1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support, using pieces from other GDB modules.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "arch-utils.h"
37 #include "breakpoint.h"
39 #include "complaints.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
54 #include "parser-defs.h"
60 #include <sys/types.h>
62 #include "gdb_string.h"
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
79 static void clear_symtab_users_cleanup (void *ignore);
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
84 /* External variables and functions referenced. */
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
88 /* Functions this file defines */
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
95 static void load_command (char *, int);
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
99 static void add_symbol_file_command (char *, int);
101 bfd *symfile_bfd_open (char *);
103 int get_section_index (struct objfile *, char *);
105 static struct sym_fns *find_sym_fns (bfd *);
107 static void decrement_reading_symtab (void *);
109 static void overlay_invalidate_all (void);
111 void list_overlays_command (char *, int);
113 void map_overlay_command (char *, int);
115 void unmap_overlay_command (char *, int);
117 static void overlay_auto_command (char *, int);
119 static void overlay_manual_command (char *, int);
121 static void overlay_off_command (char *, int);
123 static void overlay_load_command (char *, int);
125 static void overlay_command (char *, int);
127 static void simple_free_overlay_table (void);
129 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
132 static int simple_read_overlay_table (void);
134 static int simple_overlay_update_1 (struct obj_section *);
136 static void add_filename_language (char *ext, enum language lang);
138 static void info_ext_lang_command (char *args, int from_tty);
140 static void init_filename_language_table (void);
142 static void symfile_find_segment_sections (struct objfile *objfile);
144 void _initialize_symfile (void);
146 /* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
150 static struct sym_fns *symtab_fns = NULL;
152 /* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
155 #ifdef SYMBOL_RELOADING_DEFAULT
156 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
158 int symbol_reloading = 0;
161 show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
164 fprintf_filtered (file, _("\
165 Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 /* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
176 library symbols are not loaded, commands like "info fun" will *not*
177 report all the functions that are actually present. */
179 int auto_solib_add = 1;
181 /* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
189 int auto_solib_limit;
192 /* Make a null terminated copy of the string at PTR with SIZE characters in
193 the obstack pointed to by OBSTACKP . Returns the address of the copy.
194 Note that the string at PTR does not have to be null terminated, I.E. it
195 may be part of a larger string and we are only saving a substring. */
198 obsavestring (const char *ptr, int size, struct obstack *obstackp)
200 char *p = (char *) obstack_alloc (obstackp, size + 1);
201 /* Open-coded memcpy--saves function call time. These strings are usually
202 short. FIXME: Is this really still true with a compiler that can
205 const char *p1 = ptr;
207 const char *end = ptr + size;
216 /* Concatenate NULL terminated variable argument list of `const char *' strings;
217 return the new string. Space is found in the OBSTACKP. Argument list must
218 be terminated by a sentinel expression `(char *) NULL'. */
221 obconcat (struct obstack *obstackp, ...)
225 va_start (ap, obstackp);
228 const char *s = va_arg (ap, const char *);
233 obstack_grow_str (obstackp, s);
236 obstack_1grow (obstackp, 0);
238 return obstack_finish (obstackp);
241 /* True if we are reading a symbol table. */
243 int currently_reading_symtab = 0;
246 decrement_reading_symtab (void *dummy)
248 currently_reading_symtab--;
251 /* Increment currently_reading_symtab and return a cleanup that can be
252 used to decrement it. */
254 increment_reading_symtab (void)
256 ++currently_reading_symtab;
257 return make_cleanup (decrement_reading_symtab, NULL);
260 /* Remember the lowest-addressed loadable section we've seen.
261 This function is called via bfd_map_over_sections.
263 In case of equal vmas, the section with the largest size becomes the
264 lowest-addressed loadable section.
266 If the vmas and sizes are equal, the last section is considered the
267 lowest-addressed loadable section. */
270 find_lowest_section (bfd *abfd, asection *sect, void *obj)
272 asection **lowest = (asection **) obj;
274 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
277 *lowest = sect; /* First loadable section */
278 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
279 *lowest = sect; /* A lower loadable section */
280 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
281 && (bfd_section_size (abfd, (*lowest))
282 <= bfd_section_size (abfd, sect)))
286 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
288 struct section_addr_info *
289 alloc_section_addr_info (size_t num_sections)
291 struct section_addr_info *sap;
294 size = (sizeof (struct section_addr_info)
295 + sizeof (struct other_sections) * (num_sections - 1));
296 sap = (struct section_addr_info *) xmalloc (size);
297 memset (sap, 0, size);
298 sap->num_sections = num_sections;
303 /* Build (allocate and populate) a section_addr_info struct from
304 an existing section table. */
306 extern struct section_addr_info *
307 build_section_addr_info_from_section_table (const struct target_section *start,
308 const struct target_section *end)
310 struct section_addr_info *sap;
311 const struct target_section *stp;
314 sap = alloc_section_addr_info (end - start);
316 for (stp = start, oidx = 0; stp != end; stp++)
318 if (bfd_get_section_flags (stp->bfd,
319 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
320 && oidx < end - start)
322 sap->other[oidx].addr = stp->addr;
323 sap->other[oidx].name
324 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
325 sap->other[oidx].sectindex = stp->the_bfd_section->index;
333 /* Create a section_addr_info from section offsets in ABFD. */
335 static struct section_addr_info *
336 build_section_addr_info_from_bfd (bfd *abfd)
338 struct section_addr_info *sap;
340 struct bfd_section *sec;
342 sap = alloc_section_addr_info (bfd_count_sections (abfd));
343 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
344 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
346 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
347 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
348 sap->other[i].sectindex = sec->index;
354 /* Create a section_addr_info from section offsets in OBJFILE. */
356 struct section_addr_info *
357 build_section_addr_info_from_objfile (const struct objfile *objfile)
359 struct section_addr_info *sap;
362 /* Before reread_symbols gets rewritten it is not safe to call:
363 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
365 sap = build_section_addr_info_from_bfd (objfile->obfd);
366 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
368 int sectindex = sap->other[i].sectindex;
370 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
375 /* Free all memory allocated by build_section_addr_info_from_section_table. */
378 free_section_addr_info (struct section_addr_info *sap)
382 for (idx = 0; idx < sap->num_sections; idx++)
383 if (sap->other[idx].name)
384 xfree (sap->other[idx].name);
389 /* Initialize OBJFILE's sect_index_* members. */
391 init_objfile_sect_indices (struct objfile *objfile)
396 sect = bfd_get_section_by_name (objfile->obfd, ".text");
398 objfile->sect_index_text = sect->index;
400 sect = bfd_get_section_by_name (objfile->obfd, ".data");
402 objfile->sect_index_data = sect->index;
404 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
406 objfile->sect_index_bss = sect->index;
408 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
410 objfile->sect_index_rodata = sect->index;
412 /* This is where things get really weird... We MUST have valid
413 indices for the various sect_index_* members or gdb will abort.
414 So if for example, there is no ".text" section, we have to
415 accomodate that. First, check for a file with the standard
416 one or two segments. */
418 symfile_find_segment_sections (objfile);
420 /* Except when explicitly adding symbol files at some address,
421 section_offsets contains nothing but zeros, so it doesn't matter
422 which slot in section_offsets the individual sect_index_* members
423 index into. So if they are all zero, it is safe to just point
424 all the currently uninitialized indices to the first slot. But
425 beware: if this is the main executable, it may be relocated
426 later, e.g. by the remote qOffsets packet, and then this will
427 be wrong! That's why we try segments first. */
429 for (i = 0; i < objfile->num_sections; i++)
431 if (ANOFFSET (objfile->section_offsets, i) != 0)
436 if (i == objfile->num_sections)
438 if (objfile->sect_index_text == -1)
439 objfile->sect_index_text = 0;
440 if (objfile->sect_index_data == -1)
441 objfile->sect_index_data = 0;
442 if (objfile->sect_index_bss == -1)
443 objfile->sect_index_bss = 0;
444 if (objfile->sect_index_rodata == -1)
445 objfile->sect_index_rodata = 0;
449 /* The arguments to place_section. */
451 struct place_section_arg
453 struct section_offsets *offsets;
457 /* Find a unique offset to use for loadable section SECT if
458 the user did not provide an offset. */
461 place_section (bfd *abfd, asection *sect, void *obj)
463 struct place_section_arg *arg = obj;
464 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
466 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
468 /* We are only interested in allocated sections. */
469 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
472 /* If the user specified an offset, honor it. */
473 if (offsets[sect->index] != 0)
476 /* Otherwise, let's try to find a place for the section. */
477 start_addr = (arg->lowest + align - 1) & -align;
484 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
486 int indx = cur_sec->index;
488 /* We don't need to compare against ourself. */
492 /* We can only conflict with allocated sections. */
493 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
496 /* If the section offset is 0, either the section has not been placed
497 yet, or it was the lowest section placed (in which case LOWEST
498 will be past its end). */
499 if (offsets[indx] == 0)
502 /* If this section would overlap us, then we must move up. */
503 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
504 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
506 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
507 start_addr = (start_addr + align - 1) & -align;
512 /* Otherwise, we appear to be OK. So far. */
517 offsets[sect->index] = start_addr;
518 arg->lowest = start_addr + bfd_get_section_size (sect);
521 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
522 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
526 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
528 struct section_addr_info *addrs)
532 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
534 /* Now calculate offsets for section that were specified by the caller. */
535 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
537 struct other_sections *osp;
539 osp = &addrs->other[i];
543 /* Record all sections in offsets */
544 /* The section_offsets in the objfile are here filled in using
546 section_offsets->offsets[osp->sectindex] = osp->addr;
550 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
551 their (name, sectindex) pair. sectindex makes the sort by name stable. */
554 addrs_section_compar (const void *ap, const void *bp)
556 const struct other_sections *a = *((struct other_sections **) ap);
557 const struct other_sections *b = *((struct other_sections **) bp);
558 int retval, a_idx, b_idx;
560 retval = strcmp (a->name, b->name);
564 /* SECTINDEX is undefined iff ADDR is zero. */
565 a_idx = a->addr == 0 ? 0 : a->sectindex;
566 b_idx = b->addr == 0 ? 0 : b->sectindex;
567 return a_idx - b_idx;
570 /* Provide sorted array of pointers to sections of ADDRS. The array is
571 terminated by NULL. Caller is responsible to call xfree for it. */
573 static struct other_sections **
574 addrs_section_sort (struct section_addr_info *addrs)
576 struct other_sections **array;
579 /* `+ 1' for the NULL terminator. */
580 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
581 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
582 array[i] = &addrs->other[i];
585 qsort (array, i, sizeof (*array), addrs_section_compar);
590 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
591 also SECTINDEXes specific to ABFD there. This function can be used to
592 rebase ADDRS to start referencing different BFD than before. */
595 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
597 asection *lower_sect;
598 CORE_ADDR lower_offset;
600 struct cleanup *my_cleanup;
601 struct section_addr_info *abfd_addrs;
602 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
603 struct other_sections **addrs_to_abfd_addrs;
605 /* Find lowest loadable section to be used as starting point for
606 continguous sections. */
608 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
609 if (lower_sect == NULL)
611 warning (_("no loadable sections found in added symbol-file %s"),
612 bfd_get_filename (abfd));
616 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
618 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
619 in ABFD. Section names are not unique - there can be multiple sections of
620 the same name. Also the sections of the same name do not have to be
621 adjacent to each other. Some sections may be present only in one of the
622 files. Even sections present in both files do not have to be in the same
625 Use stable sort by name for the sections in both files. Then linearly
626 scan both lists matching as most of the entries as possible. */
628 addrs_sorted = addrs_section_sort (addrs);
629 my_cleanup = make_cleanup (xfree, addrs_sorted);
631 abfd_addrs = build_section_addr_info_from_bfd (abfd);
632 make_cleanup_free_section_addr_info (abfd_addrs);
633 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
634 make_cleanup (xfree, abfd_addrs_sorted);
636 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
638 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
639 * addrs->num_sections);
640 make_cleanup (xfree, addrs_to_abfd_addrs);
642 while (*addrs_sorted)
644 const char *sect_name = (*addrs_sorted)->name;
646 while (*abfd_addrs_sorted
647 && strcmp ((*abfd_addrs_sorted)->name, sect_name) < 0)
650 if (*abfd_addrs_sorted
651 && strcmp ((*abfd_addrs_sorted)->name, sect_name) == 0)
655 /* Make the found item directly addressable from ADDRS. */
656 index_in_addrs = *addrs_sorted - addrs->other;
657 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
658 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
660 /* Never use the same ABFD entry twice. */
667 /* Calculate offsets for the loadable sections.
