1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
35 #include "breakpoint.h"
37 #include "complaints.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
49 #include "observable.h"
51 #include "parser-defs.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "common/pathstuff.h"
61 #include "common/selftest.h"
62 #include "cli/cli-style.h"
63 #include "common/forward-scope-exit.h"
65 #include <sys/types.h>
74 int (*deprecated_ui_load_progress_hook) (const char *section,
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
91 /* Functions this file defines. */
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
96 static const struct sym_fns *find_sym_fns (bfd *);
98 static void overlay_invalidate_all (void);
100 static void simple_free_overlay_table (void);
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
105 static int simple_read_overlay_table (void);
107 static int simple_overlay_update_1 (struct obj_section *);
109 static void symfile_find_segment_sections (struct objfile *objfile);
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
115 struct registered_sym_fns
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
128 static std::vector<registered_sym_fns> symtab_fns;
130 /* Values for "set print symbol-loading". */
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
142 static const char *print_symbol_loading = print_symbol_loading_full;
144 /* If non-zero, shared library symbols will be added automatically
145 when the inferior is created, new libraries are loaded, or when
146 attaching to the inferior. This is almost always what users will
147 want to have happen; but for very large programs, the startup time
148 will be excessive, and so if this is a problem, the user can clear
149 this flag and then add the shared library symbols as needed. Note
150 that there is a potential for confusion, since if the shared
151 library symbols are not loaded, commands like "info fun" will *not*
152 report all the functions that are actually present. */
154 int auto_solib_add = 1;
157 /* Return non-zero if symbol-loading messages should be printed.
158 FROM_TTY is the standard from_tty argument to gdb commands.
159 If EXEC is non-zero the messages are for the executable.
160 Otherwise, messages are for shared libraries.
161 If FULL is non-zero then the caller is printing a detailed message.
162 E.g., the message includes the shared library name.
163 Otherwise, the caller is printing a brief "summary" message. */
166 print_symbol_loading_p (int from_tty, int exec, int full)
168 if (!from_tty && !info_verbose)
173 /* We don't check FULL for executables, there are few such
174 messages, therefore brief == full. */
175 return print_symbol_loading != print_symbol_loading_off;
178 return print_symbol_loading == print_symbol_loading_full;
179 return print_symbol_loading == print_symbol_loading_brief;
182 /* True if we are reading a symbol table. */
184 int currently_reading_symtab = 0;
186 /* Increment currently_reading_symtab and return a cleanup that can be
187 used to decrement it. */
189 scoped_restore_tmpl<int>
190 increment_reading_symtab (void)
192 gdb_assert (currently_reading_symtab >= 0);
193 return make_scoped_restore (¤tly_reading_symtab,
194 currently_reading_symtab + 1);
197 /* Remember the lowest-addressed loadable section we've seen.
198 This function is called via bfd_map_over_sections.
200 In case of equal vmas, the section with the largest size becomes the
201 lowest-addressed loadable section.
203 If the vmas and sizes are equal, the last section is considered the
204 lowest-addressed loadable section. */
207 find_lowest_section (bfd *abfd, asection *sect, void *obj)
209 asection **lowest = (asection **) obj;
211 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
214 *lowest = sect; /* First loadable section */
215 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216 *lowest = sect; /* A lower loadable section */
217 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 && (bfd_section_size (abfd, (*lowest))
219 <= bfd_section_size (abfd, sect)))
223 /* Build (allocate and populate) a section_addr_info struct from
224 an existing section table. */
227 build_section_addr_info_from_section_table (const struct target_section *start,
228 const struct target_section *end)
230 const struct target_section *stp;
232 section_addr_info sap;
234 for (stp = start; stp != end; stp++)
236 struct bfd_section *asect = stp->the_bfd_section;
237 bfd *abfd = asect->owner;
239 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
240 && sap.size () < end - start)
241 sap.emplace_back (stp->addr,
242 bfd_section_name (abfd, asect),
243 gdb_bfd_section_index (abfd, asect));
249 /* Create a section_addr_info from section offsets in ABFD. */
251 static section_addr_info
252 build_section_addr_info_from_bfd (bfd *abfd)
254 struct bfd_section *sec;
256 section_addr_info sap;
257 for (sec = abfd->sections; sec != NULL; sec = sec->next)
258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259 sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 bfd_get_section_name (abfd, sec),
261 gdb_bfd_section_index (abfd, sec));
266 /* Create a section_addr_info from section offsets in OBJFILE. */
269 build_section_addr_info_from_objfile (const struct objfile *objfile)
273 /* Before reread_symbols gets rewritten it is not safe to call:
274 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
276 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277 for (i = 0; i < sap.size (); i++)
279 int sectindex = sap[i].sectindex;
281 sap[i].addr += objfile->section_offsets->offsets[sectindex];
286 /* Initialize OBJFILE's sect_index_* members. */
289 init_objfile_sect_indices (struct objfile *objfile)
294 sect = bfd_get_section_by_name (objfile->obfd, ".text");
296 objfile->sect_index_text = sect->index;
298 sect = bfd_get_section_by_name (objfile->obfd, ".data");
300 objfile->sect_index_data = sect->index;
302 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
304 objfile->sect_index_bss = sect->index;
306 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
308 objfile->sect_index_rodata = sect->index;
310 /* This is where things get really weird... We MUST have valid
311 indices for the various sect_index_* members or gdb will abort.
