1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support, using pieces from other GDB modules.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
38 #include "breakpoint.h"
40 #include "complaints.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
55 #include <sys/types.h>
57 #include "gdb_string.h"
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75 void (*deprecated_target_new_objfile_hook) (struct objfile *);
77 static void clear_symtab_users_cleanup (void *ignore);
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
82 /* External variables and functions referenced. */
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
86 /* Functions this file defines */
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
93 static void set_initial_language (void);
95 static void load_command (char *, int);
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
99 static void add_symbol_file_command (char *, int);
101 static void add_shared_symbol_files_command (char *, int);
103 static void reread_separate_symbols (struct objfile *objfile);
105 static void cashier_psymtab (struct partial_symtab *);
107 bfd *symfile_bfd_open (char *);
109 int get_section_index (struct objfile *, char *);
111 static void find_sym_fns (struct objfile *);
113 static void decrement_reading_symtab (void *);
115 static void overlay_invalidate_all (void);
117 static int overlay_is_mapped (struct obj_section *);
119 void list_overlays_command (char *, int);
121 void map_overlay_command (char *, int);
123 void unmap_overlay_command (char *, int);
125 static void overlay_auto_command (char *, int);
127 static void overlay_manual_command (char *, int);
129 static void overlay_off_command (char *, int);
131 static void overlay_load_command (char *, int);
133 static void overlay_command (char *, int);
135 static void simple_free_overlay_table (void);
137 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
139 static int simple_read_overlay_table (void);
141 static int simple_overlay_update_1 (struct obj_section *);
143 static void add_filename_language (char *ext, enum language lang);
145 static void info_ext_lang_command (char *args, int from_tty);
147 static char *find_separate_debug_file (struct objfile *objfile);
149 static void init_filename_language_table (void);
151 void _initialize_symfile (void);
153 /* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
157 static struct sym_fns *symtab_fns = NULL;
159 /* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
162 #ifdef SYMBOL_RELOADING_DEFAULT
163 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
165 int symbol_reloading = 0;
168 show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
171 fprintf_filtered (file, _("\
172 Dynamic symbol table reloading multiple times in one run is %s.\n"),
177 /* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
184 library symbols are not loaded, commands like "info fun" will *not*
185 report all the functions that are actually present. */
187 int auto_solib_add = 1;
189 /* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
197 int auto_solib_limit;
200 /* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
204 compare_psymbols (const void *s1p, const void *s2p)
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
214 sort_pst_symbols (struct partial_symtab *pst)
216 /* Sort the global list; don't sort the static list */
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
223 /* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
229 obsavestring (const char *ptr, int size, struct obstack *obstackp)
231 char *p = (char *) obstack_alloc (obstackp, size + 1);
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
236 const char *p1 = ptr;
238 const char *end = ptr + size;
246 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
250 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
261 /* True if we are nested inside psymtab_to_symtab. */
263 int currently_reading_symtab = 0;
266 decrement_reading_symtab (void *dummy)
268 currently_reading_symtab--;
271 /* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
277 psymtab_to_symtab (struct partial_symtab *pst)
279 /* If it's been looked up before, return it. */
283 /* If it has not yet been read in, read it. */
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
295 /* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
305 find_lowest_section (bfd *abfd, asection *sect, void *obj)
307 asection **lowest = (asection **) obj;
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
321 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
323 struct section_addr_info *
324 alloc_section_addr_info (size_t num_sections)
326 struct section_addr_info *sap;
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
339 /* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341 struct section_addr_info *
342 copy_section_addr_info (struct section_addr_info *addrs)
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
364 /* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
367 extern struct section_addr_info *
368 build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
371 struct section_addr_info *sap;
372 const struct section_table *stp;
375 sap = alloc_section_addr_info (end - start);
377 for (stp = start, oidx = 0; stp != end; stp++)
379 if (bfd_get_section_flags (stp->bfd,
380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
381 && oidx < end - start)
383 sap->other[oidx].addr = stp->addr;
384 sap->other[oidx].name
385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
395 /* Free all memory allocated by build_section_addr_info_from_section_table. */
398 free_section_addr_info (struct section_addr_info *sap)
402 for (idx = 0; idx < sap->num_sections; idx++)
403 if (sap->other[idx].name)
404 xfree (sap->other[idx].name);
409 /* Initialize OBJFILE's sect_index_* members. */
411 init_objfile_sect_indices (struct objfile *objfile)
416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
418 objfile->sect_index_text = sect->index;
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
422 objfile->sect_index_data = sect->index;
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
426 objfile->sect_index_bss = sect->index;
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
430 objfile->sect_index_rodata = sect->index;
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
435 accomodate that. Except when explicitly adding symbol files at
436 some address, section_offsets contains nothing but zeros, so it
437 doesn't matter which slot in section_offsets the individual
438 sect_index_* members index into. So if they are all zero, it is
439 safe to just point all the currently uninitialized indices to the
442 for (i = 0; i < objfile->num_sections; i++)
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 if (i == objfile->num_sections)
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
462 /* The arguments to place_section. */
464 struct place_section_arg
466 struct section_offsets *offsets;
470 /* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
474 place_section (bfd *abfd, asection *sect, void *obj)
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
479 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
481 /* We are only interested in loadable sections. */
482 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
485 /* If the user specified an offset, honor it. */
486 if (offsets[sect->index] != 0)
489 /* Otherwise, let's try to find a place for the section. */
490 start_addr = (arg->lowest + align - 1) & -align;
497 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
499 int indx = cur_sec->index;
500 CORE_ADDR cur_offset;
502 /* We don't need to compare against ourself. */
506 /* We can only conflict with loadable sections. */
507 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
510 /* We do not expect this to happen; just ignore sections in a
511 relocatable file with an assigned VMA. */
512 if (bfd_section_vma (abfd, cur_sec) != 0)
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
531 /* Otherwise, we appear to be OK. So far. */
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
539 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
542 /* Parse the user's idea of an offset for dynamic linking, into our idea
543 of how to represent it for fast symbol reading. This is the default
544 version of the sym_fns.sym_offsets function for symbol readers that
545 don't need to do anything special. It allocates a section_offsets table
546 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
549 default_symfile_offsets (struct objfile *objfile,
550 struct section_addr_info *addrs)
554 objfile->num_sections = bfd_count_sections (objfile->obfd);
555 objfile->section_offsets = (struct section_offsets *)
556 obstack_alloc (&objfile->objfile_obstack,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558 memset (objfile->section_offsets, 0,
559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
561 /* Now calculate offsets for section that were specified by the
563 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
565 struct other_sections *osp ;
567 osp = &addrs->other[i] ;
571 /* Record all sections in offsets */
572 /* The section_offsets in the objfile are here filled in using
574 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
577 /* For relocatable files, all loadable sections will start at zero.
578 The zero is meaningless, so try to pick arbitrary addresses such
579 that no loadable sections overlap. This algorithm is quadratic,
580 but the number of sections in a single object file is generally
582 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
584 struct place_section_arg arg;
585 arg.offsets = objfile->section_offsets;
587 bfd_map_over_sections (objfile->obfd, place_section, &arg);
590 /* Remember the bfd indexes for the .text, .data, .bss and
592 init_objfile_sect_indices (objfile);
596 /* Process a symbol file, as either the main file or as a dynamically
599 OBJFILE is where the symbols are to be read from.
601 ADDRS is the list of section load addresses. If the user has given
602 an 'add-symbol-file' command, then this is the list of offsets and
603 addresses he or she provided as arguments to the command; or, if
604 we're handling a shared library, these are the actual addresses the
605 sections are loaded at, according to the inferior's dynamic linker
606 (as gleaned by GDB's shared library code). We convert each address
607 into an offset from the section VMA's as it appears in the object
608 file, and then call the file's sym_offsets function to convert this
609 into a format-specific offset table --- a `struct section_offsets'.
610 If ADDRS is non-zero, OFFSETS must be zero.
612 OFFSETS is a table of section offsets already in the right
613 format-specific representation. NUM_OFFSETS is the number of
614 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
615 assume this is the proper table the call to sym_offsets described
616 above would produce. Instead of calling sym_offsets, we just dump
617 it right into objfile->section_offsets. (When we're re-reading
618 symbols from an objfile, we don't have the original load address
619 list any more; all we have is the section offset table.) If
620 OFFSETS is non-zero, ADDRS must be zero.
622 MAINLINE is nonzero if this is the main symbol file, or zero if
623 it's an extra symbol file such as dynamically loaded code.
625 VERBO is nonzero if the caller has printed a verbose message about
626 the symbol reading (and complaints can be more terse about it). */
629 syms_from_objfile (struct objfile *objfile,
630 struct section_addr_info *addrs,
631 struct section_offsets *offsets,
636 struct section_addr_info *local_addr = NULL;
637 struct cleanup *old_chain;
639 gdb_assert (! (addrs && offsets));
641 init_entry_point_info (objfile);
642 find_sym_fns (objfile);
644 if (objfile->sf == NULL)
645 return; /* No symbols. */
647 /* Make sure that partially constructed symbol tables will be cleaned up
648 if an error occurs during symbol reading. */
649 old_chain = make_cleanup_free_objfile (objfile);
651 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
652 list. We now establish the convention that an addr of zero means
653 no load address was specified. */
654 if (! addrs && ! offsets)
657 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
658 make_cleanup (xfree, local_addr);
662 /* Now either addrs or offsets is non-zero. */
666 /* We will modify the main symbol table, make sure that all its users
667 will be cleaned up if an error occurs during symbol reading. */
668 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
670 /* Since no error yet, throw away the old symbol table. */
672 if (symfile_objfile != NULL)
674 free_objfile (symfile_objfile);
675 symfile_objfile = NULL;
678 /* Currently we keep symbols from the add-symbol-file command.
679 If the user wants to get rid of them, they should do "symbol-file"
680 without arguments first. Not sure this is the best behavior
683 (*objfile->sf->sym_new_init) (objfile);
686 /* Convert addr into an offset rather than an absolute address.
687 We find the lowest address of a loaded segment in the objfile,
688 and assume that <addr> is where that got loaded.
690 We no longer warn if the lowest section is not a text segment (as
691 happens for the PA64 port. */
692 if (!mainline && addrs && addrs->other[0].name)
694 asection *lower_sect;
696 CORE_ADDR lower_offset;
699 /* Find lowest loadable section to be used as starting point for
700 continguous sections. FIXME!! won't work without call to find
701 .text first, but this assumes text is lowest section. */
702 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
703 if (lower_sect == NULL)
704 bfd_map_over_sections (objfile->obfd, find_lowest_section,
706 if (lower_sect == NULL)
707 warning (_("no loadable sections found in added symbol-file %s"),
710 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
711 warning (_("Lowest section in %s is %s at %s"),
713 bfd_section_name (objfile->obfd, lower_sect),
714 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
715 if (lower_sect != NULL)
716 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
720 /* Calculate offsets for the loadable sections.
721 FIXME! Sections must be in order of increasing loadable section
722 so that contiguous sections can use the lower-offset!!!
724 Adjust offsets if the segments are not contiguous.
725 If the section is contiguous, its offset should be set to
726 the offset of the highest loadable section lower than it
727 (the loadable section directly below it in memory).