668 FIXME! Sections must be in order of increasing loadable section
669 so that contiguous sections can use the lower-offset!!!
671 Adjust offsets if the segments are not contiguous.
672 If the section is contiguous, its offset should be set to
673 the offset of the highest loadable section lower than it
674 (the loadable section directly below it in memory).
675 this_offset = lower_offset = lower_addr - lower_orig_addr */
677 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
679 const char *sect_name = addrs->other[i].name;
680 struct other_sections *sect = addrs_to_abfd_addrs[i];
684 /* This is the index used by BFD. */
685 addrs->other[i].sectindex = sect->sectindex;
687 if (addrs->other[i].addr != 0)
689 addrs->other[i].addr -= sect->addr;
690 lower_offset = addrs->other[i].addr;
693 addrs->other[i].addr = lower_offset;
697 /* This section does not exist in ABFD, which is normally
698 unexpected and we want to issue a warning.
700 However, the ELF prelinker does create a few sections which are
701 marked in the main executable as loadable (they are loaded in
702 memory from the DYNAMIC segment) and yet are not present in
703 separate debug info files. This is fine, and should not cause
704 a warning. Shared libraries contain just the section
705 ".gnu.liblist" but it is not marked as loadable there. There is
706 no other way to identify them than by their name as the sections
707 created by prelink have no special flags. */
709 if (!(strcmp (sect_name, ".gnu.liblist") == 0
710 || strcmp (sect_name, ".gnu.conflict") == 0
711 || strcmp (sect_name, ".dynbss") == 0
712 || strcmp (sect_name, ".sdynbss") == 0))
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
716 addrs->other[i].addr = 0;
718 /* SECTINDEX is invalid if ADDR is zero. */
722 do_cleanups (my_cleanup);
725 /* Parse the user's idea of an offset for dynamic linking, into our idea
726 of how to represent it for fast symbol reading. This is the default
727 version of the sym_fns.sym_offsets function for symbol readers that
728 don't need to do anything special. It allocates a section_offsets table
729 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
732 default_symfile_offsets (struct objfile *objfile,
733 struct section_addr_info *addrs)
735 objfile->num_sections = bfd_count_sections (objfile->obfd);
736 objfile->section_offsets = (struct section_offsets *)
737 obstack_alloc (&objfile->objfile_obstack,
738 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
739 relative_addr_info_to_section_offsets (objfile->section_offsets,
740 objfile->num_sections, addrs);
742 /* For relocatable files, all loadable sections will start at zero.
743 The zero is meaningless, so try to pick arbitrary addresses such
744 that no loadable sections overlap. This algorithm is quadratic,
745 but the number of sections in a single object file is generally
747 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
749 struct place_section_arg arg;
750 bfd *abfd = objfile->obfd;
753 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
754 /* We do not expect this to happen; just skip this step if the
755 relocatable file has a section with an assigned VMA. */
756 if (bfd_section_vma (abfd, cur_sec) != 0)
761 CORE_ADDR *offsets = objfile->section_offsets->offsets;
763 /* Pick non-overlapping offsets for sections the user did not
765 arg.offsets = objfile->section_offsets;
767 bfd_map_over_sections (objfile->obfd, place_section, &arg);
769 /* Correctly filling in the section offsets is not quite
770 enough. Relocatable files have two properties that
771 (most) shared objects do not:
773 - Their debug information will contain relocations. Some
774 shared libraries do also, but many do not, so this can not
777 - If there are multiple code sections they will be loaded
778 at different relative addresses in memory than they are
779 in the objfile, since all sections in the file will start
782 Because GDB has very limited ability to map from an
783 address in debug info to the correct code section,
784 it relies on adding SECT_OFF_TEXT to things which might be
785 code. If we clear all the section offsets, and set the
786 section VMAs instead, then symfile_relocate_debug_section
787 will return meaningful debug information pointing at the
790 GDB has too many different data structures for section
791 addresses - a bfd, objfile, and so_list all have section
792 tables, as does exec_ops. Some of these could probably
795 for (cur_sec = abfd->sections; cur_sec != NULL;
796 cur_sec = cur_sec->next)
798 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
801 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
802 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
803 offsets[cur_sec->index]);
804 offsets[cur_sec->index] = 0;
809 /* Remember the bfd indexes for the .text, .data, .bss and
811 init_objfile_sect_indices (objfile);
815 /* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
821 struct symfile_segment_data *
822 default_symfile_segments (bfd *abfd)
826 struct symfile_segment_data *data;
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
864 vma = bfd_get_section_vma (abfd, sect);
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
870 data->segment_info[i] = 1;
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
879 /* Process a symbol file, as either the main file or as a dynamically
882 OBJFILE is where the symbols are to be read from.
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
910 syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
916 struct section_addr_info *local_addr = NULL;
917 struct cleanup *old_chain;
918 const int mainline = add_flags & SYMFILE_MAINLINE;
920 gdb_assert (! (addrs && offsets));
922 init_entry_point_info (objfile);
923 objfile->sf = find_sym_fns (objfile->obfd);
925 if (objfile->sf == NULL)
926 return; /* No symbols. */
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
930 old_chain = make_cleanup_free_objfile (objfile);
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs && ! offsets)
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
943 /* Now either addrs or offsets is non-zero. */
947 /* We will modify the main symbol table, make sure that all its users
948 will be cleaned up if an error occurs during symbol reading. */
949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
951 /* Since no error yet, throw away the old symbol table. */
953 if (symfile_objfile != NULL)
955 free_objfile (symfile_objfile);
956 gdb_assert (symfile_objfile == NULL);
959 /* Currently we keep symbols from the add-symbol-file command.
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
964 (*objfile->sf->sym_new_init) (objfile);
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
969 and assume that <addr> is where that got loaded.
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
973 if (addrs && addrs->other[0].name)
974 addr_info_make_relative (addrs, objfile->obfd);
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
978 initial symbol reading for this file. */
980 (*objfile->sf->sym_init) (objfile);
981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
984 (*objfile->sf->sym_offsets) (objfile, addrs);
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
993 obstack_alloc (&objfile->objfile_obstack, size));
994 memcpy (objfile->section_offsets, offsets, size);
996 init_objfile_sect_indices (objfile);
999 (*objfile->sf->sym_read) (objfile, add_flags);
1001 /* Discard cleanups as symbol reading was successful. */
1003 discard_cleanups (old_chain);
1007 /* Perform required actions after either reading in the initial
1008 symbols for a new objfile, or mapping in the symbols from a reusable
1012 new_symfile_objfile (struct objfile *objfile, int add_flags)
1014 /* If this is the main symbol file we have to clean up all users of the
1015 old main symbol file. Otherwise it is sufficient to fixup all the
1016 breakpoints that may have been redefined by this symbol file. */
1017 if (add_flags & SYMFILE_MAINLINE)
1019 /* OK, make it the "real" symbol file. */
1020 symfile_objfile = objfile;
1022 clear_symtab_users ();
1024 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1026 breakpoint_re_set ();
1029 /* We're done reading the symbol file; finish off complaints. */
1030 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1033 /* Process a symbol file, as either the main file or as a dynamically
1036 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1037 This BFD will be closed on error, and is always consumed by this function.
1039 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1040 extra, such as dynamically loaded code, and what to do with breakpoins.
1042 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1043 syms_from_objfile, above.
1044 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1046 Upon success, returns a pointer to the objfile that was added.
1047 Upon failure, jumps back to command level (never returns). */
1049 static struct objfile *
1050 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1052 struct section_addr_info *addrs,
1053 struct section_offsets *offsets,
1057 struct objfile *objfile;
1058 struct cleanup *my_cleanups;
1059 const char *name = bfd_get_filename (abfd);
1060 const int from_tty = add_flags & SYMFILE_VERBOSE;
1062 my_cleanups = make_cleanup_bfd_close (abfd);
1064 /* Give user a chance to burp if we'd be
1065 interactively wiping out any existing symbols. */
1067 if ((have_full_symbols () || have_partial_symbols ())
1068 && (add_flags & SYMFILE_MAINLINE)
1070 && !query (_("Load new symbol table from \"%s\"? "), name))
1071 error (_("Not confirmed."));
1073 objfile = allocate_objfile (abfd, flags);
1074 discard_cleanups (my_cleanups);
1076 /* We either created a new mapped symbol table, mapped an existing
1077 symbol table file which has not had initial symbol reading
1078 performed, or need to read an unmapped symbol table. */
1079 if (from_tty || info_verbose)
1081 if (deprecated_pre_add_symbol_hook)
1082 deprecated_pre_add_symbol_hook (name);
1085 printf_unfiltered (_("Reading symbols from %s..."), name);
1087 gdb_flush (gdb_stdout);
1090 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1093 /* We now have at least a partial symbol table. Check to see if the
1094 user requested that all symbols be read on initial access via either
1095 the gdb startup command line or on a per symbol file basis. Expand
1096 all partial symbol tables for this objfile if so. */
1098 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1100 if (from_tty || info_verbose)
1102 printf_unfiltered (_("expanding to full symbols..."));
1104 gdb_flush (gdb_stdout);
1108 objfile->sf->qf->expand_all_symtabs (objfile);
1111 if ((from_tty || info_verbose)
1112 && !objfile_has_symbols (objfile))
1115 printf_unfiltered (_("(no debugging symbols found)..."));
1119 if (from_tty || info_verbose)
1121 if (deprecated_post_add_symbol_hook)
1122 deprecated_post_add_symbol_hook ();
1124 printf_unfiltered (_("done.\n"));
1127 /* We print some messages regardless of whether 'from_tty ||
1128 info_verbose' is true, so make sure they go out at the right
1130 gdb_flush (gdb_stdout);
1132 do_cleanups (my_cleanups);
1134 if (objfile->sf == NULL)
1136 observer_notify_new_objfile (objfile);
1137 return objfile; /* No symbols. */
1140 new_symfile_objfile (objfile, add_flags);
1142 observer_notify_new_objfile (objfile);
1144 bfd_cache_close_all ();
1148 /* Add BFD as a separate debug file for OBJFILE. */
1151 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1153 struct objfile *new_objfile;
1154 struct section_addr_info *sap;
1155 struct cleanup *my_cleanup;
1157 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1158 because sections of BFD may not match sections of OBJFILE and because
1159 vma may have been modified by tools such as prelink. */
1160 sap = build_section_addr_info_from_objfile (objfile);
1161 my_cleanup = make_cleanup_free_section_addr_info (sap);
1163 new_objfile = symbol_file_add_with_addrs_or_offsets
1164 (bfd, symfile_flags,
1166 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1167 | OBJF_USERLOADED));
1169 do_cleanups (my_cleanup);
1171 add_separate_debug_objfile (new_objfile, objfile);
1174 /* Process the symbol file ABFD, as either the main file or as a
1175 dynamically loaded file.
