total_progress.data_count,
2151 total_progress.write_count,
2152 end_time - start_time);
2154 do_cleanups (old_cleanups);
2157 /* Report on STREAM the performance of a memory transfer operation,
2158 such as 'load'. DATA_COUNT is the number of bytes transferred.
2159 WRITE_COUNT is the number of separate write operations, or 0, if
2160 that information is not available. TIME is how long the operation
2164 print_transfer_performance (struct ui_file *stream,
2165 unsigned long data_count,
2166 unsigned long write_count,
2167 std::chrono::steady_clock::duration time)
2169 using namespace std::chrono;
2170 struct ui_out *uiout = current_uiout;
2172 milliseconds ms = duration_cast<milliseconds> (time);
2174 uiout->text ("Transfer rate: ");
2175 if (ms.count () > 0)
2177 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2179 if (uiout->is_mi_like_p ())
2181 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2182 uiout->text (" bits/sec");
2184 else if (rate < 1024)
2186 uiout->field_fmt ("transfer-rate", "%lu", rate);
2187 uiout->text (" bytes/sec");
2191 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2192 uiout->text (" KB/sec");
2197 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2198 uiout->text (" bits in <1 sec");
2200 if (write_count > 0)
2203 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2204 uiout->text (" bytes/write");
2206 uiout->text (".\n");
2209 /* This function allows the addition of incrementally linked object files.
2210 It does not modify any state in the target, only in the debugger. */
2211 /* Note: ezannoni 2000-04-13 This function/command used to have a
2212 special case syntax for the rombug target (Rombug is the boot
2213 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2214 rombug case, the user doesn't need to supply a text address,
2215 instead a call to target_link() (in target.c) would supply the
2216 value to use. We are now discontinuing this type of ad hoc syntax. */
2219 add_symbol_file_command (char *args, int from_tty)
2221 struct gdbarch *gdbarch = get_current_arch ();
2222 char *filename = NULL;
2224 int section_index = 0;
2228 int expecting_sec_name = 0;
2229 int expecting_sec_addr = 0;
2231 struct objfile *objf;
2232 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2233 symfile_add_flags add_flags = 0;
2236 add_flags |= SYMFILE_VERBOSE;
2244 struct section_addr_info *section_addrs;
2245 struct sect_opt *sect_opts = NULL;
2246 size_t num_sect_opts = 0;
2247 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2250 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2255 error (_("add-symbol-file takes a file name and an address"));
2257 argv = gdb_buildargv (args);
2258 make_cleanup_freeargv (argv);
2260 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2262 /* Process the argument. */
2265 /* The first argument is the file name. */
2266 filename = tilde_expand (arg);
2267 make_cleanup (xfree, filename);
2269 else if (argcnt == 1)
2271 /* The second argument is always the text address at which
2272 to load the program. */
2273 sect_opts[section_index].name = ".text";
2274 sect_opts[section_index].value = arg;
2275 if (++section_index >= num_sect_opts)
2278 sect_opts = ((struct sect_opt *)
2279 xrealloc (sect_opts,
2281 * sizeof (struct sect_opt)));
2286 /* It's an option (starting with '-') or it's an argument
2288 if (expecting_sec_name)
2290 sect_opts[section_index].name = arg;
2291 expecting_sec_name = 0;
2293 else if (expecting_sec_addr)
2295 sect_opts[section_index].value = arg;
2296 expecting_sec_addr = 0;
2297 if (++section_index >= num_sect_opts)
2300 sect_opts = ((struct sect_opt *)
2301 xrealloc (sect_opts,
2303 * sizeof (struct sect_opt)));
2306 else if (strcmp (arg, "-readnow") == 0)
2307 flags |= OBJF_READNOW;
2308 else if (strcmp (arg, "-s") == 0)
2310 expecting_sec_name = 1;
2311 expecting_sec_addr = 1;
2314 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2315 " [-readnow] [-s <secname> <addr>]*"));
2319 /* This command takes at least two arguments. The first one is a
2320 filename, and the second is the address where this file has been
2321 loaded. Abort now if this address hasn't been provided by the
2323 if (section_index < 1)
2324 error (_("The address where %s has been loaded is missing"), filename);
2326 /* Print the prompt for the query below. And save the arguments into
2327 a sect_addr_info structure to be passed around to other
2328 functions. We have to split this up into separate print
2329 statements because hex_string returns a local static
2332 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2333 section_addrs = alloc_section_addr_info (section_index);
2334 make_cleanup (xfree, section_addrs);
2335 for (i = 0; i < section_index; i++)
2338 const char *val = sect_opts[i].value;
2339 const char *sec = sect_opts[i].name;
2341 addr = parse_and_eval_address (val);
2343 /* Here we store the section offsets in the order they were
2344 entered on the command line. */
2345 section_addrs->other[sec_num].name = (char *) sec;
2346 section_addrs->other[sec_num].addr = addr;
2347 printf_unfiltered ("\t%s_addr = %s\n", sec,
2348 paddress (gdbarch, addr));
2351 /* The object's sections are initialized when a
2352 call is made to build_objfile_section_table (objfile).