728 this_offset = lower_offset = lower_addr - lower_orig_addr */
730 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
732 if (addrs->other[i].addr != 0)
734 sect = bfd_get_section_by_name (objfile->obfd,
735 addrs->other[i].name);
739 -= bfd_section_vma (objfile->obfd, sect);
740 lower_offset = addrs->other[i].addr;
741 /* This is the index used by BFD. */
742 addrs->other[i].sectindex = sect->index ;
746 warning (_("section %s not found in %s"),
747 addrs->other[i].name,
749 addrs->other[i].addr = 0;
753 addrs->other[i].addr = lower_offset;
757 /* Initialize symbol reading routines for this objfile, allow complaints to
758 appear for this new file, and record how verbose to be, then do the
759 initial symbol reading for this file. */
761 (*objfile->sf->sym_init) (objfile);
762 clear_complaints (&symfile_complaints, 1, verbo);
765 (*objfile->sf->sym_offsets) (objfile, addrs);
768 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
770 /* Just copy in the offset table directly as given to us. */
771 objfile->num_sections = num_offsets;
772 objfile->section_offsets
773 = ((struct section_offsets *)
774 obstack_alloc (&objfile->objfile_obstack, size));
775 memcpy (objfile->section_offsets, offsets, size);
777 init_objfile_sect_indices (objfile);
780 #ifndef DEPRECATED_IBM6000_TARGET
781 /* This is a SVR4/SunOS specific hack, I think. In any event, it
782 screws RS/6000. sym_offsets should be doing this sort of thing,
783 because it knows the mapping between bfd sections and
785 /* This is a hack. As far as I can tell, section offsets are not
786 target dependent. They are all set to addr with a couple of
787 exceptions. The exceptions are sysvr4 shared libraries, whose
788 offsets are kept in solib structures anyway and rs6000 xcoff
789 which handles shared libraries in a completely unique way.
791 Section offsets are built similarly, except that they are built
792 by adding addr in all cases because there is no clear mapping
793 from section_offsets into actual sections. Note that solib.c
794 has a different algorithm for finding section offsets.
796 These should probably all be collapsed into some target
797 independent form of shared library support. FIXME. */
801 struct obj_section *s;
803 /* Map section offsets in "addr" back to the object's
804 sections by comparing the section names with bfd's
805 section names. Then adjust the section address by
806 the offset. */ /* for gdb/13815 */
808 ALL_OBJFILE_OSECTIONS (objfile, s)
810 CORE_ADDR s_addr = 0;
814 !s_addr && i < addrs->num_sections && addrs->other[i].name;
816 if (strcmp (bfd_section_name (s->objfile->obfd,
818 addrs->other[i].name) == 0)
819 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
821 s->addr -= s->offset;
823 s->endaddr -= s->offset;
824 s->endaddr += s_addr;
828 #endif /* not DEPRECATED_IBM6000_TARGET */
830 (*objfile->sf->sym_read) (objfile, mainline);
832 /* Don't allow char * to have a typename (else would get caddr_t).
833 Ditto void *. FIXME: Check whether this is now done by all the
834 symbol readers themselves (many of them now do), and if so remove
837 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
838 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
840 /* Mark the objfile has having had initial symbol read attempted. Note
841 that this does not mean we found any symbols... */
843 objfile->flags |= OBJF_SYMS;
845 /* Discard cleanups as symbol reading was successful. */
847 discard_cleanups (old_chain);
850 /* Perform required actions after either reading in the initial
851 symbols for a new objfile, or mapping in the symbols from a reusable
855 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
858 /* If this is the main symbol file we have to clean up all users of the
859 old main symbol file. Otherwise it is sufficient to fixup all the
860 breakpoints that may have been redefined by this symbol file. */
863 /* OK, make it the "real" symbol file. */
864 symfile_objfile = objfile;
866 clear_symtab_users ();
870 breakpoint_re_set ();
873 /* We're done reading the symbol file; finish off complaints. */
874 clear_complaints (&symfile_complaints, 0, verbo);
877 /* Process a symbol file, as either the main file or as a dynamically
880 ABFD is a BFD already open on the file, as from symfile_bfd_open.
881 This BFD will be closed on error, and is always consumed by this function.
883 FROM_TTY says how verbose to be.
885 MAINLINE specifies whether this is the main symbol file, or whether
886 it's an extra symbol file such as dynamically loaded code.
888 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
889 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
892 Upon success, returns a pointer to the objfile that was added.
893 Upon failure, jumps back to command level (never returns). */
894 static struct objfile *
895 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
896 struct section_addr_info *addrs,
897 struct section_offsets *offsets,
899 int mainline, int flags)
901 struct objfile *objfile;
902 struct partial_symtab *psymtab;
904 struct section_addr_info *orig_addrs = NULL;
905 struct cleanup *my_cleanups;
906 const char *name = bfd_get_filename (abfd);
908 my_cleanups = make_cleanup_bfd_close (abfd);
910 /* Give user a chance to burp if we'd be
911 interactively wiping out any existing symbols. */
913 if ((have_full_symbols () || have_partial_symbols ())
916 && !query ("Load new symbol table from \"%s\"? ", name))
917 error (_("Not confirmed."));
919 objfile = allocate_objfile (abfd, flags);
920 discard_cleanups (my_cleanups);
924 orig_addrs = copy_section_addr_info (addrs);
925 make_cleanup_free_section_addr_info (orig_addrs);
928 /* We either created a new mapped symbol table, mapped an existing
929 symbol table file which has not had initial symbol reading
930 performed, or need to read an unmapped symbol table. */
931 if (from_tty || info_verbose)
933 if (deprecated_pre_add_symbol_hook)
934 deprecated_pre_add_symbol_hook (name);
937 printf_unfiltered (_("Reading symbols from %s..."), name);
939 gdb_flush (gdb_stdout);
942 syms_from_objfile (objfile, addrs, offsets, num_offsets,
945 /* We now have at least a partial symbol table. Check to see if the
946 user requested that all symbols be read on initial access via either
947 the gdb startup command line or on a per symbol file basis. Expand
948 all partial symbol tables for this objfile if so. */
950 if ((flags & OBJF_READNOW) || readnow_symbol_files)
952 if (from_tty || info_verbose)
954 printf_unfiltered (_("expanding to full symbols..."));
956 gdb_flush (gdb_stdout);
959 for (psymtab = objfile->psymtabs;
961 psymtab = psymtab->next)
963 psymtab_to_symtab (psymtab);
967 debugfile = find_separate_debug_file (objfile);
972 objfile->separate_debug_objfile
973 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
977 objfile->separate_debug_objfile
978 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
980 objfile->separate_debug_objfile->separate_debug_objfile_backlink
983 /* Put the separate debug object before the normal one, this is so that
984 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
985 put_objfile_before (objfile->separate_debug_objfile, objfile);
990 if (!have_partial_symbols () && !have_full_symbols ())
993 printf_filtered (_("(no debugging symbols found)"));
994 if (from_tty || info_verbose)
995 printf_filtered ("...");
997 printf_filtered ("\n");
1001 if (from_tty || info_verbose)
1003 if (deprecated_post_add_symbol_hook)
1004 deprecated_post_add_symbol_hook ();
1007 printf_unfiltered (_("done.\n"));
1011 /* We print some messages regardless of whether 'from_tty ||
1012 info_verbose' is true, so make sure they go out at the right
1014 gdb_flush (gdb_stdout);
1016 do_cleanups (my_cleanups);
1018 if (objfile->sf == NULL)
1019 return objfile; /* No symbols. */
1021 new_symfile_objfile (objfile, mainline, from_tty);
1023 if (deprecated_target_new_objfile_hook)
1024 deprecated_target_new_objfile_hook (objfile);
1026 bfd_cache_close_all ();
1031 /* Process the symbol file ABFD, as either the main file or as a
1032 dynamically loaded file.
1034 See symbol_file_add_with_addrs_or_offsets's comments for
1037 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1038 struct section_addr_info *addrs,
1039 int mainline, int flags)
1041 return symbol_file_add_with_addrs_or_offsets (abfd,
1042 from_tty, addrs, 0, 0,
1047 /* Process a symbol file, as either the main file or as a dynamically
1048 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1051 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1052 int mainline, int flags)
1054 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1055 addrs, mainline, flags);
1059 /* Call symbol_file_add() with default values and update whatever is
1060 affected by the loading of a new main().
1061 Used when the file is supplied in the gdb command line
1062 and by some targets with special loading requirements.
1063 The auxiliary function, symbol_file_add_main_1(), has the flags
1064 argument for the switches that can only be specified in the symbol_file
1068 symbol_file_add_main (char *args, int from_tty)
1070 symbol_file_add_main_1 (args, from_tty, 0);
1074 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1076 symbol_file_add (args, from_tty, NULL, 1, flags);
1078 /* Getting new symbols may change our opinion about
1079 what is frameless. */
1080 reinit_frame_cache ();
1082 set_initial_language ();
1086 symbol_file_clear (int from_tty)
1088 if ((have_full_symbols () || have_partial_symbols ())
1091 ? !query (_("Discard symbol table from `%s'? "),
1092 symfile_objfile->name)
1093 : !query (_("Discard symbol table? "))))
1094 error (_("Not confirmed."));
1095 free_all_objfiles ();
1097 /* solib descriptors may have handles to objfiles. Since their
1098 storage has just been released, we'd better wipe the solib
1099 descriptors as well.
1101 #if defined(SOLIB_RESTART)
1105 symfile_objfile = NULL;
1107 printf_unfiltered (_("No symbol file now.\n"));
1111 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1114 bfd_size_type debuglink_size;
1115 unsigned long crc32;
1120 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1125 debuglink_size = bfd_section_size (objfile->obfd, sect);
1127 contents = xmalloc (debuglink_size);
1128 bfd_get_section_contents (objfile->obfd, sect, contents,
1129 (file_ptr)0, (bfd_size_type)debuglink_size);
1131 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1132 crc_offset = strlen (contents) + 1;
1133 crc_offset = (crc_offset + 3) & ~3;
1135 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1142 separate_debug_file_exists (const char *name, unsigned long crc)
1144 unsigned long file_crc = 0;
1146 gdb_byte buffer[8*1024];
1149 fd = open (name, O_RDONLY | O_BINARY);
1153 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1154 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1158 return crc == file_crc;
1161 static char *debug_file_directory = NULL;
1163 show_debug_file_directory (struct ui_file *file, int from_tty,
1164 struct cmd_list_element *c, const char *value)
1166 fprintf_filtered (file, _("\
1167 The directory where separate debug symbols are searched for is \"%s\".\n"),
1171 #if ! defined (DEBUG_SUBDIRECTORY)
1172 #define DEBUG_SUBDIRECTORY ".debug"
1176 find_separate_debug_file (struct objfile *objfile)
1183 bfd_size_type debuglink_size;
1184 unsigned long crc32;
1187 basename = get_debug_link_info (objfile, &crc32);
1189 if (basename == NULL)
1192 dir = xstrdup (objfile->name);
1194 /* Strip off the final filename part, leaving the directory name,
1195 followed by a slash. Objfile names should always be absolute and
1196 tilde-expanded, so there should always be a slash in there
1198 for (i = strlen(dir) - 1; i >= 0; i--)
1200 if (IS_DIR_SEPARATOR (dir[i]))
1203 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1206 debugfile = alloca (strlen (debug_file_directory) + 1
1208 + strlen (DEBUG_SUBDIRECTORY)
1213 /* First try in the same directory as the original file. */
1214 strcpy (debugfile, dir);
1215 strcat (debugfile, basename);
1217 if (separate_debug_file_exists (debugfile, crc32))
1221 return xstrdup (debugfile);
1224 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1225 strcpy (debugfile, dir);
1226 strcat (debugfile, DEBUG_SUBDIRECTORY);
1227 strcat (debugfile, "/");
1228 strcat (debugfile, basename);
1230 if (separate_debug_file_exists (debugfile, crc32))
1234 return xstrdup (debugfile);
1237 /* Then try in the global debugfile directory. */
1238 strcpy (debugfile, debug_file_directory);
1239 strcat (debugfile, "/");
1240 strcat (debugfile, dir);
1241 strcat (debugfile, basename);
1243 if (separate_debug_file_exists (debugfile, crc32))
1247 return xstrdup (debugfile);
1256 /* This is the symbol-file command. Read the file, analyze its
1257 symbols, and add a struct symtab to a symtab list. The syntax of
1258 the command is rather bizarre:
1260 1. The function buildargv implements various quoting conventions
1261 which are undocumented and have little or nothing in common with
1262 the way things are quoted (or not quoted) elsewhere in GDB.