1177 See symbol_file_add_with_addrs_or_offsets's comments for
1180 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1181 struct section_addr_info *addrs,
1184 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1189 /* Process a symbol file, as either the main file or as a dynamically
1190 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1193 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1196 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1201 /* Call symbol_file_add() with default values and update whatever is
1202 affected by the loading of a new main().
1203 Used when the file is supplied in the gdb command line
1204 and by some targets with special loading requirements.
1205 The auxiliary function, symbol_file_add_main_1(), has the flags
1206 argument for the switches that can only be specified in the symbol_file
1210 symbol_file_add_main (char *args, int from_tty)
1212 symbol_file_add_main_1 (args, from_tty, 0);
1216 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1218 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1219 symbol_file_add (args, add_flags, NULL, flags);
1221 /* Getting new symbols may change our opinion about
1222 what is frameless. */
1223 reinit_frame_cache ();
1225 set_initial_language ();
1229 symbol_file_clear (int from_tty)
1231 if ((have_full_symbols () || have_partial_symbols ())
1234 ? !query (_("Discard symbol table from `%s'? "),
1235 symfile_objfile->name)
1236 : !query (_("Discard symbol table? "))))
1237 error (_("Not confirmed."));
1239 /* solib descriptors may have handles to objfiles. Wipe them before their
1240 objfiles get stale by free_all_objfiles. */
1241 no_shared_libraries (NULL, from_tty);
1243 free_all_objfiles ();
1245 gdb_assert (symfile_objfile == NULL);
1247 printf_unfiltered (_("No symbol file now.\n"));
1251 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1254 bfd_size_type debuglink_size;
1255 unsigned long crc32;
1259 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1264 debuglink_size = bfd_section_size (objfile->obfd, sect);
1266 contents = xmalloc (debuglink_size);
1267 bfd_get_section_contents (objfile->obfd, sect, contents,
1268 (file_ptr)0, (bfd_size_type)debuglink_size);
1270 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1271 crc_offset = strlen (contents) + 1;
1272 crc_offset = (crc_offset + 3) & ~3;
1274 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1281 separate_debug_file_exists (const char *name, unsigned long crc,
1282 struct objfile *parent_objfile)
1284 unsigned long file_crc = 0;
1286 gdb_byte buffer[8*1024];
1288 struct stat parent_stat, abfd_stat;
1290 /* Find a separate debug info file as if symbols would be present in
1291 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1292 section can contain just the basename of PARENT_OBJFILE without any
1293 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1294 the separate debug infos with the same basename can exist. */
1296 if (strcmp (name, parent_objfile->name) == 0)
1299 abfd = bfd_open_maybe_remote (name);
1304 /* Verify symlinks were not the cause of strcmp name difference above.
1306 Some operating systems, e.g. Windows, do not provide a meaningful
1307 st_ino; they always set it to zero. (Windows does provide a
1308 meaningful st_dev.) Do not indicate a duplicate library in that
1309 case. While there is no guarantee that a system that provides
1310 meaningful inode numbers will never set st_ino to zero, this is
1311 merely an optimization, so we do not need to worry about false
1314 if (bfd_stat (abfd, &abfd_stat) == 0
1315 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1316 && abfd_stat.st_dev == parent_stat.st_dev
1317 && abfd_stat.st_ino == parent_stat.st_ino
1318 && abfd_stat.st_ino != 0)
1324 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1325 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329 if (crc != file_crc)
1331 warning (_("the debug information found in \"%s\""
1332 " does not match \"%s\" (CRC mismatch).\n"),
1333 name, parent_objfile->name);
1340 char *debug_file_directory = NULL;
1342 show_debug_file_directory (struct ui_file *file, int from_tty,
1343 struct cmd_list_element *c, const char *value)
1345 fprintf_filtered (file, _("\
1346 The directory where separate debug symbols are searched for is \"%s\".\n"),
1350 #if ! defined (DEBUG_SUBDIRECTORY)
1351 #define DEBUG_SUBDIRECTORY ".debug"
1355 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1357 char *basename, *debugdir;
1359 char *debugfile = NULL;
1360 char *canon_name = NULL;
1361 unsigned long crc32;
1364 basename = get_debug_link_info (objfile, &crc32);
1366 if (basename == NULL)
1367 /* There's no separate debug info, hence there's no way we could
1368 load it => no warning. */
1369 goto cleanup_return_debugfile;
1371 dir = xstrdup (objfile->name);
1373 /* Strip off the final filename part, leaving the directory name,
1374 followed by a slash. Objfile names should always be absolute and
1375 tilde-expanded, so there should always be a slash in there
1377 for (i = strlen(dir) - 1; i >= 0; i--)
1379 if (IS_DIR_SEPARATOR (dir[i]))
1382 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1385 /* Set I to max (strlen (canon_name), strlen (dir)). */
1386 canon_name = lrealpath (dir);
1388 if (canon_name && strlen (canon_name) > i)
1389 i = strlen (canon_name);
1391 debugfile = xmalloc (strlen (debug_file_directory) + 1
1393 + strlen (DEBUG_SUBDIRECTORY)
1398 /* First try in the same directory as the original file. */
1399 strcpy (debugfile, dir);
1400 strcat (debugfile, basename);
1402 if (separate_debug_file_exists (debugfile, crc32, objfile))
1403 goto cleanup_return_debugfile;
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 strcpy (debugfile, dir);
1407 strcat (debugfile, DEBUG_SUBDIRECTORY);
1408 strcat (debugfile, "/");
1409 strcat (debugfile, basename);
1411 if (separate_debug_file_exists (debugfile, crc32, objfile))
1412 goto cleanup_return_debugfile;
1414 /* Then try in the global debugfile directories.
1416 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1417 cause "/..." lookups. */
1419 debugdir = debug_file_directory;
1424 while (*debugdir == DIRNAME_SEPARATOR)
1427 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1428 if (debugdir_end == NULL)
1429 debugdir_end = &debugdir[strlen (debugdir)];
1431 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1432 debugfile[debugdir_end - debugdir] = 0;
1433 strcat (debugfile, "/");
1434 strcat (debugfile, dir);
1435 strcat (debugfile, basename);
1437 if (separate_debug_file_exists (debugfile, crc32, objfile))
1438 goto cleanup_return_debugfile;
1440 /* If the file is in the sysroot, try using its base path in the
1441 global debugfile directory. */
1443 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1444 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1446 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1447 debugfile[debugdir_end - debugdir] = 0;
1448 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1449 strcat (debugfile, "/");
1450 strcat (debugfile, basename);
1452 if (separate_debug_file_exists (debugfile, crc32, objfile))
1453 goto cleanup_return_debugfile;
1456 debugdir = debugdir_end;
1458 while (*debugdir != 0);
1463 cleanup_return_debugfile:
1471 /* This is the symbol-file command. Read the file, analyze its
1472 symbols, and add a struct symtab to a symtab list. The syntax of
1473 the command is rather bizarre:
1475 1. The function buildargv implements various quoting conventions
1476 which are undocumented and have little or nothing in common with
1477 the way things are quoted (or not quoted) elsewhere in GDB.
1479 2. Options are used, which are not generally used in GDB (perhaps
1480 "set mapped on", "set readnow on" would be better)
1482 3. The order of options matters, which is contrary to GNU
1483 conventions (because it is confusing and inconvenient). */
1486 symbol_file_command (char *args, int from_tty)
1492 symbol_file_clear (from_tty);
1496 char **argv = gdb_buildargv (args);
1497 int flags = OBJF_USERLOADED;
1498 struct cleanup *cleanups;
1501 cleanups = make_cleanup_freeargv (argv);
1502 while (*argv != NULL)
1504 if (strcmp (*argv, "-readnow") == 0)
1505 flags |= OBJF_READNOW;
1506 else if (**argv == '-')
1507 error (_("unknown option `%s'"), *argv);
1510 symbol_file_add_main_1 (*argv, from_tty, flags);
1518 error (_("no symbol file name was specified"));
1520 do_cleanups (cleanups);
1524 /* Set the initial language.
1526 FIXME: A better solution would be to record the language in the
1527 psymtab when reading partial symbols, and then use it (if known) to
1528 set the language. This would be a win for formats that encode the
1529 language in an easily discoverable place, such as DWARF. For
1530 stabs, we can jump through hoops looking for specially named
1531 symbols or try to intuit the language from the specific type of
1532 stabs we find, but we can't do that until later when we read in
1536 set_initial_language (void)
1539 enum language lang = language_unknown;
1541 filename = find_main_filename ();
1542 if (filename != NULL)
1543 lang = deduce_language_from_filename (filename);
1545 if (lang == language_unknown)
1547 /* Make C the default language */
1551 set_language (lang);
1552 expected_language = current_language; /* Don't warn the user. */
1555 /* If NAME is a remote name open the file using remote protocol, otherwise
1556 open it normally. */
1559 bfd_open_maybe_remote (const char *name)
1561 if (remote_filename_p (name))
1562 return remote_bfd_open (name, gnutarget);
1564 return bfd_openr (name, gnutarget);
1568 /* Open the file specified by NAME and hand it off to BFD for
1569 preliminary analysis. Return a newly initialized bfd *, which
1570 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1571 absolute). In case of trouble, error() is called. */
1574 symfile_bfd_open (char *name)
1578 char *absolute_name;
1580 if (remote_filename_p (name))
1582 name = xstrdup (name);
1583 sym_bfd = remote_bfd_open (name, gnutarget);
1586 make_cleanup (xfree, name);
1587 error (_("`%s': can't open to read symbols: %s."), name,
1588 bfd_errmsg (bfd_get_error ()));
1591 if (!bfd_check_format (sym_bfd, bfd_object))
1593 bfd_close (sym_bfd);
1594 make_cleanup (xfree, name);
1595 error (_("`%s': can't read symbols: %s."), name,
1596 bfd_errmsg (bfd_get_error ()));
1602 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1604 /* Look down path for it, allocate 2nd new malloc'd copy. */
1605 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1606 O_RDONLY | O_BINARY, &absolute_name);
1607 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1610 char *exename = alloca (strlen (name) + 5);
1612 strcat (strcpy (exename, name), ".exe");
1613 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1614 O_RDONLY | O_BINARY, &absolute_name);
1619 make_cleanup (xfree, name);
1620 perror_with_name (name);
1623 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1624 bfd. It'll be freed in free_objfile(). */
1626 name = absolute_name;
1628 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1632 make_cleanup (xfree, name);
1633 error (_("`%s': can't open to read symbols: %s."), name,
1634 bfd_errmsg (bfd_get_error ()));
1636 bfd_set_cacheable (sym_bfd, 1);
1638 if (!bfd_check_format (sym_bfd, bfd_object))
1640 /* FIXME: should be checking for errors from bfd_close (for one
1641 thing, on error it does not free all the storage associated
1643 bfd_close (sym_bfd); /* This also closes desc. */
1644 make_cleanup (xfree, name);
1645 error (_("`%s': can't read symbols: %s."), name,
1646 bfd_errmsg (bfd_get_error ()));
1649 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1650 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1655 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1656 the section was not found. */
1659 get_section_index (struct objfile *objfile, char *section_name)
1661 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1669 /* Link SF into the global symtab_fns list. Called on startup by the
1670 _initialize routine in each object file format reader, to register
1671 information about each format the the reader is prepared to
1675 add_symtab_fns (struct sym_fns *sf)
1677 sf->next = symtab_fns;
1681 /* Initialize OBJFILE to read symbols from its associated BFD. It
1682 either returns or calls error(). The result is an initialized
1683 struct sym_fns in the objfile structure, that contains cached
1684 information about the symbol file. */
1686 static struct sym_fns *
1687 find_sym_fns (bfd *abfd)
1690 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1692 if (our_flavour == bfd_target_srec_flavour
1693 || our_flavour == bfd_target_ihex_flavour
1694 || our_flavour == bfd_target_tekhex_flavour)
1695 return NULL; /* No symbols. */
1697 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1698 if (our_flavour == sf->sym_flavour)
1701 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1702 bfd_get_target (abfd));
1706 /* This function runs the load command of our current target. */
1709 load_command (char *arg, int from_tty)
1711 /* The user might be reloading because the binary has changed. Take
1712 this opportunity to check. */
1713 reopen_exec_file ();
1721 parg = arg = get_exec_file (1);
1723 /* Count how many \ " ' tab space there are in the name. */
1724 while ((parg = strpbrk (parg, "\\\"'\t ")))
1732 /* We need to quote this string so buildargv can pull it apart. */
1733 char *temp = xmalloc (strlen (arg) + count + 1 );
1737 make_cleanup (xfree, temp);
1740 while ((parg = strpbrk (parg, "\\\"'\t ")))
1742 strncpy (ptemp, prev, parg - prev);
1743 ptemp += parg - prev;
1747 strcpy (ptemp, prev);
1753 target_load (arg, from_tty);
1755 /* After re-loading the executable, we don't really know which
1756 overlays are mapped any more. */
1757 overlay_cache_invalid = 1;
1760 /* This version of "load" should be usable for any target. Currently
1761 it is just used for remote targets, not inftarg.c or core files,
1762 on the theory that only in that case is it useful.
