1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
35 #include "breakpoint.h"
37 #include "complaints.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
49 #include "observable.h"
51 #include "parser-defs.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "common/pathstuff.h"
61 #include "common/selftest.h"
62 #include "cli/cli-style.h"
63 #include "common/forward-scope-exit.h"
65 #include <sys/types.h>
74 int (*deprecated_ui_load_progress_hook) (const char *section,
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
91 /* Functions this file defines. */
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
96 static const struct sym_fns *find_sym_fns (bfd *);
98 static void overlay_invalidate_all (void);
100 static void simple_free_overlay_table (void);
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
105 static int simple_read_overlay_table (void);
107 static int simple_overlay_update_1 (struct obj_section *);
109 static void symfile_find_segment_sections (struct objfile *objfile);
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
115 struct registered_sym_fns
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
128 static std::vector<registered_sym_fns> symtab_fns;
130 /* Values for "set print symbol-loading". */
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
142 static const char *print_symbol_loading = print_symbol_loading_full;
144 /* If non-zero, shared library symbols will be added automatically
145 when the inferior is created, new libraries are loaded, or when
146 attaching to the inferior. This is almost always what users will
147 want to have happen; but for very large programs, the startup time
148 will be excessive, and so if this is a problem, the user can clear
149 this flag and then add the shared library symbols as needed. Note
150 that there is a potential for confusion, since if the shared
151 library symbols are not loaded, commands like "info fun" will *not*
152 report all the functions that are actually present. */
154 int auto_solib_add = 1;
157 /* Return non-zero if symbol-loading messages should be printed.
158 FROM_TTY is the standard from_tty argument to gdb commands.
159 If EXEC is non-zero the messages are for the executable.
160 Otherwise, messages are for shared libraries.
161 If FULL is non-zero then the caller is printing a detailed message.
162 E.g., the message includes the shared library name.
163 Otherwise, the caller is printing a brief "summary" message. */
166 print_symbol_loading_p (int from_tty, int exec, int full)
168 if (!from_tty && !info_verbose)
173 /* We don't check FULL for executables, there are few such
174 messages, therefore brief == full. */
175 return print_symbol_loading != print_symbol_loading_off;
178 return print_symbol_loading == print_symbol_loading_full;
179 return print_symbol_loading == print_symbol_loading_brief;
182 /* True if we are reading a symbol table. */
184 int currently_reading_symtab = 0;
186 /* Increment currently_reading_symtab and return a cleanup that can be
187 used to decrement it. */
189 scoped_restore_tmpl<int>
190 increment_reading_symtab (void)
192 gdb_assert (currently_reading_symtab >= 0);
193 return make_scoped_restore (¤tly_reading_symtab,
194 currently_reading_symtab + 1);
197 /* Remember the lowest-addressed loadable section we've seen.
198 This function is called via bfd_map_over_sections.
200 In case of equal vmas, the section with the largest size becomes the
201 lowest-addressed loadable section.
203 If the vmas and sizes are equal, the last section is considered the
204 lowest-addressed loadable section. */
207 find_lowest_section (bfd *abfd, asection *sect, void *obj)
209 asection **lowest = (asection **) obj;
211 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
214 *lowest = sect; /* First loadable section */
215 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216 *lowest = sect; /* A lower loadable section */
217 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 && (bfd_section_size (abfd, (*lowest))
219 <= bfd_section_size (abfd, sect)))
223 /* Build (allocate and populate) a section_addr_info struct from
224 an existing section table. */
227 build_section_addr_info_from_section_table (const struct target_section *start,
228 const struct target_section *end)
230 const struct target_section *stp;
232 section_addr_info sap;
234 for (stp = start; stp != end; stp++)
236 struct bfd_section *asect = stp->the_bfd_section;
237 bfd *abfd = asect->owner;
239 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
240 && sap.size () < end - start)
241 sap.emplace_back (stp->addr,
242 bfd_section_name (abfd, asect),
243 gdb_bfd_section_index (abfd, asect));
249 /* Create a section_addr_info from section offsets in ABFD. */
251 static section_addr_info
252 build_section_addr_info_from_bfd (bfd *abfd)
254 struct bfd_section *sec;
256 section_addr_info sap;
257 for (sec = abfd->sections; sec != NULL; sec = sec->next)
258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259 sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 bfd_get_section_name (abfd, sec),
261 gdb_bfd_section_index (abfd, sec));
266 /* Create a section_addr_info from section offsets in OBJFILE. */
269 build_section_addr_info_from_objfile (const struct objfile *objfile)
273 /* Before reread_symbols gets rewritten it is not safe to call:
274 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
276 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277 for (i = 0; i < sap.size (); i++)
279 int sectindex = sap[i].sectindex;
281 sap[i].addr += objfile->section_offsets->offsets[sectindex];
286 /* Initialize OBJFILE's sect_index_* members. */
289 init_objfile_sect_indices (struct objfile *objfile)
294 sect = bfd_get_section_by_name (objfile->obfd, ".text");
296 objfile->sect_index_text = sect->index;
298 sect = bfd_get_section_by_name (objfile->obfd, ".data");
300 objfile->sect_index_data = sect->index;
302 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
304 objfile->sect_index_bss = sect->index;
306 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
308 objfile->sect_index_rodata = sect->index;
310 /* This is where things get really weird... We MUST have valid
311 indices for the various sect_index_* members or gdb will abort.
312 So if for example, there is no ".text" section, we have to
313 accomodate that. First, check for a file with the standard
314 one or two segments. */
316 symfile_find_segment_sections (objfile);
318 /* Except when explicitly adding symbol files at some address,
319 section_offsets contains nothing but zeros, so it doesn't matter
320 which slot in section_offsets the individual sect_index_* members
321 index into. So if they are all zero, it is safe to just point
322 all the currently uninitialized indices to the first slot. But
323 beware: if this is the main executable, it may be relocated
324 later, e.g. by the remote qOffsets packet, and then this will
325 be wrong! That's why we try segments first. */
327 for (i = 0; i < objfile->num_sections; i++)
329 if (ANOFFSET (objfile->section_offsets, i) != 0)
334 if (i == objfile->num_sections)
336 if (objfile->sect_index_text == -1)
337 objfile->sect_index_text = 0;
338 if (objfile->sect_index_data == -1)
339 objfile->sect_index_data = 0;
340 if (objfile->sect_index_bss == -1)
341 objfile->sect_index_bss = 0;
342 if (objfile->sect_index_rodata == -1)
343 objfile->sect_index_rodata = 0;
347 /* The arguments to place_section. */
349 struct place_section_arg
351 struct section_offsets *offsets;
355 /* Find a unique offset to use for loadable section SECT if
356 the user did not provide an offset. */
359 place_section (bfd *abfd, asection *sect, void *obj)
361 struct place_section_arg *arg = (struct place_section_arg *) obj;
362 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
364 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
366 /* We are only interested in allocated sections. */
367 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
370 /* If the user specified an offset, honor it. */
371 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
374 /* Otherwise, let's try to find a place for the section. */
375 start_addr = (arg->lowest + align - 1) & -align;
382 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
384 int indx = cur_sec->index;
386 /* We don't need to compare against ourself. */
390 /* We can only conflict with allocated sections. */
391 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
394 /* If the section offset is 0, either the section has not been placed
395 yet, or it was the lowest section placed (in which case LOWEST
396 will be past its end). */
397 if (offsets[indx] == 0)
400 /* If this section would overlap us, then we must move up. */
401 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
404 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 start_addr = (start_addr + align - 1) & -align;
410 /* Otherwise, we appear to be OK. So far. */
415 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
416 arg->lowest = start_addr + bfd_get_section_size (sect);
419 /* Store section_addr_info as prepared (made relative and with SECTINDEX
420 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
424 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
426 const section_addr_info &addrs)
430 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
432 /* Now calculate offsets for section that were specified by the caller. */
433 for (i = 0; i < addrs.size (); i++)
435 const struct other_sections *osp;
438 if (osp->sectindex == -1)
441 /* Record all sections in offsets. */
442 /* The section_offsets in the objfile are here filled in using
444 section_offsets->offsets[osp->sectindex] = osp->addr;
448 /* Transform section name S for a name comparison. prelink can split section
449 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
450 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
451 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452 (`.sbss') section has invalid (increased) virtual address. */
455 addr_section_name (const char *s)
457 if (strcmp (s, ".dynbss") == 0)
459 if (strcmp (s, ".sdynbss") == 0)
465 /* std::sort comparator for addrs_section_sort. Sort entries in
466 ascending order by their (name, sectindex) pair. sectindex makes
467 the sort by name stable. */
470 addrs_section_compar (const struct other_sections *a,
471 const struct other_sections *b)
475 retval = strcmp (addr_section_name (a->name.c_str ()),
476 addr_section_name (b->name.c_str ()));
480 return a->sectindex < b->sectindex;
483 /* Provide sorted array of pointers to sections of ADDRS. */
485 static std::vector<const struct other_sections *>
486 addrs_section_sort (const section_addr_info &addrs)
490 std::vector<const struct other_sections *> array (addrs.size ());
491 for (i = 0; i < addrs.size (); i++)
492 array[i] = &addrs[i];
494 std::sort (array.begin (), array.end (), addrs_section_compar);
499 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
500 also SECTINDEXes specific to ABFD there. This function can be used to
501 rebase ADDRS to start referencing different BFD than before. */
504 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
506 asection *lower_sect;
507 CORE_ADDR lower_offset;
510 /* Find lowest loadable section to be used as starting point for
511 continguous sections. */
513 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
514 if (lower_sect == NULL)
516 warning (_("no loadable sections found in added symbol-file %s"),
517 bfd_get_filename (abfd));
521 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
523 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524 in ABFD. Section names are not unique - there can be multiple sections of
525 the same name. Also the sections of the same name do not have to be
526 adjacent to each other. Some sections may be present only in one of the
527 files. Even sections present in both files do not have to be in the same
530 Use stable sort by name for the sections in both files. Then linearly
531 scan both lists matching as most of the entries as possible. */
533 std::vector<const struct other_sections *> addrs_sorted
534 = addrs_section_sort (*addrs);
536 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537 std::vector<const struct other_sections *> abfd_addrs_sorted
538 = addrs_section_sort (abfd_addrs);
540 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541 ABFD_ADDRS_SORTED. */
543 std::vector<const struct other_sections *>
544 addrs_to_abfd_addrs (addrs->size (), nullptr);
546 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547 = abfd_addrs_sorted.begin ();
548 for (const other_sections *sect : addrs_sorted)
550 const char *sect_name = addr_section_name (sect->name.c_str ());
552 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
557 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
563 /* Make the found item directly addressable from ADDRS. */
564 index_in_addrs = sect - addrs->data ();
565 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
566 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
568 /* Never use the same ABFD entry twice. */
573 /* Calculate offsets for the loadable sections.
574 FIXME! Sections must be in order of increasing loadable section
575 so that contiguous sections can use the lower-offset!!!
577 Adjust offsets if the segments are not contiguous.
578 If the section is contiguous, its offset should be set to
579 the offset of the highest loadable section lower than it
580 (the loadable section directly below it in memory).
581 this_offset = lower_offset = lower_addr - lower_orig_addr */
583 for (i = 0; i < addrs->size (); i++)
585 const struct other_sections *sect = addrs_to_abfd_addrs[i];
589 /* This is the index used by BFD. */
590 (*addrs)[i].sectindex = sect->sectindex;
592 if ((*addrs)[i].addr != 0)
594 (*addrs)[i].addr -= sect->addr;
595 lower_offset = (*addrs)[i].addr;
598 (*addrs)[i].addr = lower_offset;
602 /* addr_section_name transformation is not used for SECT_NAME. */
603 const std::string §_name = (*addrs)[i].name;
605 /* This section does not exist in ABFD, which is normally
606 unexpected and we want to issue a warning.
608 However, the ELF prelinker does create a few sections which are
609 marked in the main executable as loadable (they are loaded in
610 memory from the DYNAMIC segment) and yet are not present in
611 separate debug info files. This is fine, and should not cause
612 a warning. Shared libraries contain just the section
613 ".gnu.liblist" but it is not marked as loadable there. There is
614 no other way to identify them than by their name as the sections
615 created by prelink have no special flags.