1264 2. Options are used, which are not generally used in GDB (perhaps
1265 "set mapped on", "set readnow on" would be better)
1267 3. The order of options matters, which is contrary to GNU
1268 conventions (because it is confusing and inconvenient). */
1271 symbol_file_command (char *args, int from_tty)
1277 symbol_file_clear (from_tty);
1281 char **argv = buildargv (args);
1282 int flags = OBJF_USERLOADED;
1283 struct cleanup *cleanups;
1289 cleanups = make_cleanup_freeargv (argv);
1290 while (*argv != NULL)
1292 if (strcmp (*argv, "-readnow") == 0)
1293 flags |= OBJF_READNOW;
1294 else if (**argv == '-')
1295 error (_("unknown option `%s'"), *argv);
1298 symbol_file_add_main_1 (*argv, from_tty, flags);
1306 error (_("no symbol file name was specified"));
1308 do_cleanups (cleanups);
1312 /* Set the initial language.
1314 FIXME: A better solution would be to record the language in the
1315 psymtab when reading partial symbols, and then use it (if known) to
1316 set the language. This would be a win for formats that encode the
1317 language in an easily discoverable place, such as DWARF. For
1318 stabs, we can jump through hoops looking for specially named
1319 symbols or try to intuit the language from the specific type of
1320 stabs we find, but we can't do that until later when we read in
1324 set_initial_language (void)
1326 struct partial_symtab *pst;
1327 enum language lang = language_unknown;
1329 pst = find_main_psymtab ();
1332 if (pst->filename != NULL)
1333 lang = deduce_language_from_filename (pst->filename);
1335 if (lang == language_unknown)
1337 /* Make C the default language */
1341 set_language (lang);
1342 expected_language = current_language; /* Don't warn the user. */
1346 /* Open the file specified by NAME and hand it off to BFD for
1347 preliminary analysis. Return a newly initialized bfd *, which
1348 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1349 absolute). In case of trouble, error() is called. */
1352 symfile_bfd_open (char *name)
1356 char *absolute_name;
1358 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1360 /* Look down path for it, allocate 2nd new malloc'd copy. */
1361 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1362 O_RDONLY | O_BINARY, 0, &absolute_name);
1363 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1366 char *exename = alloca (strlen (name) + 5);
1367 strcat (strcpy (exename, name), ".exe");
1368 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1369 O_RDONLY | O_BINARY, 0, &absolute_name);
1374 make_cleanup (xfree, name);
1375 perror_with_name (name);
1378 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1379 bfd. It'll be freed in free_objfile(). */
1381 name = absolute_name;
1383 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1387 make_cleanup (xfree, name);
1388 error (_("\"%s\": can't open to read symbols: %s."), name,
1389 bfd_errmsg (bfd_get_error ()));
1391 bfd_set_cacheable (sym_bfd, 1);
1393 if (!bfd_check_format (sym_bfd, bfd_object))
1395 /* FIXME: should be checking for errors from bfd_close (for one
1396 thing, on error it does not free all the storage associated
1398 bfd_close (sym_bfd); /* This also closes desc. */
1399 make_cleanup (xfree, name);
1400 error (_("\"%s\": can't read symbols: %s."), name,
1401 bfd_errmsg (bfd_get_error ()));
1407 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1408 the section was not found. */
1411 get_section_index (struct objfile *objfile, char *section_name)
1413 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1421 /* Link SF into the global symtab_fns list. Called on startup by the
1422 _initialize routine in each object file format reader, to register
1423 information about each format the the reader is prepared to
1427 add_symtab_fns (struct sym_fns *sf)
1429 sf->next = symtab_fns;
1433 /* Initialize OBJFILE to read symbols from its associated BFD. It
1434 either returns or calls error(). The result is an initialized
1435 struct sym_fns in the objfile structure, that contains cached
1436 information about the symbol file. */
1439 find_sym_fns (struct objfile *objfile)
1442 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1443 char *our_target = bfd_get_target (objfile->obfd);
1445 if (our_flavour == bfd_target_srec_flavour
1446 || our_flavour == bfd_target_ihex_flavour
1447 || our_flavour == bfd_target_tekhex_flavour)
1448 return; /* No symbols. */
1450 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1452 if (our_flavour == sf->sym_flavour)
1459 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1460 bfd_get_target (objfile->obfd));
1464 /* This function runs the load command of our current target. */
1467 load_command (char *arg, int from_tty)
1474 parg = arg = get_exec_file (1);
1476 /* Count how many \ " ' tab space there are in the name. */
1477 while ((parg = strpbrk (parg, "\\\"'\t ")))
1485 /* We need to quote this string so buildargv can pull it apart. */
1486 char *temp = xmalloc (strlen (arg) + count + 1 );
1490 make_cleanup (xfree, temp);
1493 while ((parg = strpbrk (parg, "\\\"'\t ")))
1495 strncpy (ptemp, prev, parg - prev);
1496 ptemp += parg - prev;
1500 strcpy (ptemp, prev);
1506 target_load (arg, from_tty);
1508 /* After re-loading the executable, we don't really know which
1509 overlays are mapped any more. */
1510 overlay_cache_invalid = 1;
1513 /* This version of "load" should be usable for any target. Currently
1514 it is just used for remote targets, not inftarg.c or core files,
1515 on the theory that only in that case is it useful.
1517 Avoiding xmodem and the like seems like a win (a) because we don't have
1518 to worry about finding it, and (b) On VMS, fork() is very slow and so
1519 we don't want to run a subprocess. On the other hand, I'm not sure how
1520 performance compares. */
1522 static int download_write_size = 512;
1524 show_download_write_size (struct ui_file *file, int from_tty,
1525 struct cmd_list_element *c, const char *value)
1527 fprintf_filtered (file, _("\
1528 The write size used when downloading a program is %s.\n"),
1531 static int validate_download = 0;
1533 /* Callback service function for generic_load (bfd_map_over_sections). */
1536 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1538 bfd_size_type *sum = data;
1540 *sum += bfd_get_section_size (asec);
1543 /* Opaque data for load_section_callback. */
1544 struct load_section_data {
1545 unsigned long load_offset;
1546 unsigned long write_count;
1547 unsigned long data_count;
1548 bfd_size_type total_size;
1551 /* Callback service function for generic_load (bfd_map_over_sections). */
1554 load_section_callback (bfd *abfd, asection *asec, void *data)
1556 struct load_section_data *args = data;
1558 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1560 bfd_size_type size = bfd_get_section_size (asec);
1564 struct cleanup *old_chain;
1565 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1566 bfd_size_type block_size;
1568 const char *sect_name = bfd_get_section_name (abfd, asec);
1571 if (download_write_size > 0 && size > download_write_size)
1572 block_size = download_write_size;
1576 buffer = xmalloc (size);
1577 old_chain = make_cleanup (xfree, buffer);
1579 /* Is this really necessary? I guess it gives the user something
1580 to look at during a long download. */
1581 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1582 sect_name, paddr_nz (size), paddr_nz (lma));
1584 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1590 bfd_size_type this_transfer = size - sent;
1592 if (this_transfer >= block_size)
1593 this_transfer = block_size;
1594 len = target_write_memory_partial (lma, buffer,
1595 this_transfer, &err);
1598 if (validate_download)
1600 /* Broken memories and broken monitors manifest
1601 themselves here when bring new computers to
1602 life. This doubles already slow downloads. */
1603 /* NOTE: cagney/1999-10-18: A more efficient
1604 implementation might add a verify_memory()
1605 method to the target vector and then use
1606 that. remote.c could implement that method
1607 using the ``qCRC'' packet. */
1608 gdb_byte *check = xmalloc (len);
1609 struct cleanup *verify_cleanups =
1610 make_cleanup (xfree, check);
1612 if (target_read_memory (lma, check, len) != 0)
1613 error (_("Download verify read failed at 0x%s"),
1615 if (memcmp (buffer, check, len) != 0)
1616 error (_("Download verify compare failed at 0x%s"),
1618 do_cleanups (verify_cleanups);
1620 args->data_count += len;
1623 args->write_count += 1;
1626 || (deprecated_ui_load_progress_hook != NULL
1627 && deprecated_ui_load_progress_hook (sect_name, sent)))
1628 error (_("Canceled the download"));
1630 if (deprecated_show_load_progress != NULL)
1631 deprecated_show_load_progress (sect_name, sent, size,
1635 while (sent < size);
1638 error (_("Memory access error while loading section %s."), sect_name);
1640 do_cleanups (old_chain);
1646 generic_load (char *args, int from_tty)
1650 struct timeval start_time, end_time;
1652 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1653 struct load_section_data cbdata;
1657 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1658 cbdata.write_count = 0; /* Number of writes needed. */
1659 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1660 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1662 argv = buildargv (args);
1667 make_cleanup_freeargv (argv);
1669 filename = tilde_expand (argv[0]);
1670 make_cleanup (xfree, filename);
1672 if (argv[1] != NULL)
1676 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1678 /* If the last word was not a valid number then
1679 treat it as a file name with spaces in. */
1680 if (argv[1] == endptr)
1681 error (_("Invalid download offset:%s."), argv[1]);
1683 if (argv[2] != NULL)
1684 error (_("Too many parameters."));
1687 /* Open the file for loading. */
1688 loadfile_bfd = bfd_openr (filename, gnutarget);
1689 if (loadfile_bfd == NULL)
1691 perror_with_name (filename);
1695 /* FIXME: should be checking for errors from bfd_close (for one thing,
1696 on error it does not free all the storage associated with the
1698 make_cleanup_bfd_close (loadfile_bfd);
1700 if (!bfd_check_format (loadfile_bfd, bfd_object))
1702 error (_("\"%s\" is not an object file: %s"), filename,
1703 bfd_errmsg (bfd_get_error ()));
1706 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1707 (void *) &cbdata.total_size);
1709 gettimeofday (&start_time, NULL);
1711 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1713 gettimeofday (&end_time, NULL);
1715 entry = bfd_get_start_address (loadfile_bfd);
1716 ui_out_text (uiout, "Start address ");
1717 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1718 ui_out_text (uiout, ", load size ");
1719 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1720 ui_out_text (uiout, "\n");
1721 /* We were doing this in remote-mips.c, I suspect it is right
1722 for other targets too. */
1725 /* FIXME: are we supposed to call symbol_file_add or not? According
1726 to a comment from remote-mips.c (where a call to symbol_file_add
1727 was commented out), making the call confuses GDB if more than one
1728 file is loaded in. Some targets do (e.g., remote-vx.c) but
1729 others don't (or didn't - perhaps they have all been deleted). */
1731 print_transfer_performance (gdb_stdout, cbdata.data_count,
1732 cbdata.write_count, &start_time, &end_time);
1734 do_cleanups (old_cleanups);
1737 /* Report how fast the transfer went. */
1739 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1740 replaced by print_transfer_performance (with a very different
1741 function signature). */
1744 report_transfer_performance (unsigned long data_count, time_t start_time,
1747 struct timeval start, end;
1749 start.tv_sec = start_time;
1751 end.tv_sec = end_time;
1754 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1758 print_transfer_performance (struct ui_file *stream,
1759 unsigned long data_count,
1760 unsigned long write_count,
1761 const struct timeval *start_time,
1762 const struct timeval *end_time)
1764 unsigned long time_count;
1766 /* Compute the elapsed time in milliseconds, as a tradeoff between
1767 accuracy and overflow. */
1768 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1769 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1771 ui_out_text (uiout, "Transfer rate: ");
1774 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1775 1000 * (data_count * 8) / time_count);
1776 ui_out_text (uiout, " bits/sec");
1780 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1781 ui_out_text (uiout, " bits in <1 sec");
1783 if (write_count > 0)
1785 ui_out_text (uiout, ", ");
1786 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1787 ui_out_text (uiout, " bytes/write");
1789 ui_out_text (uiout, ".\n");
1792 /* This function allows the addition of incrementally linked object files.