312 So if for example, there is no ".text" section, we have to
313 accomodate that. First, check for a file with the standard
314 one or two segments. */
316 symfile_find_segment_sections (objfile);
318 /* Except when explicitly adding symbol files at some address,
319 section_offsets contains nothing but zeros, so it doesn't matter
320 which slot in section_offsets the individual sect_index_* members
321 index into. So if they are all zero, it is safe to just point
322 all the currently uninitialized indices to the first slot. But
323 beware: if this is the main executable, it may be relocated
324 later, e.g. by the remote qOffsets packet, and then this will
325 be wrong! That's why we try segments first. */
327 for (i = 0; i < objfile->num_sections; i++)
329 if (ANOFFSET (objfile->section_offsets, i) != 0)
334 if (i == objfile->num_sections)
336 if (objfile->sect_index_text == -1)
337 objfile->sect_index_text = 0;
338 if (objfile->sect_index_data == -1)
339 objfile->sect_index_data = 0;
340 if (objfile->sect_index_bss == -1)
341 objfile->sect_index_bss = 0;
342 if (objfile->sect_index_rodata == -1)
343 objfile->sect_index_rodata = 0;
347 /* The arguments to place_section. */
349 struct place_section_arg
351 struct section_offsets *offsets;
355 /* Find a unique offset to use for loadable section SECT if
356 the user did not provide an offset. */
359 place_section (bfd *abfd, asection *sect, void *obj)
361 struct place_section_arg *arg = (struct place_section_arg *) obj;
362 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
364 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
366 /* We are only interested in allocated sections. */
367 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
370 /* If the user specified an offset, honor it. */
371 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
374 /* Otherwise, let's try to find a place for the section. */
375 start_addr = (arg->lowest + align - 1) & -align;
382 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
384 int indx = cur_sec->index;
386 /* We don't need to compare against ourself. */
390 /* We can only conflict with allocated sections. */
391 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
394 /* If the section offset is 0, either the section has not been placed
395 yet, or it was the lowest section placed (in which case LOWEST
396 will be past its end). */
397 if (offsets[indx] == 0)
400 /* If this section would overlap us, then we must move up. */
401 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
404 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 start_addr = (start_addr + align - 1) & -align;
410 /* Otherwise, we appear to be OK. So far. */
415 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
416 arg->lowest = start_addr + bfd_get_section_size (sect);
419 /* Store section_addr_info as prepared (made relative and with SECTINDEX
420 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
424 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
426 const section_addr_info &addrs)
430 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
432 /* Now calculate offsets for section that were specified by the caller. */
433 for (i = 0; i < addrs.size (); i++)
435 const struct other_sections *osp;
438 if (osp->sectindex == -1)
441 /* Record all sections in offsets. */
442 /* The section_offsets in the objfile are here filled in using
444 section_offsets->offsets[osp->sectindex] = osp->addr;
448 /* Transform section name S for a name comparison. prelink can split section
449 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
450 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
451 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452 (`.sbss') section has invalid (increased) virtual address. */
455 addr_section_name (const char *s)
457 if (strcmp (s, ".dynbss") == 0)
459 if (strcmp (s, ".sdynbss") == 0)
465 /* std::sort comparator for addrs_section_sort. Sort entries in
466 ascending order by their (name, sectindex) pair. sectindex makes
467 the sort by name stable. */
470 addrs_section_compar (const struct other_sections *a,
471 const struct other_sections *b)
475 retval = strcmp (addr_section_name (a->name.c_str ()),
476 addr_section_name (b->name.c_str ()));
480 return a->sectindex < b->sectindex;
483 /* Provide sorted array of pointers to sections of ADDRS. */
485 static std::vector<const struct other_sections *>
486 addrs_section_sort (const section_addr_info &addrs)
490 std::vector<const struct other_sections *> array (addrs.size ());
491 for (i = 0; i < addrs.size (); i++)
492 array[i] = &addrs[i];
494 std::sort (array.begin (), array.end (), addrs_section_compar);
499 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
500 also SECTINDEXes specific to ABFD there. This function can be used to
501 rebase ADDRS to start referencing different BFD than before. */
504 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
506 asection *lower_sect;
507 CORE_ADDR lower_offset;
510 /* Find lowest loadable section to be used as starting point for
511 continguous sections. */
513 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
514 if (lower_sect == NULL)
516 warning (_("no loadable sections found in added symbol-file %s"),
517 bfd_get_filename (abfd));
521 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
523 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524 in ABFD. Section names are not unique - there can be multiple sections of
525 the same name. Also the sections of the same name do not have to be
526 adjacent to each other. Some sections may be present only in one of the
527 files. Even sections present in both files do not have to be in the same
530 Use stable sort by name for the sections in both files. Then linearly
531 scan both lists matching as most of the entries as possible. */
533 std::vector<const struct other_sections *> addrs_sorted
534 = addrs_section_sort (*addrs);
536 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537 std::vector<const struct other_sections *> abfd_addrs_sorted
538 = addrs_section_sort (abfd_addrs);
540 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541 ABFD_ADDRS_SORTED. */
543 std::vector<const struct other_sections *>
544 addrs_to_abfd_addrs (addrs->size (), nullptr);
546 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547 = abfd_addrs_sorted.begin ();
548 for (const other_sections *sect : addrs_sorted)
550 const char *sect_name = addr_section_name (sect->name.c_str ());
552 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
557 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
563 /* Make the found item directly addressable from ADDRS. */
564 index_in_addrs = sect - addrs->data ();
565 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
566 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
568 /* Never use the same ABFD entry twice. */
573 /* Calculate offsets for the loadable sections.