617 For the sections `.bss' and `.sbss' see addr_section_name. */
619 if (!(sect_name == ".gnu.liblist"
620 || sect_name == ".gnu.conflict"
621 || (sect_name == ".bss"
623 && (*addrs)[i - 1].name == ".dynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)
625 || (sect_name == ".sbss"
627 && (*addrs)[i - 1].name == ".sdynbss"
628 && addrs_to_abfd_addrs[i - 1] != NULL)))
629 warning (_("section %s not found in %s"), sect_name.c_str (),
630 bfd_get_filename (abfd));
632 (*addrs)[i].addr = 0;
633 (*addrs)[i].sectindex = -1;
638 /* Parse the user's idea of an offset for dynamic linking, into our idea
639 of how to represent it for fast symbol reading. This is the default
640 version of the sym_fns.sym_offsets function for symbol readers that
641 don't need to do anything special. It allocates a section_offsets table
642 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
645 default_symfile_offsets (struct objfile *objfile,
646 const section_addr_info &addrs)
648 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
649 objfile->section_offsets = (struct section_offsets *)
650 obstack_alloc (&objfile->objfile_obstack,
651 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652 relative_addr_info_to_section_offsets (objfile->section_offsets,
653 objfile->num_sections, addrs);
655 /* For relocatable files, all loadable sections will start at zero.
656 The zero is meaningless, so try to pick arbitrary addresses such
657 that no loadable sections overlap. This algorithm is quadratic,
658 but the number of sections in a single object file is generally
660 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
662 struct place_section_arg arg;
663 bfd *abfd = objfile->obfd;
666 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 /* We do not expect this to happen; just skip this step if the
668 relocatable file has a section with an assigned VMA. */
669 if (bfd_section_vma (abfd, cur_sec) != 0)
674 CORE_ADDR *offsets = objfile->section_offsets->offsets;
676 /* Pick non-overlapping offsets for sections the user did not
678 arg.offsets = objfile->section_offsets;
680 bfd_map_over_sections (objfile->obfd, place_section, &arg);
682 /* Correctly filling in the section offsets is not quite
683 enough. Relocatable files have two properties that
684 (most) shared objects do not:
686 - Their debug information will contain relocations. Some
687 shared libraries do also, but many do not, so this can not
690 - If there are multiple code sections they will be loaded
691 at different relative addresses in memory than they are
692 in the objfile, since all sections in the file will start
695 Because GDB has very limited ability to map from an
696 address in debug info to the correct code section,
697 it relies on adding SECT_OFF_TEXT to things which might be
698 code. If we clear all the section offsets, and set the
699 section VMAs instead, then symfile_relocate_debug_section
700 will return meaningful debug information pointing at the
703 GDB has too many different data structures for section
704 addresses - a bfd, objfile, and so_list all have section
705 tables, as does exec_ops. Some of these could probably
708 for (cur_sec = abfd->sections; cur_sec != NULL;
709 cur_sec = cur_sec->next)
711 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
714 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
715 exec_set_section_address (bfd_get_filename (abfd),
717 offsets[cur_sec->index]);
718 offsets[cur_sec->index] = 0;
723 /* Remember the bfd indexes for the .text, .data, .bss and
725 init_objfile_sect_indices (objfile);
728 /* Divide the file into segments, which are individual relocatable units.
729 This is the default version of the sym_fns.sym_segments function for
730 symbol readers that do not have an explicit representation of segments.
731 It assumes that object files do not have segments, and fully linked
732 files have a single segment. */
734 struct symfile_segment_data *
735 default_symfile_segments (bfd *abfd)
739 struct symfile_segment_data *data;
742 /* Relocatable files contain enough information to position each
743 loadable section independently; they should not be relocated
745 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
748 /* Make sure there is at least one loadable section in the file. */
749 for (sect = abfd->sections; sect != NULL; sect = sect->next)
751 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
759 low = bfd_get_section_vma (abfd, sect);
760 high = low + bfd_get_section_size (sect);
762 data = XCNEW (struct symfile_segment_data);
763 data->num_segments = 1;
764 data->segment_bases = XCNEW (CORE_ADDR);
765 data->segment_sizes = XCNEW (CORE_ADDR);
767 num_sections = bfd_count_sections (abfd);
768 data->segment_info = XCNEWVEC (int, num_sections);
770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
774 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
777 vma = bfd_get_section_vma (abfd, sect);
780 if (vma + bfd_get_section_size (sect) > high)
781 high = vma + bfd_get_section_size (sect);
783 data->segment_info[i] = 1;
786 data->segment_bases[0] = low;
787 data->segment_sizes[0] = high - low;
792 /* This is a convenience function to call sym_read for OBJFILE and
793 possibly force the partial symbols to be read. */
796 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
798 (*objfile->sf->sym_read) (objfile, add_flags);
799 objfile->per_bfd->minsyms_read = true;
801 /* find_separate_debug_file_in_section should be called only if there is
802 single binary with no existing separate debug info file. */
803 if (!objfile_has_partial_symbols (objfile)
804 && objfile->separate_debug_objfile == NULL
805 && objfile->separate_debug_objfile_backlink == NULL)
807 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
811 /* find_separate_debug_file_in_section uses the same filename for the
812 virtual section-as-bfd like the bfd filename containing the
813 section. Therefore use also non-canonical name form for the same
814 file containing the section. */
815 symbol_file_add_separate (abfd.get (),
816 bfd_get_filename (abfd.get ()),
817 add_flags | SYMFILE_NOT_FILENAME, objfile);
820 if ((add_flags & SYMFILE_NO_READ) == 0)
821 require_partial_symbols (objfile, 0);
824 /* Initialize entry point information for this objfile. */
827 init_entry_point_info (struct objfile *objfile)
829 struct entry_info *ei = &objfile->per_bfd->ei;
835 /* Save startup file's range of PC addresses to help blockframe.c
836 decide where the bottom of the stack is. */
838 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
840 /* Executable file -- record its entry point so we'll recognize
841 the startup file because it contains the entry point. */
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
845 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 && bfd_get_start_address (objfile->obfd) != 0)
848 /* Some shared libraries may have entry points set and be
849 runnable. There's no clear way to indicate this, so just check
850 for values other than zero. */
851 ei->entry_point = bfd_get_start_address (objfile->obfd);
852 ei->entry_point_p = 1;
856 /* Examination of non-executable.o files. Short-circuit this stuff. */
857 ei->entry_point_p = 0;
860 if (ei->entry_point_p)
862 struct obj_section *osect;
863 CORE_ADDR entry_point = ei->entry_point;
866 /* Make certain that the address points at real code, and not a
867 function descriptor. */
869 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
871 current_top_target ());
873 /* Remove any ISA markers, so that this matches entries in the
876 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
879 ALL_OBJFILE_OSECTIONS (objfile, osect)
881 struct bfd_section *sect = osect->the_bfd_section;
883 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 + bfd_get_section_size (sect)))
887 ei->the_bfd_section_index
888 = gdb_bfd_section_index (objfile->obfd, sect);
895 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
899 /* Process a symbol file, as either the main file or as a dynamically
902 This function does not set the OBJFILE's entry-point info.
904 OBJFILE is where the symbols are to be read from.
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
915 The sectindex field is used to control the ordering of sections
916 with the same name. Upon return, it is updated to contain the
917 correspondig BFD section index, or -1 if the section was not found.
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
924 syms_from_objfile_1 (struct objfile *objfile,
925 section_addr_info *addrs,
926 symfile_add_flags add_flags)
928 section_addr_info local_addr;
929 const int mainline = add_flags & SYMFILE_MAINLINE;
931 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
933 if (objfile->sf == NULL)
935 /* No symbols to load, but we still need to make sure
936 that the section_offsets table is allocated. */
937 int num_sections = gdb_bfd_count_sections (objfile->obfd);
938 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
940 objfile->num_sections = num_sections;
941 objfile->section_offsets
942 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
944 memset (objfile->section_offsets, 0, size);
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
952 std::unique_ptr<struct objfile> objfile_holder (objfile);
954 /* If ADDRS is NULL, put together a dummy address list.
955 We now establish the convention that an addr of zero means
956 no load address was specified. */
962 /* We will modify the main symbol table, make sure that all its users
963 will be cleaned up if an error occurs during symbol reading. */
964 defer_clear_users.emplace ((symfile_add_flag) 0);
966 /* Since no error yet, throw away the old symbol table. */
968 if (symfile_objfile != NULL)
970 delete symfile_objfile;
971 gdb_assert (symfile_objfile == NULL);
974 /* Currently we keep symbols from the add-symbol-file command.
975 If the user wants to get rid of them, they should do "symbol-file"
976 without arguments first. Not sure this is the best behavior
979 (*objfile->sf->sym_new_init) (objfile);
982 /* Convert addr into an offset rather than an absolute address.
983 We find the lowest address of a loaded segment in the objfile,
984 and assume that <addr> is where that got loaded.
986 We no longer warn if the lowest section is not a text segment (as
987 happens for the PA64 port. */
988 if (addrs->size () > 0)
989 addr_info_make_relative (addrs, objfile->obfd);
991 /* Initialize symbol reading routines for this objfile, allow complaints to
992 appear for this new file, and record how verbose to be, then do the
993 initial symbol reading for this file. */
995 (*objfile->sf->sym_init) (objfile);
998 (*objfile->sf->sym_offsets) (objfile, *addrs);
1000 read_symbols (objfile, add_flags);
1002 /* Discard cleanups as symbol reading was successful. */
1004 objfile_holder.release ();
1005 if (defer_clear_users)
1006 defer_clear_users->release ();
1009 /* Same as syms_from_objfile_1, but also initializes the objfile
1010 entry-point info. */
1013 syms_from_objfile (struct objfile *objfile,
1014 section_addr_info *addrs,
1015 symfile_add_flags add_flags)
1017 syms_from_objfile_1 (objfile, addrs, add_flags);
1018 init_entry_point_info (objfile);
1021 /* Perform required actions after either reading in the initial
1022 symbols for a new objfile, or mapping in the symbols from a reusable
1023 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1026 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1028 /* If this is the main symbol file we have to clean up all users of the
1029 old main symbol file. Otherwise it is sufficient to fixup all the
1030 breakpoints that may have been redefined by this symbol file. */
1031 if (add_flags & SYMFILE_MAINLINE)
1033 /* OK, make it the "real" symbol file. */
1034 symfile_objfile = objfile;
1036 clear_symtab_users (add_flags);
1038 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1040 breakpoint_re_set ();
1043 /* We're done reading the symbol file; finish off complaints. */
1044 clear_complaints ();
1047 /* Process a symbol file, as either the main file or as a dynamically
1050 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1051 A new reference is acquired by this function.
1053 For NAME description see the objfile constructor.
1055 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056 extra, such as dynamically loaded code, and what to do with breakpoins.
1058 ADDRS is as described for syms_from_objfile_1, above.
1059 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1061 PARENT is the original objfile if ABFD is a separate debug info file.