1764 Avoiding xmodem and the like seems like a win (a) because we don't have
1765 to worry about finding it, and (b) On VMS, fork() is very slow and so
1766 we don't want to run a subprocess. On the other hand, I'm not sure how
1767 performance compares. */
1769 static int validate_download = 0;
1771 /* Callback service function for generic_load (bfd_map_over_sections). */
1774 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1776 bfd_size_type *sum = data;
1778 *sum += bfd_get_section_size (asec);
1781 /* Opaque data for load_section_callback. */
1782 struct load_section_data {
1783 unsigned long load_offset;
1784 struct load_progress_data *progress_data;
1785 VEC(memory_write_request_s) *requests;
1788 /* Opaque data for load_progress. */
1789 struct load_progress_data {
1790 /* Cumulative data. */
1791 unsigned long write_count;
1792 unsigned long data_count;
1793 bfd_size_type total_size;
1796 /* Opaque data for load_progress for a single section. */
1797 struct load_progress_section_data {
1798 struct load_progress_data *cumulative;
1800 /* Per-section data. */
1801 const char *section_name;
1802 ULONGEST section_sent;
1803 ULONGEST section_size;
1808 /* Target write callback routine for progress reporting. */
1811 load_progress (ULONGEST bytes, void *untyped_arg)
1813 struct load_progress_section_data *args = untyped_arg;
1814 struct load_progress_data *totals;
1817 /* Writing padding data. No easy way to get at the cumulative
1818 stats, so just ignore this. */
1821 totals = args->cumulative;
1823 if (bytes == 0 && args->section_sent == 0)
1825 /* The write is just starting. Let the user know we've started
1827 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1828 args->section_name, hex_string (args->section_size),
1829 paddress (target_gdbarch, args->lma));
1833 if (validate_download)
1835 /* Broken memories and broken monitors manifest themselves here
1836 when bring new computers to life. This doubles already slow
1838 /* NOTE: cagney/1999-10-18: A more efficient implementation
1839 might add a verify_memory() method to the target vector and
1840 then use that. remote.c could implement that method using
1841 the ``qCRC'' packet. */
1842 gdb_byte *check = xmalloc (bytes);
1843 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1845 if (target_read_memory (args->lma, check, bytes) != 0)
1846 error (_("Download verify read failed at %s"),
1847 paddress (target_gdbarch, args->lma));
1848 if (memcmp (args->buffer, check, bytes) != 0)
1849 error (_("Download verify compare failed at %s"),
1850 paddress (target_gdbarch, args->lma));
1851 do_cleanups (verify_cleanups);
1853 totals->data_count += bytes;
1855 args->buffer += bytes;
1856 totals->write_count += 1;
1857 args->section_sent += bytes;
1859 || (deprecated_ui_load_progress_hook != NULL
1860 && deprecated_ui_load_progress_hook (args->section_name,
1861 args->section_sent)))
1862 error (_("Canceled the download"));
1864 if (deprecated_show_load_progress != NULL)
1865 deprecated_show_load_progress (args->section_name,
1869 totals->total_size);
1872 /* Callback service function for generic_load (bfd_map_over_sections). */
1875 load_section_callback (bfd *abfd, asection *asec, void *data)
1877 struct memory_write_request *new_request;
1878 struct load_section_data *args = data;
1879 struct load_progress_section_data *section_data;
1880 bfd_size_type size = bfd_get_section_size (asec);
1882 const char *sect_name = bfd_get_section_name (abfd, asec);
1884 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1890 new_request = VEC_safe_push (memory_write_request_s,
1891 args->requests, NULL);
1892 memset (new_request, 0, sizeof (struct memory_write_request));
1893 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1894 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1895 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1896 new_request->data = xmalloc (size);
1897 new_request->baton = section_data;
1899 buffer = new_request->data;
1901 section_data->cumulative = args->progress_data;
1902 section_data->section_name = sect_name;
1903 section_data->section_size = size;
1904 section_data->lma = new_request->begin;
1905 section_data->buffer = buffer;
1907 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1910 /* Clean up an entire memory request vector, including load
1911 data and progress records. */
1914 clear_memory_write_data (void *arg)
1916 VEC(memory_write_request_s) **vec_p = arg;
1917 VEC(memory_write_request_s) *vec = *vec_p;
1919 struct memory_write_request *mr;
1921 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1926 VEC_free (memory_write_request_s, vec);
1930 generic_load (char *args, int from_tty)
1933 struct timeval start_time, end_time;
1935 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1936 struct load_section_data cbdata;
1937 struct load_progress_data total_progress;
1942 memset (&cbdata, 0, sizeof (cbdata));
1943 memset (&total_progress, 0, sizeof (total_progress));
1944 cbdata.progress_data = &total_progress;
1946 make_cleanup (clear_memory_write_data, &cbdata.requests);
1949 error_no_arg (_("file to load"));
1951 argv = gdb_buildargv (args);
1952 make_cleanup_freeargv (argv);
1954 filename = tilde_expand (argv[0]);
1955 make_cleanup (xfree, filename);
1957 if (argv[1] != NULL)
1961 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1963 /* If the last word was not a valid number then
1964 treat it as a file name with spaces in. */
1965 if (argv[1] == endptr)
1966 error (_("Invalid download offset:%s."), argv[1]);
1968 if (argv[2] != NULL)
1969 error (_("Too many parameters."));
1972 /* Open the file for loading. */
1973 loadfile_bfd = bfd_openr (filename, gnutarget);
1974 if (loadfile_bfd == NULL)
1976 perror_with_name (filename);
1980 /* FIXME: should be checking for errors from bfd_close (for one thing,
1981 on error it does not free all the storage associated with the
1983 make_cleanup_bfd_close (loadfile_bfd);
1985 if (!bfd_check_format (loadfile_bfd, bfd_object))
1987 error (_("\"%s\" is not an object file: %s"), filename,
1988 bfd_errmsg (bfd_get_error ()));
1991 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1992 (void *) &total_progress.total_size);
1994 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1996 gettimeofday (&start_time, NULL);
1998 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1999 load_progress) != 0)
2000 error (_("Load failed"));
2002 gettimeofday (&end_time, NULL);
2004 entry = bfd_get_start_address (loadfile_bfd);
2005 ui_out_text (uiout, "Start address ");
2006 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2007 ui_out_text (uiout, ", load size ");
2008 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2009 ui_out_text (uiout, "\n");
2010 /* We were doing this in remote-mips.c, I suspect it is right
2011 for other targets too. */
2012 regcache_write_pc (get_current_regcache (), entry);
2014 /* Reset breakpoints, now that we have changed the load image. For
2015 instance, breakpoints may have been set (or reset, by
2016 post_create_inferior) while connected to the target but before we
2017 loaded the program. In that case, the prologue analyzer could
2018 have read instructions from the target to find the right
2019 breakpoint locations. Loading has changed the contents of that
2022 breakpoint_re_set ();
2024 /* FIXME: are we supposed to call symbol_file_add or not? According
2025 to a comment from remote-mips.c (where a call to symbol_file_add
2026 was commented out), making the call confuses GDB if more than one
2027 file is loaded in. Some targets do (e.g., remote-vx.c) but
2028 others don't (or didn't - perhaps they have all been deleted). */
2030 print_transfer_performance (gdb_stdout, total_progress.data_count,
2031 total_progress.write_count,
2032 &start_time, &end_time);
2034 do_cleanups (old_cleanups);
2037 /* Report how fast the transfer went. */
2039 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2040 replaced by print_transfer_performance (with a very different
2041 function signature). */
2044 report_transfer_performance (unsigned long data_count, time_t start_time,
2047 struct timeval start, end;
2049 start.tv_sec = start_time;
2051 end.tv_sec = end_time;
2054 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2058 print_transfer_performance (struct ui_file *stream,
2059 unsigned long data_count,
2060 unsigned long write_count,
2061 const struct timeval *start_time,
2062 const struct timeval *end_time)
2064 ULONGEST time_count;
2066 /* Compute the elapsed time in milliseconds, as a tradeoff between
2067 accuracy and overflow. */
2068 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2069 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2071 ui_out_text (uiout, "Transfer rate: ");
2074 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2076 if (ui_out_is_mi_like_p (uiout))
2078 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2079 ui_out_text (uiout, " bits/sec");
2081 else if (rate < 1024)
2083 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2084 ui_out_text (uiout, " bytes/sec");
2088 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2089 ui_out_text (uiout, " KB/sec");
2094 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2095 ui_out_text (uiout, " bits in <1 sec");
2097 if (write_count > 0)
2099 ui_out_text (uiout, ", ");
2100 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2101 ui_out_text (uiout, " bytes/write");
2103 ui_out_text (uiout, ".\n");
2106 /* This function allows the addition of incrementally linked object files.