2353 This happens in reread_symbols.
2354 At this point, we don't know what file type this is,
2355 so we can't determine what section names are valid. */
2357 section_addrs->num_sections = sec_num;
2359 if (from_tty && (!query ("%s", "")))
2360 error (_("Not confirmed."));
2362 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
2364 add_target_sections_of_objfile (objf);
2366 /* Getting new symbols may change our opinion about what is
2368 reinit_frame_cache ();
2369 do_cleanups (my_cleanups);
2373 /* This function removes a symbol file that was added via add-symbol-file. */
2376 remove_symbol_file_command (char *args, int from_tty)
2379 struct objfile *objf = NULL;
2380 struct cleanup *my_cleanups;
2381 struct program_space *pspace = current_program_space;
2386 error (_("remove-symbol-file: no symbol file provided"));
2388 my_cleanups = make_cleanup (null_cleanup, NULL);
2390 argv = gdb_buildargv (args);
2392 if (strcmp (argv[0], "-a") == 0)
2394 /* Interpret the next argument as an address. */
2397 if (argv[1] == NULL)
2398 error (_("Missing address argument"));
2400 if (argv[2] != NULL)
2401 error (_("Junk after %s"), argv[1]);
2403 addr = parse_and_eval_address (argv[1]);
2407 if ((objf->flags & OBJF_USERLOADED) != 0
2408 && (objf->flags & OBJF_SHARED) != 0
2409 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2413 else if (argv[0] != NULL)
2415 /* Interpret the current argument as a file name. */
2418 if (argv[1] != NULL)
2419 error (_("Junk after %s"), argv[0]);
2421 filename = tilde_expand (argv[0]);
2422 make_cleanup (xfree, filename);
2426 if ((objf->flags & OBJF_USERLOADED) != 0
2427 && (objf->flags & OBJF_SHARED) != 0
2428 && objf->pspace == pspace
2429 && filename_cmp (filename, objfile_name (objf)) == 0)
2435 error (_("No symbol file found"));
2438 && !query (_("Remove symbol table from file \"%s\"? "),
2439 objfile_name (objf)))
2440 error (_("Not confirmed."));
2442 free_objfile (objf);
2443 clear_symtab_users (0);
2445 do_cleanups (my_cleanups);
2448 /* Re-read symbols if a symbol-file has changed. */
2451 reread_symbols (void)
2453 struct objfile *objfile;
2455 struct stat new_statbuf;
2457 std::vector<struct objfile *> new_objfiles;
2459 /* With the addition of shared libraries, this should be modified,
2460 the load time should be saved in the partial symbol tables, since
2461 different tables may come from different source files. FIXME.
2462 This routine should then walk down each partial symbol table
2463 and see if the symbol table that it originates from has been changed. */
2465 for (objfile = object_files; objfile; objfile = objfile->next)
2467 if (objfile->obfd == NULL)
2470 /* Separate debug objfiles are handled in the main objfile. */
2471 if (objfile->separate_debug_objfile_backlink)
2474 /* If this object is from an archive (what you usually create with
2475 `ar', often called a `static library' on most systems, though
2476 a `shared library' on AIX is also an archive), then you should
2477 stat on the archive name, not member name. */
2478 if (objfile->obfd->my_archive)
2479 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2481 res = stat (objfile_name (objfile), &new_statbuf);
2484 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2485 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2486 objfile_name (objfile));
2489 new_modtime = new_statbuf.st_mtime;
2490 if (new_modtime != objfile->mtime)
2492 struct cleanup *old_cleanups;
2493 struct section_offsets *offsets;
2495 char *original_name;
2497 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2498 objfile_name (objfile));
2500 /* There are various functions like symbol_file_add,
2501 symfile_bfd_open, syms_from_objfile, etc., which might
2502 appear to do what we want. But they have various other
2503 effects which we *don't* want. So we just do stuff
2504 ourselves. We don't worry about mapped files (for one thing,
2505 any mapped file will be out of date). */
2507 /* If we get an error, blow away this objfile (not sure if
2508 that is the correct response for things like shared
2510 old_cleanups = make_cleanup_free_objfile (objfile);
2511 /* We need to do this whenever any symbols go away. */
2512 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2514 if (exec_bfd != NULL
2515 && filename_cmp (bfd_get_filename (objfile->obfd),
2516 bfd_get_filename (exec_bfd)) == 0)
2518 /* Reload EXEC_BFD without asking anything. */
2520 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2523 /* Keep the calls order approx. the same as in free_objfile. */
2525 /* Free the separate debug objfiles. It will be
2526 automatically recreated by sym_read. */
2527 free_objfile_separate_debug (objfile);
2529 /* Remove any references to this objfile in the global
2531 preserve_values (objfile);
2533 /* Nuke all the state that we will re-read. Much of the following
2534 code which sets things to NULL really is necessary to tell
2535 other parts of GDB that there is nothing currently there.
2537 Try to keep the freeing order compatible with free_objfile. */
2539 if (objfile->sf != NULL)
2541 (*objfile->sf->sym_finish) (objfile);
2544 clear_objfile_data (objfile);
2546 /* Clean up any state BFD has sitting around. */
2548 gdb_bfd_ref_ptr obfd (objfile->obfd);
2549 char *obfd_filename;
2551 obfd_filename = bfd_get_filename (objfile->obfd);
2552 /* Open the new BFD before freeing the old one, so that
2553 the filename remains live. */
2554 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2555 objfile->obfd = temp.release ();
2556 if (objfile->obfd == NULL)
2557 error (_("Can't open %s to read symbols."), obfd_filename);
2560 original_name = xstrdup (objfile->original_name);
2561 make_cleanup (xfree, original_name);
2563 /* bfd_openr sets cacheable to true, which is what we want. */
2564 if (!bfd_check_format (objfile->obfd, bfd_object))
2565 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2566 bfd_errmsg (bfd_get_error ()));
2568 /* Save the offsets, we will nuke them with the rest of the
2570 num_offsets = objfile->num_sections;
2571 offsets = ((struct section_offsets *)
2572 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2573 memcpy (offsets, objfile->section_offsets,
2574 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2576 /* FIXME: Do we have to free a whole linked list, or is this
2578 if (objfile->global_psymbols.list)
2579 xfree (objfile->global_psymbols.list);
2580 memset (&objfile->global_psymbols, 0,
2581 sizeof (objfile->global_psymbols));
2582 if (objfile->static_psymbols.list)
2583 xfree (objfile->static_psymbols.list);
2584 memset (&objfile->static_psymbols, 0,
2585 sizeof (objfile->static_psymbols));
2587 /* Free the obstacks for non-reusable objfiles. */
2588 psymbol_bcache_free (objfile->psymbol_cache);
2589 objfile->psymbol_cache = psymbol_bcache_init ();
2590 obstack_free (&objfile->objfile_obstack, 0);
2591 objfile->sections = NULL;
2592 objfile->compunit_symtabs = NULL;
2593 objfile->psymtabs = NULL;
2594 objfile->psymtabs_addrmap = NULL;
2595 objfile->free_psymtabs = NULL;