1062 Otherwise PARENT is NULL.
1064 Upon success, returns a pointer to the objfile that was added.
1065 Upon failure, jumps back to command level (never returns). */
1067 static struct objfile *
1068 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 symfile_add_flags add_flags,
1070 section_addr_info *addrs,
1071 objfile_flags flags, struct objfile *parent)
1073 struct objfile *objfile;
1074 const int from_tty = add_flags & SYMFILE_VERBOSE;
1075 const int mainline = add_flags & SYMFILE_MAINLINE;
1076 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1077 && (readnow_symbol_files
1078 || (add_flags & SYMFILE_NO_READ) == 0));
1080 if (readnow_symbol_files)
1082 flags |= OBJF_READNOW;
1083 add_flags &= ~SYMFILE_NO_READ;
1085 else if (readnever_symbol_files
1086 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1088 flags |= OBJF_READNEVER;
1089 add_flags |= SYMFILE_NO_READ;
1091 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092 flags |= OBJF_NOT_FILENAME;
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1097 if ((have_full_symbols () || have_partial_symbols ())
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1104 flags |= OBJF_MAINLINE;
1105 objfile = new struct objfile (abfd, name, flags);
1108 add_separate_debug_objfile (objfile, parent);
1110 /* We either created a new mapped symbol table, mapped an existing
1111 symbol table file which has not had initial symbol reading
1112 performed, or need to read an unmapped symbol table. */
1115 if (deprecated_pre_add_symbol_hook)
1116 deprecated_pre_add_symbol_hook (name);
1119 puts_filtered (_("Reading symbols from "));
1120 fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 puts_filtered ("...\n");
1124 syms_from_objfile (objfile, addrs, add_flags);
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1131 if ((flags & OBJF_READNOW))
1134 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1137 objfile->sf->qf->expand_all_symtabs (objfile);
1140 /* Note that we only print a message if we have no symbols and have
1141 no separate debug file. If there is a separate debug file which
1142 does not have symbols, we'll have emitted this message for that
1143 file, and so printing it twice is just redundant. */
1144 if (should_print && !objfile_has_symbols (objfile)
1145 && objfile->separate_debug_objfile == nullptr)
1146 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1150 if (deprecated_post_add_symbol_hook)
1151 deprecated_post_add_symbol_hook ();
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1157 gdb_flush (gdb_stdout);
1159 if (objfile->sf == NULL)
1161 gdb::observers::new_objfile.notify (objfile);
1162 return objfile; /* No symbols. */
1165 finish_new_objfile (objfile, add_flags);
1167 gdb::observers::new_objfile.notify (objfile);
1169 bfd_cache_close_all ();
1173 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1174 see the objfile constructor. */
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
1179 struct objfile *objfile)
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1186 symbol_file_add_with_addrs
1187 (bfd, name, symfile_flags, &sap,
1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1193 /* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
1195 See symbol_file_add_with_addrs's comments for details. */
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
1200 section_addr_info *addrs,
1201 objfile_flags flags, struct objfile *parent)
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1207 /* Process a symbol file, as either the main file or as a dynamically
1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 section_addr_info *addrs, objfile_flags flags)
1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1220 /* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 objfile_flags flags, CORE_ADDR reloff)
1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1242 objfile_rebase (objfile, reloff);
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1248 if ((add_flags & SYMFILE_NO_READ) == 0)
1249 set_initial_language ();
1253 symbol_file_clear (int from_tty)
1255 if ((have_full_symbols () || have_partial_symbols ())
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 objfile_name (symfile_objfile))
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1267 free_all_objfiles ();
1269 gdb_assert (symfile_objfile == NULL);
1271 printf_filtered (_("No symbol file now.\n"));
1274 /* See symfile.h. */
1276 int separate_debug_file_debug = 0;
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 struct objfile *parent_objfile)
1282 unsigned long file_crc;
1284 struct stat parent_stat, abfd_stat;
1285 int verified_as_different;
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291 the separate debug infos with the same basename can exist. */
1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1296 if (separate_debug_file_debug)
1298 printf_filtered (_(" Trying %s..."), name.c_str ());
1299 gdb_flush (gdb_stdout);
1302 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, unable to open.\n"));
1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
1316 meaningful st_dev.) Files accessed from gdbservers that do not
1317 support the vFile:fstat packet will also have st_ino set to zero.
1318 Do not indicate a duplicate library in either case. While there
1319 is no guarantee that a system that provides meaningful inode
1320 numbers will never set st_ino to zero, this is merely an
1321 optimization, so we do not need to worry about false negatives. */
1323 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1324 && abfd_stat.st_ino != 0
1325 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1327 if (abfd_stat.st_dev == parent_stat.st_dev
1328 && abfd_stat.st_ino == parent_stat.st_ino)
1330 if (separate_debug_file_debug)
1331 printf_filtered (_(" no, same file as the objfile.\n"));
1335 verified_as_different = 1;
1338 verified_as_different = 0;
1340 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, error computing CRC.\n"));
1350 if (crc != file_crc)
1352 unsigned long parent_crc;
1354 /* If the files could not be verified as different with
1355 bfd_stat then we need to calculate the parent's CRC
1356 to verify whether the files are different or not. */
1358 if (!verified_as_different)
1360 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1362 if (separate_debug_file_debug)
1363 printf_filtered (_(" no, error computing CRC.\n"));
1369 if (verified_as_different || parent_crc != file_crc)
1370 warning (_("the debug information found in \"%s\""
1371 " does not match \"%s\" (CRC mismatch).\n"),
1372 name.c_str (), objfile_name (parent_objfile));
1374 if (separate_debug_file_debug)
1375 printf_filtered (_(" no, CRC doesn't match.\n"));
1380 if (separate_debug_file_debug)
1381 printf_filtered (_(" yes!\n"));
1386 char *debug_file_directory = NULL;
1388 show_debug_file_directory (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1391 fprintf_filtered (file,
1392 _("The directory where separate debug "
1393 "symbols are searched for is \"%s\".\n"),
1397 #if ! defined (DEBUG_SUBDIRECTORY)
1398 #define DEBUG_SUBDIRECTORY ".debug"
1401 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402 where the original file resides (may not be the same as
1403 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1404 looking for. CANON_DIR is the "realpath" form of DIR.
1405 DIR must contain a trailing '/'.
1406 Returns the path of the file with separate debug info, or an empty
1410 find_separate_debug_file (const char *dir,
1411 const char *canon_dir,
1412 const char *debuglink,
1413 unsigned long crc32, struct objfile *objfile)
1415 if (separate_debug_file_debug)
1416 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 "%s\n"), objfile_name (objfile));
1419 /* First try in the same directory as the original file. */
1420 std::string debugfile = dir;
1421 debugfile += debuglink;
1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1426 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1428 debugfile += DEBUG_SUBDIRECTORY;
1430 debugfile += debuglink;
1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
1435 /* Then try in the global debugfile directories.
1437 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438 cause "/..." lookups. */
1440 bool target_prefix = startswith (dir, "target:");
1441 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1442 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443 = dirnames_to_char_ptr_vec (debug_file_directory);
1444 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1446 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1447 convert the drive letter into a one-letter directory, so that the
1448 file name resulting from splicing below will be valid.
1450 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1451 There are various remote-debugging scenarios where such a
1452 transformation of the drive letter might be required when GDB runs
1453 on a Posix host, see
1455 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1457 If some of those scenarions need to be supported, we will need to
1458 use a different condition for HAS_DRIVE_SPEC and a different macro
1459 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1461 if (HAS_DRIVE_SPEC (dir_notarget))
1463 drive = dir_notarget[0];
1464 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1467 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
1473 debugfile += dir_notarget;
1474 debugfile += debuglink;
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1479 const char *base_path = NULL;
1480 if (canon_dir != NULL)
1482 if (canon_sysroot.get () != NULL)
1483 base_path = child_path (canon_sysroot.get (), canon_dir);
1485 base_path = child_path (gdb_sysroot, canon_dir);
1487 if (base_path != NULL)
1489 /* If the file is in the sysroot, try using its base path in
1490 the global debugfile directory. */
1491 debugfile = target_prefix ? "target:" : "";
1492 debugfile += debugdir.get ();
1494 debugfile += base_path;
1496 debugfile += debuglink;
1498 if (separate_debug_file_exists (debugfile, crc32, objfile))
1501 /* If the file is in the sysroot, try using its base path in
1502 the sysroot's global debugfile directory. */
1503 debugfile = target_prefix ? "target:" : "";
1504 debugfile += gdb_sysroot;
1505 debugfile += debugdir.get ();
1507 debugfile += base_path;
1509 debugfile += debuglink;
1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
1517 return std::string ();
1520 /* Modify PATH to contain only "[/]directory/" part of PATH.
1521 If there were no directory separators in PATH, PATH will be empty
1522 string on return. */
1525 terminate_after_last_dir_separator (char *path)
1529 /* Strip off the final filename part, leaving the directory name,
1530 followed by a slash. The directory can be relative or absolute. */
1531 for (i = strlen(path) - 1; i >= 0; i--)
1532 if (IS_DIR_SEPARATOR (path[i]))
1535 /* If I is -1 then no directory is present there and DIR will be "". */
1539 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1540 Returns pathname, or an empty string. */
1543 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545 unsigned long crc32;
1547 gdb::unique_xmalloc_ptr<char> debuglink
1548 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1550 if (debuglink == NULL)
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return std::string ();
1557 std::string dir = objfile_name (objfile);
1558 terminate_after_last_dir_separator (&dir[0]);
1559 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1561 std::string debugfile
1562 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1563 debuglink.get (), crc32, objfile);
1565 if (debugfile.empty ())
1567 /* For PR gdb/9538, try again with realpath (if different from the
1572 if (lstat (objfile_name (objfile), &st_buf) == 0
1573 && S_ISLNK (st_buf.st_mode))
1575 gdb::unique_xmalloc_ptr<char> symlink_dir
1576 (lrealpath (objfile_name (objfile)));
1577 if (symlink_dir != NULL)
1579 terminate_after_last_dir_separator (symlink_dir.get ());
1580 if (dir != symlink_dir.get ())
1582 /* Different directory, so try using it. */
1583 debugfile = find_separate_debug_file (symlink_dir.get (),
1596 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1600 validate_readnow_readnever (objfile_flags flags)
1602 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1603 error (_("-readnow and -readnever cannot be used simultaneously"));
1606 /* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
1608 the command is rather bizarre:
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1617 3. The order of options matters, which is contrary to GNU
1618 conventions (because it is confusing and inconvenient). */
1621 symbol_file_command (const char *args, int from_tty)
1627 symbol_file_clear (from_tty);
1631 objfile_flags flags = OBJF_USERLOADED;
1632 symfile_add_flags add_flags = 0;
1634 bool stop_processing_options = false;
1635 CORE_ADDR offset = 0;
1640 add_flags |= SYMFILE_VERBOSE;
1642 gdb_argv built_argv (args);
1643 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1645 if (stop_processing_options || *arg != '-')
1650 error (_("Unrecognized argument \"%s\""), arg);
1652 else if (strcmp (arg, "-readnow") == 0)
1653 flags |= OBJF_READNOW;
1654 else if (strcmp (arg, "-readnever") == 0)
1655 flags |= OBJF_READNEVER;
1656 else if (strcmp (arg, "-o") == 0)
1658 arg = built_argv[++idx];
1660 error (_("Missing argument to -o"));
1662 offset = parse_and_eval_address (arg);
1664 else if (strcmp (arg, "--") == 0)
1665 stop_processing_options = true;
1667 error (_("Unrecognized argument \"%s\""), arg);
1671 error (_("no symbol file name was specified"));
1673 validate_readnow_readnever (flags);
1675 symbol_file_add_main_1 (name, add_flags, flags, offset);
1679 /* Set the initial language.
1681 FIXME: A better solution would be to record the language in the
1682 psymtab when reading partial symbols, and then use it (if known) to
1683 set the language. This would be a win for formats that encode the
1684 language in an easily discoverable place, such as DWARF. For
1685 stabs, we can jump through hoops looking for specially named
1686 symbols or try to intuit the language from the specific type of
1687 stabs we find, but we can't do that until later when we read in
1691 set_initial_language (void)
1693 enum language lang = main_language ();
1695 if (lang == language_unknown)
1697 char *name = main_name ();
1698 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1701 lang = SYMBOL_LANGUAGE (sym);
1704 if (lang == language_unknown)
1706 /* Make C the default language */
1710 set_language (lang);
1711 expected_language = current_language; /* Don't warn the user. */
1714 /* Open the file specified by NAME and hand it off to BFD for
1715 preliminary analysis. Return a newly initialized bfd *, which
1716 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1717 absolute). In case of trouble, error() is called. */
1720 symfile_bfd_open (const char *name)
1724 gdb::unique_xmalloc_ptr<char> absolute_name;
1725 if (!is_target_filename (name))
1727 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1729 /* Look down path for it, allocate 2nd new malloc'd copy. */
1730 desc = openp (getenv ("PATH"),
1731 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1732 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1733 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1736 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1738 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1739 desc = openp (getenv ("PATH"),
1740 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1741 exename, O_RDONLY | O_BINARY, &absolute_name);
1745 perror_with_name (expanded_name.get ());
1747 name = absolute_name.get ();
1750 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1751 if (sym_bfd == NULL)
1752 error (_("`%s': can't open to read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
1755 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1756 bfd_set_cacheable (sym_bfd.get (), 1);
1758 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1759 error (_("`%s': can't read symbols: %s."), name,
1760 bfd_errmsg (bfd_get_error ()));
1765 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1766 the section was not found. */
1769 get_section_index (struct objfile *objfile, const char *section_name)
1771 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1779 /* Link SF into the global symtab_fns list.