2107 It does not modify any state in the target, only in the debugger. */
2108 /* Note: ezannoni 2000-04-13 This function/command used to have a
2109 special case syntax for the rombug target (Rombug is the boot
2110 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2111 rombug case, the user doesn't need to supply a text address,
2112 instead a call to target_link() (in target.c) would supply the
2113 value to use. We are now discontinuing this type of ad hoc syntax. */
2116 add_symbol_file_command (char *args, int from_tty)
2118 struct gdbarch *gdbarch = get_current_arch ();
2119 char *filename = NULL;
2120 int flags = OBJF_USERLOADED;
2122 int section_index = 0;
2126 int expecting_sec_name = 0;
2127 int expecting_sec_addr = 0;
2136 struct section_addr_info *section_addrs;
2137 struct sect_opt *sect_opts = NULL;
2138 size_t num_sect_opts = 0;
2139 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2142 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2143 * sizeof (struct sect_opt));
2148 error (_("add-symbol-file takes a file name and an address"));
2150 argv = gdb_buildargv (args);
2151 make_cleanup_freeargv (argv);
2153 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2155 /* Process the argument. */
2158 /* The first argument is the file name. */
2159 filename = tilde_expand (arg);
2160 make_cleanup (xfree, filename);
2165 /* The second argument is always the text address at which
2166 to load the program. */
2167 sect_opts[section_index].name = ".text";
2168 sect_opts[section_index].value = arg;
2169 if (++section_index >= num_sect_opts)
2172 sect_opts = ((struct sect_opt *)
2173 xrealloc (sect_opts,
2175 * sizeof (struct sect_opt)));
2180 /* It's an option (starting with '-') or it's an argument
2185 if (strcmp (arg, "-readnow") == 0)
2186 flags |= OBJF_READNOW;
2187 else if (strcmp (arg, "-s") == 0)
2189 expecting_sec_name = 1;
2190 expecting_sec_addr = 1;
2195 if (expecting_sec_name)
2197 sect_opts[section_index].name = arg;
2198 expecting_sec_name = 0;
2201 if (expecting_sec_addr)
2203 sect_opts[section_index].value = arg;
2204 expecting_sec_addr = 0;
2205 if (++section_index >= num_sect_opts)
2208 sect_opts = ((struct sect_opt *)
2209 xrealloc (sect_opts,
2211 * sizeof (struct sect_opt)));
2215 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2220 /* This command takes at least two arguments. The first one is a
2221 filename, and the second is the address where this file has been
2222 loaded. Abort now if this address hasn't been provided by the
2224 if (section_index < 1)
2225 error (_("The address where %s has been loaded is missing"), filename);
2227 /* Print the prompt for the query below. And save the arguments into
2228 a sect_addr_info structure to be passed around to other
2229 functions. We have to split this up into separate print
2230 statements because hex_string returns a local static
2233 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2234 section_addrs = alloc_section_addr_info (section_index);
2235 make_cleanup (xfree, section_addrs);
2236 for (i = 0; i < section_index; i++)
2239 char *val = sect_opts[i].value;
2240 char *sec = sect_opts[i].name;
2242 addr = parse_and_eval_address (val);
2244 /* Here we store the section offsets in the order they were
2245 entered on the command line. */
2246 section_addrs->other[sec_num].name = sec;
2247 section_addrs->other[sec_num].addr = addr;
2248 printf_unfiltered ("\t%s_addr = %s\n", sec,
2249 paddress (gdbarch, addr));
2252 /* The object's sections are initialized when a
2253 call is made to build_objfile_section_table (objfile).
2254 This happens in reread_symbols.
2255 At this point, we don't know what file type this is,
2256 so we can't determine what section names are valid. */
2259 if (from_tty && (!query ("%s", "")))
2260 error (_("Not confirmed."));
2262 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2263 section_addrs, flags);
2265 /* Getting new symbols may change our opinion about what is
2267 reinit_frame_cache ();
2268 do_cleanups (my_cleanups);
2272 /* Re-read symbols if a symbol-file has changed. */
2274 reread_symbols (void)
2276 struct objfile *objfile;
2279 struct stat new_statbuf;
2282 /* With the addition of shared libraries, this should be modified,
2283 the load time should be saved in the partial symbol tables, since
2284 different tables may come from different source files. FIXME.
2285 This routine should then walk down each partial symbol table
2286 and see if the symbol table that it originates from has been changed */
2288 for (objfile = object_files; objfile; objfile = objfile->next)
2290 /* solib-sunos.c creates one objfile with obfd. */
2291 if (objfile->obfd == NULL)
2294 /* Separate debug objfiles are handled in the main objfile. */
2295 if (objfile->separate_debug_objfile_backlink)
2298 /* If this object is from an archive (what you usually create with
2299 `ar', often called a `static library' on most systems, though
2300 a `shared library' on AIX is also an archive), then you should
2301 stat on the archive name, not member name. */
2302 if (objfile->obfd->my_archive)
2303 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2305 res = stat (objfile->name, &new_statbuf);
2308 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2309 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2313 new_modtime = new_statbuf.st_mtime;
2314 if (new_modtime != objfile->mtime)
2316 struct cleanup *old_cleanups;
2317 struct section_offsets *offsets;
2319 char *obfd_filename;
2321 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2324 /* There are various functions like symbol_file_add,
2325 symfile_bfd_open, syms_from_objfile, etc., which might
2326 appear to do what we want. But they have various other
2327 effects which we *don't* want. So we just do stuff
2328 ourselves. We don't worry about mapped files (for one thing,
2329 any mapped file will be out of date). */
2331 /* If we get an error, blow away this objfile (not sure if
2332 that is the correct response for things like shared
2334 old_cleanups = make_cleanup_free_objfile (objfile);
2335 /* We need to do this whenever any symbols go away. */
2336 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2338 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2339 bfd_get_filename (exec_bfd)) == 0)
2341 /* Reload EXEC_BFD without asking anything. */
2343 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2346 /* Clean up any state BFD has sitting around. We don't need
2347 to close the descriptor but BFD lacks a way of closing the
2348 BFD without closing the descriptor. */
2349 obfd_filename = bfd_get_filename (objfile->obfd);
2350 if (!bfd_close (objfile->obfd))
2351 error (_("Can't close BFD for %s: %s"), objfile->name,
2352 bfd_errmsg (bfd_get_error ()));
2353 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2354 if (objfile->obfd == NULL)
2355 error (_("Can't open %s to read symbols."), objfile->name);
2357 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2358 /* bfd_openr sets cacheable to true, which is what we want. */
2359 if (!bfd_check_format (objfile->obfd, bfd_object))
2360 error (_("Can't read symbols from %s: %s."), objfile->name,
2361 bfd_errmsg (bfd_get_error ()));
2363 /* Save the offsets, we will nuke them with the rest of the
2365 num_offsets = objfile->num_sections;
2366 offsets = ((struct section_offsets *)
2367 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2368 memcpy (offsets, objfile->section_offsets,
2369 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2371 /* Remove any references to this objfile in the global
2373 preserve_values (objfile);
2375 /* Nuke all the state that we will re-read. Much of the following
2376 code which sets things to NULL really is necessary to tell
2377 other parts of GDB that there is nothing currently there.
2379 Try to keep the freeing order compatible with free_objfile. */
2381 if (objfile->sf != NULL)
2383 (*objfile->sf->sym_finish) (objfile);
2386 clear_objfile_data (objfile);
2388 /* Free the separate debug objfiles. It will be
2389 automatically recreated by sym_read. */
2390 free_objfile_separate_debug (objfile);
2392 /* FIXME: Do we have to free a whole linked list, or is this
2394 if (objfile->global_psymbols.list)
2395 xfree (objfile->global_psymbols.list);
2396 memset (&objfile->global_psymbols, 0,
2397 sizeof (objfile->global_psymbols));
2398 if (objfile->static_psymbols.list)
2399 xfree (objfile->static_psymbols.list);
2400 memset (&objfile->static_psymbols, 0,
2401 sizeof (objfile->static_psymbols));
2403 /* Free the obstacks for non-reusable objfiles */
2404 bcache_xfree (objfile->psymbol_cache);
2405 objfile->psymbol_cache = bcache_xmalloc ();
2406 bcache_xfree (objfile->macro_cache);
2407 objfile->macro_cache = bcache_xmalloc ();
2408 bcache_xfree (objfile->filename_cache);
2409 objfile->filename_cache = bcache_xmalloc ();
2410 if (objfile->demangled_names_hash != NULL)
2412 htab_delete (objfile->demangled_names_hash);
2413 objfile->demangled_names_hash = NULL;
2415 obstack_free (&objfile->objfile_obstack, 0);
2416 objfile->sections = NULL;
2417 objfile->symtabs = NULL;
2418 objfile->psymtabs = NULL;
2419 objfile->psymtabs_addrmap = NULL;
2420 objfile->free_psymtabs = NULL;
2421 objfile->cp_namespace_symtab = NULL;
2422 objfile->msymbols = NULL;
2423 objfile->deprecated_sym_private = NULL;
2424 objfile->minimal_symbol_count = 0;
2425 memset (&objfile->msymbol_hash, 0,
2426 sizeof (objfile->msymbol_hash));
2427 memset (&objfile->msymbol_demangled_hash, 0,
2428 sizeof (objfile->msymbol_demangled_hash));
2430 objfile->psymbol_cache = bcache_xmalloc ();
2431 objfile->macro_cache = bcache_xmalloc ();
2432 objfile->filename_cache = bcache_xmalloc ();
2433 /* obstack_init also initializes the obstack so it is
2434 empty. We could use obstack_specify_allocation but
2435 gdb_obstack.h specifies the alloc/dealloc
2437 obstack_init (&objfile->objfile_obstack);
2438 if (build_objfile_section_table (objfile))
2440 error (_("Can't find the file sections in `%s': %s"),
2441 objfile->name, bfd_errmsg (bfd_get_error ()));
2443 terminate_minimal_symbol_table (objfile);
2445 /* We use the same section offsets as from last time. I'm not
2446 sure whether that is always correct for shared libraries. */
2447 objfile->section_offsets = (struct section_offsets *)
2448 obstack_alloc (&objfile->objfile_obstack,
2449 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2450 memcpy (objfile->section_offsets, offsets,
2451 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2452 objfile->num_sections = num_offsets;
2454 /* What the hell is sym_new_init for, anyway? The concept of
2455 distinguishing between the main file and additional files
2456 in this way seems rather dubious. */
2457 if (objfile == symfile_objfile)
2459 (*objfile->sf->sym_new_init) (objfile);
2462 (*objfile->sf->sym_init) (objfile);
2463 clear_complaints (&symfile_complaints, 1, 1);
2464 /* Do not set flags as this is safe and we don't want to be
2466 (*objfile->sf->sym_read) (objfile, 0);
2467 if (!objfile_has_symbols (objfile))
2470 printf_unfiltered (_("(no debugging symbols found)\n"));
2474 /* We're done reading the symbol file; finish off complaints. */
2475 clear_complaints (&symfile_complaints, 0, 1);
2477 /* Getting new symbols may change our opinion about what is
2480 reinit_frame_cache ();
2482 /* Discard cleanups as symbol reading was successful. */
2483 discard_cleanups (old_cleanups);
2485 /* If the mtime has changed between the time we set new_modtime
2486 and now, we *want* this to be out of date, so don't call stat
2488 objfile->mtime = new_modtime;
2490 init_entry_point_info (objfile);
2496 /* Notify objfiles that we've modified objfile sections. */
2497 objfiles_changed ();
2499 clear_symtab_users ();
2500 /* At least one objfile has changed, so we can consider that
2501 the executable we're debugging has changed too. */
2502 observer_notify_executable_changed ();
2515 static filename_language *filename_language_table;
2516 static int fl_table_size, fl_table_next;
2519 add_filename_language (char *ext, enum language lang)
2521 if (fl_table_next >= fl_table_size)
2523 fl_table_size += 10;
2524 filename_language_table =
2525 xrealloc (filename_language_table,
2526 fl_table_size * sizeof (*filename_language_table));
2529 filename_language_table[fl_table_next].ext = xstrdup (ext);