574 FIXME! Sections must be in order of increasing loadable section
575 so that contiguous sections can use the lower-offset!!!
577 Adjust offsets if the segments are not contiguous.
578 If the section is contiguous, its offset should be set to
579 the offset of the highest loadable section lower than it
580 (the loadable section directly below it in memory).
581 this_offset = lower_offset = lower_addr - lower_orig_addr */
583 for (i = 0; i < addrs->size (); i++)
585 const struct other_sections *sect = addrs_to_abfd_addrs[i];
589 /* This is the index used by BFD. */
590 (*addrs)[i].sectindex = sect->sectindex;
592 if ((*addrs)[i].addr != 0)
594 (*addrs)[i].addr -= sect->addr;
595 lower_offset = (*addrs)[i].addr;
598 (*addrs)[i].addr = lower_offset;
602 /* addr_section_name transformation is not used for SECT_NAME. */
603 const std::string §_name = (*addrs)[i].name;
605 /* This section does not exist in ABFD, which is normally
606 unexpected and we want to issue a warning.
608 However, the ELF prelinker does create a few sections which are
609 marked in the main executable as loadable (they are loaded in
610 memory from the DYNAMIC segment) and yet are not present in
611 separate debug info files. This is fine, and should not cause
612 a warning. Shared libraries contain just the section
613 ".gnu.liblist" but it is not marked as loadable there. There is
614 no other way to identify them than by their name as the sections
615 created by prelink have no special flags.
617 For the sections `.bss' and `.sbss' see addr_section_name. */
619 if (!(sect_name == ".gnu.liblist"
620 || sect_name == ".gnu.conflict"
621 || (sect_name == ".bss"
623 && (*addrs)[i - 1].name == ".dynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)
625 || (sect_name == ".sbss"
627 && (*addrs)[i - 1].name == ".sdynbss"
628 && addrs_to_abfd_addrs[i - 1] != NULL)))
629 warning (_("section %s not found in %s"), sect_name.c_str (),
630 bfd_get_filename (abfd));
632 (*addrs)[i].addr = 0;
633 (*addrs)[i].sectindex = -1;
638 /* Parse the user's idea of an offset for dynamic linking, into our idea
639 of how to represent it for fast symbol reading. This is the default
640 version of the sym_fns.sym_offsets function for symbol readers that
641 don't need to do anything special. It allocates a section_offsets table
642 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
645 default_symfile_offsets (struct objfile *objfile,
646 const section_addr_info &addrs)
648 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
649 objfile->section_offsets = (struct section_offsets *)
650 obstack_alloc (&objfile->objfile_obstack,
651 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652 relative_addr_info_to_section_offsets (objfile->section_offsets,
653 objfile->num_sections, addrs);
655 /* For relocatable files, all loadable sections will start at zero.
656 The zero is meaningless, so try to pick arbitrary addresses such
657 that no loadable sections overlap. This algorithm is quadratic,
658 but the number of sections in a single object file is generally
660 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
662 struct place_section_arg arg;
663 bfd *abfd = objfile->obfd;
666 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 /* We do not expect this to happen; just skip this step if the
668 relocatable file has a section with an assigned VMA. */
669 if (bfd_section_vma (abfd, cur_sec) != 0)
674 CORE_ADDR *offsets = objfile->section_offsets->offsets;
676 /* Pick non-overlapping offsets for sections the user did not
678 arg.offsets = objfile->section_offsets;
680 bfd_map_over_sections (objfile->obfd, place_section, &arg);
682 /* Correctly filling in the section offsets is not quite
683 enough. Relocatable files have two properties that
684 (most) shared objects do not:
686 - Their debug information will contain relocations. Some
687 shared libraries do also, but many do not, so this can not
690 - If there are multiple code sections they will be loaded
691 at different relative addresses in memory than they are
692 in the objfile, since all sections in the file will start
695 Because GDB has very limited ability to map from an
696 address in debug info to the correct code section,
697 it relies on adding SECT_OFF_TEXT to things which might be
698 code. If we clear all the section offsets, and set the
699 section VMAs instead, then symfile_relocate_debug_section
700 will return meaningful debug information pointing at the
703 GDB has too many different data structures for section
704 addresses - a bfd, objfile, and so_list all have section
705 tables, as does exec_ops. Some of these could probably
708 for (cur_sec = abfd->sections; cur_sec != NULL;
709 cur_sec = cur_sec->next)
711 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
714 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
715 exec_set_section_address (bfd_get_filename (abfd),
717 offsets[cur_sec->index]);
718 offsets[cur_sec->index] = 0;
723 /* Remember the bfd indexes for the .text, .data, .bss and
725 init_objfile_sect_indices (objfile);
728 /* Divide the file into segments, which are individual relocatable units.