1780 FLAVOUR is the file format that SF handles.
1781 Called on startup by the _initialize routine in each object file format
1782 reader, to register information about each format the reader is prepared
1786 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1788 symtab_fns.emplace_back (flavour, sf);
1791 /* Initialize OBJFILE to read symbols from its associated BFD. It
1792 either returns or calls error(). The result is an initialized
1793 struct sym_fns in the objfile structure, that contains cached
1794 information about the symbol file. */
1796 static const struct sym_fns *
1797 find_sym_fns (bfd *abfd)
1799 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1801 if (our_flavour == bfd_target_srec_flavour
1802 || our_flavour == bfd_target_ihex_flavour
1803 || our_flavour == bfd_target_tekhex_flavour)
1804 return NULL; /* No symbols. */
1806 for (const registered_sym_fns &rsf : symtab_fns)
1807 if (our_flavour == rsf.sym_flavour)
1810 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1811 bfd_get_target (abfd));
1815 /* This function runs the load command of our current target. */
1818 load_command (const char *arg, int from_tty)
1822 /* The user might be reloading because the binary has changed. Take
1823 this opportunity to check. */
1824 reopen_exec_file ();
1830 const char *parg, *prev;
1832 arg = get_exec_file (1);
1834 /* We may need to quote this string so buildargv can pull it
1837 while ((parg = strpbrk (parg, "\\\"'\t ")))
1839 temp.append (prev, parg - prev);
1841 temp.push_back ('\\');
1843 /* If we have not copied anything yet, then we didn't see a
1844 character to quote, and we can just leave ARG unchanged. */
1848 arg = temp.c_str ();
1852 target_load (arg, from_tty);
1854 /* After re-loading the executable, we don't really know which
1855 overlays are mapped any more. */
1856 overlay_cache_invalid = 1;
1859 /* This version of "load" should be usable for any target. Currently
1860 it is just used for remote targets, not inftarg.c or core files,
1861 on the theory that only in that case is it useful.
1863 Avoiding xmodem and the like seems like a win (a) because we don't have
1864 to worry about finding it, and (b) On VMS, fork() is very slow and so
1865 we don't want to run a subprocess. On the other hand, I'm not sure how
1866 performance compares. */
1868 static int validate_download = 0;
1870 /* Callback service function for generic_load (bfd_map_over_sections). */
1873 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1875 bfd_size_type *sum = (bfd_size_type *) data;
1877 *sum += bfd_get_section_size (asec);
1880 /* Opaque data for load_progress. */
1881 struct load_progress_data
1883 /* Cumulative data. */
1884 unsigned long write_count = 0;
1885 unsigned long data_count = 0;
1886 bfd_size_type total_size = 0;
1889 /* Opaque data for load_progress for a single section. */
1890 struct load_progress_section_data
1892 load_progress_section_data (load_progress_data *cumulative_,
1893 const char *section_name_, ULONGEST section_size_,
1894 CORE_ADDR lma_, gdb_byte *buffer_)
1895 : cumulative (cumulative_), section_name (section_name_),
1896 section_size (section_size_), lma (lma_), buffer (buffer_)
1899 struct load_progress_data *cumulative;
1901 /* Per-section data. */
1902 const char *section_name;
1903 ULONGEST section_sent = 0;
1904 ULONGEST section_size;
1909 /* Opaque data for load_section_callback. */
1910 struct load_section_data
1912 load_section_data (load_progress_data *progress_data_)
1913 : progress_data (progress_data_)
1916 ~load_section_data ()
1918 for (auto &&request : requests)
1920 xfree (request.data);
1921 delete ((load_progress_section_data *) request.baton);
1925 CORE_ADDR load_offset = 0;
1926 struct load_progress_data *progress_data;
1927 std::vector<struct memory_write_request> requests;
1930 /* Target write callback routine for progress reporting. */
1933 load_progress (ULONGEST bytes, void *untyped_arg)
1935 struct load_progress_section_data *args
1936 = (struct load_progress_section_data *) untyped_arg;
1937 struct load_progress_data *totals;
1940 /* Writing padding data. No easy way to get at the cumulative
1941 stats, so just ignore this. */
1944 totals = args->cumulative;
1946 if (bytes == 0 && args->section_sent == 0)
1948 /* The write is just starting. Let the user know we've started
1950 current_uiout->message ("Loading section %s, size %s lma %s\n",
1952 hex_string (args->section_size),
1953 paddress (target_gdbarch (), args->lma));
1957 if (validate_download)
1959 /* Broken memories and broken monitors manifest themselves here
1960 when bring new computers to life. This doubles already slow
1962 /* NOTE: cagney/1999-10-18: A more efficient implementation
1963 might add a verify_memory() method to the target vector and
1964 then use that. remote.c could implement that method using
1965 the ``qCRC'' packet. */
1966 gdb::byte_vector check (bytes);
1968 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1969 error (_("Download verify read failed at %s"),
1970 paddress (target_gdbarch (), args->lma));
1971 if (memcmp (args->buffer, check.data (), bytes) != 0)
1972 error (_("Download verify compare failed at %s"),
1973 paddress (target_gdbarch (), args->lma));
1975 totals->data_count += bytes;
1977 args->buffer += bytes;
1978 totals->write_count += 1;
1979 args->section_sent += bytes;
1980 if (check_quit_flag ()
1981 || (deprecated_ui_load_progress_hook != NULL
1982 && deprecated_ui_load_progress_hook (args->section_name,
1983 args->section_sent)))
1984 error (_("Canceled the download"));
1986 if (deprecated_show_load_progress != NULL)
1987 deprecated_show_load_progress (args->section_name,
1991 totals->total_size);
1994 /* Callback service function for generic_load (bfd_map_over_sections). */
1997 load_section_callback (bfd *abfd, asection *asec, void *data)
1999 struct load_section_data *args = (struct load_section_data *) data;
2000 bfd_size_type size = bfd_get_section_size (asec);
2001 const char *sect_name = bfd_get_section_name (abfd, asec);
2003 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2009 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
2010 ULONGEST end = begin + size;
2011 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2012 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2014 load_progress_section_data *section_data
2015 = new load_progress_section_data (args->progress_data, sect_name, size,
2018 args->requests.emplace_back (begin, end, buffer, section_data);
2021 static void print_transfer_performance (struct ui_file *stream,
2022 unsigned long data_count,
2023 unsigned long write_count,
2024 std::chrono::steady_clock::duration d);
2027 generic_load (const char *args, int from_tty)
2029 struct load_progress_data total_progress;
2030 struct load_section_data cbdata (&total_progress);
2031 struct ui_out *uiout = current_uiout;
2034 error_no_arg (_("file to load"));
2036 gdb_argv argv (args);
2038 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2040 if (argv[1] != NULL)
2044 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2046 /* If the last word was not a valid number then
2047 treat it as a file name with spaces in. */
2048 if (argv[1] == endptr)
2049 error (_("Invalid download offset:%s."), argv[1]);
2051 if (argv[2] != NULL)
2052 error (_("Too many parameters."));
2055 /* Open the file for loading. */
2056 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2057 if (loadfile_bfd == NULL)
2058 perror_with_name (filename.get ());
2060 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2062 error (_("\"%s\" is not an object file: %s"), filename.get (),
2063 bfd_errmsg (bfd_get_error ()));
2066 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2067 (void *) &total_progress.total_size);
2069 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2071 using namespace std::chrono;
2073 steady_clock::time_point start_time = steady_clock::now ();
2075 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2076 load_progress) != 0)
2077 error (_("Load failed"));
2079 steady_clock::time_point end_time = steady_clock::now ();
2081 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2082 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2083 uiout->text ("Start address ");
2084 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2085 uiout->text (", load size ");
2086 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2088 regcache_write_pc (get_current_regcache (), entry);
2090 /* Reset breakpoints, now that we have changed the load image. For
2091 instance, breakpoints may have been set (or reset, by
2092 post_create_inferior) while connected to the target but before we
2093 loaded the program. In that case, the prologue analyzer could
2094 have read instructions from the target to find the right
2095 breakpoint locations. Loading has changed the contents of that
2098 breakpoint_re_set ();
2100 print_transfer_performance (gdb_stdout, total_progress.data_count,
2101 total_progress.write_count,
2102 end_time - start_time);
2105 /* Report on STREAM the performance of a memory transfer operation,
2106 such as 'load'. DATA_COUNT is the number of bytes transferred.
2107 WRITE_COUNT is the number of separate write operations, or 0, if
2108 that information is not available. TIME is how long the operation
2112 print_transfer_performance (struct ui_file *stream,
2113 unsigned long data_count,
2114 unsigned long write_count,
2115 std::chrono::steady_clock::duration time)
2117 using namespace std::chrono;
2118 struct ui_out *uiout = current_uiout;
2120 milliseconds ms = duration_cast<milliseconds> (time);
2122 uiout->text ("Transfer rate: ");
2123 if (ms.count () > 0)
2125 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2127 if (uiout->is_mi_like_p ())
2129 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2130 uiout->text (" bits/sec");
2132 else if (rate < 1024)
2134 uiout->field_fmt ("transfer-rate", "%lu", rate);
2135 uiout->text (" bytes/sec");
2139 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2140 uiout->text (" KB/sec");
2145 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2146 uiout->text (" bits in <1 sec");
2148 if (write_count > 0)
2151 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2152 uiout->text (" bytes/write");
2154 uiout->text (".\n");
2157 /* Add an OFFSET to the start address of each section in OBJF, except
2158 sections that were specified in ADDRS. */
2161 set_objfile_default_section_offset (struct objfile *objf,
2162 const section_addr_info &addrs,
2165 /* Add OFFSET to all sections by default. */
2166 std::vector<struct section_offsets> offsets (objf->num_sections,
2169 /* Create sorted lists of all sections in ADDRS as well as all
2170 sections in OBJF. */
2172 std::vector<const struct other_sections *> addrs_sorted
2173 = addrs_section_sort (addrs);
2175 section_addr_info objf_addrs
2176 = build_section_addr_info_from_objfile (objf);
2177 std::vector<const struct other_sections *> objf_addrs_sorted
2178 = addrs_section_sort (objf_addrs);
2180 /* Walk the BFD section list, and if a matching section is found in
2181 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2184 Note that both lists may contain multiple sections with the same
2185 name, and then the sections from ADDRS are matched in BFD order
2186 (thanks to sectindex). */
2188 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2189 = addrs_sorted.begin ();
2190 for (const other_sections *objf_sect : objf_addrs_sorted)
2192 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2195 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2197 const struct other_sections *sect = *addrs_sorted_iter;
2198 const char *sect_name = addr_section_name (sect->name.c_str ());
2199 cmp = strcmp (sect_name, objf_name);
2201 ++addrs_sorted_iter;
2205 offsets[objf_sect->sectindex].offsets[0] = 0;
2208 /* Apply the new section offsets. */
2209 objfile_relocate (objf, offsets.data ());
2212 /* This function allows the addition of incrementally linked object files.