2530 filename_language_table[fl_table_next].lang = lang;
2534 static char *ext_args;
2536 show_ext_args (struct ui_file *file, int from_tty,
2537 struct cmd_list_element *c, const char *value)
2539 fprintf_filtered (file, _("\
2540 Mapping between filename extension and source language is \"%s\".\n"),
2545 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2548 char *cp = ext_args;
2551 /* First arg is filename extension, starting with '.' */
2553 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2555 /* Find end of first arg. */
2556 while (*cp && !isspace (*cp))
2560 error (_("'%s': two arguments required -- filename extension and language"),
2563 /* Null-terminate first arg */
2566 /* Find beginning of second arg, which should be a source language. */
2567 while (*cp && isspace (*cp))
2571 error (_("'%s': two arguments required -- filename extension and language"),
2574 /* Lookup the language from among those we know. */
2575 lang = language_enum (cp);
2577 /* Now lookup the filename extension: do we already know it? */
2578 for (i = 0; i < fl_table_next; i++)
2579 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2582 if (i >= fl_table_next)
2584 /* new file extension */
2585 add_filename_language (ext_args, lang);
2589 /* redefining a previously known filename extension */
2592 /* query ("Really make files of type %s '%s'?", */
2593 /* ext_args, language_str (lang)); */
2595 xfree (filename_language_table[i].ext);
2596 filename_language_table[i].ext = xstrdup (ext_args);
2597 filename_language_table[i].lang = lang;
2602 info_ext_lang_command (char *args, int from_tty)
2606 printf_filtered (_("Filename extensions and the languages they represent:"));
2607 printf_filtered ("\n\n");
2608 for (i = 0; i < fl_table_next; i++)
2609 printf_filtered ("\t%s\t- %s\n",
2610 filename_language_table[i].ext,
2611 language_str (filename_language_table[i].lang));
2615 init_filename_language_table (void)
2617 if (fl_table_size == 0) /* protect against repetition */
2621 filename_language_table =
2622 xmalloc (fl_table_size * sizeof (*filename_language_table));
2623 add_filename_language (".c", language_c);
2624 add_filename_language (".d", language_d);
2625 add_filename_language (".C", language_cplus);
2626 add_filename_language (".cc", language_cplus);
2627 add_filename_language (".cp", language_cplus);
2628 add_filename_language (".cpp", language_cplus);
2629 add_filename_language (".cxx", language_cplus);
2630 add_filename_language (".c++", language_cplus);
2631 add_filename_language (".java", language_java);
2632 add_filename_language (".class", language_java);
2633 add_filename_language (".m", language_objc);
2634 add_filename_language (".f", language_fortran);
2635 add_filename_language (".F", language_fortran);
2636 add_filename_language (".for", language_fortran);
2637 add_filename_language (".FOR", language_fortran);
2638 add_filename_language (".ftn", language_fortran);
2639 add_filename_language (".FTN", language_fortran);
2640 add_filename_language (".fpp", language_fortran);
2641 add_filename_language (".FPP", language_fortran);
2642 add_filename_language (".f90", language_fortran);
2643 add_filename_language (".F90", language_fortran);
2644 add_filename_language (".f95", language_fortran);
2645 add_filename_language (".F95", language_fortran);
2646 add_filename_language (".f03", language_fortran);
2647 add_filename_language (".F03", language_fortran);
2648 add_filename_language (".f08", language_fortran);
2649 add_filename_language (".F08", language_fortran);
2650 add_filename_language (".s", language_asm);
2651 add_filename_language (".sx", language_asm);
2652 add_filename_language (".S", language_asm);
2653 add_filename_language (".pas", language_pascal);
2654 add_filename_language (".p", language_pascal);
2655 add_filename_language (".pp", language_pascal);
2656 add_filename_language (".adb", language_ada);
2657 add_filename_language (".ads", language_ada);
2658 add_filename_language (".a", language_ada);
2659 add_filename_language (".ada", language_ada);
2660 add_filename_language (".dg", language_ada);
2665 deduce_language_from_filename (char *filename)
2670 if (filename != NULL)
2671 if ((cp = strrchr (filename, '.')) != NULL)
2672 for (i = 0; i < fl_table_next; i++)
2673 if (strcmp (cp, filename_language_table[i].ext) == 0)
2674 return filename_language_table[i].lang;
2676 return language_unknown;
2681 Allocate and partly initialize a new symbol table. Return a pointer
2682 to it. error() if no space.
2684 Caller must set these fields:
2693 allocate_symtab (char *filename, struct objfile *objfile)
2695 struct symtab *symtab;
2697 symtab = (struct symtab *)
2698 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2699 memset (symtab, 0, sizeof (*symtab));
2700 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2701 objfile->filename_cache);
2702 symtab->fullname = NULL;
2703 symtab->language = deduce_language_from_filename (filename);
2704 symtab->debugformat = "unknown";
2706 /* Hook it to the objfile it comes from */
2708 symtab->objfile = objfile;
2709 symtab->next = objfile->symtabs;
2710 objfile->symtabs = symtab;
2716 /* Reset all data structures in gdb which may contain references to symbol
2720 clear_symtab_users (void)
2722 /* Someday, we should do better than this, by only blowing away
2723 the things that really need to be blown. */
2725 /* Clear the "current" symtab first, because it is no longer valid.
2726 breakpoint_re_set may try to access the current symtab. */
2727 clear_current_source_symtab_and_line ();
2730 breakpoint_re_set ();
2731 set_default_breakpoint (0, NULL, 0, 0, 0);
2732 clear_pc_function_cache ();
2733 observer_notify_new_objfile (NULL);
2735 /* Clear globals which might have pointed into a removed objfile.
2736 FIXME: It's not clear which of these are supposed to persist
2737 between expressions and which ought to be reset each time. */
2738 expression_context_block = NULL;
2739 innermost_block = NULL;
2741 /* Varobj may refer to old symbols, perform a cleanup. */
2742 varobj_invalidate ();
2747 clear_symtab_users_cleanup (void *ignore)
2749 clear_symtab_users ();
2753 The following code implements an abstraction for debugging overlay sections.
2755 The target model is as follows:
2756 1) The gnu linker will permit multiple sections to be mapped into the
2757 same VMA, each with its own unique LMA (or load address).
2758 2) It is assumed that some runtime mechanism exists for mapping the
2759 sections, one by one, from the load address into the VMA address.
2760 3) This code provides a mechanism for gdb to keep track of which
2761 sections should be considered to be mapped from the VMA to the LMA.
2762 This information is used for symbol lookup, and memory read/write.
2763 For instance, if a section has been mapped then its contents
2764 should be read from the VMA, otherwise from the LMA.
2766 Two levels of debugger support for overlays are available. One is
2767 "manual", in which the debugger relies on the user to tell it which
2768 overlays are currently mapped. This level of support is
2769 implemented entirely in the core debugger, and the information about
2770 whether a section is mapped is kept in the objfile->obj_section table.
2772 The second level of support is "automatic", and is only available if
2773 the target-specific code provides functionality to read the target's
2774 overlay mapping table, and translate its contents for the debugger
2775 (by updating the mapped state information in the obj_section tables).
2777 The interface is as follows:
2779 overlay map <name> -- tell gdb to consider this section mapped
2780 overlay unmap <name> -- tell gdb to consider this section unmapped
2781 overlay list -- list the sections that GDB thinks are mapped
2782 overlay read-target -- get the target's state of what's mapped
2783 overlay off/manual/auto -- set overlay debugging state
2784 Functional interface:
2785 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2786 section, return that section.
2787 find_pc_overlay(pc): find any overlay section that contains
2788 the pc, either in its VMA or its LMA
2789 section_is_mapped(sect): true if overlay is marked as mapped
2790 section_is_overlay(sect): true if section's VMA != LMA
2791 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2792 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2793 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2794 overlay_mapped_address(...): map an address from section's LMA to VMA
2795 overlay_unmapped_address(...): map an address from section's VMA to LMA
2796 symbol_overlayed_address(...): Return a "current" address for symbol:
2797 either in VMA or LMA depending on whether
2798 the symbol's section is currently mapped
2801 /* Overlay debugging state: */
2803 enum overlay_debugging_state overlay_debugging = ovly_off;
2804 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2806 /* Function: section_is_overlay (SECTION)
2807 Returns true if SECTION has VMA not equal to LMA, ie.
2808 SECTION is loaded at an address different from where it will "run". */
2811 section_is_overlay (struct obj_section *section)
2813 if (overlay_debugging && section)
2815 bfd *abfd = section->objfile->obfd;
2816 asection *bfd_section = section->the_bfd_section;
2818 if (bfd_section_lma (abfd, bfd_section) != 0
2819 && bfd_section_lma (abfd, bfd_section)
2820 != bfd_section_vma (abfd, bfd_section))
2827 /* Function: overlay_invalidate_all (void)
2828 Invalidate the mapped state of all overlay sections (mark it as stale). */
2831 overlay_invalidate_all (void)
2833 struct objfile *objfile;
2834 struct obj_section *sect;
2836 ALL_OBJSECTIONS (objfile, sect)
2837 if (section_is_overlay (sect))
2838 sect->ovly_mapped = -1;
2841 /* Function: section_is_mapped (SECTION)
2842 Returns true if section is an overlay, and is currently mapped.
2844 Access to the ovly_mapped flag is restricted to this function, so
2845 that we can do automatic update. If the global flag
2846 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2847 overlay_invalidate_all. If the mapped state of the particular
2848 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2851 section_is_mapped (struct obj_section *osect)
2853 struct gdbarch *gdbarch;
2855 if (osect == 0 || !section_is_overlay (osect))
2858 switch (overlay_debugging)
2862 return 0; /* overlay debugging off */
2863 case ovly_auto: /* overlay debugging automatic */
2864 /* Unles there is a gdbarch_overlay_update function,
2865 there's really nothing useful to do here (can't really go auto) */
2866 gdbarch = get_objfile_arch (osect->objfile);
2867 if (gdbarch_overlay_update_p (gdbarch))
2869 if (overlay_cache_invalid)
2871 overlay_invalidate_all ();
2872 overlay_cache_invalid = 0;
2874 if (osect->ovly_mapped == -1)
2875 gdbarch_overlay_update (gdbarch, osect);
2877 /* fall thru to manual case */
2878 case ovly_on: /* overlay debugging manual */
2879 return osect->ovly_mapped == 1;
2883 /* Function: pc_in_unmapped_range
2884 If PC falls into the lma range of SECTION, return true, else false. */
2887 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2889 if (section_is_overlay (section))
2891 bfd *abfd = section->objfile->obfd;
2892 asection *bfd_section = section->the_bfd_section;
2894 /* We assume the LMA is relocated by the same offset as the VMA. */
2895 bfd_vma size = bfd_get_section_size (bfd_section);
2896 CORE_ADDR offset = obj_section_offset (section);
2898 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2899 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2906 /* Function: pc_in_mapped_range
2907 If PC falls into the vma range of SECTION, return true, else false. */
2910 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2912 if (section_is_overlay (section))
2914 if (obj_section_addr (section) <= pc
2915 && pc < obj_section_endaddr (section))
2923 /* Return true if the mapped ranges of sections A and B overlap, false
2926 sections_overlap (struct obj_section *a, struct obj_section *b)
2928 CORE_ADDR a_start = obj_section_addr (a);
2929 CORE_ADDR a_end = obj_section_endaddr (a);
2930 CORE_ADDR b_start = obj_section_addr (b);
2931 CORE_ADDR b_end = obj_section_endaddr (b);
2933 return (a_start < b_end && b_start < a_end);
2936 /* Function: overlay_unmapped_address (PC, SECTION)