2596 objfile->template_symbols = NULL;
2598 /* obstack_init also initializes the obstack so it is
2599 empty. We could use obstack_specify_allocation but
2600 gdb_obstack.h specifies the alloc/dealloc functions. */
2601 obstack_init (&objfile->objfile_obstack);
2603 /* set_objfile_per_bfd potentially allocates the per-bfd
2604 data on the objfile's obstack (if sharing data across
2605 multiple users is not possible), so it's important to
2606 do it *after* the obstack has been initialized. */
2607 set_objfile_per_bfd (objfile);
2609 objfile->original_name
2610 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2611 strlen (original_name));
2613 /* Reset the sym_fns pointer. The ELF reader can change it
2614 based on whether .gdb_index is present, and we need it to
2615 start over. PR symtab/15885 */
2616 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2618 build_objfile_section_table (objfile);
2619 terminate_minimal_symbol_table (objfile);
2621 /* We use the same section offsets as from last time. I'm not
2622 sure whether that is always correct for shared libraries. */
2623 objfile->section_offsets = (struct section_offsets *)
2624 obstack_alloc (&objfile->objfile_obstack,
2625 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2626 memcpy (objfile->section_offsets, offsets,
2627 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2628 objfile->num_sections = num_offsets;
2630 /* What the hell is sym_new_init for, anyway? The concept of
2631 distinguishing between the main file and additional files
2632 in this way seems rather dubious. */
2633 if (objfile == symfile_objfile)
2635 (*objfile->sf->sym_new_init) (objfile);
2638 (*objfile->sf->sym_init) (objfile);
2639 clear_complaints (&symfile_complaints, 1, 1);
2641 objfile->flags &= ~OBJF_PSYMTABS_READ;
2642 read_symbols (objfile, 0);
2644 if (!objfile_has_symbols (objfile))
2647 printf_unfiltered (_("(no debugging symbols found)\n"));
2651 /* We're done reading the symbol file; finish off complaints. */
2652 clear_complaints (&symfile_complaints, 0, 1);
2654 /* Getting new symbols may change our opinion about what is
2657 reinit_frame_cache ();
2659 /* Discard cleanups as symbol reading was successful. */
2660 discard_cleanups (old_cleanups);
2662 /* If the mtime has changed between the time we set new_modtime
2663 and now, we *want* this to be out of date, so don't call stat
2665 objfile->mtime = new_modtime;
2666 init_entry_point_info (objfile);
2668 new_objfiles.push_back (objfile);
2672 if (!new_objfiles.empty ())
2674 /* Notify objfiles that we've modified objfile sections. */
2675 objfiles_changed ();
2677 clear_symtab_users (0);
2679 /* clear_objfile_data for each objfile was called before freeing it and
2680 observer_notify_new_objfile (NULL) has been called by
2681 clear_symtab_users above. Notify the new files now. */
2682 for (auto iter : new_objfiles)
2683 observer_notify_new_objfile (iter);
2685 /* At least one objfile has changed, so we can consider that
2686 the executable we're debugging has changed too. */
2687 observer_notify_executable_changed ();
2696 } filename_language;
2698 DEF_VEC_O (filename_language);
2700 static VEC (filename_language) *filename_language_table;
2702 /* See symfile.h. */
2705 add_filename_language (const char *ext, enum language lang)
2707 filename_language entry;
2709 entry.ext = xstrdup (ext);
2712 VEC_safe_push (filename_language, filename_language_table, &entry);
2715 static char *ext_args;
2717 show_ext_args (struct ui_file *file, int from_tty,
2718 struct cmd_list_element *c, const char *value)
2720 fprintf_filtered (file,
2721 _("Mapping between filename extension "
2722 "and source language is \"%s\".\n"),
2727 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2730 char *cp = ext_args;
2732 filename_language *entry;
2734 /* First arg is filename extension, starting with '.' */
2736 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2738 /* Find end of first arg. */
2739 while (*cp && !isspace (*cp))
2743 error (_("'%s': two arguments required -- "
2744 "filename extension and language"),
2747 /* Null-terminate first arg. */
2750 /* Find beginning of second arg, which should be a source language. */
2751 cp = skip_spaces (cp);
2754 error (_("'%s': two arguments required -- "
2755 "filename extension and language"),
2758 /* Lookup the language from among those we know. */
2759 lang = language_enum (cp);
2761 /* Now lookup the filename extension: do we already know it? */
2763 VEC_iterate (filename_language, filename_language_table, i, entry);
2766 if (0 == strcmp (ext_args, entry->ext))
2772 /* New file extension. */
2773 add_filename_language (ext_args, lang);
2777 /* Redefining a previously known filename extension. */
2780 /* query ("Really make files of type %s '%s'?", */
2781 /* ext_args, language_str (lang)); */
2784 entry->ext = xstrdup (ext_args);
2790 info_ext_lang_command (char *args, int from_tty)
2793 filename_language *entry;
2795 printf_filtered (_("Filename extensions and the languages they represent:"));
2796 printf_filtered ("\n\n");
2798 VEC_iterate (filename_language, filename_language_table, i, entry);
2800 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2804 deduce_language_from_filename (const char *filename)
2809 if (filename != NULL)
2810 if ((cp = strrchr (filename, '.')) != NULL)
2812 filename_language *entry;
2815 VEC_iterate (filename_language, filename_language_table, i, entry);
2817 if (strcmp (cp, entry->ext) == 0)
2821 return language_unknown;
2824 /* Allocate and initialize a new symbol table.
2825 CUST is from the result of allocate_compunit_symtab. */
2828 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2830 struct objfile *objfile = cust->objfile;
2831 struct symtab *symtab
2832 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2835 = (const char *) bcache (filename, strlen (filename) + 1,
2836 objfile->per_bfd->filename_cache);
2837 symtab->fullname = NULL;
2838 symtab->language = deduce_language_from_filename (filename);
2840 /* This can be very verbose with lots of headers.
2841 Only print at higher debug levels. */
2842 if (symtab_create_debug >= 2)
2844 /* Be a bit clever with debugging messages, and don't print objfile
2845 every time, only when it changes. */
2846 static char *last_objfile_name = NULL;
2848 if (last_objfile_name == NULL
2849 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2851 xfree (last_objfile_name);
2852 last_objfile_name = xstrdup (objfile_name (objfile));
2853 fprintf_unfiltered (gdb_stdlog,
2854 "Creating one or more symtabs for objfile %s ...\n",
2857 fprintf_unfiltered (gdb_stdlog,
2858 "Created symtab %s for module %s.\n",
2859 host_address_to_string (symtab), filename);
2862 /* Add it to CUST's list of symtabs. */
2863 if (cust->filetabs == NULL)
2865 cust->filetabs = symtab;
2866 cust->last_filetab = symtab;
2870 cust->last_filetab->next = symtab;
2871 cust->last_filetab = symtab;
2874 /* Backlink to the containing compunit symtab. */
2875 symtab->compunit_symtab = cust;
2880 /* Allocate and initialize a new compunit.