2213 It does not modify any state in the target, only in the debugger. */
2214 /* Note: ezannoni 2000-04-13 This function/command used to have a
2215 special case syntax for the rombug target (Rombug is the boot
2216 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2217 rombug case, the user doesn't need to supply a text address,
2218 instead a call to target_link() (in target.c) would supply the
2219 value to use. We are now discontinuing this type of ad hoc syntax. */
2222 add_symbol_file_command (const char *args, int from_tty)
2224 struct gdbarch *gdbarch = get_current_arch ();
2225 gdb::unique_xmalloc_ptr<char> filename;
2228 struct objfile *objf;
2229 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2230 symfile_add_flags add_flags = 0;
2233 add_flags |= SYMFILE_VERBOSE;
2241 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2242 bool stop_processing_options = false;
2243 CORE_ADDR offset = 0;
2248 error (_("add-symbol-file takes a file name and an address"));
2250 bool seen_addr = false;
2251 bool seen_offset = false;
2252 gdb_argv argv (args);
2254 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2256 if (stop_processing_options || *arg != '-')
2258 if (filename == NULL)
2260 /* First non-option argument is always the filename. */
2261 filename.reset (tilde_expand (arg));
2263 else if (!seen_addr)
2265 /* The second non-option argument is always the text
2266 address at which to load the program. */
2267 sect_opts[0].value = arg;
2271 error (_("Unrecognized argument \"%s\""), arg);
2273 else if (strcmp (arg, "-readnow") == 0)
2274 flags |= OBJF_READNOW;
2275 else if (strcmp (arg, "-readnever") == 0)
2276 flags |= OBJF_READNEVER;
2277 else if (strcmp (arg, "-s") == 0)
2279 if (argv[argcnt + 1] == NULL)
2280 error (_("Missing section name after \"-s\""));
2281 else if (argv[argcnt + 2] == NULL)
2282 error (_("Missing section address after \"-s\""));
2284 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2286 sect_opts.push_back (sect);
2289 else if (strcmp (arg, "-o") == 0)
2291 arg = argv[++argcnt];
2293 error (_("Missing argument to -o"));
2295 offset = parse_and_eval_address (arg);
2298 else if (strcmp (arg, "--") == 0)
2299 stop_processing_options = true;
2301 error (_("Unrecognized argument \"%s\""), arg);
2304 if (filename == NULL)
2305 error (_("You must provide a filename to be loaded."));
2307 validate_readnow_readnever (flags);
2309 /* Print the prompt for the query below. And save the arguments into
2310 a sect_addr_info structure to be passed around to other
2311 functions. We have to split this up into separate print
2312 statements because hex_string returns a local static
2315 printf_unfiltered (_("add symbol table from file \"%s\""),
2317 section_addr_info section_addrs;
2318 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2321 for (; it != sect_opts.end (); ++it)
2324 const char *val = it->value;
2325 const char *sec = it->name;
2327 if (section_addrs.empty ())
2328 printf_unfiltered (_(" at\n"));
2329 addr = parse_and_eval_address (val);
2331 /* Here we store the section offsets in the order they were
2332 entered on the command line. Every array element is
2333 assigned an ascending section index to preserve the above
2334 order over an unstable sorting algorithm. This dummy
2335 index is not used for any other purpose.
2337 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2338 printf_filtered ("\t%s_addr = %s\n", sec,
2339 paddress (gdbarch, addr));
2341 /* The object's sections are initialized when a
2342 call is made to build_objfile_section_table (objfile).
2343 This happens in reread_symbols.
2344 At this point, we don't know what file type this is,
2345 so we can't determine what section names are valid. */
2348 printf_unfiltered (_("%s offset by %s\n"),
2349 (section_addrs.empty ()
2350 ? _(" with all sections")
2351 : _("with other sections")),
2352 paddress (gdbarch, offset));
2353 else if (section_addrs.empty ())
2354 printf_unfiltered ("\n");
2356 if (from_tty && (!query ("%s", "")))
2357 error (_("Not confirmed."));
2359 objf = symbol_file_add (filename.get (), add_flags, §ion_addrs,
2363 set_objfile_default_section_offset (objf, section_addrs, offset);
2365 add_target_sections_of_objfile (objf);
2367 /* Getting new symbols may change our opinion about what is
2369 reinit_frame_cache ();
2373 /* This function removes a symbol file that was added via add-symbol-file. */
2376 remove_symbol_file_command (const char *args, int from_tty)
2378 struct objfile *objf = NULL;
2379 struct program_space *pspace = current_program_space;
2384 error (_("remove-symbol-file: no symbol file provided"));
2386 gdb_argv argv (args);
2388 if (strcmp (argv[0], "-a") == 0)
2390 /* Interpret the next argument as an address. */
2393 if (argv[1] == NULL)
2394 error (_("Missing address argument"));
2396 if (argv[2] != NULL)
2397 error (_("Junk after %s"), argv[1]);
2399 addr = parse_and_eval_address (argv[1]);
2401 for (objfile *objfile : current_program_space->objfiles ())
2403 if ((objfile->flags & OBJF_USERLOADED) != 0
2404 && (objfile->flags & OBJF_SHARED) != 0
2405 && objfile->pspace == pspace
2406 && is_addr_in_objfile (addr, objfile))
2413 else if (argv[0] != NULL)
2415 /* Interpret the current argument as a file name. */
2417 if (argv[1] != NULL)
2418 error (_("Junk after %s"), argv[0]);
2420 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2422 for (objfile *objfile : current_program_space->objfiles ())
2424 if ((objfile->flags & OBJF_USERLOADED) != 0
2425 && (objfile->flags & OBJF_SHARED) != 0
2426 && objfile->pspace == pspace
2427 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2436 error (_("No symbol file found"));
2439 && !query (_("Remove symbol table from file \"%s\"? "),
2440 objfile_name (objf)))
2441 error (_("Not confirmed."));
2444 clear_symtab_users (0);
2447 /* Re-read symbols if a symbol-file has changed. */
2450 reread_symbols (void)
2452 struct objfile *objfile;
2454 struct stat new_statbuf;
2456 std::vector<struct objfile *> new_objfiles;
2458 /* With the addition of shared libraries, this should be modified,
2459 the load time should be saved in the partial symbol tables, since
2460 different tables may come from different source files. FIXME.
2461 This routine should then walk down each partial symbol table
2462 and see if the symbol table that it originates from has been changed. */
2464 for (objfile = object_files; objfile; objfile = objfile->next)
2466 if (objfile->obfd == NULL)
2469 /* Separate debug objfiles are handled in the main objfile. */
2470 if (objfile->separate_debug_objfile_backlink)
2473 /* If this object is from an archive (what you usually create with
2474 `ar', often called a `static library' on most systems, though
2475 a `shared library' on AIX is also an archive), then you should
2476 stat on the archive name, not member name. */
2477 if (objfile->obfd->my_archive)
2478 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2480 res = stat (objfile_name (objfile), &new_statbuf);
2483 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2484 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2485 objfile_name (objfile));
2488 new_modtime = new_statbuf.st_mtime;
2489 if (new_modtime != objfile->mtime)
2491 struct section_offsets *offsets;
2494 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2495 objfile_name (objfile));
2497 /* There are various functions like symbol_file_add,
2498 symfile_bfd_open, syms_from_objfile, etc., which might
2499 appear to do what we want. But they have various other
2500 effects which we *don't* want. So we just do stuff
2501 ourselves. We don't worry about mapped files (for one thing,
2502 any mapped file will be out of date). */
2504 /* If we get an error, blow away this objfile (not sure if
2505 that is the correct response for things like shared
2507 std::unique_ptr<struct objfile> objfile_holder (objfile);
2509 /* We need to do this whenever any symbols go away. */
2510 clear_symtab_users_cleanup defer_clear_users (0);
2512 if (exec_bfd != NULL
2513 && filename_cmp (bfd_get_filename (objfile->obfd),
2514 bfd_get_filename (exec_bfd)) == 0)
2516 /* Reload EXEC_BFD without asking anything. */
2518 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2521 /* Keep the calls order approx. the same as in free_objfile. */
2523 /* Free the separate debug objfiles. It will be
2524 automatically recreated by sym_read. */
2525 free_objfile_separate_debug (objfile);
2527 /* Remove any references to this objfile in the global
2529 preserve_values (objfile);
2531 /* Nuke all the state that we will re-read. Much of the following
2532 code which sets things to NULL really is necessary to tell
2533 other parts of GDB that there is nothing currently there.
2535 Try to keep the freeing order compatible with free_objfile. */
2537 if (objfile->sf != NULL)
2539 (*objfile->sf->sym_finish) (objfile);
2542 clear_objfile_data (objfile);
2544 /* Clean up any state BFD has sitting around. */
2546 gdb_bfd_ref_ptr obfd (objfile->obfd);
2547 char *obfd_filename;
2549 obfd_filename = bfd_get_filename (objfile->obfd);
2550 /* Open the new BFD before freeing the old one, so that
2551 the filename remains live. */
2552 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2553 objfile->obfd = temp.release ();
2554 if (objfile->obfd == NULL)
2555 error (_("Can't open %s to read symbols."), obfd_filename);
2558 std::string original_name = objfile->original_name;
2560 /* bfd_openr sets cacheable to true, which is what we want. */
2561 if (!bfd_check_format (objfile->obfd, bfd_object))
2562 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2563 bfd_errmsg (bfd_get_error ()));
2565 /* Save the offsets, we will nuke them with the rest of the
2567 num_offsets = objfile->num_sections;
2568 offsets = ((struct section_offsets *)
2569 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2570 memcpy (offsets, objfile->section_offsets,
2571 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2573 objfile->reset_psymtabs ();
2575 /* NB: after this call to obstack_free, objfiles_changed
2576 will need to be called (see discussion below). */
2577 obstack_free (&objfile->objfile_obstack, 0);
2578 objfile->sections = NULL;
2579 objfile->compunit_symtabs = NULL;
2580 objfile->template_symbols = NULL;
2581 objfile->static_links = NULL;
2583 /* obstack_init also initializes the obstack so it is
2584 empty. We could use obstack_specify_allocation but
2585 gdb_obstack.h specifies the alloc/dealloc functions. */
2586 obstack_init (&objfile->objfile_obstack);
2588 /* set_objfile_per_bfd potentially allocates the per-bfd
2589 data on the objfile's obstack (if sharing data across
2590 multiple users is not possible), so it's important to
2591 do it *after* the obstack has been initialized. */
2592 set_objfile_per_bfd (objfile);
2594 objfile->original_name
2595 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2596 original_name.c_str (),
2597 original_name.size ());
2599 /* Reset the sym_fns pointer. The ELF reader can change it
2600 based on whether .gdb_index is present, and we need it to
2601 start over. PR symtab/15885 */
2602 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2604 build_objfile_section_table (objfile);
2605 terminate_minimal_symbol_table (objfile);
2607 /* We use the same section offsets as from last time. I'm not
2608 sure whether that is always correct for shared libraries. */
2609 objfile->section_offsets = (struct section_offsets *)
2610 obstack_alloc (&objfile->objfile_obstack,
2611 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2612 memcpy (objfile->section_offsets, offsets,
2613 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2614 objfile->num_sections = num_offsets;
2616 /* What the hell is sym_new_init for, anyway? The concept of
2617 distinguishing between the main file and additional files
2618 in this way seems rather dubious. */
2619 if (objfile == symfile_objfile)
2621 (*objfile->sf->sym_new_init) (objfile);
2624 (*objfile->sf->sym_init) (objfile);
2625 clear_complaints ();
2627 objfile->flags &= ~OBJF_PSYMTABS_READ;
2629 /* We are about to read new symbols and potentially also
2630 DWARF information. Some targets may want to pass addresses
2631 read from DWARF DIE's through an adjustment function before
2632 saving them, like MIPS, which may call into
2633 "find_pc_section". When called, that function will make
2634 use of per-objfile program space data.