1793 It does not modify any state in the target, only in the debugger. */
1794 /* Note: ezannoni 2000-04-13 This function/command used to have a
1795 special case syntax for the rombug target (Rombug is the boot
1796 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1797 rombug case, the user doesn't need to supply a text address,
1798 instead a call to target_link() (in target.c) would supply the
1799 value to use. We are now discontinuing this type of ad hoc syntax. */
1802 add_symbol_file_command (char *args, int from_tty)
1804 char *filename = NULL;
1805 int flags = OBJF_USERLOADED;
1807 int expecting_option = 0;
1808 int section_index = 0;
1812 int expecting_sec_name = 0;
1813 int expecting_sec_addr = 0;
1821 struct section_addr_info *section_addrs;
1822 struct sect_opt *sect_opts = NULL;
1823 size_t num_sect_opts = 0;
1824 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1827 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1828 * sizeof (struct sect_opt));
1833 error (_("add-symbol-file takes a file name and an address"));
1835 /* Make a copy of the string that we can safely write into. */
1836 args = xstrdup (args);
1838 while (*args != '\000')
1840 /* Any leading spaces? */
1841 while (isspace (*args))
1844 /* Point arg to the beginning of the argument. */
1847 /* Move args pointer over the argument. */
1848 while ((*args != '\000') && !isspace (*args))
1851 /* If there are more arguments, terminate arg and
1853 if (*args != '\000')
1856 /* Now process the argument. */
1859 /* The first argument is the file name. */
1860 filename = tilde_expand (arg);
1861 make_cleanup (xfree, filename);
1866 /* The second argument is always the text address at which
1867 to load the program. */
1868 sect_opts[section_index].name = ".text";
1869 sect_opts[section_index].value = arg;
1870 if (++section_index > num_sect_opts)
1873 sect_opts = ((struct sect_opt *)
1874 xrealloc (sect_opts,
1876 * sizeof (struct sect_opt)));
1881 /* It's an option (starting with '-') or it's an argument
1886 if (strcmp (arg, "-readnow") == 0)
1887 flags |= OBJF_READNOW;
1888 else if (strcmp (arg, "-s") == 0)
1890 expecting_sec_name = 1;
1891 expecting_sec_addr = 1;
1896 if (expecting_sec_name)
1898 sect_opts[section_index].name = arg;
1899 expecting_sec_name = 0;
1902 if (expecting_sec_addr)
1904 sect_opts[section_index].value = arg;
1905 expecting_sec_addr = 0;
1906 if (++section_index > num_sect_opts)
1909 sect_opts = ((struct sect_opt *)
1910 xrealloc (sect_opts,
1912 * sizeof (struct sect_opt)));
1916 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1922 /* This command takes at least two arguments. The first one is a
1923 filename, and the second is the address where this file has been
1924 loaded. Abort now if this address hasn't been provided by the
1926 if (section_index < 1)
1927 error (_("The address where %s has been loaded is missing"), filename);
1929 /* Print the prompt for the query below. And save the arguments into
1930 a sect_addr_info structure to be passed around to other
1931 functions. We have to split this up into separate print
1932 statements because hex_string returns a local static
1935 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1936 section_addrs = alloc_section_addr_info (section_index);
1937 make_cleanup (xfree, section_addrs);
1938 for (i = 0; i < section_index; i++)
1941 char *val = sect_opts[i].value;
1942 char *sec = sect_opts[i].name;
1944 addr = parse_and_eval_address (val);
1946 /* Here we store the section offsets in the order they were
1947 entered on the command line. */
1948 section_addrs->other[sec_num].name = sec;
1949 section_addrs->other[sec_num].addr = addr;
1950 printf_unfiltered ("\t%s_addr = %s\n",
1951 sec, hex_string ((unsigned long)addr));
1954 /* The object's sections are initialized when a
1955 call is made to build_objfile_section_table (objfile).
1956 This happens in reread_symbols.
1957 At this point, we don't know what file type this is,
1958 so we can't determine what section names are valid. */
1961 if (from_tty && (!query ("%s", "")))
1962 error (_("Not confirmed."));
1964 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1966 /* Getting new symbols may change our opinion about what is
1968 reinit_frame_cache ();
1969 do_cleanups (my_cleanups);
1973 add_shared_symbol_files_command (char *args, int from_tty)
1975 #ifdef ADD_SHARED_SYMBOL_FILES
1976 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1978 error (_("This command is not available in this configuration of GDB."));
1982 /* Re-read symbols if a symbol-file has changed. */
1984 reread_symbols (void)
1986 struct objfile *objfile;
1989 struct stat new_statbuf;
1992 /* With the addition of shared libraries, this should be modified,
1993 the load time should be saved in the partial symbol tables, since
1994 different tables may come from different source files. FIXME.
1995 This routine should then walk down each partial symbol table
1996 and see if the symbol table that it originates from has been changed */
1998 for (objfile = object_files; objfile; objfile = objfile->next)
2002 #ifdef DEPRECATED_IBM6000_TARGET
2003 /* If this object is from a shared library, then you should
2004 stat on the library name, not member name. */
2006 if (objfile->obfd->my_archive)
2007 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2010 res = stat (objfile->name, &new_statbuf);
2013 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2014 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2018 new_modtime = new_statbuf.st_mtime;
2019 if (new_modtime != objfile->mtime)
2021 struct cleanup *old_cleanups;
2022 struct section_offsets *offsets;
2024 char *obfd_filename;
2026 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2029 /* There are various functions like symbol_file_add,
2030 symfile_bfd_open, syms_from_objfile, etc., which might
2031 appear to do what we want. But they have various other
2032 effects which we *don't* want. So we just do stuff
2033 ourselves. We don't worry about mapped files (for one thing,
2034 any mapped file will be out of date). */
2036 /* If we get an error, blow away this objfile (not sure if
2037 that is the correct response for things like shared
2039 old_cleanups = make_cleanup_free_objfile (objfile);
2040 /* We need to do this whenever any symbols go away. */
2041 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2043 /* Clean up any state BFD has sitting around. We don't need
2044 to close the descriptor but BFD lacks a way of closing the
2045 BFD without closing the descriptor. */
2046 obfd_filename = bfd_get_filename (objfile->obfd);
2047 if (!bfd_close (objfile->obfd))
2048 error (_("Can't close BFD for %s: %s"), objfile->name,
2049 bfd_errmsg (bfd_get_error ()));
2050 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2051 if (objfile->obfd == NULL)
2052 error (_("Can't open %s to read symbols."), objfile->name);
2053 /* bfd_openr sets cacheable to true, which is what we want. */
2054 if (!bfd_check_format (objfile->obfd, bfd_object))
2055 error (_("Can't read symbols from %s: %s."), objfile->name,
2056 bfd_errmsg (bfd_get_error ()));
2058 /* Save the offsets, we will nuke them with the rest of the
2060 num_offsets = objfile->num_sections;
2061 offsets = ((struct section_offsets *)
2062 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2063 memcpy (offsets, objfile->section_offsets,
2064 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2066 /* Remove any references to this objfile in the global
2068 preserve_values (objfile);
2070 /* Nuke all the state that we will re-read. Much of the following
2071 code which sets things to NULL really is necessary to tell
2072 other parts of GDB that there is nothing currently there. */
2074 /* FIXME: Do we have to free a whole linked list, or is this
2076 if (objfile->global_psymbols.list)
2077 xfree (objfile->global_psymbols.list);
2078 memset (&objfile->global_psymbols, 0,
2079 sizeof (objfile->global_psymbols));
2080 if (objfile->static_psymbols.list)
2081 xfree (objfile->static_psymbols.list);
2082 memset (&objfile->static_psymbols, 0,
2083 sizeof (objfile->static_psymbols));
2085 /* Free the obstacks for non-reusable objfiles */
2086 bcache_xfree (objfile->psymbol_cache);
2087 objfile->psymbol_cache = bcache_xmalloc ();
2088 bcache_xfree (objfile->macro_cache);
2089 objfile->macro_cache = bcache_xmalloc ();
2090 if (objfile->demangled_names_hash != NULL)
2092 htab_delete (objfile->demangled_names_hash);
2093 objfile->demangled_names_hash = NULL;
2095 obstack_free (&objfile->objfile_obstack, 0);
2096 objfile->sections = NULL;
2097 objfile->symtabs = NULL;
2098 objfile->psymtabs = NULL;
2099 objfile->free_psymtabs = NULL;
2100 objfile->cp_namespace_symtab = NULL;
2101 objfile->msymbols = NULL;
2102 objfile->deprecated_sym_private = NULL;
2103 objfile->minimal_symbol_count = 0;
2104 memset (&objfile->msymbol_hash, 0,
2105 sizeof (objfile->msymbol_hash));
2106 memset (&objfile->msymbol_demangled_hash, 0,
2107 sizeof (objfile->msymbol_demangled_hash));
2108 objfile->fundamental_types = NULL;
2109 clear_objfile_data (objfile);
2110 if (objfile->sf != NULL)
2112 (*objfile->sf->sym_finish) (objfile);
2115 /* We never make this a mapped file. */
2117 objfile->psymbol_cache = bcache_xmalloc ();
2118 objfile->macro_cache = bcache_xmalloc ();
2119 /* obstack_init also initializes the obstack so it is
2120 empty. We could use obstack_specify_allocation but
2121 gdb_obstack.h specifies the alloc/dealloc
2123 obstack_init (&objfile->objfile_obstack);
2124 if (build_objfile_section_table (objfile))
2126 error (_("Can't find the file sections in `%s': %s"),
2127 objfile->name, bfd_errmsg (bfd_get_error ()));
2129 terminate_minimal_symbol_table (objfile);
2131 /* We use the same section offsets as from last time. I'm not
2132 sure whether that is always correct for shared libraries. */
2133 objfile->section_offsets = (struct section_offsets *)
2134 obstack_alloc (&objfile->objfile_obstack,
2135 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2136 memcpy (objfile->section_offsets, offsets,
2137 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2138 objfile->num_sections = num_offsets;
2140 /* What the hell is sym_new_init for, anyway? The concept of
2141 distinguishing between the main file and additional files
2142 in this way seems rather dubious. */
2143 if (objfile == symfile_objfile)
2145 (*objfile->sf->sym_new_init) (objfile);
2148 (*objfile->sf->sym_init) (objfile);
2149 clear_complaints (&symfile_complaints, 1, 1);
2150 /* The "mainline" parameter is a hideous hack; I think leaving it
2151 zero is OK since dbxread.c also does what it needs to do if
2152 objfile->global_psymbols.size is 0. */
2153 (*objfile->sf->sym_read) (objfile, 0);
2154 if (!have_partial_symbols () && !have_full_symbols ())
2157 printf_unfiltered (_("(no debugging symbols found)\n"));
2160 objfile->flags |= OBJF_SYMS;
2162 /* We're done reading the symbol file; finish off complaints. */
2163 clear_complaints (&symfile_complaints, 0, 1);
2165 /* Getting new symbols may change our opinion about what is
2168 reinit_frame_cache ();
2170 /* Discard cleanups as symbol reading was successful. */
2171 discard_cleanups (old_cleanups);
2173 /* If the mtime has changed between the time we set new_modtime
2174 and now, we *want* this to be out of date, so don't call stat
2176 objfile->mtime = new_modtime;
2178 reread_separate_symbols (objfile);
2185 clear_symtab_users ();
2186 /* At least one objfile has changed, so we can consider that
2187 the executable we're debugging has changed too. */
2188 observer_notify_executable_changed (NULL);
2194 /* Handle separate debug info for OBJFILE, which has just been
2196 - If we had separate debug info before, but now we don't, get rid
2197 of the separated objfile.