2881 NAME is the name of the main source file, if there is one, or some
2882 descriptive text if there are no source files. */
2884 struct compunit_symtab *
2885 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2887 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2888 struct compunit_symtab);
2889 const char *saved_name;
2891 cu->objfile = objfile;
2893 /* The name we record here is only for display/debugging purposes.
2894 Just save the basename to avoid path issues (too long for display,
2895 relative vs absolute, etc.). */
2896 saved_name = lbasename (name);
2898 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2899 strlen (saved_name));
2901 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2903 if (symtab_create_debug)
2905 fprintf_unfiltered (gdb_stdlog,
2906 "Created compunit symtab %s for %s.\n",
2907 host_address_to_string (cu),
2914 /* Hook CU to the objfile it comes from. */
2917 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2919 cu->next = cu->objfile->compunit_symtabs;
2920 cu->objfile->compunit_symtabs = cu;
2924 /* Reset all data structures in gdb which may contain references to
2925 symbol table data. */
2928 clear_symtab_users (symfile_add_flags add_flags)
2930 /* Someday, we should do better than this, by only blowing away
2931 the things that really need to be blown. */
2933 /* Clear the "current" symtab first, because it is no longer valid.
2934 breakpoint_re_set may try to access the current symtab. */
2935 clear_current_source_symtab_and_line ();
2938 clear_last_displayed_sal ();
2939 clear_pc_function_cache ();
2940 observer_notify_new_objfile (NULL);
2942 /* Clear globals which might have pointed into a removed objfile.
2943 FIXME: It's not clear which of these are supposed to persist
2944 between expressions and which ought to be reset each time. */
2945 expression_context_block = NULL;
2946 innermost_block = NULL;
2948 /* Varobj may refer to old symbols, perform a cleanup. */
2949 varobj_invalidate ();
2951 /* Now that the various caches have been cleared, we can re_set
2952 our breakpoints without risking it using stale data. */
2953 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2954 breakpoint_re_set ();
2958 clear_symtab_users_cleanup (void *ignore)
2960 clear_symtab_users (0);
2964 The following code implements an abstraction for debugging overlay sections.
2966 The target model is as follows:
2967 1) The gnu linker will permit multiple sections to be mapped into the
2968 same VMA, each with its own unique LMA (or load address).
2969 2) It is assumed that some runtime mechanism exists for mapping the
2970 sections, one by one, from the load address into the VMA address.
2971 3) This code provides a mechanism for gdb to keep track of which
2972 sections should be considered to be mapped from the VMA to the LMA.
2973 This information is used for symbol lookup, and memory read/write.
2974 For instance, if a section has been mapped then its contents
2975 should be read from the VMA, otherwise from the LMA.
2977 Two levels of debugger support for overlays are available. One is
2978 "manual", in which the debugger relies on the user to tell it which
2979 overlays are currently mapped. This level of support is
2980 implemented entirely in the core debugger, and the information about
2981 whether a section is mapped is kept in the objfile->obj_section table.
2983 The second level of support is "automatic", and is only available if
2984 the target-specific code provides functionality to read the target's
2985 overlay mapping table, and translate its contents for the debugger
2986 (by updating the mapped state information in the obj_section tables).
2988 The interface is as follows:
2990 overlay map <name> -- tell gdb to consider this section mapped
2991 overlay unmap <name> -- tell gdb to consider this section unmapped
2992 overlay list -- list the sections that GDB thinks are mapped
2993 overlay read-target -- get the target's state of what's mapped
2994 overlay off/manual/auto -- set overlay debugging state
2995 Functional interface:
2996 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2997 section, return that section.
2998 find_pc_overlay(pc): find any overlay section that contains
2999 the pc, either in its VMA or its LMA
3000 section_is_mapped(sect): true if overlay is marked as mapped
3001 section_is_overlay(sect): true if section's VMA != LMA
3002 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3003 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3004 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3005 overlay_mapped_address(...): map an address from section's LMA to VMA
3006 overlay_unmapped_address(...): map an address from section's VMA to LMA
3007 symbol_overlayed_address(...): Return a "current" address for symbol:
3008 either in VMA or LMA depending on whether
3009 the symbol's section is currently mapped. */
3011 /* Overlay debugging state: */
3013 enum overlay_debugging_state overlay_debugging = ovly_off;
3014 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3016 /* Function: section_is_overlay (SECTION)
3017 Returns true if SECTION has VMA not equal to LMA, ie.
3018 SECTION is loaded at an address different from where it will "run". */
3021 section_is_overlay (struct obj_section *section)
3023 if (overlay_debugging && section)
3025 bfd *abfd = section->objfile->obfd;
3026 asection *bfd_section = section->the_bfd_section;
3028 if (bfd_section_lma (abfd, bfd_section) != 0
3029 && bfd_section_lma (abfd, bfd_section)
3030 != bfd_section_vma (abfd, bfd_section))
3037 /* Function: overlay_invalidate_all (void)
3038 Invalidate the mapped state of all overlay sections (mark it as stale). */
3041 overlay_invalidate_all (void)
3043 struct objfile *objfile;
3044 struct obj_section *sect;
3046 ALL_OBJSECTIONS (objfile, sect)
3047 if (section_is_overlay (sect))
3048 sect->ovly_mapped = -1;
3051 /* Function: section_is_mapped (SECTION)