2636 Since we discarded our section information above, we have
2637 dangling pointers in the per-objfile program space data
2638 structure. Force GDB to update the section mapping
2639 information by letting it know the objfile has changed,
2640 making the dangling pointers point to correct data
2643 objfiles_changed ();
2645 read_symbols (objfile, 0);
2647 if (!objfile_has_symbols (objfile))
2650 printf_filtered (_("(no debugging symbols found)\n"));
2654 /* We're done reading the symbol file; finish off complaints. */
2655 clear_complaints ();
2657 /* Getting new symbols may change our opinion about what is
2660 reinit_frame_cache ();
2662 /* Discard cleanups as symbol reading was successful. */
2663 objfile_holder.release ();
2664 defer_clear_users.release ();
2666 /* If the mtime has changed between the time we set new_modtime
2667 and now, we *want* this to be out of date, so don't call stat
2669 objfile->mtime = new_modtime;
2670 init_entry_point_info (objfile);
2672 new_objfiles.push_back (objfile);
2676 if (!new_objfiles.empty ())
2678 clear_symtab_users (0);
2680 /* clear_objfile_data for each objfile was called before freeing it and
2681 gdb::observers::new_objfile.notify (NULL) has been called by
2682 clear_symtab_users above. Notify the new files now. */
2683 for (auto iter : new_objfiles)
2684 gdb::observers::new_objfile.notify (iter);
2686 /* At least one objfile has changed, so we can consider that
2687 the executable we're debugging has changed too. */
2688 gdb::observers::executable_changed.notify ();
2693 struct filename_language
2695 filename_language (const std::string &ext_, enum language lang_)
2696 : ext (ext_), lang (lang_)
2703 static std::vector<filename_language> filename_language_table;
2705 /* See symfile.h. */
2708 add_filename_language (const char *ext, enum language lang)
2710 filename_language_table.emplace_back (ext, lang);
2713 static char *ext_args;
2715 show_ext_args (struct ui_file *file, int from_tty,
2716 struct cmd_list_element *c, const char *value)
2718 fprintf_filtered (file,
2719 _("Mapping between filename extension "
2720 "and source language is \"%s\".\n"),
2725 set_ext_lang_command (const char *args,
2726 int from_tty, struct cmd_list_element *e)
2728 char *cp = ext_args;
2731 /* First arg is filename extension, starting with '.' */
2733 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2735 /* Find end of first arg. */
2736 while (*cp && !isspace (*cp))
2740 error (_("'%s': two arguments required -- "
2741 "filename extension and language"),
2744 /* Null-terminate first arg. */
2747 /* Find beginning of second arg, which should be a source language. */
2748 cp = skip_spaces (cp);
2751 error (_("'%s': two arguments required -- "
2752 "filename extension and language"),
2755 /* Lookup the language from among those we know. */
2756 lang = language_enum (cp);
2758 auto it = filename_language_table.begin ();
2759 /* Now lookup the filename extension: do we already know it? */
2760 for (; it != filename_language_table.end (); it++)
2762 if (it->ext == ext_args)
2766 if (it == filename_language_table.end ())
2768 /* New file extension. */
2769 add_filename_language (ext_args, lang);
2773 /* Redefining a previously known filename extension. */
2776 /* query ("Really make files of type %s '%s'?", */
2777 /* ext_args, language_str (lang)); */
2784 info_ext_lang_command (const char *args, int from_tty)
2786 printf_filtered (_("Filename extensions and the languages they represent:"));
2787 printf_filtered ("\n\n");
2788 for (const filename_language &entry : filename_language_table)
2789 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2790 language_str (entry.lang));
2794 deduce_language_from_filename (const char *filename)
2798 if (filename != NULL)
2799 if ((cp = strrchr (filename, '.')) != NULL)
2801 for (const filename_language &entry : filename_language_table)
2802 if (entry.ext == cp)
2806 return language_unknown;
2809 /* Allocate and initialize a new symbol table.
2810 CUST is from the result of allocate_compunit_symtab. */
2813 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2815 struct objfile *objfile = cust->objfile;
2816 struct symtab *symtab
2817 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2820 = (const char *) bcache (filename, strlen (filename) + 1,
2821 objfile->per_bfd->filename_cache);
2822 symtab->fullname = NULL;
2823 symtab->language = deduce_language_from_filename (filename);
2825 /* This can be very verbose with lots of headers.
2826 Only print at higher debug levels. */
2827 if (symtab_create_debug >= 2)
2829 /* Be a bit clever with debugging messages, and don't print objfile
2830 every time, only when it changes. */
2831 static char *last_objfile_name = NULL;
2833 if (last_objfile_name == NULL
2834 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2836 xfree (last_objfile_name);
2837 last_objfile_name = xstrdup (objfile_name (objfile));
2838 fprintf_filtered (gdb_stdlog,
2839 "Creating one or more symtabs for objfile %s ...\n",
2842 fprintf_filtered (gdb_stdlog,
2843 "Created symtab %s for module %s.\n",
2844 host_address_to_string (symtab), filename);
2847 /* Add it to CUST's list of symtabs. */
2848 if (cust->filetabs == NULL)
2850 cust->filetabs = symtab;
2851 cust->last_filetab = symtab;
2855 cust->last_filetab->next = symtab;
2856 cust->last_filetab = symtab;
2859 /* Backlink to the containing compunit symtab. */
2860 symtab->compunit_symtab = cust;
2865 /* Allocate and initialize a new compunit.
2866 NAME is the name of the main source file, if there is one, or some
2867 descriptive text if there are no source files. */
2869 struct compunit_symtab *
2870 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2872 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2873 struct compunit_symtab);
2874 const char *saved_name;
2876 cu->objfile = objfile;
2878 /* The name we record here is only for display/debugging purposes.
2879 Just save the basename to avoid path issues (too long for display,
2880 relative vs absolute, etc.). */
2881 saved_name = lbasename (name);
2883 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2884 strlen (saved_name));
2886 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2888 if (symtab_create_debug)
2890 fprintf_filtered (gdb_stdlog,
2891 "Created compunit symtab %s for %s.\n",
2892 host_address_to_string (cu),
2899 /* Hook CU to the objfile it comes from. */
2902 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2904 cu->next = cu->objfile->compunit_symtabs;
2905 cu->objfile->compunit_symtabs = cu;
2909 /* Reset all data structures in gdb which may contain references to
2910 symbol table data. */
2913 clear_symtab_users (symfile_add_flags add_flags)
2915 /* Someday, we should do better than this, by only blowing away
2916 the things that really need to be blown. */
2918 /* Clear the "current" symtab first, because it is no longer valid.
2919 breakpoint_re_set may try to access the current symtab. */
2920 clear_current_source_symtab_and_line ();
2923 clear_last_displayed_sal ();
2924 clear_pc_function_cache ();
2925 gdb::observers::new_objfile.notify (NULL);
2927 /* Clear globals which might have pointed into a removed objfile.
2928 FIXME: It's not clear which of these are supposed to persist
2929 between expressions and which ought to be reset each time. */
2930 expression_context_block = NULL;
2931 innermost_block.reset ();
2933 /* Varobj may refer to old symbols, perform a cleanup. */
2934 varobj_invalidate ();
2936 /* Now that the various caches have been cleared, we can re_set
2937 our breakpoints without risking it using stale data. */
2938 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2939 breakpoint_re_set ();
2943 The following code implements an abstraction for debugging overlay sections.
2945 The target model is as follows:
2946 1) The gnu linker will permit multiple sections to be mapped into the
2947 same VMA, each with its own unique LMA (or load address).
2948 2) It is assumed that some runtime mechanism exists for mapping the
2949 sections, one by one, from the load address into the VMA address.
2950 3) This code provides a mechanism for gdb to keep track of which
2951 sections should be considered to be mapped from the VMA to the LMA.
2952 This information is used for symbol lookup, and memory read/write.
2953 For instance, if a section has been mapped then its contents
2954 should be read from the VMA, otherwise from the LMA.
2956 Two levels of debugger support for overlays are available. One is
2957 "manual", in which the debugger relies on the user to tell it which
2958 overlays are currently mapped. This level of support is
2959 implemented entirely in the core debugger, and the information about
2960 whether a section is mapped is kept in the objfile->obj_section table.
2962 The second level of support is "automatic", and is only available if
2963 the target-specific code provides functionality to read the target's
2964 overlay mapping table, and translate its contents for the debugger
2965 (by updating the mapped state information in the obj_section tables).
2967 The interface is as follows:
2969 overlay map <name> -- tell gdb to consider this section mapped
2970 overlay unmap <name> -- tell gdb to consider this section unmapped
2971 overlay list -- list the sections that GDB thinks are mapped
2972 overlay read-target -- get the target's state of what's mapped
2973 overlay off/manual/auto -- set overlay debugging state
2974 Functional interface:
2975 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2976 section, return that section.
2977 find_pc_overlay(pc): find any overlay section that contains
2978 the pc, either in its VMA or its LMA
2979 section_is_mapped(sect): true if overlay is marked as mapped
2980 section_is_overlay(sect): true if section's VMA != LMA
2981 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2982 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2983 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2984 overlay_mapped_address(...): map an address from section's LMA to VMA
2985 overlay_unmapped_address(...): map an address from section's VMA to LMA
2986 symbol_overlayed_address(...): Return a "current" address for symbol:
2987 either in VMA or LMA depending on whether
2988 the symbol's section is currently mapped. */
2990 /* Overlay debugging state: */
2992 enum overlay_debugging_state overlay_debugging = ovly_off;
2993 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2995 /* Function: section_is_overlay (SECTION)
2996 Returns true if SECTION has VMA not equal to LMA, ie.
2997 SECTION is loaded at an address different from where it will "run". */
3000 section_is_overlay (struct obj_section *section)
3002 if (overlay_debugging && section)
3004 asection *bfd_section = section->the_bfd_section;
3006 if (bfd_section_lma (abfd, bfd_section) != 0
3007 && bfd_section_lma (abfd, bfd_section)
3008 != bfd_section_vma (abfd, bfd_section))
3015 /* Function: overlay_invalidate_all (void)
3016 Invalidate the mapped state of all overlay sections (mark it as stale). */
3019 overlay_invalidate_all (void)
3021 struct obj_section *sect;
3023 for (objfile *objfile : current_program_space->objfiles ())
3024 ALL_OBJFILE_OSECTIONS (objfile, sect)
3025 if (section_is_overlay (sect))
3026 sect->ovly_mapped = -1;
3029 /* Function: section_is_mapped (SECTION)
3030 Returns true if section is an overlay, and is currently mapped.
3032 Access to the ovly_mapped flag is restricted to this function, so
3033 that we can do automatic update. If the global flag
3034 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3035 overlay_invalidate_all. If the mapped state of the particular
3036 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3039 section_is_mapped (struct obj_section *osect)
3041 struct gdbarch *gdbarch;
3043 if (osect == 0 || !section_is_overlay (osect))
3046 switch (overlay_debugging)
3050 return 0; /* overlay debugging off */
3051 case ovly_auto: /* overlay debugging automatic */
3052 /* Unles there is a gdbarch_overlay_update function,
3053 there's really nothing useful to do here (can't really go auto). */
3054 gdbarch = get_objfile_arch (osect->objfile);
3055 if (gdbarch_overlay_update_p (gdbarch))
3057 if (overlay_cache_invalid)
3059 overlay_invalidate_all ();
3060 overlay_cache_invalid = 0;
3062 if (osect->ovly_mapped == -1)
3063 gdbarch_overlay_update (gdbarch, osect);
3066 case ovly_on: /* overlay debugging manual */
3067 return osect->ovly_mapped == 1;
3071 /* Function: pc_in_unmapped_range
3072 If PC falls into the lma range of SECTION, return true, else false. */
3075 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3077 if (section_is_overlay (section))
3079 bfd *abfd = section->objfile->obfd;
3080 asection *bfd_section = section->the_bfd_section;
3082 /* We assume the LMA is relocated by the same offset as the VMA. */
3083 bfd_vma size = bfd_get_section_size (bfd_section);
3084 CORE_ADDR offset = obj_section_offset (section);
3086 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3087 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3094 /* Function: pc_in_mapped_range
3095 If PC falls into the vma range of SECTION, return true, else false. */
3098 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3100 if (section_is_overlay (section))
3102 if (obj_section_addr (section) <= pc
3103 && pc < obj_section_endaddr (section))
3110 /* Return true if the mapped ranges of sections A and B overlap, false
3114 sections_overlap (struct obj_section *a, struct obj_section *b)
3116 CORE_ADDR a_start = obj_section_addr (a);
3117 CORE_ADDR a_end = obj_section_endaddr (a);
3118 CORE_ADDR b_start = obj_section_addr (b);
3119 CORE_ADDR b_end = obj_section_endaddr (b);
3121 return (a_start < b_end && b_start < a_end);
3124 /* Function: overlay_unmapped_address (PC, SECTION)
3125 Returns the address corresponding to PC in the unmapped (load) range.
3126 May be the same as PC. */
3129 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3131 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3133 asection *bfd_section = section->the_bfd_section;
3135 return pc + bfd_section_lma (abfd, bfd_section)
3136 - bfd_section_vma (abfd, bfd_section);
3142 /* Function: overlay_mapped_address (PC, SECTION)
3143 Returns the address corresponding to PC in the mapped (runtime) range.
3144 May be the same as PC. */
3147 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3149 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3151 asection *bfd_section = section->the_bfd_section;
3153 return pc + bfd_section_vma (abfd, bfd_section)
3154 - bfd_section_lma (abfd, bfd_section);
3160 /* Function: symbol_overlayed_address
3161 Return one of two addresses (relative to the VMA or to the LMA),
3162 depending on whether the section is mapped or not. */
3165 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3167 if (overlay_debugging)
3169 /* If the symbol has no section, just return its regular address. */
3172 /* If the symbol's section is not an overlay, just return its
3174 if (!section_is_overlay (section))
3176 /* If the symbol's section is mapped, just return its address. */
3177 if (section_is_mapped (section))
3180 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3181 * then return its LOADED address rather than its vma address!!