729 This is the default version of the sym_fns.sym_segments function for
730 symbol readers that do not have an explicit representation of segments.
731 It assumes that object files do not have segments, and fully linked
732 files have a single segment. */
734 struct symfile_segment_data *
735 default_symfile_segments (bfd *abfd)
739 struct symfile_segment_data *data;
742 /* Relocatable files contain enough information to position each
743 loadable section independently; they should not be relocated
745 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
748 /* Make sure there is at least one loadable section in the file. */
749 for (sect = abfd->sections; sect != NULL; sect = sect->next)
751 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
759 low = bfd_get_section_vma (abfd, sect);
760 high = low + bfd_get_section_size (sect);
762 data = XCNEW (struct symfile_segment_data);
763 data->num_segments = 1;
764 data->segment_bases = XCNEW (CORE_ADDR);
765 data->segment_sizes = XCNEW (CORE_ADDR);
767 num_sections = bfd_count_sections (abfd);
768 data->segment_info = XCNEWVEC (int, num_sections);
770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
774 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
777 vma = bfd_get_section_vma (abfd, sect);
780 if (vma + bfd_get_section_size (sect) > high)
781 high = vma + bfd_get_section_size (sect);
783 data->segment_info[i] = 1;
786 data->segment_bases[0] = low;
787 data->segment_sizes[0] = high - low;
792 /* This is a convenience function to call sym_read for OBJFILE and
793 possibly force the partial symbols to be read. */
796 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
798 (*objfile->sf->sym_read) (objfile, add_flags);
799 objfile->per_bfd->minsyms_read = true;
801 /* find_separate_debug_file_in_section should be called only if there is
802 single binary with no existing separate debug info file. */
803 if (!objfile_has_partial_symbols (objfile)
804 && objfile->separate_debug_objfile == NULL
805 && objfile->separate_debug_objfile_backlink == NULL)
807 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
811 /* find_separate_debug_file_in_section uses the same filename for the
812 virtual section-as-bfd like the bfd filename containing the
813 section. Therefore use also non-canonical name form for the same
814 file containing the section. */
815 symbol_file_add_separate (abfd.get (),
816 bfd_get_filename (abfd.get ()),
817 add_flags | SYMFILE_NOT_FILENAME, objfile);
820 if ((add_flags & SYMFILE_NO_READ) == 0)
821 require_partial_symbols (objfile, 0);
824 /* Initialize entry point information for this objfile. */
827 init_entry_point_info (struct objfile *objfile)
829 struct entry_info *ei = &objfile->per_bfd->ei;
835 /* Save startup file's range of PC addresses to help blockframe.c
836 decide where the bottom of the stack is. */
838 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
840 /* Executable file -- record its entry point so we'll recognize
841 the startup file because it contains the entry point. */
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
845 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 && bfd_get_start_address (objfile->obfd) != 0)
848 /* Some shared libraries may have entry points set and be
849 runnable. There's no clear way to indicate this, so just check
850 for values other than zero. */
851 ei->entry_point = bfd_get_start_address (objfile->obfd);
852 ei->entry_point_p = 1;
856 /* Examination of non-executable.o files. Short-circuit this stuff. */
857 ei->entry_point_p = 0;
860 if (ei->entry_point_p)
862 struct obj_section *osect;
863 CORE_ADDR entry_point = ei->entry_point;
866 /* Make certain that the address points at real code, and not a
867 function descriptor. */
869 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
871 current_top_target ());
873 /* Remove any ISA markers, so that this matches entries in the
876 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
879 ALL_OBJFILE_OSECTIONS (objfile, osect)
881 struct bfd_section *sect = osect->the_bfd_section;
883 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 + bfd_get_section_size (sect)))
887 ei->the_bfd_section_index
888 = gdb_bfd_section_index (objfile->obfd, sect);
895 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
899 /* Process a symbol file, as either the main file or as a dynamically
902 This function does not set the OBJFILE's entry-point info.
904 OBJFILE is where the symbols are to be read from.
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
915 The sectindex field is used to control the ordering of sections
916 with the same name. Upon return, it is updated to contain the
917 correspondig BFD section index, or -1 if the section was not found.