3052 Returns true if section is an overlay, and is currently mapped.
3054 Access to the ovly_mapped flag is restricted to this function, so
3055 that we can do automatic update. If the global flag
3056 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3057 overlay_invalidate_all. If the mapped state of the particular
3058 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3061 section_is_mapped (struct obj_section *osect)
3063 struct gdbarch *gdbarch;
3065 if (osect == 0 || !section_is_overlay (osect))
3068 switch (overlay_debugging)
3072 return 0; /* overlay debugging off */
3073 case ovly_auto: /* overlay debugging automatic */
3074 /* Unles there is a gdbarch_overlay_update function,
3075 there's really nothing useful to do here (can't really go auto). */
3076 gdbarch = get_objfile_arch (osect->objfile);
3077 if (gdbarch_overlay_update_p (gdbarch))
3079 if (overlay_cache_invalid)
3081 overlay_invalidate_all ();
3082 overlay_cache_invalid = 0;
3084 if (osect->ovly_mapped == -1)
3085 gdbarch_overlay_update (gdbarch, osect);
3087 /* fall thru to manual case */
3088 case ovly_on: /* overlay debugging manual */
3089 return osect->ovly_mapped == 1;
3093 /* Function: pc_in_unmapped_range
3094 If PC falls into the lma range of SECTION, return true, else false. */
3097 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3099 if (section_is_overlay (section))
3101 bfd *abfd = section->objfile->obfd;
3102 asection *bfd_section = section->the_bfd_section;
3104 /* We assume the LMA is relocated by the same offset as the VMA. */
3105 bfd_vma size = bfd_get_section_size (bfd_section);
3106 CORE_ADDR offset = obj_section_offset (section);
3108 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3109 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3116 /* Function: pc_in_mapped_range
3117 If PC falls into the vma range of SECTION, return true, else false. */
3120 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3122 if (section_is_overlay (section))
3124 if (obj_section_addr (section) <= pc
3125 && pc < obj_section_endaddr (section))
3132 /* Return true if the mapped ranges of sections A and B overlap, false
3136 sections_overlap (struct obj_section *a, struct obj_section *b)
3138 CORE_ADDR a_start = obj_section_addr (a);
3139 CORE_ADDR a_end = obj_section_endaddr (a);
3140 CORE_ADDR b_start = obj_section_addr (b);
3141 CORE_ADDR b_end = obj_section_endaddr (b);
3143 return (a_start < b_end && b_start < a_end);
3146 /* Function: overlay_unmapped_address (PC, SECTION)
3147 Returns the address corresponding to PC in the unmapped (load) range.
3148 May be the same as PC. */
3151 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3153 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3155 bfd *abfd = section->objfile->obfd;
3156 asection *bfd_section = section->the_bfd_section;
3158 return pc + bfd_section_lma (abfd, bfd_section)
3159 - bfd_section_vma (abfd, bfd_section);
3165 /* Function: overlay_mapped_address (PC, SECTION)
3166 Returns the address corresponding to PC in the mapped (runtime) range.
3167 May be the same as PC. */
3170 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3172 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3174 bfd *abfd = section->objfile->obfd;
3175 asection *bfd_section = section->the_bfd_section;
3177 return pc + bfd_section_vma (abfd, bfd_section)
3178 - bfd_section_lma (abfd, bfd_section);
3184 /* Function: symbol_overlayed_address
3185 Return one of two addresses (relative to the VMA or to the LMA),
3186 depending on whether the section is mapped or not. */
3189 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3191 if (overlay_debugging)
3193 /* If the symbol has no section, just return its regular address. */
3196 /* If the symbol's section is not an overlay, just return its
3198 if (!section_is_overlay (section))
3200 /* If the symbol's section is mapped, just return its address. */
3201 if (section_is_mapped (section))
3204 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3205 * then return its LOADED address rather than its vma address!!
3207 return overlay_unmapped_address (address, section);
3212 /* Function: find_pc_overlay (PC)
3213 Return the best-match overlay section for PC:
3214 If PC matches a mapped overlay section's VMA, return that section.
3215 Else if PC matches an unmapped section's VMA, return that section.
3216 Else if PC matches an unmapped section's LMA, return that section. */
3218 struct obj_section *
3219 find_pc_overlay (CORE_ADDR pc)
3221 struct objfile *objfile;
3222 struct obj_section *osect, *best_match = NULL;
3224 if (overlay_debugging)
3226 ALL_OBJSECTIONS (objfile, osect)
3227 if (section_is_overlay (osect))
3229 if (pc_in_mapped_range (pc, osect))
3231 if (section_is_mapped (osect))
3236 else if (pc_in_unmapped_range (pc, osect))
3243 /* Function: find_pc_mapped_section (PC)
3244 If PC falls into the VMA address range of an overlay section that is
3245 currently marked as MAPPED, return that section. Else return NULL. */
3247 struct obj_section *
3248 find_pc_mapped_section (CORE_ADDR pc)
3250 struct objfile *objfile;
3251 struct obj_section *osect;
3253 if (overlay_debugging)
3255 ALL_OBJSECTIONS (objfile, osect)
3256 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3263 /* Function: list_overlays_command
3264 Print a list of mapped sections and their PC ranges. */
3267 list_overlays_command (char *args, int from_tty)
3270 struct objfile *objfile;
3271 struct obj_section *osect;
3273 if (overlay_debugging)
3275 ALL_OBJSECTIONS (objfile, osect)
3276 if (section_is_mapped (osect))
3278 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3283 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3284 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3285 size = bfd_get_section_size (osect->the_bfd_section);
3286 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3288 printf_filtered ("Section %s, loaded at ", name);
3289 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3290 puts_filtered (" - ");
3291 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3292 printf_filtered (", mapped at ");
3293 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3294 puts_filtered (" - ");
3295 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3296 puts_filtered ("\n");
3302 printf_filtered (_("No sections are mapped.\n"));
3305 /* Function: map_overlay_command
3306 Mark the named section as mapped (ie. residing at its VMA address). */
3309 map_overlay_command (char *args, int from_tty)
3311 struct objfile *objfile, *objfile2;
3312 struct obj_section *sec, *sec2;
3314 if (!overlay_debugging)
3315 error (_("Overlay debugging not enabled. Use "
3316 "either the 'overlay auto' or\n"
3317 "the 'overlay manual' command."));
3319 if (args == 0 || *args == 0)
3320 error (_("Argument required: name of an overlay section"));
3322 /* First, find a section matching the user supplied argument. */
3323 ALL_OBJSECTIONS (objfile, sec)
3324 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3326 /* Now, check to see if the section is an overlay. */
3327 if (!section_is_overlay (sec))
3328 continue; /* not an overlay section */
3330 /* Mark the overlay as "mapped". */
3331 sec->ovly_mapped = 1;
3333 /* Next, make a pass and unmap any sections that are
3334 overlapped by this new section: */
3335 ALL_OBJSECTIONS (objfile2, sec2)
3336 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3339 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3340 bfd_section_name (objfile->obfd,
3341 sec2->the_bfd_section));
3342 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3346 error (_("No overlay section called %s"), args);
3349 /* Function: unmap_overlay_command
3350 Mark the overlay section as unmapped
3351 (ie. resident in its LMA address range, rather than the VMA range). */
3354 unmap_overlay_command (char *args, int from_tty)
3356 struct objfile *objfile;
3357 struct obj_section *sec = NULL;
3359 if (!overlay_debugging)
3360 error (_("Overlay debugging not enabled. "
3361 "Use either the 'overlay auto' or\n"
3362 "the 'overlay manual' command."));
3364 if (args == 0 || *args == 0)
3365 error (_("Argument required: name of an overlay section"));
3367 /* First, find a section matching the user supplied argument. */
3368 ALL_OBJSECTIONS (objfile, sec)
3369 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3371 if (!sec->ovly_mapped)
3372 error (_("Section %s is not mapped"), args);
3373 sec->ovly_mapped = 0;
3376 error (_("No overlay section called %s"), args);