3183 return overlay_unmapped_address (address, section);
3188 /* Function: find_pc_overlay (PC)
3189 Return the best-match overlay section for PC:
3190 If PC matches a mapped overlay section's VMA, return that section.
3191 Else if PC matches an unmapped section's VMA, return that section.
3192 Else if PC matches an unmapped section's LMA, return that section. */
3194 struct obj_section *
3195 find_pc_overlay (CORE_ADDR pc)
3197 struct obj_section *osect, *best_match = NULL;
3199 if (overlay_debugging)
3201 for (objfile *objfile : current_program_space->objfiles ())
3202 ALL_OBJFILE_OSECTIONS (objfile, osect)
3203 if (section_is_overlay (osect))
3205 if (pc_in_mapped_range (pc, osect))
3207 if (section_is_mapped (osect))
3212 else if (pc_in_unmapped_range (pc, osect))
3219 /* Function: find_pc_mapped_section (PC)
3220 If PC falls into the VMA address range of an overlay section that is
3221 currently marked as MAPPED, return that section. Else return NULL. */
3223 struct obj_section *
3224 find_pc_mapped_section (CORE_ADDR pc)
3226 struct obj_section *osect;
3228 if (overlay_debugging)
3230 for (objfile *objfile : current_program_space->objfiles ())
3231 ALL_OBJFILE_OSECTIONS (objfile, osect)
3232 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3239 /* Function: list_overlays_command
3240 Print a list of mapped sections and their PC ranges. */
3243 list_overlays_command (const char *args, int from_tty)
3246 struct obj_section *osect;
3248 if (overlay_debugging)
3250 for (objfile *objfile : current_program_space->objfiles ())
3251 ALL_OBJFILE_OSECTIONS (objfile, osect)
3252 if (section_is_mapped (osect))
3254 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3259 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3260 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3261 size = bfd_get_section_size (osect->the_bfd_section);
3262 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3264 printf_filtered ("Section %s, loaded at ", name);
3265 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3266 puts_filtered (" - ");
3267 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3268 printf_filtered (", mapped at ");
3269 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3270 puts_filtered (" - ");
3271 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3272 puts_filtered ("\n");
3278 printf_filtered (_("No sections are mapped.\n"));
3281 /* Function: map_overlay_command
3282 Mark the named section as mapped (ie. residing at its VMA address). */
3285 map_overlay_command (const char *args, int from_tty)
3287 struct obj_section *sec, *sec2;
3289 if (!overlay_debugging)
3290 error (_("Overlay debugging not enabled. Use "
3291 "either the 'overlay auto' or\n"
3292 "the 'overlay manual' command."));
3294 if (args == 0 || *args == 0)
3295 error (_("Argument required: name of an overlay section"));
3297 /* First, find a section matching the user supplied argument. */
3298 for (objfile *obj_file : current_program_space->objfiles ())
3299 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3300 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3303 /* Now, check to see if the section is an overlay. */
3304 if (!section_is_overlay (sec))
3305 continue; /* not an overlay section */
3307 /* Mark the overlay as "mapped". */
3308 sec->ovly_mapped = 1;
3310 /* Next, make a pass and unmap any sections that are
3311 overlapped by this new section: */
3312 for (objfile *objfile2 : current_program_space->objfiles ())
3313 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3314 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3318 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3319 bfd_section_name (obj_file->obfd,
3320 sec2->the_bfd_section));
3321 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3325 error (_("No overlay section called %s"), args);
3328 /* Function: unmap_overlay_command
3329 Mark the overlay section as unmapped
3330 (ie. resident in its LMA address range, rather than the VMA range). */
3333 unmap_overlay_command (const char *args, int from_tty)
3335 struct obj_section *sec = NULL;
3337 if (!overlay_debugging)
3338 error (_("Overlay debugging not enabled. "
3339 "Use either the 'overlay auto' or\n"
3340 "the 'overlay manual' command."));
3342 if (args == 0 || *args == 0)
3343 error (_("Argument required: name of an overlay section"));
3345 /* First, find a section matching the user supplied argument. */
3346 for (objfile *objfile : current_program_space->objfiles ())
3347 ALL_OBJFILE_OSECTIONS (objfile, sec)
3348 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3350 if (!sec->ovly_mapped)
3351 error (_("Section %s is not mapped"), args);
3352 sec->ovly_mapped = 0;
3355 error (_("No overlay section called %s"), args);
3358 /* Function: overlay_auto_command
3359 A utility command to turn on overlay debugging.
3360 Possibly this should be done via a set/show command. */
3363 overlay_auto_command (const char *args, int from_tty)
3365 overlay_debugging = ovly_auto;
3366 enable_overlay_breakpoints ();
3368 printf_unfiltered (_("Automatic overlay debugging enabled."));
3371 /* Function: overlay_manual_command
3372 A utility command to turn on overlay debugging.
3373 Possibly this should be done via a set/show command. */
3376 overlay_manual_command (const char *args, int from_tty)
3378 overlay_debugging = ovly_on;
3379 disable_overlay_breakpoints ();
3381 printf_unfiltered (_("Overlay debugging enabled."));
3384 /* Function: overlay_off_command
3385 A utility command to turn on overlay debugging.
3386 Possibly this should be done via a set/show command. */
3389 overlay_off_command (const char *args, int from_tty)
3391 overlay_debugging = ovly_off;
3392 disable_overlay_breakpoints ();
3394 printf_unfiltered (_("Overlay debugging disabled."));
3398 overlay_load_command (const char *args, int from_tty)
3400 struct gdbarch *gdbarch = get_current_arch ();
3402 if (gdbarch_overlay_update_p (gdbarch))
3403 gdbarch_overlay_update (gdbarch, NULL);
3405 error (_("This target does not know how to read its overlay state."));
3408 /* Function: overlay_command
3409 A place-holder for a mis-typed command. */
3411 /* Command list chain containing all defined "overlay" subcommands. */
3412 static struct cmd_list_element *overlaylist;
3415 overlay_command (const char *args, int from_tty)
3418 ("\"overlay\" must be followed by the name of an overlay command.\n");
3419 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3422 /* Target Overlays for the "Simplest" overlay manager:
3424 This is GDB's default target overlay layer. It works with the
3425 minimal overlay manager supplied as an example by Cygnus. The
3426 entry point is via a function pointer "gdbarch_overlay_update",
3427 so targets that use a different runtime overlay manager can
3428 substitute their own overlay_update function and take over the
3431 The overlay_update function pokes around in the target's data structures
3432 to see what overlays are mapped, and updates GDB's overlay mapping with
3435 In this simple implementation, the target data structures are as follows:
3436 unsigned _novlys; /# number of overlay sections #/
3437 unsigned _ovly_table[_novlys][4] = {
3438 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3439 {..., ..., ..., ...},
3441 unsigned _novly_regions; /# number of overlay regions #/
3442 unsigned _ovly_region_table[_novly_regions][3] = {
3443 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3446 These functions will attempt to update GDB's mappedness state in the
3447 symbol section table, based on the target's mappedness state.
3449 To do this, we keep a cached copy of the target's _ovly_table, and
3450 attempt to detect when the cached copy is invalidated. The main
3451 entry point is "simple_overlay_update(SECT), which looks up SECT in
3452 the cached table and re-reads only the entry for that section from
3453 the target (whenever possible). */
3455 /* Cached, dynamically allocated copies of the target data structures: */
3456 static unsigned (*cache_ovly_table)[4] = 0;
3457 static unsigned cache_novlys = 0;
3458 static CORE_ADDR cache_ovly_table_base = 0;
3461 VMA, OSIZE, LMA, MAPPED
3464 /* Throw away the cached copy of _ovly_table. */
3467 simple_free_overlay_table (void)
3469 if (cache_ovly_table)
3470 xfree (cache_ovly_table);
3472 cache_ovly_table = NULL;
3473 cache_ovly_table_base = 0;
3476 /* Read an array of ints of size SIZE from the target into a local buffer.
3477 Convert to host order. int LEN is number of ints. */
3480 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3481 int len, int size, enum bfd_endian byte_order)
3483 /* FIXME (alloca): Not safe if array is very large. */
3484 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3487 read_memory (memaddr, buf, len * size);
3488 for (i = 0; i < len; i++)
3489 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3492 /* Find and grab a copy of the target _ovly_table
3493 (and _novlys, which is needed for the table's size). */
3496 simple_read_overlay_table (void)
3498 struct bound_minimal_symbol novlys_msym;
3499 struct bound_minimal_symbol ovly_table_msym;
3500 struct gdbarch *gdbarch;
3502 enum bfd_endian byte_order;
3504 simple_free_overlay_table ();
3505 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3506 if (! novlys_msym.minsym)
3508 error (_("Error reading inferior's overlay table: "
3509 "couldn't find `_novlys' variable\n"
3510 "in inferior. Use `overlay manual' mode."));
3514 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3515 if (! ovly_table_msym.minsym)
3517 error (_("Error reading inferior's overlay table: couldn't find "
3518 "`_ovly_table' array\n"
3519 "in inferior. Use `overlay manual' mode."));
3523 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3524 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3525 byte_order = gdbarch_byte_order (gdbarch);
3527 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3530 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3531 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3532 read_target_long_array (cache_ovly_table_base,
3533 (unsigned int *) cache_ovly_table,
3534 cache_novlys * 4, word_size, byte_order);
3536 return 1; /* SUCCESS */
3539 /* Function: simple_overlay_update_1
3540 A helper function for simple_overlay_update. Assuming a cached copy
3541 of _ovly_table exists, look through it to find an entry whose vma,
3542 lma and size match those of OSECT. Re-read the entry and make sure
3543 it still matches OSECT (else the table may no longer be valid).
3544 Set OSECT's mapped state to match the entry. Return: 1 for
3545 success, 0 for failure. */
3548 simple_overlay_update_1 (struct obj_section *osect)
3551 asection *bsect = osect->the_bfd_section;
3552 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3553 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3556 for (i = 0; i < cache_novlys; i++)
3557 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3558 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3560 read_target_long_array (cache_ovly_table_base + i * word_size,
3561 (unsigned int *) cache_ovly_table[i],
3562 4, word_size, byte_order);
3563 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3564 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3566 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3569 else /* Warning! Warning! Target's ovly table has changed! */
3575 /* Function: simple_overlay_update
3576 If OSECT is NULL, then update all sections' mapped state
3577 (after re-reading the entire target _ovly_table).
3578 If OSECT is non-NULL, then try to find a matching entry in the
3579 cached ovly_table and update only OSECT's mapped state.
3580 If a cached entry can't be found or the cache isn't valid, then
3581 re-read the entire cache, and go ahead and update all sections. */
3584 simple_overlay_update (struct obj_section *osect)
3586 /* Were we given an osect to look up? NULL means do all of them. */
3588 /* Have we got a cached copy of the target's overlay table? */
3589 if (cache_ovly_table != NULL)
3591 /* Does its cached location match what's currently in the
3593 struct bound_minimal_symbol minsym
3594 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3596 if (minsym.minsym == NULL)
3597 error (_("Error reading inferior's overlay table: couldn't "
3598 "find `_ovly_table' array\n"
3599 "in inferior. Use `overlay manual' mode."));
3601 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3602 /* Then go ahead and try to look up this single section in
3604 if (simple_overlay_update_1 (osect))
3605 /* Found it! We're done. */
3609 /* Cached table no good: need to read the entire table anew.