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
924 syms_from_objfile_1 (struct objfile *objfile,
925 section_addr_info *addrs,
926 symfile_add_flags add_flags)
928 section_addr_info local_addr;
929 const int mainline = add_flags & SYMFILE_MAINLINE;
931 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
933 if (objfile->sf == NULL)
935 /* No symbols to load, but we still need to make sure
936 that the section_offsets table is allocated. */
937 int num_sections = gdb_bfd_count_sections (objfile->obfd);
938 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
940 objfile->num_sections = num_sections;
941 objfile->section_offsets
942 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
944 memset (objfile->section_offsets, 0, size);
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
952 std::unique_ptr<struct objfile> objfile_holder (objfile);
954 /* If ADDRS is NULL, put together a dummy address list.
955 We now establish the convention that an addr of zero means
956 no load address was specified. */
962 /* We will modify the main symbol table, make sure that all its users
963 will be cleaned up if an error occurs during symbol reading. */
964 defer_clear_users.emplace ((symfile_add_flag) 0);
966 /* Since no error yet, throw away the old symbol table. */
968 if (symfile_objfile != NULL)
970 delete symfile_objfile;
971 gdb_assert (symfile_objfile == NULL);
974 /* Currently we keep symbols from the add-symbol-file command.
975 If the user wants to get rid of them, they should do "symbol-file"
976 without arguments first. Not sure this is the best behavior
979 (*objfile->sf->sym_new_init) (objfile);
982 /* Convert addr into an offset rather than an absolute address.
983 We find the lowest address of a loaded segment in the objfile,
984 and assume that <addr> is where that got loaded.
986 We no longer warn if the lowest section is not a text segment (as
987 happens for the PA64 port. */
988 if (addrs->size () > 0)
989 addr_info_make_relative (addrs, objfile->obfd);
991 /* Initialize symbol reading routines for this objfile, allow complaints to
992 appear for this new file, and record how verbose to be, then do the
993 initial symbol reading for this file. */
995 (*objfile->sf->sym_init) (objfile);
998 (*objfile->sf->sym_offsets) (objfile, *addrs);
1000 read_symbols (objfile, add_flags);
1002 /* Discard cleanups as symbol reading was successful. */
1004 objfile_holder.release ();
1005 if (defer_clear_users)
1006 defer_clear_users->release ();
1009 /* Same as syms_from_objfile_1, but also initializes the objfile
1010 entry-point info. */
1013 syms_from_objfile (struct objfile *objfile,
1014 section_addr_info *addrs,
1015 symfile_add_flags add_flags)
1017 syms_from_objfile_1 (objfile, addrs, add_flags);
1018 init_entry_point_info (objfile);
1021 /* Perform required actions after either reading in the initial
1022 symbols for a new objfile, or mapping in the symbols from a reusable
1023 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1026 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1028 /* If this is the main symbol file we have to clean up all users of the
1029 old main symbol file. Otherwise it is sufficient to fixup all the
1030 breakpoints that may have been redefined by this symbol file. */
1031 if (add_flags & SYMFILE_MAINLINE)
1033 /* OK, make it the "real" symbol file. */
1034 symfile_objfile = objfile;
1036 clear_symtab_users (add_flags);
1038 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1040 breakpoint_re_set ();
1043 /* We're done reading the symbol file; finish off complaints. */
1044 clear_complaints ();
1047 /* Process a symbol file, as either the main file or as a dynamically
1050 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1051 A new reference is acquired by this function.
1053 For NAME description see the objfile constructor.
1055 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056 extra, such as dynamically loaded code, and what to do with breakpoins.
1058 ADDRS is as described for syms_from_objfile_1, above.
1059 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1061 PARENT is the original objfile if ABFD is a separate debug info file.