3379 /* Function: overlay_auto_command
3380 A utility command to turn on overlay debugging.
3381 Possibly this should be done via a set/show command. */
3384 overlay_auto_command (char *args, int from_tty)
3386 overlay_debugging = ovly_auto;
3387 enable_overlay_breakpoints ();
3389 printf_unfiltered (_("Automatic overlay debugging enabled."));
3392 /* Function: overlay_manual_command
3393 A utility command to turn on overlay debugging.
3394 Possibly this should be done via a set/show command. */
3397 overlay_manual_command (char *args, int from_tty)
3399 overlay_debugging = ovly_on;
3400 disable_overlay_breakpoints ();
3402 printf_unfiltered (_("Overlay debugging enabled."));
3405 /* Function: overlay_off_command
3406 A utility command to turn on overlay debugging.
3407 Possibly this should be done via a set/show command. */
3410 overlay_off_command (char *args, int from_tty)
3412 overlay_debugging = ovly_off;
3413 disable_overlay_breakpoints ();
3415 printf_unfiltered (_("Overlay debugging disabled."));
3419 overlay_load_command (char *args, int from_tty)
3421 struct gdbarch *gdbarch = get_current_arch ();
3423 if (gdbarch_overlay_update_p (gdbarch))
3424 gdbarch_overlay_update (gdbarch, NULL);
3426 error (_("This target does not know how to read its overlay state."));
3429 /* Function: overlay_command
3430 A place-holder for a mis-typed command. */
3432 /* Command list chain containing all defined "overlay" subcommands. */
3433 static struct cmd_list_element *overlaylist;
3436 overlay_command (char *args, int from_tty)
3439 ("\"overlay\" must be followed by the name of an overlay command.\n");
3440 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3443 /* Target Overlays for the "Simplest" overlay manager:
3445 This is GDB's default target overlay layer. It works with the
3446 minimal overlay manager supplied as an example by Cygnus. The
3447 entry point is via a function pointer "gdbarch_overlay_update",
3448 so targets that use a different runtime overlay manager can
3449 substitute their own overlay_update function and take over the
3452 The overlay_update function pokes around in the target's data structures
3453 to see what overlays are mapped, and updates GDB's overlay mapping with
3456 In this simple implementation, the target data structures are as follows:
3457 unsigned _novlys; /# number of overlay sections #/
3458 unsigned _ovly_table[_novlys][4] = {
3459 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3460 {..., ..., ..., ...},
3462 unsigned _novly_regions; /# number of overlay regions #/
3463 unsigned _ovly_region_table[_novly_regions][3] = {
3464 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3467 These functions will attempt to update GDB's mappedness state in the
3468 symbol section table, based on the target's mappedness state.
3470 To do this, we keep a cached copy of the target's _ovly_table, and
3471 attempt to detect when the cached copy is invalidated. The main
3472 entry point is "simple_overlay_update(SECT), which looks up SECT in
3473 the cached table and re-reads only the entry for that section from
3474 the target (whenever possible). */
3476 /* Cached, dynamically allocated copies of the target data structures: */
3477 static unsigned (*cache_ovly_table)[4] = 0;
3478 static unsigned cache_novlys = 0;
3479 static CORE_ADDR cache_ovly_table_base = 0;
3482 VMA, OSIZE, LMA, MAPPED
3485 /* Throw away the cached copy of _ovly_table. */
3488 simple_free_overlay_table (void)
3490 if (cache_ovly_table)
3491 xfree (cache_ovly_table);
3493 cache_ovly_table = NULL;
3494 cache_ovly_table_base = 0;
3497 /* Read an array of ints of size SIZE from the target into a local buffer.
3498 Convert to host order. int LEN is number of ints. */
3501 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3502 int len, int size, enum bfd_endian byte_order)
3504 /* FIXME (alloca): Not safe if array is very large. */
3505 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3508 read_memory (memaddr, buf, len * size);
3509 for (i = 0; i < len; i++)
3510 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3513 /* Find and grab a copy of the target _ovly_table
3514 (and _novlys, which is needed for the table's size). */
3517 simple_read_overlay_table (void)
3519 struct bound_minimal_symbol novlys_msym;
3520 struct bound_minimal_symbol ovly_table_msym;
3521 struct gdbarch *gdbarch;
3523 enum bfd_endian byte_order;
3525 simple_free_overlay_table ();
3526 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3527 if (! novlys_msym.minsym)
3529 error (_("Error reading inferior's overlay table: "
3530 "couldn't find `_novlys' variable\n"
3531 "in inferior. Use `overlay manual' mode."));
3535 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3536 if (! ovly_table_msym.minsym)
3538 error (_("Error reading inferior's overlay table: couldn't find "
3539 "`_ovly_table' array\n"
3540 "in inferior. Use `overlay manual' mode."));
3544 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3545 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3546 byte_order = gdbarch_byte_order (gdbarch);
3548 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3551 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3552 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3553 read_target_long_array (cache_ovly_table_base,
3554 (unsigned int *) cache_ovly_table,
3555 cache_novlys * 4, word_size, byte_order);
3557 return 1; /* SUCCESS */
3560 /* Function: simple_overlay_update_1
3561 A helper function for simple_overlay_update. Assuming a cached copy
3562 of _ovly_table exists, look through it to find an entry whose vma,
3563 lma and size match those of OSECT. Re-read the entry and make sure
3564 it still matches OSECT (else the table may no longer be valid).