3610 Or else we want all the sections, in which case it's actually
3611 more efficient to read the whole table in one block anyway. */
3613 if (! simple_read_overlay_table ())
3616 /* Now may as well update all sections, even if only one was requested. */
3617 for (objfile *objfile : current_program_space->objfiles ())
3618 ALL_OBJFILE_OSECTIONS (objfile, osect)
3619 if (section_is_overlay (osect))
3622 asection *bsect = osect->the_bfd_section;
3624 for (i = 0; i < cache_novlys; i++)
3625 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3626 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3627 { /* obj_section matches i'th entry in ovly_table. */
3628 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3629 break; /* finished with inner for loop: break out. */
3634 /* Set the output sections and output offsets for section SECTP in
3635 ABFD. The relocation code in BFD will read these offsets, so we
3636 need to be sure they're initialized. We map each section to itself,
3637 with no offset; this means that SECTP->vma will be honored. */
3640 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3642 sectp->output_section = sectp;
3643 sectp->output_offset = 0;
3646 /* Default implementation for sym_relocate. */
3649 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3652 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3654 bfd *abfd = sectp->owner;
3656 /* We're only interested in sections with relocation
3658 if ((sectp->flags & SEC_RELOC) == 0)
3661 /* We will handle section offsets properly elsewhere, so relocate as if
3662 all sections begin at 0. */
3663 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3665 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3668 /* Relocate the contents of a debug section SECTP in ABFD. The
3669 contents are stored in BUF if it is non-NULL, or returned in a
3670 malloc'd buffer otherwise.
3672 For some platforms and debug info formats, shared libraries contain
3673 relocations against the debug sections (particularly for DWARF-2;
3674 one affected platform is PowerPC GNU/Linux, although it depends on
3675 the version of the linker in use). Also, ELF object files naturally
3676 have unresolved relocations for their debug sections. We need to apply
3677 the relocations in order to get the locations of symbols correct.
3678 Another example that may require relocation processing, is the
3679 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3683 symfile_relocate_debug_section (struct objfile *objfile,
3684 asection *sectp, bfd_byte *buf)
3686 gdb_assert (objfile->sf->sym_relocate);
3688 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3691 struct symfile_segment_data *
3692 get_symfile_segment_data (bfd *abfd)
3694 const struct sym_fns *sf = find_sym_fns (abfd);
3699 return sf->sym_segments (abfd);
3703 free_symfile_segment_data (struct symfile_segment_data *data)
3705 xfree (data->segment_bases);
3706 xfree (data->segment_sizes);
3707 xfree (data->segment_info);
3712 - DATA, containing segment addresses from the object file ABFD, and
3713 the mapping from ABFD's sections onto the segments that own them,
3715 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3716 segment addresses reported by the target,
3717 store the appropriate offsets for each section in OFFSETS.
3719 If there are fewer entries in SEGMENT_BASES than there are segments
3720 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3722 If there are more entries, then ignore the extra. The target may
3723 not be able to distinguish between an empty data segment and a
3724 missing data segment; a missing text segment is less plausible. */
3727 symfile_map_offsets_to_segments (bfd *abfd,
3728 const struct symfile_segment_data *data,
3729 struct section_offsets *offsets,
3730 int num_segment_bases,
3731 const CORE_ADDR *segment_bases)
3736 /* It doesn't make sense to call this function unless you have some
3737 segment base addresses. */
3738 gdb_assert (num_segment_bases > 0);
3740 /* If we do not have segment mappings for the object file, we
3741 can not relocate it by segments. */
3742 gdb_assert (data != NULL);
3743 gdb_assert (data->num_segments > 0);
3745 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3747 int which = data->segment_info[i];
3749 gdb_assert (0 <= which && which <= data->num_segments);
3751 /* Don't bother computing offsets for sections that aren't
3752 loaded as part of any segment. */
3756 /* Use the last SEGMENT_BASES entry as the address of any extra
3757 segments mentioned in DATA->segment_info. */
3758 if (which > num_segment_bases)
3759 which = num_segment_bases;
3761 offsets->offsets[i] = (segment_bases[which - 1]
3762 - data->segment_bases[which - 1]);
3769 symfile_find_segment_sections (struct objfile *objfile)
3771 bfd *abfd = objfile->obfd;
3774 struct symfile_segment_data *data;
3776 data = get_symfile_segment_data (objfile->obfd);
3780 if (data->num_segments != 1 && data->num_segments != 2)
3782 free_symfile_segment_data (data);
3786 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3788 int which = data->segment_info[i];
3792 if (objfile->sect_index_text == -1)
3793 objfile->sect_index_text = sect->index;
3795 if (objfile->sect_index_rodata == -1)
3796 objfile->sect_index_rodata = sect->index;
3798 else if (which == 2)
3800 if (objfile->sect_index_data == -1)
3801 objfile->sect_index_data = sect->index;
3803 if (objfile->sect_index_bss == -1)
3804 objfile->sect_index_bss = sect->index;
3808 free_symfile_segment_data (data);
3811 /* Listen for free_objfile events. */
3814 symfile_free_objfile (struct objfile *objfile)
3816 /* Remove the target sections owned by this objfile. */
3817 if (objfile != NULL)
3818 remove_target_sections ((void *) objfile);
3821 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3822 Expand all symtabs that match the specified criteria.
3823 See quick_symbol_functions.expand_symtabs_matching for details. */
3826 expand_symtabs_matching
3827 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3828 const lookup_name_info &lookup_name,
3829 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3830 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3831 enum search_domain kind)
3833 for (objfile *objfile : current_program_space->objfiles ())
3836 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3839 expansion_notify, kind);
3843 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3844 Map function FUN over every file.
3845 See quick_symbol_functions.map_symbol_filenames for details. */
3848 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3851 for (objfile *objfile : current_program_space->objfiles ())
3854 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3861 namespace selftests {
3862 namespace filename_language {
3864 static void test_filename_language ()
3866 /* This test messes up the filename_language_table global. */
3867 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3869 /* Test deducing an unknown extension. */
3870 language lang = deduce_language_from_filename ("myfile.blah");
3871 SELF_CHECK (lang == language_unknown);
3873 /* Test deducing a known extension. */
3874 lang = deduce_language_from_filename ("myfile.c");
3875 SELF_CHECK (lang == language_c);
3877 /* Test adding a new extension using the internal API. */
3878 add_filename_language (".blah", language_pascal);
3879 lang = deduce_language_from_filename ("myfile.blah");
3880 SELF_CHECK (lang == language_pascal);
3884 test_set_ext_lang_command ()
3886 /* This test messes up the filename_language_table global. */
3887 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3889 /* Confirm that the .hello extension is not known. */
3890 language lang = deduce_language_from_filename ("cake.hello");
3891 SELF_CHECK (lang == language_unknown);
3893 /* Test adding a new extension using the CLI command. */
3894 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3895 ext_args = args_holder.get ();
3896 set_ext_lang_command (NULL, 1, NULL);
3898 lang = deduce_language_from_filename ("cake.hello");
3899 SELF_CHECK (lang == language_rust);
3901 /* Test overriding an existing extension using the CLI command. */
3902 int size_before = filename_language_table.size ();
3903 args_holder.reset (xstrdup (".hello pascal"));
3904 ext_args = args_holder.get ();
3905 set_ext_lang_command (NULL, 1, NULL);
3906 int size_after = filename_language_table.size ();
3908 lang = deduce_language_from_filename ("cake.hello");
3909 SELF_CHECK (lang == language_pascal);
3910 SELF_CHECK (size_before == size_after);
3913 } /* namespace filename_language */
3914 } /* namespace selftests */
3916 #endif /* GDB_SELF_TEST */
3919 _initialize_symfile (void)
3921 struct cmd_list_element *c;
3923 gdb::observers::free_objfile.attach (symfile_free_objfile);
3925 #define READNOW_READNEVER_HELP \
3926 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3927 immediately. This makes the command slower, but may make future operations\n\
3929 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3930 symbolic debug information."
3932 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3933 Load symbol table from executable file FILE.\n\
3934 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3935 OFF is an optional offset which is added to each section address.\n\
3936 The `file' command can also load symbol tables, as well as setting the file\n\
3937 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3938 set_cmd_completer (c, filename_completer);
3940 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3941 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3942 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3943 [-s SECT-NAME SECT-ADDR]...\n\
3944 ADDR is the starting address of the file's text.\n\
3945 Each '-s' argument provides a section name and address, and\n\
3946 should be specified if the data and bss segments are not contiguous\n\
3947 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3948 OFF is an optional offset which is added to the default load addresses\n\
3949 of all sections for which no other address was specified.\n"
3950 READNOW_READNEVER_HELP),
3952 set_cmd_completer (c, filename_completer);
3954 c = add_cmd ("remove-symbol-file", class_files,
3955 remove_symbol_file_command, _("\
3956 Remove a symbol file added via the add-symbol-file command.\n\
3957 Usage: remove-symbol-file FILENAME\n\
3958 remove-symbol-file -a ADDRESS\n\
3959 The file to remove can be identified by its filename or by an address\n\
3960 that lies within the boundaries of this symbol file in memory."),
3963 c = add_cmd ("load", class_files, load_command, _("\
3964 Dynamically load FILE into the running program, and record its symbols\n\
3965 for access from GDB.\n\
3966 Usage: load [FILE] [OFFSET]\n\
3967 An optional load OFFSET may also be given as a literal address.\n\
3968 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3969 on its own."), &cmdlist);
3970 set_cmd_completer (c, filename_completer);
3972 add_prefix_cmd ("overlay", class_support, overlay_command,
3973 _("Commands for debugging overlays."), &overlaylist,
3974 "overlay ", 0, &cmdlist);
3976 add_com_alias ("ovly", "overlay", class_alias, 1);
3977 add_com_alias ("ov", "overlay", class_alias, 1);
3979 add_cmd ("map-overlay", class_support, map_overlay_command,
3980 _("Assert that an overlay section is mapped."), &overlaylist);
3982 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3983 _("Assert that an overlay section is unmapped."), &overlaylist);
3985 add_cmd ("list-overlays", class_support, list_overlays_command,
3986 _("List mappings of overlay sections."), &overlaylist);
3988 add_cmd ("manual", class_support, overlay_manual_command,
3989 _("Enable overlay debugging."), &overlaylist);
3990 add_cmd ("off", class_support, overlay_off_command,
3991 _("Disable overlay debugging."), &overlaylist);
3992 add_cmd ("auto", class_support, overlay_auto_command,
3993 _("Enable automatic overlay debugging."), &overlaylist);
3994 add_cmd ("load-target", class_support, overlay_load_command,
3995 _("Read the overlay mapping state from the target."), &overlaylist);
3997 /* Filename extension to source language lookup table: */
3998 add_setshow_string_noescape_cmd ("extension-language", class_files,
4000 Set mapping between filename extension and source language."), _("\
4001 Show mapping between filename extension and source language."), _("\
4002 Usage: set extension-language .foo bar"),
4003 set_ext_lang_command,
4005 &setlist, &showlist);
4007 add_info ("extensions", info_ext_lang_command,
4008 _("All filename extensions associated with a source language."));
4010 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4011 &debug_file_directory, _("\
4012 Set the directories where separate debug symbols are searched for."), _("\
4013 Show the directories where separate debug symbols are searched for."), _("\
4014 Separate debug symbols are first searched for in the same\n\
4015 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4016 and lastly at the path of the directory of the binary with\n\
4017 each global debug-file-directory component prepended."),
4019 show_debug_file_directory,
4020 &setlist, &showlist);
4022 add_setshow_enum_cmd ("symbol-loading", no_class,
4023 print_symbol_loading_enums, &print_symbol_loading,
4025 Set printing of symbol loading messages."), _("\
4026 Show printing of symbol loading messages."), _("\
4027 off == turn all messages off\n\
4028 brief == print messages for the executable,\n\
4029 and brief messages for shared libraries\n\
4030 full == print messages for the executable,\n\
4031 and messages for each shared library."),
4034 &setprintlist, &showprintlist);
4036 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4037 &separate_debug_file_debug, _("\
4038 Set printing of separate debug info file search debug."), _("\
4039 Show printing of separate debug info file search debug."), _("\
4040 When on, GDB prints the searched locations while looking for separate debug \
4041 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4044 selftests::register_test
4045 ("filename_language", selftests::filename_language::test_filename_language);
4046 selftests::register_test
4047 ("set_ext_lang_command",
4048 selftests::filename_language::test_set_ext_lang_command);