1062 Otherwise PARENT is NULL.
1064 Upon success, returns a pointer to the objfile that was added.
1065 Upon failure, jumps back to command level (never returns). */
1067 static struct objfile *
1068 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 symfile_add_flags add_flags,
1070 section_addr_info *addrs,
1071 objfile_flags flags, struct objfile *parent)
1073 struct objfile *objfile;
1074 const int from_tty = add_flags & SYMFILE_VERBOSE;
1075 const int mainline = add_flags & SYMFILE_MAINLINE;
1076 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1077 && (readnow_symbol_files
1078 || (add_flags & SYMFILE_NO_READ) == 0));
1080 if (readnow_symbol_files)
1082 flags |= OBJF_READNOW;
1083 add_flags &= ~SYMFILE_NO_READ;
1085 else if (readnever_symbol_files
1086 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1088 flags |= OBJF_READNEVER;
1089 add_flags |= SYMFILE_NO_READ;
1091 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092 flags |= OBJF_NOT_FILENAME;
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1097 if ((have_full_symbols () || have_partial_symbols ())
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1104 flags |= OBJF_MAINLINE;
1105 objfile = new struct objfile (abfd, name, flags);
1108 add_separate_debug_objfile (objfile, parent);
1110 /* We either created a new mapped symbol table, mapped an existing
1111 symbol table file which has not had initial symbol reading
1112 performed, or need to read an unmapped symbol table. */
1115 if (deprecated_pre_add_symbol_hook)
1116 deprecated_pre_add_symbol_hook (name);
1119 puts_filtered (_("Reading symbols from "));
1120 fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 puts_filtered ("...\n");
1124 syms_from_objfile (objfile, addrs, add_flags);
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1131 if ((flags & OBJF_READNOW))
1134 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1137 objfile->sf->qf->expand_all_symtabs (objfile);
1140 /* Note that we only print a message if we have no symbols and have
1141 no separate debug file. If there is a separate debug file which
1142 does not have symbols, we'll have emitted this message for that
1143 file, and so printing it twice is just redundant. */
1144 if (should_print && !objfile_has_symbols (objfile)
1145 && objfile->separate_debug_objfile == nullptr)
1146 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1150 if (deprecated_post_add_symbol_hook)
1151 deprecated_post_add_symbol_hook ();
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1157 gdb_flush (gdb_stdout);
1159 if (objfile->sf == NULL)
1161 gdb::observers::new_objfile.notify (objfile);
1162 return objfile; /* No symbols. */
1165 finish_new_objfile (objfile, add_flags);
1167 gdb::observers::new_objfile.notify (objfile);
1169 bfd_cache_close_all ();
1173 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1174 see the objfile constructor. */
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
1179 struct objfile *objfile)
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1186 symbol_file_add_with_addrs
1187 (bfd, name, symfile_flags, &sap,
1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1193 /* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
1195 See symbol_file_add_with_addrs's comments for details. */
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
1200 section_addr_info *addrs,
1201 objfile_flags flags, struct objfile *parent)
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1207 /* Process a symbol file, as either the main file or as a dynamically
1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 section_addr_info *addrs, objfile_flags flags)
1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1220 /* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 objfile_flags flags, CORE_ADDR reloff)
1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1242 objfile_rebase (objfile, reloff);
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1248 if ((add_flags & SYMFILE_NO_READ) == 0)
1249 set_initial_language ();
1253 symbol_file_clear (int from_tty)
1255 if ((have_full_symbols () || have_partial_symbols ())
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 objfile_name (symfile_objfile))
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1267 free_all_objfiles ();
1269 gdb_assert (symfile_objfile == NULL);
1271 printf_filtered (_("No symbol file now.\n"));
1274 /* See symfile.h. */
1276 int separate_debug_file_debug = 0;
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 struct objfile *parent_objfile)
1282 unsigned long file_crc;
1284 struct stat parent_stat, abfd_stat;
1285 int verified_as_different;
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291 the separate debug infos with the same basename can exist. */
1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1296 if (separate_debug_file_debug)
1298 printf_filtered (_(" Trying %s..."), name.c_str ());
1299 gdb_flush (gdb_stdout);
1302 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, unable to open.\n"));
1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
1316 meaningful st_dev.) Files accessed from gdbservers that do not
1317 support the vFile:fstat packet will also have st_ino set to zero.
1318 Do not indicate a duplicate library in either case. While there
1319 is no guarantee that a system that provides meaningful inode
1320 numbers will never set st_ino to zero, this is merely an
1321 optimization, so we do not need to worry about false negatives. */
1323 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1324 && abfd_stat.st_ino != 0
1325 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1327 if (abfd_stat.st_dev == parent_stat.st_dev
1328 && abfd_stat.st_ino == parent_stat.st_ino)
1330 if (separate_debug_file_debug)
1331 printf_filtered (_(" no, same file as the objfile.\n"));
1335 verified_as_different = 1;
1338 verified_as_different = 0;
1340 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, error computing CRC.\n"));
1350 if (crc != file_crc)
1352 unsigned long parent_crc;
1354 /* If the files could not be verified as different with
1355 bfd_stat then we need to calculate the parent's CRC
1356 to verify whether the files are different or not. */
1358 if (!verified_as_different)
1360 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1362 if (separate_debug_file_debug)
1363 printf_filtered (_(" no, error computing CRC.\n"));
1369 if (verified_as_different || parent_crc != file_crc)
1370 warning (_("the debug information found in \"%s\""
1371 " does not match \"%s\" (CRC mismatch).\n"),
1372 name.c_str (), objfile_name (parent_objfile));
1374 if (separate_debug_file_debug)
1375 printf_filtered (_(" no, CRC doesn't match.\n"));
1380 if (separate_debug_file_debug)
1381 printf_filtered (_(" yes!\n"));
1386 char *debug_file_directory = NULL;
1388 show_debug_file_directory (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1391 fprintf_filtered (file,
1392 _("The directory where separate debug "
1393 "symbols are searched for is \"%s\".\n"),
1397 #if ! defined (DEBUG_SUBDIRECTORY)
1398 #define DEBUG_SUBDIRECTORY ".debug"
1401 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402 where the original file resides (may not be the same as
1403 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1404 looking for. CANON_DIR is the "realpath" form of DIR.