3565 Set OSECT's mapped state to match the entry. Return: 1 for
3566 success, 0 for failure. */
3569 simple_overlay_update_1 (struct obj_section *osect)
3572 bfd *obfd = osect->objfile->obfd;
3573 asection *bsect = osect->the_bfd_section;
3574 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3575 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3578 for (i = 0; i < cache_novlys; i++)
3579 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3580 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3582 read_target_long_array (cache_ovly_table_base + i * word_size,
3583 (unsigned int *) cache_ovly_table[i],
3584 4, word_size, byte_order);
3585 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3586 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3588 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3591 else /* Warning! Warning! Target's ovly table has changed! */
3597 /* Function: simple_overlay_update
3598 If OSECT is NULL, then update all sections' mapped state
3599 (after re-reading the entire target _ovly_table).
3600 If OSECT is non-NULL, then try to find a matching entry in the
3601 cached ovly_table and update only OSECT's mapped state.
3602 If a cached entry can't be found or the cache isn't valid, then
3603 re-read the entire cache, and go ahead and update all sections. */
3606 simple_overlay_update (struct obj_section *osect)
3608 struct objfile *objfile;
3610 /* Were we given an osect to look up? NULL means do all of them. */
3612 /* Have we got a cached copy of the target's overlay table? */
3613 if (cache_ovly_table != NULL)
3615 /* Does its cached location match what's currently in the
3617 struct bound_minimal_symbol minsym
3618 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3620 if (minsym.minsym == NULL)
3621 error (_("Error reading inferior's overlay table: couldn't "
3622 "find `_ovly_table' array\n"
3623 "in inferior. Use `overlay manual' mode."));
3625 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3626 /* Then go ahead and try to look up this single section in
3628 if (simple_overlay_update_1 (osect))
3629 /* Found it! We're done. */
3633 /* Cached table no good: need to read the entire table anew.
3634 Or else we want all the sections, in which case it's actually
3635 more efficient to read the whole table in one block anyway. */
3637 if (! simple_read_overlay_table ())
3640 /* Now may as well update all sections, even if only one was requested. */
3641 ALL_OBJSECTIONS (objfile, osect)
3642 if (section_is_overlay (osect))
3645 bfd *obfd = osect->objfile->obfd;
3646 asection *bsect = osect->the_bfd_section;
3648 for (i = 0; i < cache_novlys; i++)
3649 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3650 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3651 { /* obj_section matches i'th entry in ovly_table. */
3652 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3653 break; /* finished with inner for loop: break out. */
3658 /* Set the output sections and output offsets for section SECTP in
3659 ABFD. The relocation code in BFD will read these offsets, so we
3660 need to be sure they're initialized. We map each section to itself,
3661 with no offset; this means that SECTP->vma will be honored. */
3664 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3666 sectp->output_section = sectp;
3667 sectp->output_offset = 0;
3670 /* Default implementation for sym_relocate. */
3673 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3676 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3678 bfd *abfd = sectp->owner;
3680 /* We're only interested in sections with relocation
3682 if ((sectp->flags & SEC_RELOC) == 0)
3685 /* We will handle section offsets properly elsewhere, so relocate as if
3686 all sections begin at 0. */
3687 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3689 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3692 /* Relocate the contents of a debug section SECTP in ABFD. The
3693 contents are stored in BUF if it is non-NULL, or returned in a
3694 malloc'd buffer otherwise.
3696 For some platforms and debug info formats, shared libraries contain
3697 relocations against the debug sections (particularly for DWARF-2;
3698 one affected platform is PowerPC GNU/Linux, although it depends on
3699 the version of the linker in use). Also, ELF object files naturally
3700 have unresolved relocations for their debug sections. We need to apply
3701 the relocations in order to get the locations of symbols correct.
3702 Another example that may require relocation processing, is the
3703 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3707 symfile_relocate_debug_section (struct objfile *objfile,
3708 asection *sectp, bfd_byte *buf)
3710 gdb_assert (objfile->sf->sym_relocate);
3712 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3715 struct symfile_segment_data *
3716 get_symfile_segment_data (bfd *abfd)
3718 const struct sym_fns *sf = find_sym_fns (abfd);
3723 return sf->sym_segments (abfd);
3727 free_symfile_segment_data (struct symfile_segment_data *data)
3729 xfree (data->segment_bases);
3730 xfree (data->segment_sizes);
3731 xfree (data->segment_info);
3736 - DATA, containing segment addresses from the object file ABFD, and
3737 the mapping from ABFD's sections onto the segments that own them,
3739 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3740 segment addresses reported by the target,
3741 store the appropriate offsets for each section in OFFSETS.