2198 - If we didn't have separated debug info before, but now we do,
2199 read in the new separated debug info file.
2200 - If the debug link points to a different file, toss the old one
2201 and read the new one.
2202 This function does *not* handle the case where objfile is still
2203 using the same separate debug info file, but that file's timestamp
2204 has changed. That case should be handled by the loop in
2205 reread_symbols already. */
2207 reread_separate_symbols (struct objfile *objfile)
2210 unsigned long crc32;
2212 /* Does the updated objfile's debug info live in a
2214 debug_file = find_separate_debug_file (objfile);
2216 if (objfile->separate_debug_objfile)
2218 /* There are two cases where we need to get rid of
2219 the old separated debug info objfile:
2220 - if the new primary objfile doesn't have
2221 separated debug info, or
2222 - if the new primary objfile has separate debug
2223 info, but it's under a different filename.
2225 If the old and new objfiles both have separate
2226 debug info, under the same filename, then we're
2227 okay --- if the separated file's contents have
2228 changed, we will have caught that when we
2229 visited it in this function's outermost
2232 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2233 free_objfile (objfile->separate_debug_objfile);
2236 /* If the new objfile has separate debug info, and we
2237 haven't loaded it already, do so now. */
2239 && ! objfile->separate_debug_objfile)
2241 /* Use the same section offset table as objfile itself.
2242 Preserve the flags from objfile that make sense. */
2243 objfile->separate_debug_objfile
2244 = (symbol_file_add_with_addrs_or_offsets
2245 (symfile_bfd_open (debug_file),
2246 info_verbose, /* from_tty: Don't override the default. */
2247 0, /* No addr table. */
2248 objfile->section_offsets, objfile->num_sections,
2249 0, /* Not mainline. See comments about this above. */
2250 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2251 | OBJF_USERLOADED)));
2252 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2268 static filename_language *filename_language_table;
2269 static int fl_table_size, fl_table_next;
2272 add_filename_language (char *ext, enum language lang)
2274 if (fl_table_next >= fl_table_size)
2276 fl_table_size += 10;
2277 filename_language_table =
2278 xrealloc (filename_language_table,
2279 fl_table_size * sizeof (*filename_language_table));
2282 filename_language_table[fl_table_next].ext = xstrdup (ext);
2283 filename_language_table[fl_table_next].lang = lang;
2287 static char *ext_args;
2289 show_ext_args (struct ui_file *file, int from_tty,
2290 struct cmd_list_element *c, const char *value)
2292 fprintf_filtered (file, _("\
2293 Mapping between filename extension and source language is \"%s\".\n"),
2298 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2301 char *cp = ext_args;
2304 /* First arg is filename extension, starting with '.' */
2306 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2308 /* Find end of first arg. */
2309 while (*cp && !isspace (*cp))
2313 error (_("'%s': two arguments required -- filename extension and language"),
2316 /* Null-terminate first arg */
2319 /* Find beginning of second arg, which should be a source language. */
2320 while (*cp && isspace (*cp))
2324 error (_("'%s': two arguments required -- filename extension and language"),
2327 /* Lookup the language from among those we know. */
2328 lang = language_enum (cp);
2330 /* Now lookup the filename extension: do we already know it? */
2331 for (i = 0; i < fl_table_next; i++)
2332 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2335 if (i >= fl_table_next)
2337 /* new file extension */
2338 add_filename_language (ext_args, lang);
2342 /* redefining a previously known filename extension */
2345 /* query ("Really make files of type %s '%s'?", */
2346 /* ext_args, language_str (lang)); */
2348 xfree (filename_language_table[i].ext);
2349 filename_language_table[i].ext = xstrdup (ext_args);
2350 filename_language_table[i].lang = lang;
2355 info_ext_lang_command (char *args, int from_tty)
2359 printf_filtered (_("Filename extensions and the languages they represent:"));
2360 printf_filtered ("\n\n");
2361 for (i = 0; i < fl_table_next; i++)
2362 printf_filtered ("\t%s\t- %s\n",
2363 filename_language_table[i].ext,
2364 language_str (filename_language_table[i].lang));
2368 init_filename_language_table (void)
2370 if (fl_table_size == 0) /* protect against repetition */
2374 filename_language_table =
2375 xmalloc (fl_table_size * sizeof (*filename_language_table));
2376 add_filename_language (".c", language_c);
2377 add_filename_language (".C", language_cplus);
2378 add_filename_language (".cc", language_cplus);
2379 add_filename_language (".cp", language_cplus);
2380 add_filename_language (".cpp", language_cplus);
2381 add_filename_language (".cxx", language_cplus);
2382 add_filename_language (".c++", language_cplus);
2383 add_filename_language (".java", language_java);
2384 add_filename_language (".class", language_java);
2385 add_filename_language (".m", language_objc);
2386 add_filename_language (".f", language_fortran);
2387 add_filename_language (".F", language_fortran);
2388 add_filename_language (".s", language_asm);
2389 add_filename_language (".S", language_asm);
2390 add_filename_language (".pas", language_pascal);
2391 add_filename_language (".p", language_pascal);
2392 add_filename_language (".pp", language_pascal);
2393 add_filename_language (".adb", language_ada);
2394 add_filename_language (".ads", language_ada);
2395 add_filename_language (".a", language_ada);
2396 add_filename_language (".ada", language_ada);
2401 deduce_language_from_filename (char *filename)
2406 if (filename != NULL)
2407 if ((cp = strrchr (filename, '.')) != NULL)
2408 for (i = 0; i < fl_table_next; i++)
2409 if (strcmp (cp, filename_language_table[i].ext) == 0)
2410 return filename_language_table[i].lang;
2412 return language_unknown;
2417 Allocate and partly initialize a new symbol table. Return a pointer
2418 to it. error() if no space.
2420 Caller must set these fields:
2426 possibly free_named_symtabs (symtab->filename);
2430 allocate_symtab (char *filename, struct objfile *objfile)
2432 struct symtab *symtab;
2434 symtab = (struct symtab *)
2435 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2436 memset (symtab, 0, sizeof (*symtab));
2437 symtab->filename = obsavestring (filename, strlen (filename),
2438 &objfile->objfile_obstack);
2439 symtab->fullname = NULL;
2440 symtab->language = deduce_language_from_filename (filename);
2441 symtab->debugformat = obsavestring ("unknown", 7,
2442 &objfile->objfile_obstack);
2444 /* Hook it to the objfile it comes from */
2446 symtab->objfile = objfile;
2447 symtab->next = objfile->symtabs;
2448 objfile->symtabs = symtab;
2450 /* FIXME: This should go away. It is only defined for the Z8000,
2451 and the Z8000 definition of this macro doesn't have anything to
2452 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2453 here for convenience. */
2454 #ifdef INIT_EXTRA_SYMTAB_INFO
2455 INIT_EXTRA_SYMTAB_INFO (symtab);
2461 struct partial_symtab *
2462 allocate_psymtab (char *filename, struct objfile *objfile)
2464 struct partial_symtab *psymtab;
2466 if (objfile->free_psymtabs)
2468 psymtab = objfile->free_psymtabs;
2469 objfile->free_psymtabs = psymtab->next;
2472 psymtab = (struct partial_symtab *)
2473 obstack_alloc (&objfile->objfile_obstack,
2474 sizeof (struct partial_symtab));
2476 memset (psymtab, 0, sizeof (struct partial_symtab));
2477 psymtab->filename = obsavestring (filename, strlen (filename),
2478 &objfile->objfile_obstack);
2479 psymtab->symtab = NULL;
2481 /* Prepend it to the psymtab list for the objfile it belongs to.
2482 Psymtabs are searched in most recent inserted -> least recent
2485 psymtab->objfile = objfile;
2486 psymtab->next = objfile->psymtabs;
2487 objfile->psymtabs = psymtab;
2490 struct partial_symtab **prev_pst;
2491 psymtab->objfile = objfile;
2492 psymtab->next = NULL;
2493 prev_pst = &(objfile->psymtabs);
2494 while ((*prev_pst) != NULL)
2495 prev_pst = &((*prev_pst)->next);
2496 (*prev_pst) = psymtab;
2504 discard_psymtab (struct partial_symtab *pst)
2506 struct partial_symtab **prev_pst;
2509 Empty psymtabs happen as a result of header files which don't
2510 have any symbols in them. There can be a lot of them. But this
2511 check is wrong, in that a psymtab with N_SLINE entries but
2512 nothing else is not empty, but we don't realize that. Fixing
2513 that without slowing things down might be tricky. */
2515 /* First, snip it out of the psymtab chain */
2517 prev_pst = &(pst->objfile->psymtabs);
2518 while ((*prev_pst) != pst)
2519 prev_pst = &((*prev_pst)->next);
2520 (*prev_pst) = pst->next;
2522 /* Next, put it on a free list for recycling */
2524 pst->next = pst->objfile->free_psymtabs;
2525 pst->objfile->free_psymtabs = pst;
2529 /* Reset all data structures in gdb which may contain references to symbol
2533 clear_symtab_users (void)
2535 /* Someday, we should do better than this, by only blowing away
2536 the things that really need to be blown. */
2538 /* Clear the "current" symtab first, because it is no longer valid.
2539 breakpoint_re_set may try to access the current symtab. */
2540 clear_current_source_symtab_and_line ();
2543 breakpoint_re_set ();
2544 set_default_breakpoint (0, 0, 0, 0);
2545 clear_pc_function_cache ();
2546 if (deprecated_target_new_objfile_hook)
2547 deprecated_target_new_objfile_hook (NULL);
2551 clear_symtab_users_cleanup (void *ignore)
2553 clear_symtab_users ();
2556 /* clear_symtab_users_once:
2558 This function is run after symbol reading, or from a cleanup.
2559 If an old symbol table was obsoleted, the old symbol table
2560 has been blown away, but the other GDB data structures that may
2561 reference it have not yet been cleared or re-directed. (The old
2562 symtab was zapped, and the cleanup queued, in free_named_symtab()
2565 This function can be queued N times as a cleanup, or called
2566 directly; it will do all the work the first time, and then will be a
2567 no-op until the next time it is queued. This works by bumping a
2568 counter at queueing time. Much later when the cleanup is run, or at
2569 the end of symbol processing (in case the cleanup is discarded), if
2570 the queued count is greater than the "done-count", we do the work
2571 and set the done-count to the queued count. If the queued count is
2572 less than or equal to the done-count, we just ignore the call. This
2573 is needed because reading a single .o file will often replace many
2574 symtabs (one per .h file, for example), and we don't want to reset
2575 the breakpoints N times in the user's face.