1405 DIR must contain a trailing '/'.
1406 Returns the path of the file with separate debug info, or an empty
1410 find_separate_debug_file (const char *dir,
1411 const char *canon_dir,
1412 const char *debuglink,
1413 unsigned long crc32, struct objfile *objfile)
1415 if (separate_debug_file_debug)
1416 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 "%s\n"), objfile_name (objfile));
1419 /* First try in the same directory as the original file. */
1420 std::string debugfile = dir;
1421 debugfile += debuglink;
1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1426 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1428 debugfile += DEBUG_SUBDIRECTORY;
1430 debugfile += debuglink;
1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
1435 /* Then try in the global debugfile directories.
1437 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438 cause "/..." lookups. */
1440 bool target_prefix = startswith (dir, "target:");
1441 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1442 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443 = dirnames_to_char_ptr_vec (debug_file_directory);
1444 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1446 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1447 convert the drive letter into a one-letter directory, so that the
1448 file name resulting from splicing below will be valid.
1450 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1451 There are various remote-debugging scenarios where such a
1452 transformation of the drive letter might be required when GDB runs
1453 on a Posix host, see
1455 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1457 If some of those scenarions need to be supported, we will need to
1458 use a different condition for HAS_DRIVE_SPEC and a different macro
1459 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1461 if (HAS_DRIVE_SPEC (dir_notarget))
1463 drive = dir_notarget[0];
1464 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1467 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
1473 debugfile += dir_notarget;
1474 debugfile += debuglink;
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1479 const char *base_path = NULL;
1480 if (canon_dir != NULL)
1482 if (canon_sysroot.get () != NULL)
1483 base_path = child_path (canon_sysroot.get (), canon_dir);
1485 base_path = child_path (gdb_sysroot, canon_dir);
1487 if (base_path != NULL)
1489 /* If the file is in the sysroot, try using its base path in
1490 the global debugfile directory. */
1491 debugfile = target_prefix ? "target:" : "";
1492 debugfile += debugdir.get ();
1494 debugfile += base_path;
1496 debugfile += debuglink;
1498 if (separate_debug_file_exists (debugfile, crc32, objfile))
1501 /* If the file is in the sysroot, try using its base path in
1502 the sysroot's global debugfile directory. */
1503 debugfile = target_prefix ? "target:" : "";
1504 debugfile += gdb_sysroot;
1505 debugfile += debugdir.get ();
1507 debugfile += base_path;
1509 debugfile += debuglink;
1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
1517 return std::string ();
1520 /* Modify PATH to contain only "[/]directory/" part of PATH.
1521 If there were no directory separators in PATH, PATH will be empty
1522 string on return. */
1525 terminate_after_last_dir_separator (char *path)
1529 /* Strip off the final filename part, leaving the directory name,
1530 followed by a slash. The directory can be relative or absolute. */
1531 for (i = strlen(path) - 1; i >= 0; i--)
1532 if (IS_DIR_SEPARATOR (path[i]))
1535 /* If I is -1 then no directory is present there and DIR will be "". */
1539 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1540 Returns pathname, or an empty string. */
1543 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545 unsigned long crc32;
1547 gdb::unique_xmalloc_ptr<char> debuglink
1548 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1550 if (debuglink == NULL)
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return std::string ();
1557 std::string dir = objfile_name (objfile);
1558 terminate_after_last_dir_separator (&dir[0]);
1559 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1561 std::string debugfile
1562 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1563 debuglink.get (), crc32, objfile);
1565 if (debugfile.empty ())
1567 /* For PR gdb/9538, try again with realpath (if different from the
1572 if (lstat (objfile_name (objfile), &st_buf) == 0
1573 && S_ISLNK (st_buf.st_mode))
1575 gdb::unique_xmalloc_ptr<char> symlink_dir
1576 (lrealpath (objfile_name (objfile)));
1577 if (symlink_dir != NULL)
1579 terminate_after_last_dir_separator (symlink_dir.get ());
1580 if (dir != symlink_dir.get ())
1582 /* Different directory, so try using it. */
1583 debugfile = find_separate_debug_file (symlink_dir.get (),
1596 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1600 validate_readnow_readnever (objfile_flags flags)
1602 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1603 error (_("-readnow and -readnever cannot be used simultaneously"));
1606 /* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
1608 the command is rather bizarre:
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1617 3. The order of options matters, which is contrary to GNU
1618 conventions (because it is confusing and inconvenient). */
1621 symbol_file_command (const char *args, int from_tty)
1627 symbol_file_clear (from_tty);
1631 objfile_flags flags = OBJF_USERLOADED;
1632 symfile_add_flags add_flags = 0;