2937 Returns the address corresponding to PC in the unmapped (load) range.
2938 May be the same as PC. */
2941 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2943 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2945 bfd *abfd = section->objfile->obfd;
2946 asection *bfd_section = section->the_bfd_section;
2948 return pc + bfd_section_lma (abfd, bfd_section)
2949 - bfd_section_vma (abfd, bfd_section);
2955 /* Function: overlay_mapped_address (PC, SECTION)
2956 Returns the address corresponding to PC in the mapped (runtime) range.
2957 May be the same as PC. */
2960 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2962 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2964 bfd *abfd = section->objfile->obfd;
2965 asection *bfd_section = section->the_bfd_section;
2967 return pc + bfd_section_vma (abfd, bfd_section)
2968 - bfd_section_lma (abfd, bfd_section);
2975 /* Function: symbol_overlayed_address
2976 Return one of two addresses (relative to the VMA or to the LMA),
2977 depending on whether the section is mapped or not. */
2980 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
2982 if (overlay_debugging)
2984 /* If the symbol has no section, just return its regular address. */
2987 /* If the symbol's section is not an overlay, just return its address */
2988 if (!section_is_overlay (section))
2990 /* If the symbol's section is mapped, just return its address */
2991 if (section_is_mapped (section))
2994 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2995 * then return its LOADED address rather than its vma address!!
2997 return overlay_unmapped_address (address, section);
3002 /* Function: find_pc_overlay (PC)
3003 Return the best-match overlay section for PC:
3004 If PC matches a mapped overlay section's VMA, return that section.
3005 Else if PC matches an unmapped section's VMA, return that section.
3006 Else if PC matches an unmapped section's LMA, return that section. */
3008 struct obj_section *
3009 find_pc_overlay (CORE_ADDR pc)
3011 struct objfile *objfile;
3012 struct obj_section *osect, *best_match = NULL;
3014 if (overlay_debugging)
3015 ALL_OBJSECTIONS (objfile, osect)
3016 if (section_is_overlay (osect))
3018 if (pc_in_mapped_range (pc, osect))
3020 if (section_is_mapped (osect))
3025 else if (pc_in_unmapped_range (pc, osect))
3031 /* Function: find_pc_mapped_section (PC)
3032 If PC falls into the VMA address range of an overlay section that is
3033 currently marked as MAPPED, return that section. Else return NULL. */
3035 struct obj_section *
3036 find_pc_mapped_section (CORE_ADDR pc)
3038 struct objfile *objfile;
3039 struct obj_section *osect;
3041 if (overlay_debugging)
3042 ALL_OBJSECTIONS (objfile, osect)
3043 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3049 /* Function: list_overlays_command
3050 Print a list of mapped sections and their PC ranges */
3053 list_overlays_command (char *args, int from_tty)
3056 struct objfile *objfile;
3057 struct obj_section *osect;
3059 if (overlay_debugging)
3060 ALL_OBJSECTIONS (objfile, osect)
3061 if (section_is_mapped (osect))
3063 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3068 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3069 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3070 size = bfd_get_section_size (osect->the_bfd_section);
3071 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3073 printf_filtered ("Section %s, loaded at ", name);
3074 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3075 puts_filtered (" - ");
3076 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3077 printf_filtered (", mapped at ");
3078 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3079 puts_filtered (" - ");
3080 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3081 puts_filtered ("\n");
3086 printf_filtered (_("No sections are mapped.\n"));
3089 /* Function: map_overlay_command
3090 Mark the named section as mapped (ie. residing at its VMA address). */
3093 map_overlay_command (char *args, int from_tty)
3095 struct objfile *objfile, *objfile2;
3096 struct obj_section *sec, *sec2;
3098 if (!overlay_debugging)
3100 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3101 the 'overlay manual' command."));
3103 if (args == 0 || *args == 0)
3104 error (_("Argument required: name of an overlay section"));
3106 /* First, find a section matching the user supplied argument */
3107 ALL_OBJSECTIONS (objfile, sec)
3108 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3110 /* Now, check to see if the section is an overlay. */
3111 if (!section_is_overlay (sec))
3112 continue; /* not an overlay section */
3114 /* Mark the overlay as "mapped" */
3115 sec->ovly_mapped = 1;
3117 /* Next, make a pass and unmap any sections that are
3118 overlapped by this new section: */
3119 ALL_OBJSECTIONS (objfile2, sec2)
3120 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3123 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3124 bfd_section_name (objfile->obfd,
3125 sec2->the_bfd_section));
3126 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3130 error (_("No overlay section called %s"), args);
3133 /* Function: unmap_overlay_command
3134 Mark the overlay section as unmapped
3135 (ie. resident in its LMA address range, rather than the VMA range). */
3138 unmap_overlay_command (char *args, int from_tty)
3140 struct objfile *objfile;
3141 struct obj_section *sec;
3143 if (!overlay_debugging)
3145 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3146 the 'overlay manual' command."));
3148 if (args == 0 || *args == 0)
3149 error (_("Argument required: name of an overlay section"));
3151 /* First, find a section matching the user supplied argument */
3152 ALL_OBJSECTIONS (objfile, sec)
3153 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3155 if (!sec->ovly_mapped)
3156 error (_("Section %s is not mapped"), args);
3157 sec->ovly_mapped = 0;
3160 error (_("No overlay section called %s"), args);
3163 /* Function: overlay_auto_command
3164 A utility command to turn on overlay debugging.
3165 Possibly this should be done via a set/show command. */
3168 overlay_auto_command (char *args, int from_tty)
3170 overlay_debugging = ovly_auto;
3171 enable_overlay_breakpoints ();
3173 printf_unfiltered (_("Automatic overlay debugging enabled."));
3176 /* Function: overlay_manual_command
3177 A utility command to turn on overlay debugging.
3178 Possibly this should be done via a set/show command. */
3181 overlay_manual_command (char *args, int from_tty)
3183 overlay_debugging = ovly_on;
3184 disable_overlay_breakpoints ();
3186 printf_unfiltered (_("Overlay debugging enabled."));
3189 /* Function: overlay_off_command
3190 A utility command to turn on overlay debugging.
3191 Possibly this should be done via a set/show command. */
3194 overlay_off_command (char *args, int from_tty)
3196 overlay_debugging = ovly_off;
3197 disable_overlay_breakpoints ();
3199 printf_unfiltered (_("Overlay debugging disabled."));
3203 overlay_load_command (char *args, int from_tty)
3205 struct gdbarch *gdbarch = get_current_arch ();
3207 if (gdbarch_overlay_update_p (gdbarch))
3208 gdbarch_overlay_update (gdbarch, NULL);
3210 error (_("This target does not know how to read its overlay state."));
3213 /* Function: overlay_command
3214 A place-holder for a mis-typed command */
3216 /* Command list chain containing all defined "overlay" subcommands. */
3217 struct cmd_list_element *overlaylist;
3220 overlay_command (char *args, int from_tty)
3223 ("\"overlay\" must be followed by the name of an overlay command.\n");
3224 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3228 /* Target Overlays for the "Simplest" overlay manager:
3230 This is GDB's default target overlay layer. It works with the
3231 minimal overlay manager supplied as an example by Cygnus. The
3232 entry point is via a function pointer "gdbarch_overlay_update",
3233 so targets that use a different runtime overlay manager can
3234 substitute their own overlay_update function and take over the
3237 The overlay_update function pokes around in the target's data structures
3238 to see what overlays are mapped, and updates GDB's overlay mapping with
3241 In this simple implementation, the target data structures are as follows:
3242 unsigned _novlys; /# number of overlay sections #/
3243 unsigned _ovly_table[_novlys][4] = {
3244 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3245 {..., ..., ..., ...},
3247 unsigned _novly_regions; /# number of overlay regions #/
3248 unsigned _ovly_region_table[_novly_regions][3] = {
3249 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3252 These functions will attempt to update GDB's mappedness state in the
3253 symbol section table, based on the target's mappedness state.
3255 To do this, we keep a cached copy of the target's _ovly_table, and
3256 attempt to detect when the cached copy is invalidated. The main
3257 entry point is "simple_overlay_update(SECT), which looks up SECT in
3258 the cached table and re-reads only the entry for that section from
3259 the target (whenever possible).
3262 /* Cached, dynamically allocated copies of the target data structures: */
3263 static unsigned (*cache_ovly_table)[4] = 0;
3265 static unsigned (*cache_ovly_region_table)[3] = 0;
3267 static unsigned cache_novlys = 0;
3269 static unsigned cache_novly_regions = 0;
3271 static CORE_ADDR cache_ovly_table_base = 0;
3273 static CORE_ADDR cache_ovly_region_table_base = 0;
3277 VMA, SIZE, LMA, MAPPED
3280 /* Throw away the cached copy of _ovly_table */
3282 simple_free_overlay_table (void)
3284 if (cache_ovly_table)
3285 xfree (cache_ovly_table);
3287 cache_ovly_table = NULL;
3288 cache_ovly_table_base = 0;
3292 /* Throw away the cached copy of _ovly_region_table */
3294 simple_free_overlay_region_table (void)
3296 if (cache_ovly_region_table)
3297 xfree (cache_ovly_region_table);
3298 cache_novly_regions = 0;
3299 cache_ovly_region_table = NULL;
3300 cache_ovly_region_table_base = 0;
3304 /* Read an array of ints of size SIZE from the target into a local buffer.