2577 The reason we both queue a cleanup, and call it directly after symbol
2578 reading, is because the cleanup protects us in case of errors, but is
2579 discarded if symbol reading is successful. */
2582 /* FIXME: As free_named_symtabs is currently a big noop this function
2583 is no longer needed. */
2584 static void clear_symtab_users_once (void);
2586 static int clear_symtab_users_queued;
2587 static int clear_symtab_users_done;
2590 clear_symtab_users_once (void)
2592 /* Enforce once-per-`do_cleanups'-semantics */
2593 if (clear_symtab_users_queued <= clear_symtab_users_done)
2595 clear_symtab_users_done = clear_symtab_users_queued;
2597 clear_symtab_users ();
2601 /* Delete the specified psymtab, and any others that reference it. */
2604 cashier_psymtab (struct partial_symtab *pst)
2606 struct partial_symtab *ps, *pprev = NULL;
2609 /* Find its previous psymtab in the chain */
2610 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2619 /* Unhook it from the chain. */
2620 if (ps == pst->objfile->psymtabs)
2621 pst->objfile->psymtabs = ps->next;
2623 pprev->next = ps->next;
2625 /* FIXME, we can't conveniently deallocate the entries in the
2626 partial_symbol lists (global_psymbols/static_psymbols) that
2627 this psymtab points to. These just take up space until all
2628 the psymtabs are reclaimed. Ditto the dependencies list and
2629 filename, which are all in the objfile_obstack. */
2631 /* We need to cashier any psymtab that has this one as a dependency... */
2633 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2635 for (i = 0; i < ps->number_of_dependencies; i++)
2637 if (ps->dependencies[i] == pst)
2639 cashier_psymtab (ps);
2640 goto again; /* Must restart, chain has been munged. */
2647 /* If a symtab or psymtab for filename NAME is found, free it along
2648 with any dependent breakpoints, displays, etc.
2649 Used when loading new versions of object modules with the "add-file"
2650 command. This is only called on the top-level symtab or psymtab's name;
2651 it is not called for subsidiary files such as .h files.
2653 Return value is 1 if we blew away the environment, 0 if not.
2654 FIXME. The return value appears to never be used.
2656 FIXME. I think this is not the best way to do this. We should
2657 work on being gentler to the environment while still cleaning up
2658 all stray pointers into the freed symtab. */
2661 free_named_symtabs (char *name)
2664 /* FIXME: With the new method of each objfile having it's own
2665 psymtab list, this function needs serious rethinking. In particular,
2666 why was it ever necessary to toss psymtabs with specific compilation
2667 unit filenames, as opposed to all psymtabs from a particular symbol
2669 Well, the answer is that some systems permit reloading of particular
2670 compilation units. We want to blow away any old info about these
2671 compilation units, regardless of which objfiles they arrived in. --gnu. */
2674 struct symtab *prev;
2675 struct partial_symtab *ps;
2676 struct blockvector *bv;
2679 /* We only wack things if the symbol-reload switch is set. */
2680 if (!symbol_reloading)
2683 /* Some symbol formats have trouble providing file names... */
2684 if (name == 0 || *name == '\0')
2687 /* Look for a psymtab with the specified name. */
2690 for (ps = partial_symtab_list; ps; ps = ps->next)
2692 if (strcmp (name, ps->filename) == 0)
2694 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2695 goto again2; /* Must restart, chain has been munged */
2699 /* Look for a symtab with the specified name. */
2701 for (s = symtab_list; s; s = s->next)
2703 if (strcmp (name, s->filename) == 0)
2710 if (s == symtab_list)
2711 symtab_list = s->next;
2713 prev->next = s->next;
2715 /* For now, queue a delete for all breakpoints, displays, etc., whether
2716 or not they depend on the symtab being freed. This should be
2717 changed so that only those data structures affected are deleted. */
2719 /* But don't delete anything if the symtab is empty.
2720 This test is necessary due to a bug in "dbxread.c" that
2721 causes empty symtabs to be created for N_SO symbols that
2722 contain the pathname of the object file. (This problem
2723 has been fixed in GDB 3.9x). */
2725 bv = BLOCKVECTOR (s);
2726 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2727 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2728 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2730 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2732 clear_symtab_users_queued++;
2733 make_cleanup (clear_symtab_users_once, 0);
2737 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2744 /* It is still possible that some breakpoints will be affected
2745 even though no symtab was found, since the file might have
2746 been compiled without debugging, and hence not be associated
2747 with a symtab. In order to handle this correctly, we would need
2748 to keep a list of text address ranges for undebuggable files.
2749 For now, we do nothing, since this is a fairly obscure case. */
2753 /* FIXME, what about the minimal symbol table? */
2760 /* Allocate and partially fill a partial symtab. It will be
2761 completely filled at the end of the symbol list.
2763 FILENAME is the name of the symbol-file we are reading from. */
2765 struct partial_symtab *
2766 start_psymtab_common (struct objfile *objfile,
2767 struct section_offsets *section_offsets, char *filename,
2768 CORE_ADDR textlow, struct partial_symbol **global_syms,
2769 struct partial_symbol **static_syms)
2771 struct partial_symtab *psymtab;
2773 psymtab = allocate_psymtab (filename, objfile);
2774 psymtab->section_offsets = section_offsets;
2775 psymtab->textlow = textlow;
2776 psymtab->texthigh = psymtab->textlow; /* default */
2777 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2778 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2782 /* Add a symbol with a long value to a psymtab.
2783 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2784 Return the partial symbol that has been added. */
2786 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2787 symbol is so that callers can get access to the symbol's demangled
2788 name, which they don't have any cheap way to determine otherwise.
2789 (Currenly, dwarf2read.c is the only file who uses that information,
2790 though it's possible that other readers might in the future.)
2791 Elena wasn't thrilled about that, and I don't blame her, but we
2792 couldn't come up with a better way to get that information. If
2793 it's needed in other situations, we could consider breaking up
2794 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2797 const struct partial_symbol *
2798 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2799 enum address_class class,
2800 struct psymbol_allocation_list *list, long val, /* Value as a long */
2801 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2802 enum language language, struct objfile *objfile)
2804 struct partial_symbol *psym;
2805 char *buf = alloca (namelength + 1);
2806 /* psymbol is static so that there will be no uninitialized gaps in the
2807 structure which might contain random data, causing cache misses in
2809 static struct partial_symbol psymbol;
2811 /* Create local copy of the partial symbol */
2812 memcpy (buf, name, namelength);
2813 buf[namelength] = '\0';
2814 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2817 SYMBOL_VALUE (&psymbol) = val;
2821 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2823 SYMBOL_SECTION (&psymbol) = 0;
2824 SYMBOL_LANGUAGE (&psymbol) = language;
2825 PSYMBOL_DOMAIN (&psymbol) = domain;
2826 PSYMBOL_CLASS (&psymbol) = class;
2828 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2830 /* Stash the partial symbol away in the cache */
2831 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2832 objfile->psymbol_cache);
2834 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2835 if (list->next >= list->list + list->size)
2837 extend_psymbol_list (list, objfile);
2839 *list->next++ = psym;
2840 OBJSTAT (objfile, n_psyms++);
2845 /* Add a symbol with a long value to a psymtab. This differs from
2846 * add_psymbol_to_list above in taking both a mangled and a demangled
2850 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2851 int dem_namelength, domain_enum domain,
2852 enum address_class class,
2853 struct psymbol_allocation_list *list, long val, /* Value as a long */
2854 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2855 enum language language,
2856 struct objfile *objfile)
2858 struct partial_symbol *psym;
2859 char *buf = alloca (namelength + 1);
2860 /* psymbol is static so that there will be no uninitialized gaps in the
2861 structure which might contain random data, causing cache misses in
2863 static struct partial_symbol psymbol;
2865 /* Create local copy of the partial symbol */
2867 memcpy (buf, name, namelength);
2868 buf[namelength] = '\0';
2869 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2870 objfile->psymbol_cache);
2872 buf = alloca (dem_namelength + 1);
2873 memcpy (buf, dem_name, dem_namelength);
2874 buf[dem_namelength] = '\0';
2879 case language_cplus:
2880 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2881 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2883 /* FIXME What should be done for the default case? Ignoring for now. */
2886 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2889 SYMBOL_VALUE (&psymbol) = val;
2893 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2895 SYMBOL_SECTION (&psymbol) = 0;
2896 SYMBOL_LANGUAGE (&psymbol) = language;
2897 PSYMBOL_DOMAIN (&psymbol) = domain;
2898 PSYMBOL_CLASS (&psymbol) = class;
2899 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2901 /* Stash the partial symbol away in the cache */
2902 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2903 objfile->psymbol_cache);
2905 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2906 if (list->next >= list->list + list->size)
2908 extend_psymbol_list (list, objfile);
2910 *list->next++ = psym;
2911 OBJSTAT (objfile, n_psyms++);
2914 /* Initialize storage for partial symbols. */
2917 init_psymbol_list (struct objfile *objfile, int total_symbols)
2919 /* Free any previously allocated psymbol lists. */
2921 if (objfile->global_psymbols.list)
2923 xfree (objfile->global_psymbols.list);
2925 if (objfile->static_psymbols.list)
2927 xfree (objfile->static_psymbols.list);
2930 /* Current best guess is that approximately a twentieth
2931 of the total symbols (in a debugging file) are global or static
2934 objfile->global_psymbols.size = total_symbols / 10;
2935 objfile->static_psymbols.size = total_symbols / 10;
2937 if (objfile->global_psymbols.size > 0)
2939 objfile->global_psymbols.next =
2940 objfile->global_psymbols.list = (struct partial_symbol **)
2941 xmalloc ((objfile->global_psymbols.size
2942 * sizeof (struct partial_symbol *)));
2944 if (objfile->static_psymbols.size > 0)
2946 objfile->static_psymbols.next =
2947 objfile->static_psymbols.list = (struct partial_symbol **)
2948 xmalloc ((objfile->static_psymbols.size
2949 * sizeof (struct partial_symbol *)));
2954 The following code implements an abstraction for debugging overlay sections.
2956 The target model is as follows:
2957 1) The gnu linker will permit multiple sections to be mapped into the
2958 same VMA, each with its own unique LMA (or load address).
2959 2) It is assumed that some runtime mechanism exists for mapping the
2960 sections, one by one, from the load address into the VMA address.
2961 3) This code provides a mechanism for gdb to keep track of which
2962 sections should be considered to be mapped from the VMA to the LMA.
2963 This information is used for symbol lookup, and memory read/write.
2964 For instance, if a section has been mapped then its contents
2965 should be read from the VMA, otherwise from the LMA.
2967 Two levels of debugger support for overlays are available. One is
2968 "manual", in which the debugger relies on the user to tell it which
2969 overlays are currently mapped. This level of support is
2970 implemented entirely in the core debugger, and the information about
2971 whether a section is mapped is kept in the objfile->obj_section table.
2973 The second level of support is "automatic", and is only available if
2974 the target-specific code provides functionality to read the target's
2975 overlay mapping table, and translate its contents for the debugger
2976 (by updating the mapped state information in the obj_section tables).
2978 The interface is as follows:
2980 overlay map <name> -- tell gdb to consider this section mapped
2981 overlay unmap <name> -- tell gdb to consider this section unmapped
2982 overlay list -- list the sections that GDB thinks are mapped
2983 overlay read-target -- get the target's state of what's mapped
2984 overlay off/manual/auto -- set overlay debugging state
2985 Functional interface:
2986 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2987 section, return that section.