3743 If there are fewer entries in SEGMENT_BASES than there are segments
3744 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3746 If there are more entries, then ignore the extra. The target may
3747 not be able to distinguish between an empty data segment and a
3748 missing data segment; a missing text segment is less plausible. */
3751 symfile_map_offsets_to_segments (bfd *abfd,
3752 const struct symfile_segment_data *data,
3753 struct section_offsets *offsets,
3754 int num_segment_bases,
3755 const CORE_ADDR *segment_bases)
3760 /* It doesn't make sense to call this function unless you have some
3761 segment base addresses. */
3762 gdb_assert (num_segment_bases > 0);
3764 /* If we do not have segment mappings for the object file, we
3765 can not relocate it by segments. */
3766 gdb_assert (data != NULL);
3767 gdb_assert (data->num_segments > 0);
3769 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3771 int which = data->segment_info[i];
3773 gdb_assert (0 <= which && which <= data->num_segments);
3775 /* Don't bother computing offsets for sections that aren't
3776 loaded as part of any segment. */
3780 /* Use the last SEGMENT_BASES entry as the address of any extra
3781 segments mentioned in DATA->segment_info. */
3782 if (which > num_segment_bases)
3783 which = num_segment_bases;
3785 offsets->offsets[i] = (segment_bases[which - 1]
3786 - data->segment_bases[which - 1]);
3793 symfile_find_segment_sections (struct objfile *objfile)
3795 bfd *abfd = objfile->obfd;
3798 struct symfile_segment_data *data;
3800 data = get_symfile_segment_data (objfile->obfd);
3804 if (data->num_segments != 1 && data->num_segments != 2)
3806 free_symfile_segment_data (data);
3810 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3812 int which = data->segment_info[i];
3816 if (objfile->sect_index_text == -1)
3817 objfile->sect_index_text = sect->index;
3819 if (objfile->sect_index_rodata == -1)
3820 objfile->sect_index_rodata = sect->index;
3822 else if (which == 2)
3824 if (objfile->sect_index_data == -1)
3825 objfile->sect_index_data = sect->index;
3827 if (objfile->sect_index_bss == -1)
3828 objfile->sect_index_bss = sect->index;
3832 free_symfile_segment_data (data);
3835 /* Listen for free_objfile events. */
3838 symfile_free_objfile (struct objfile *objfile)
3840 /* Remove the target sections owned by this objfile. */
3841 if (objfile != NULL)
3842 remove_target_sections ((void *) objfile);
3845 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3846 Expand all symtabs that match the specified criteria.
3847 See quick_symbol_functions.expand_symtabs_matching for details. */
3850 expand_symtabs_matching
3851 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3852 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3853 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3854 enum search_domain kind)
3856 struct objfile *objfile;
3858 ALL_OBJFILES (objfile)
3861 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3863 expansion_notify, kind);
3867 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3868 Map function FUN over every file.
3869 See quick_symbol_functions.map_symbol_filenames for details. */
3872 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3875 struct objfile *objfile;
3877 ALL_OBJFILES (objfile)
3880 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3886 _initialize_symfile (void)
3888 struct cmd_list_element *c;
3890 observer_attach_free_objfile (symfile_free_objfile);
3892 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3893 Load symbol table from executable file FILE.\n\
3894 The `file' command can also load symbol tables, as well as setting the file\n\
3895 to execute."), &cmdlist);
3896 set_cmd_completer (c, filename_completer);
3898 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3899 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3900 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3901 ...]\nADDR is the starting address of the file's text.\n\
3902 The optional arguments are section-name section-address pairs and\n\
3903 should be specified if the data and bss segments are not contiguous\n\
3904 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3906 set_cmd_completer (c, filename_completer);
3908 c = add_cmd ("remove-symbol-file", class_files,
3909 remove_symbol_file_command, _("\
3910 Remove a symbol file added via the add-symbol-file command.\n\
3911 Usage: remove-symbol-file FILENAME\n\
3912 remove-symbol-file -a ADDRESS\n\
3913 The file to remove can be identified by its filename or by an address\n\
3914 that lies within the boundaries of this symbol file in memory."),
3917 c = add_cmd ("load", class_files, load_command, _("\
3918 Dynamically load FILE into the running program, and record its symbols\n\
3919 for access from GDB.\n\
3920 An optional load OFFSET may also be given as a literal address.\n\
3921 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3923 Usage: load [FILE] [OFFSET]"), &cmdlist);
3924 set_cmd_completer (c, filename_completer);
3926 add_prefix_cmd ("overlay", class_support, overlay_command,
3927 _("Commands for debugging overlays."), &overlaylist,
3928 "overlay ", 0, &cmdlist);
3930 add_com_alias ("ovly", "overlay", class_alias, 1);
3931 add_com_alias ("ov", "overlay", class_alias, 1);
3933 add_cmd ("map-overlay", class_support, map_overlay_command,
3934 _("Assert that an overlay section is mapped."), &overlaylist);
3936 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3937 _("Assert that an overlay section is unmapped."), &overlaylist);
3939 add_cmd ("list-overlays", class_support, list_overlays_command,
3940 _("List mappings of overlay sections."), &overlaylist);
3942 add_cmd ("manual", class_support, overlay_manual_command,
3943 _("Enable overlay debugging."), &overlaylist);
3944 add_cmd ("off", class_support, overlay_off_command,
3945 _("Disable overlay debugging."), &overlaylist);
3946 add_cmd ("auto", class_support, overlay_auto_command,
3947 _("Enable automatic overlay debugging."), &overlaylist);
3948 add_cmd ("load-target", class_support, overlay_load_command,
3949 _("Read the overlay mapping state from the target."), &overlaylist);
3951 /* Filename extension to source language lookup table: */
3952 add_setshow_string_noescape_cmd ("extension-language", class_files,
3954 Set mapping between filename extension and source language."), _("\
3955 Show mapping between filename extension and source language."), _("\
3956 Usage: set extension-language .foo bar"),
3957 set_ext_lang_command,
3959 &setlist, &showlist);
3961 add_info ("extensions", info_ext_lang_command,
3962 _("All filename extensions associated with a source language."));
3964 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3965 &debug_file_directory, _("\
3966 Set the directories where separate debug symbols are searched for."), _("\
3967 Show the directories where separate debug symbols are searched for."), _("\
3968 Separate debug symbols are first searched for in the same\n\
3969 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3970 and lastly at the path of the directory of the binary with\n\
3971 each global debug-file-directory component prepended."),
3973 show_debug_file_directory,
3974 &setlist, &showlist);
3976 add_setshow_enum_cmd ("symbol-loading", no_class,
3977 print_symbol_loading_enums, &print_symbol_loading,
3979 Set printing of symbol loading messages."), _("\
3980 Show printing of symbol loading messages."), _("\
3981 off == turn all messages off\n\
3982 brief == print messages for the executable,\n\
3983 and brief messages for shared libraries\n\
3984 full == print messages for the executable,\n\
3985 and messages for each shared library."),
3988 &setprintlist, &showprintlist);
3990 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3991 &separate_debug_file_debug, _("\
3992 Set printing of separate debug info file search debug."), _("\
3993 Show printing of separate debug info file search debug."), _("\
3994 When on, GDB prints the searched locations while looking for separate debug \
3995 info files."), NULL, NULL, &setdebuglist, &showdebuglist);