3305 Convert to host order. int LEN is number of ints */
3307 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3308 int len, int size, enum bfd_endian byte_order)
3310 /* FIXME (alloca): Not safe if array is very large. */
3311 gdb_byte *buf = alloca (len * size);
3314 read_memory (memaddr, buf, len * size);
3315 for (i = 0; i < len; i++)
3316 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3319 /* Find and grab a copy of the target _ovly_table
3320 (and _novlys, which is needed for the table's size) */
3322 simple_read_overlay_table (void)
3324 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3325 struct gdbarch *gdbarch;
3327 enum bfd_endian byte_order;
3329 simple_free_overlay_table ();
3330 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3333 error (_("Error reading inferior's overlay table: "
3334 "couldn't find `_novlys' variable\n"
3335 "in inferior. Use `overlay manual' mode."));
3339 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3340 if (! ovly_table_msym)
3342 error (_("Error reading inferior's overlay table: couldn't find "
3343 "`_ovly_table' array\n"
3344 "in inferior. Use `overlay manual' mode."));
3348 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3349 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3350 byte_order = gdbarch_byte_order (gdbarch);
3352 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3355 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3356 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3357 read_target_long_array (cache_ovly_table_base,
3358 (unsigned int *) cache_ovly_table,
3359 cache_novlys * 4, word_size, byte_order);
3361 return 1; /* SUCCESS */
3365 /* Find and grab a copy of the target _ovly_region_table
3366 (and _novly_regions, which is needed for the table's size) */
3368 simple_read_overlay_region_table (void)
3370 struct minimal_symbol *msym;
3371 struct gdbarch *gdbarch;
3373 enum bfd_endian byte_order;
3375 simple_free_overlay_region_table ();
3376 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3378 return 0; /* failure */
3380 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3381 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3382 byte_order = gdbarch_byte_order (gdbarch);
3384 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3387 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3388 if (cache_ovly_region_table != NULL)
3390 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3393 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3394 read_target_long_array (cache_ovly_region_table_base,
3395 (unsigned int *) cache_ovly_region_table,
3396 cache_novly_regions * 3,
3397 word_size, byte_order);
3400 return 0; /* failure */
3403 return 0; /* failure */
3404 return 1; /* SUCCESS */
3408 /* Function: simple_overlay_update_1
3409 A helper function for simple_overlay_update. Assuming a cached copy
3410 of _ovly_table exists, look through it to find an entry whose vma,
3411 lma and size match those of OSECT. Re-read the entry and make sure
3412 it still matches OSECT (else the table may no longer be valid).
3413 Set OSECT's mapped state to match the entry. Return: 1 for
3414 success, 0 for failure. */
3417 simple_overlay_update_1 (struct obj_section *osect)
3420 bfd *obfd = osect->objfile->obfd;
3421 asection *bsect = osect->the_bfd_section;
3422 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3423 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3424 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3426 size = bfd_get_section_size (osect->the_bfd_section);
3427 for (i = 0; i < cache_novlys; i++)
3428 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3429 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3430 /* && cache_ovly_table[i][SIZE] == size */ )
3432 read_target_long_array (cache_ovly_table_base + i * word_size,
3433 (unsigned int *) cache_ovly_table[i],
3434 4, word_size, byte_order);
3435 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3436 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3437 /* && cache_ovly_table[i][SIZE] == size */ )
3439 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3442 else /* Warning! Warning! Target's ovly table has changed! */
3448 /* Function: simple_overlay_update
3449 If OSECT is NULL, then update all sections' mapped state
3450 (after re-reading the entire target _ovly_table).
3451 If OSECT is non-NULL, then try to find a matching entry in the
3452 cached ovly_table and update only OSECT's mapped state.
3453 If a cached entry can't be found or the cache isn't valid, then
3454 re-read the entire cache, and go ahead and update all sections. */
3457 simple_overlay_update (struct obj_section *osect)
3459 struct objfile *objfile;
3461 /* Were we given an osect to look up? NULL means do all of them. */
3463 /* Have we got a cached copy of the target's overlay table? */
3464 if (cache_ovly_table != NULL)
3465 /* Does its cached location match what's currently in the symtab? */
3466 if (cache_ovly_table_base ==
3467 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3468 /* Then go ahead and try to look up this single section in the cache */
3469 if (simple_overlay_update_1 (osect))
3470 /* Found it! We're done. */
3473 /* Cached table no good: need to read the entire table anew.
3474 Or else we want all the sections, in which case it's actually
3475 more efficient to read the whole table in one block anyway. */
3477 if (! simple_read_overlay_table ())
3480 /* Now may as well update all sections, even if only one was requested. */
3481 ALL_OBJSECTIONS (objfile, osect)
3482 if (section_is_overlay (osect))
3485 bfd *obfd = osect->objfile->obfd;
3486 asection *bsect = osect->the_bfd_section;
3488 size = bfd_get_section_size (bsect);
3489 for (i = 0; i < cache_novlys; i++)
3490 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3491 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3492 /* && cache_ovly_table[i][SIZE] == size */ )
3493 { /* obj_section matches i'th entry in ovly_table */
3494 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3495 break; /* finished with inner for loop: break out */
3500 /* Set the output sections and output offsets for section SECTP in
3501 ABFD. The relocation code in BFD will read these offsets, so we
3502 need to be sure they're initialized. We map each section to itself,
3503 with no offset; this means that SECTP->vma will be honored. */
3506 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3508 sectp->output_section = sectp;
3509 sectp->output_offset = 0;
3512 /* Default implementation for sym_relocate. */
3516 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3519 bfd *abfd = objfile->obfd;
3521 /* We're only interested in sections with relocation
3523 if ((sectp->flags & SEC_RELOC) == 0)
3526 /* We will handle section offsets properly elsewhere, so relocate as if
3527 all sections begin at 0. */
3528 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3530 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3533 /* Relocate the contents of a debug section SECTP in ABFD. The
3534 contents are stored in BUF if it is non-NULL, or returned in a
3535 malloc'd buffer otherwise.
3537 For some platforms and debug info formats, shared libraries contain
3538 relocations against the debug sections (particularly for DWARF-2;
3539 one affected platform is PowerPC GNU/Linux, although it depends on
3540 the version of the linker in use). Also, ELF object files naturally
3541 have unresolved relocations for their debug sections. We need to apply
3542 the relocations in order to get the locations of symbols correct.
3543 Another example that may require relocation processing, is the
3544 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3548 symfile_relocate_debug_section (struct objfile *objfile,
3549 asection *sectp, bfd_byte *buf)
3551 gdb_assert (objfile->sf->sym_relocate);
3553 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3556 struct symfile_segment_data *
3557 get_symfile_segment_data (bfd *abfd)
3559 struct sym_fns *sf = find_sym_fns (abfd);
3564 return sf->sym_segments (abfd);
3568 free_symfile_segment_data (struct symfile_segment_data *data)
3570 xfree (data->segment_bases);
3571 xfree (data->segment_sizes);
3572 xfree (data->segment_info);
3578 - DATA, containing segment addresses from the object file ABFD, and
3579 the mapping from ABFD's sections onto the segments that own them,
3581 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3582 segment addresses reported by the target,
3583 store the appropriate offsets for each section in OFFSETS.
3585 If there are fewer entries in SEGMENT_BASES than there are segments
3586 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3588 If there are more entries, then ignore the extra. The target may
3589 not be able to distinguish between an empty data segment and a
3590 missing data segment; a missing text segment is less plausible. */
3592 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3593 struct section_offsets *offsets,
3594 int num_segment_bases,
3595 const CORE_ADDR *segment_bases)
3600 /* It doesn't make sense to call this function unless you have some
3601 segment base addresses. */
3602 gdb_assert (num_segment_bases > 0);
3604 /* If we do not have segment mappings for the object file, we
3605 can not relocate it by segments. */
3606 gdb_assert (data != NULL);
3607 gdb_assert (data->num_segments > 0);
3609 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3611 int which = data->segment_info[i];
3613 gdb_assert (0 <= which && which <= data->num_segments);
3615 /* Don't bother computing offsets for sections that aren't
3616 loaded as part of any segment. */
3620 /* Use the last SEGMENT_BASES entry as the address of any extra
3621 segments mentioned in DATA->segment_info. */
3622 if (which > num_segment_bases)
3623 which = num_segment_bases;
3625 offsets->offsets[i] = (segment_bases[which - 1]
3626 - data->segment_bases[which - 1]);
3633 symfile_find_segment_sections (struct objfile *objfile)
3635 bfd *abfd = objfile->obfd;
3638 struct symfile_segment_data *data;
3640 data = get_symfile_segment_data (objfile->obfd);
3644 if (data->num_segments != 1 && data->num_segments != 2)
3646 free_symfile_segment_data (data);
3650 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3652 int which = data->segment_info[i];
3656 if (objfile->sect_index_text == -1)
3657 objfile->sect_index_text = sect->index;
3659 if (objfile->sect_index_rodata == -1)
3660 objfile->sect_index_rodata = sect->index;
3662 else if (which == 2)
3664 if (objfile->sect_index_data == -1)
3665 objfile->sect_index_data = sect->index;
3667 if (objfile->sect_index_bss == -1)
3668 objfile->sect_index_bss = sect->index;
3672 free_symfile_segment_data (data);
3676 _initialize_symfile (void)
3678 struct cmd_list_element *c;
3680 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3681 Load symbol table from executable file FILE.\n\
3682 The `file' command can also load symbol tables, as well as setting the file\n\
3683 to execute."), &cmdlist);
3684 set_cmd_completer (c, filename_completer);
3686 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3687 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3688 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3689 ADDR is the starting address of the file's text.\n\
3690 The optional arguments are section-name section-address pairs and\n\
3691 should be specified if the data and bss segments are not contiguous\n\
3692 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3694 set_cmd_completer (c, filename_completer);
3696 c = add_cmd ("load", class_files, load_command, _("\
3697 Dynamically load FILE into the running program, and record its symbols\n\
3698 for access from GDB.\n\
3699 A load OFFSET may also be given."), &cmdlist);
3700 set_cmd_completer (c, filename_completer);
3702 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3703 &symbol_reloading, _("\
3704 Set dynamic symbol table reloading multiple times in one run."), _("\
3705 Show dynamic symbol table reloading multiple times in one run."), NULL,
3707 show_symbol_reloading,
3708 &setlist, &showlist);
3710 add_prefix_cmd ("overlay", class_support, overlay_command,
3711 _("Commands for debugging overlays."), &overlaylist,
3712 "overlay ", 0, &cmdlist);
3714 add_com_alias ("ovly", "overlay", class_alias, 1);
3715 add_com_alias ("ov", "overlay", class_alias, 1);
3717 add_cmd ("map-overlay", class_support, map_overlay_command,
3718 _("Assert that an overlay section is mapped."), &overlaylist);
3720 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3721 _("Assert that an overlay section is unmapped."), &overlaylist);
3723 add_cmd ("list-overlays", class_support, list_overlays_command,
3724 _("List mappings of overlay sections."), &overlaylist);
3726 add_cmd ("manual", class_support, overlay_manual_command,
3727 _("Enable overlay debugging."), &overlaylist);
3728 add_cmd ("off", class_support, overlay_off_command,
3729 _("Disable overlay debugging."), &overlaylist);
3730 add_cmd ("auto", class_support, overlay_auto_command,
3731 _("Enable automatic overlay debugging."), &overlaylist);
3732 add_cmd ("load-target", class_support, overlay_load_command,
3733 _("Read the overlay mapping state from the target."), &overlaylist);
3735 /* Filename extension to source language lookup table: */
3736 init_filename_language_table ();
3737 add_setshow_string_noescape_cmd ("extension-language", class_files,
3739 Set mapping between filename extension and source language."), _("\
3740 Show mapping between filename extension and source language."), _("\
3741 Usage: set extension-language .foo bar"),
3742 set_ext_lang_command,
3744 &setlist, &showlist);
3746 add_info ("extensions", info_ext_lang_command,
3747 _("All filename extensions associated with a source language."));
3749 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3750 &debug_file_directory, _("\
3751 Set the directories where separate debug symbols are searched for."), _("\
3752 Show the directories where separate debug symbols are searched for."), _("\
3753 Separate debug symbols are first searched for in the same\n\
3754 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3755 and lastly at the path of the directory of the binary with\n\
3756 each global debug-file-directory component prepended."),
3758 show_debug_file_directory,
3759 &setlist, &showlist);