2988 find_pc_overlay(pc): find any overlay section that contains
2989 the pc, either in its VMA or its LMA
2990 overlay_is_mapped(sect): true if overlay is marked as mapped
2991 section_is_overlay(sect): true if section's VMA != LMA
2992 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2993 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2994 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2995 overlay_mapped_address(...): map an address from section's LMA to VMA
2996 overlay_unmapped_address(...): map an address from section's VMA to LMA
2997 symbol_overlayed_address(...): Return a "current" address for symbol:
2998 either in VMA or LMA depending on whether
2999 the symbol's section is currently mapped
3002 /* Overlay debugging state: */
3004 enum overlay_debugging_state overlay_debugging = ovly_off;
3005 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3007 /* Target vector for refreshing overlay mapped state */
3008 static void simple_overlay_update (struct obj_section *);
3009 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
3011 /* Function: section_is_overlay (SECTION)
3012 Returns true if SECTION has VMA not equal to LMA, ie.
3013 SECTION is loaded at an address different from where it will "run". */
3016 section_is_overlay (asection *section)
3018 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3020 if (overlay_debugging)
3021 if (section && section->lma != 0 &&
3022 section->vma != section->lma)
3028 /* Function: overlay_invalidate_all (void)
3029 Invalidate the mapped state of all overlay sections (mark it as stale). */
3032 overlay_invalidate_all (void)
3034 struct objfile *objfile;
3035 struct obj_section *sect;
3037 ALL_OBJSECTIONS (objfile, sect)
3038 if (section_is_overlay (sect->the_bfd_section))
3039 sect->ovly_mapped = -1;
3042 /* Function: overlay_is_mapped (SECTION)
3043 Returns true if section is an overlay, and is currently mapped.
3044 Private: public access is thru function section_is_mapped.
3046 Access to the ovly_mapped flag is restricted to this function, so
3047 that we can do automatic update. If the global flag
3048 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3049 overlay_invalidate_all. If the mapped state of the particular
3050 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3053 overlay_is_mapped (struct obj_section *osect)
3055 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3058 switch (overlay_debugging)
3062 return 0; /* overlay debugging off */
3063 case ovly_auto: /* overlay debugging automatic */
3064 /* Unles there is a target_overlay_update function,
3065 there's really nothing useful to do here (can't really go auto) */
3066 if (target_overlay_update)
3068 if (overlay_cache_invalid)
3070 overlay_invalidate_all ();
3071 overlay_cache_invalid = 0;
3073 if (osect->ovly_mapped == -1)
3074 (*target_overlay_update) (osect);
3076 /* fall thru to manual case */
3077 case ovly_on: /* overlay debugging manual */
3078 return osect->ovly_mapped == 1;
3082 /* Function: section_is_mapped
3083 Returns true if section is an overlay, and is currently mapped. */
3086 section_is_mapped (asection *section)
3088 struct objfile *objfile;
3089 struct obj_section *osect;
3091 if (overlay_debugging)
3092 if (section && section_is_overlay (section))
3093 ALL_OBJSECTIONS (objfile, osect)
3094 if (osect->the_bfd_section == section)
3095 return overlay_is_mapped (osect);
3100 /* Function: pc_in_unmapped_range
3101 If PC falls into the lma range of SECTION, return true, else false. */
3104 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3106 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3110 if (overlay_debugging)
3111 if (section && section_is_overlay (section))
3113 size = bfd_get_section_size (section);
3114 if (section->lma <= pc && pc < section->lma + size)
3120 /* Function: pc_in_mapped_range
3121 If PC falls into the vma range of SECTION, return true, else false. */
3124 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3126 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3130 if (overlay_debugging)
3131 if (section && section_is_overlay (section))
3133 size = bfd_get_section_size (section);
3134 if (section->vma <= pc && pc < section->vma + size)
3141 /* Return true if the mapped ranges of sections A and B overlap, false
3144 sections_overlap (asection *a, asection *b)
3146 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3148 CORE_ADDR a_start = a->vma;
3149 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3150 CORE_ADDR b_start = b->vma;
3151 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3153 return (a_start < b_end && b_start < a_end);
3156 /* Function: overlay_unmapped_address (PC, SECTION)
3157 Returns the address corresponding to PC in the unmapped (load) range.
3158 May be the same as PC. */
3161 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3163 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3165 if (overlay_debugging)
3166 if (section && section_is_overlay (section) &&
3167 pc_in_mapped_range (pc, section))
3168 return pc + section->lma - section->vma;
3173 /* Function: overlay_mapped_address (PC, SECTION)
3174 Returns the address corresponding to PC in the mapped (runtime) range.
3175 May be the same as PC. */
3178 overlay_mapped_address (CORE_ADDR pc, asection *section)
3180 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3182 if (overlay_debugging)
3183 if (section && section_is_overlay (section) &&
3184 pc_in_unmapped_range (pc, section))
3185 return pc + section->vma - section->lma;
3191 /* Function: symbol_overlayed_address
3192 Return one of two addresses (relative to the VMA or to the LMA),
3193 depending on whether the section is mapped or not. */
3196 symbol_overlayed_address (CORE_ADDR address, asection *section)
3198 if (overlay_debugging)
3200 /* If the symbol has no section, just return its regular address. */
3203 /* If the symbol's section is not an overlay, just return its address */
3204 if (!section_is_overlay (section))
3206 /* If the symbol's section is mapped, just return its address */
3207 if (section_is_mapped (section))
3210 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3211 * then return its LOADED address rather than its vma address!!
3213 return overlay_unmapped_address (address, section);
3218 /* Function: find_pc_overlay (PC)
3219 Return the best-match overlay section for PC:
3220 If PC matches a mapped overlay section's VMA, return that section.
3221 Else if PC matches an unmapped section's VMA, return that section.
3222 Else if PC matches an unmapped section's LMA, return that section. */
3225 find_pc_overlay (CORE_ADDR pc)
3227 struct objfile *objfile;
3228 struct obj_section *osect, *best_match = NULL;
3230 if (overlay_debugging)
3231 ALL_OBJSECTIONS (objfile, osect)
3232 if (section_is_overlay (osect->the_bfd_section))
3234 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3236 if (overlay_is_mapped (osect))
3237 return osect->the_bfd_section;
3241 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3244 return best_match ? best_match->the_bfd_section : NULL;
3247 /* Function: find_pc_mapped_section (PC)
3248 If PC falls into the VMA address range of an overlay section that is
3249 currently marked as MAPPED, return that section. Else return NULL. */
3252 find_pc_mapped_section (CORE_ADDR pc)
3254 struct objfile *objfile;
3255 struct obj_section *osect;
3257 if (overlay_debugging)
3258 ALL_OBJSECTIONS (objfile, osect)
3259 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3260 overlay_is_mapped (osect))
3261 return osect->the_bfd_section;
3266 /* Function: list_overlays_command
3267 Print a list of mapped sections and their PC ranges */
3270 list_overlays_command (char *args, int from_tty)
3273 struct objfile *objfile;
3274 struct obj_section *osect;
3276 if (overlay_debugging)
3277 ALL_OBJSECTIONS (objfile, osect)
3278 if (overlay_is_mapped (osect))
3284 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3285 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3286 size = bfd_get_section_size (osect->the_bfd_section);
3287 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3289 printf_filtered ("Section %s, loaded at ", name);
3290 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3291 puts_filtered (" - ");
3292 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3293 printf_filtered (", mapped at ");
3294 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3295 puts_filtered (" - ");
3296 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3297 puts_filtered ("\n");
3302 printf_filtered (_("No sections are mapped.\n"));
3305 /* Function: map_overlay_command
3306 Mark the named section as mapped (ie. residing at its VMA address). */
3309 map_overlay_command (char *args, int from_tty)
3311 struct objfile *objfile, *objfile2;
3312 struct obj_section *sec, *sec2;
3315 if (!overlay_debugging)
3317 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3318 the 'overlay manual' command."));
3320 if (args == 0 || *args == 0)
3321 error (_("Argument required: name of an overlay section"));
3323 /* First, find a section matching the user supplied argument */
3324 ALL_OBJSECTIONS (objfile, sec)
3325 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3327 /* Now, check to see if the section is an overlay. */
3328 bfdsec = sec->the_bfd_section;
3329 if (!section_is_overlay (bfdsec))
3330 continue; /* not an overlay section */
3332 /* Mark the overlay as "mapped" */
3333 sec->ovly_mapped = 1;
3335 /* Next, make a pass and unmap any sections that are
3336 overlapped by this new section: */
3337 ALL_OBJSECTIONS (objfile2, sec2)
3338 if (sec2->ovly_mapped
3340 && sec->the_bfd_section != sec2->the_bfd_section
3341 && sections_overlap (sec->the_bfd_section,
3342 sec2->the_bfd_section))
3345 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3346 bfd_section_name (objfile->obfd,
3347 sec2->the_bfd_section));
3348 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3352 error (_("No overlay section called %s"), args);
3355 /* Function: unmap_overlay_command
3356 Mark the overlay section as unmapped
3357 (ie. resident in its LMA address range, rather than the VMA range). */
3360 unmap_overlay_command (char *args, int from_tty)
3362 struct objfile *objfile;
3363 struct obj_section *sec;
3365 if (!overlay_debugging)
3367 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3368 the 'overlay manual' command."));
3370 if (args == 0 || *args == 0)
3371 error (_("Argument required: name of an overlay section"));
3373 /* First, find a section matching the user supplied argument */
3374 ALL_OBJSECTIONS (objfile, sec)
3375 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3377 if (!sec->ovly_mapped)
3378 error (_("Section %s is not mapped"), args);
3379 sec->ovly_mapped = 0;
3382 error (_("No overlay section called %s"), args);
3385 /* Function: overlay_auto_command
3386 A utility command to turn on overlay debugging.
3387 Possibly this should be done via a set/show command. */
3390 overlay_auto_command (char *args, int from_tty)
3392 overlay_debugging = ovly_auto;
3393 enable_overlay_breakpoints ();
3395 printf_unfiltered (_("Automatic overlay debugging enabled."));
3398 /* Function: overlay_manual_command
3399 A utility command to turn on overlay debugging.
3400 Possibly this should be done via a set/show command. */
3403 overlay_manual_command (char *args, int from_tty)
3405 overlay_debugging = ovly_on;
3406 disable_overlay_breakpoints ();
3408 printf_unfiltered (_("Overlay debugging enabled."));
3411 /* Function: overlay_off_command
3412 A utility command to turn on overlay debugging.
3413 Possibly this should be done via a set/show command. */
3416 overlay_off_command (char *args, int from_tty)
3418 overlay_debugging = ovly_off;
3419 disable_overlay_breakpoints ();
3421 printf_unfiltered (_("Overlay debugging disabled."));
3425 overlay_load_command (char *args, int from_tty)
3427 if (target_overlay_update)
3428 (*target_overlay_update) (NULL);
3430 error (_("This target does not know how to read its overlay state."));
3433 /* Function: overlay_command
3434 A place-holder for a mis-typed command */
3436 /* Command list chain containing all defined "overlay" subcommands. */
3437 struct cmd_list_element *overlaylist;
3440 overlay_command (char *args, int from_tty)
3443 ("\"overlay\" must be followed by the name of an overlay command.\n");
3444 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3448 /* Target Overlays for the "Simplest" overlay manager:
3450 This is GDB's default target overlay layer. It works with the
3451 minimal overlay manager supplied as an example by Cygnus. The
3452 entry point is via a function pointer "target_overlay_update",
3453 so targets that use a different runtime overlay manager can
3454 substitute their own overlay_update function and take over the
3457 The overlay_update function pokes around in the target's data structures
3458 to see what overlays are mapped, and updates GDB's overlay mapping with
3461 In this simple implementation, the target data structures are as follows:
3462 unsigned _novlys; /# number of overlay sections #/
3463 unsigned _ovly_table[_novlys][4] = {
3464 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3465 {..., ..., ..., ...},
3467 unsigned _novly_regions; /# number of overlay regions #/
3468 unsigned _ovly_region_table[_novly_regions][3] = {
3469 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3472 These functions will attempt to update GDB's mappedness state in the
3473 symbol section table, based on the target's mappedness state.
3475 To do this, we keep a cached copy of the target's _ovly_table, and
3476 attempt to detect when the cached copy is invalidated. The main
3477 entry point is "simple_overlay_update(SECT), which looks up SECT in
3478 the cached table and re-reads only the entry for that section from
3479 the target (whenever possible).
3482 /* Cached, dynamically allocated copies of the target data structures: */
3483 static unsigned (*cache_ovly_table)[4] = 0;
3485 static unsigned (*cache_ovly_region_table)[3] = 0;
3487 static unsigned cache_novlys = 0;
3489 static unsigned cache_novly_regions = 0;
3491 static CORE_ADDR cache_ovly_table_base = 0;
3493 static CORE_ADDR cache_ovly_region_table_base = 0;
3497 VMA, SIZE, LMA, MAPPED
3499 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3501 /* Throw away the cached copy of _ovly_table */
3503 simple_free_overlay_table (void)
3505 if (cache_ovly_table)
3506 xfree (cache_ovly_table);
3508 cache_ovly_table = NULL;
3509 cache_ovly_table_base = 0;
3513 /* Throw away the cached copy of _ovly_region_table */
3515 simple_free_overlay_region_table (void)
3517 if (cache_ovly_region_table)
3518 xfree (cache_ovly_region_table);
3519 cache_novly_regions = 0;
3520 cache_ovly_region_table = NULL;
3521 cache_ovly_region_table_base = 0;
3525 /* Read an array of ints from the target into a local buffer.
3526 Convert to host order. int LEN is number of ints */
3528 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3530 /* FIXME (alloca): Not safe if array is very large. */
3531 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3534 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3535 for (i = 0; i < len; i++)
3536 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3540 /* Find and grab a copy of the target _ovly_table
3541 (and _novlys, which is needed for the table's size) */
3543 simple_read_overlay_table (void)
3545 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3547 simple_free_overlay_table ();
3548 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3551 error (_("Error reading inferior's overlay table: "
3552 "couldn't find `_novlys' variable\n"
3553 "in inferior. Use `overlay manual' mode."));
3557 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3558 if (! ovly_table_msym)
3560 error (_("Error reading inferior's overlay table: couldn't find "
3561 "`_ovly_table' array\n"
3562 "in inferior. Use `overlay manual' mode."));
3566 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3568 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3569 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3570 read_target_long_array (cache_ovly_table_base,
3571 (unsigned int *) cache_ovly_table,
3574 return 1; /* SUCCESS */
3578 /* Find and grab a copy of the target _ovly_region_table
3579 (and _novly_regions, which is needed for the table's size) */
3581 simple_read_overlay_region_table (void)
3583 struct minimal_symbol *msym;
3585 simple_free_overlay_region_table ();
3586 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3588 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3590 return 0; /* failure */
3591 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3592 if (cache_ovly_region_table != NULL)
3594 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3597 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3598 read_target_long_array (cache_ovly_region_table_base,
3599 (unsigned int *) cache_ovly_region_table,
3600 cache_novly_regions * 3);
3603 return 0; /* failure */
3606 return 0; /* failure */
3607 return 1; /* SUCCESS */
3611 /* Function: simple_overlay_update_1
3612 A helper function for simple_overlay_update. Assuming a cached copy
3613 of _ovly_table exists, look through it to find an entry whose vma,
3614 lma and size match those of OSECT. Re-read the entry and make sure
3615 it still matches OSECT (else the table may no longer be valid).
3616 Set OSECT's mapped state to match the entry. Return: 1 for
3617 success, 0 for failure. */
3620 simple_overlay_update_1 (struct obj_section *osect)
3623 bfd *obfd = osect->objfile->obfd;
3624 asection *bsect = osect->the_bfd_section;
3626 size = bfd_get_section_size (osect->the_bfd_section);
3627 for (i = 0; i < cache_novlys; i++)
3628 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3629 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3630 /* && cache_ovly_table[i][SIZE] == size */ )
3632 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3633 (unsigned int *) cache_ovly_table[i], 4);
3634 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3635 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3636 /* && cache_ovly_table[i][SIZE] == size */ )
3638 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3641 else /* Warning! Warning! Target's ovly table has changed! */
3647 /* Function: simple_overlay_update
3648 If OSECT is NULL, then update all sections' mapped state
3649 (after re-reading the entire target _ovly_table).
3650 If OSECT is non-NULL, then try to find a matching entry in the
3651 cached ovly_table and update only OSECT's mapped state.
3652 If a cached entry can't be found or the cache isn't valid, then
3653 re-read the entire cache, and go ahead and update all sections. */
3656 simple_overlay_update (struct obj_section *osect)
3658 struct objfile *objfile;
3660 /* Were we given an osect to look up? NULL means do all of them. */
3662 /* Have we got a cached copy of the target's overlay table? */
3663 if (cache_ovly_table != NULL)
3664 /* Does its cached location match what's currently in the symtab? */
3665 if (cache_ovly_table_base ==
3666 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3667 /* Then go ahead and try to look up this single section in the cache */
3668 if (simple_overlay_update_1 (osect))
3669 /* Found it! We're done. */
3672 /* Cached table no good: need to read the entire table anew.
3673 Or else we want all the sections, in which case it's actually
3674 more efficient to read the whole table in one block anyway. */
3676 if (! simple_read_overlay_table ())
3679 /* Now may as well update all sections, even if only one was requested. */
3680 ALL_OBJSECTIONS (objfile, osect)
3681 if (section_is_overlay (osect->the_bfd_section))
3684 bfd *obfd = osect->objfile->obfd;
3685 asection *bsect = osect->the_bfd_section;
3687 size = bfd_get_section_size (bsect);
3688 for (i = 0; i < cache_novlys; i++)
3689 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3690 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3691 /* && cache_ovly_table[i][SIZE] == size */ )
3692 { /* obj_section matches i'th entry in ovly_table */
3693 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3694 break; /* finished with inner for loop: break out */
3699 /* Set the output sections and output offsets for section SECTP in
3700 ABFD. The relocation code in BFD will read these offsets, so we
3701 need to be sure they're initialized. We map each section to itself,
3702 with no offset; this means that SECTP->vma will be honored. */
3705 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3707 sectp->output_section = sectp;
3708 sectp->output_offset = 0;
3711 /* Relocate the contents of a debug section SECTP in ABFD. The
3712 contents are stored in BUF if it is non-NULL, or returned in a
3713 malloc'd buffer otherwise.
3715 For some platforms and debug info formats, shared libraries contain
3716 relocations against the debug sections (particularly for DWARF-2;
3717 one affected platform is PowerPC GNU/Linux, although it depends on
3718 the version of the linker in use). Also, ELF object files naturally
3719 have unresolved relocations for their debug sections. We need to apply
3720 the relocations in order to get the locations of symbols correct. */
3723 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3725 /* We're only interested in debugging sections with relocation
3727 if ((sectp->flags & SEC_RELOC) == 0)
3729 if ((sectp->flags & SEC_DEBUGGING) == 0)
3732 /* We will handle section offsets properly elsewhere, so relocate as if
3733 all sections begin at 0. */
3734 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3736 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3740 _initialize_symfile (void)
3742 struct cmd_list_element *c;
3744 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3745 Load symbol table from executable file FILE.\n\
3746 The `file' command can also load symbol tables, as well as setting the file\n\
3747 to execute."), &cmdlist);
3748 set_cmd_completer (c, filename_completer);
3750 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3751 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3752 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3753 ADDR is the starting address of the file's text.\n\
3754 The optional arguments are section-name section-address pairs and\n\
3755 should be specified if the data and bss segments are not contiguous\n\
3756 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3758 set_cmd_completer (c, filename_completer);
3760 c = add_cmd ("add-shared-symbol-files", class_files,
3761 add_shared_symbol_files_command, _("\
3762 Load the symbols from shared objects in the dynamic linker's link map."),
3764 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3767 c = add_cmd ("load", class_files, load_command, _("\
3768 Dynamically load FILE into the running program, and record its symbols\n\
3769 for access from GDB.\n\
3770 A load OFFSET may also be given."), &cmdlist);
3771 set_cmd_completer (c, filename_completer);
3773 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3774 &symbol_reloading, _("\
3775 Set dynamic symbol table reloading multiple times in one run."), _("\
3776 Show dynamic symbol table reloading multiple times in one run."), NULL,
3778 show_symbol_reloading,
3779 &setlist, &showlist);
3781 add_prefix_cmd ("overlay", class_support, overlay_command,
3782 _("Commands for debugging overlays."), &overlaylist,
3783 "overlay ", 0, &cmdlist);
3785 add_com_alias ("ovly", "overlay", class_alias, 1);
3786 add_com_alias ("ov", "overlay", class_alias, 1);
3788 add_cmd ("map-overlay", class_support, map_overlay_command,
3789 _("Assert that an overlay section is mapped."), &overlaylist);
3791 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3792 _("Assert that an overlay section is unmapped."), &overlaylist);
3794 add_cmd ("list-overlays", class_support, list_overlays_command,
3795 _("List mappings of overlay sections."), &overlaylist);
3797 add_cmd ("manual", class_support, overlay_manual_command,
3798 _("Enable overlay debugging."), &overlaylist);
3799 add_cmd ("off", class_support, overlay_off_command,
3800 _("Disable overlay debugging."), &overlaylist);
3801 add_cmd ("auto", class_support, overlay_auto_command,
3802 _("Enable automatic overlay debugging."), &overlaylist);
3803 add_cmd ("load-target", class_support, overlay_load_command,
3804 _("Read the overlay mapping state from the target."), &overlaylist);
3806 /* Filename extension to source language lookup table: */
3807 init_filename_language_table ();
3808 add_setshow_string_noescape_cmd ("extension-language", class_files,
3810 Set mapping between filename extension and source language."), _("\
3811 Show mapping between filename extension and source language."), _("\
3812 Usage: set extension-language .foo bar"),
3813 set_ext_lang_command,
3815 &setlist, &showlist);
3817 add_info ("extensions", info_ext_lang_command,
3818 _("All filename extensions associated with a source language."));
3820 add_setshow_integer_cmd ("download-write-size", class_obscure,
3821 &download_write_size, _("\
3822 Set the write size used when downloading a program."), _("\
3823 Show the write size used when downloading a program."), _("\
3824 Only used when downloading a program onto a remote\n\
3825 target. Specify zero, or a negative value, to disable\n\
3826 blocked writes. The actual size of each transfer is also\n\
3827 limited by the size of the target packet and the memory\n\
3830 show_download_write_size,
3831 &setlist, &showlist);
3833 debug_file_directory = xstrdup (DEBUGDIR);
3834 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3835 &debug_file_directory, _("\
3836 Set the directory where separate debug symbols are searched for."), _("\
3837 Show the directory where separate debug symbols are searched for."), _("\
3838 Separate debug symbols are first searched for in the same\n\
3839 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3840 and lastly at the path of the directory of the binary with\n\
3841 the global debug-file directory prepended."),
3843 show_debug_file_directory,
3844 &setlist, &showlist);