1634 bool stop_processing_options = false;
1635 CORE_ADDR offset = 0;
1640 add_flags |= SYMFILE_VERBOSE;
1642 gdb_argv built_argv (args);
1643 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1645 if (stop_processing_options || *arg != '-')
1650 error (_("Unrecognized argument \"%s\""), arg);
1652 else if (strcmp (arg, "-readnow") == 0)
1653 flags |= OBJF_READNOW;
1654 else if (strcmp (arg, "-readnever") == 0)
1655 flags |= OBJF_READNEVER;
1656 else if (strcmp (arg, "-o") == 0)
1658 arg = built_argv[++idx];
1660 error (_("Missing argument to -o"));
1662 offset = parse_and_eval_address (arg);
1664 else if (strcmp (arg, "--") == 0)
1665 stop_processing_options = true;
1667 error (_("Unrecognized argument \"%s\""), arg);
1671 error (_("no symbol file name was specified"));
1673 validate_readnow_readnever (flags);
1675 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1676 (Position Independent Executable) main symbol file will only be
1677 computed by the solib_create_inferior_hook below. Without it,
1678 breakpoint_re_set would fail to insert the breakpoints with the zero
1680 add_flags |= SYMFILE_DEFER_BP_RESET;
1682 symbol_file_add_main_1 (name, add_flags, flags, offset);
1684 solib_create_inferior_hook (from_tty);
1686 /* Now it's safe to re-add the breakpoints. */
1687 breakpoint_re_set ();
1691 /* Set the initial language.
1693 FIXME: A better solution would be to record the language in the
1694 psymtab when reading partial symbols, and then use it (if known) to
1695 set the language. This would be a win for formats that encode the
1696 language in an easily discoverable place, such as DWARF. For
1697 stabs, we can jump through hoops looking for specially named
1698 symbols or try to intuit the language from the specific type of
1699 stabs we find, but we can't do that until later when we read in
1703 set_initial_language (void)
1705 enum language lang = main_language ();
1707 if (lang == language_unknown)
1709 char *name = main_name ();
1710 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1713 lang = SYMBOL_LANGUAGE (sym);
1716 if (lang == language_unknown)
1718 /* Make C the default language */
1722 set_language (lang);
1723 expected_language = current_language; /* Don't warn the user. */
1726 /* Open the file specified by NAME and hand it off to BFD for
1727 preliminary analysis. Return a newly initialized bfd *, which
1728 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1729 absolute). In case of trouble, error() is called. */
1732 symfile_bfd_open (const char *name)
1736 gdb::unique_xmalloc_ptr<char> absolute_name;
1737 if (!is_target_filename (name))
1739 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1741 /* Look down path for it, allocate 2nd new malloc'd copy. */
1742 desc = openp (getenv ("PATH"),
1743 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1744 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1745 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1748 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1750 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1751 desc = openp (getenv ("PATH"),
1752 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1753 exename, O_RDONLY | O_BINARY, &absolute_name);
1757 perror_with_name (expanded_name.get ());
1759 name = absolute_name.get ();
1762 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1763 if (sym_bfd == NULL)
1764 error (_("`%s': can't open to read symbols: %s."), name,
1765 bfd_errmsg (bfd_get_error ()));
1767 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1768 bfd_set_cacheable (sym_bfd.get (), 1);
1770 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1771 error (_("`%s': can't read symbols: %s."), name,
1772 bfd_errmsg (bfd_get_error ()));
1777 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1778 the section was not found. */
1781 get_section_index (struct objfile *objfile, const char *section_name)
1783 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1791 /* Link SF into the global symtab_fns list.
1792 FLAVOUR is the file format that SF handles.
1793 Called on startup by the _initialize routine in each object file format
1794 reader, to register information about each format the reader is prepared
1798 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1800 symtab_fns.emplace_back (flavour, sf);
1803 /* Initialize OBJFILE to read symbols from its associated BFD. It
1804 either returns or calls error(). The result is an initialized
1805 struct sym_fns in the objfile structure, that contains cached
1806 information about the symbol file. */
1808 static const struct sym_fns *
1809 find_sym_fns (bfd *abfd)
1811 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1813 if (our_flavour == bfd_target_srec_flavour
1814 || our_flavour == bfd_target_ihex_flavour
1815 || our_flavour == bfd_target_tekhex_flavour)
1816 return NULL; /* No symbols. */
1818 for (const registered_sym_fns &rsf : symtab_fns)
1819 if (our_flavour == rsf.sym_flavour)
1822 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1823 bfd_get_target (abfd));
1827 /* This function runs the load command of our current target. */
1830 load_command (const char *arg, int from_tty)
1834 /* The user might be reloading because the binary has changed. Take
1835 this opportunity to check. */
1836 reopen_exec_file ();
1842 const char *parg, *prev;
1844 arg = get_exec_file (1);
1846 /* We may need to quote this string so buildargv can pull it
1849 while ((parg = strpbrk (parg, "\\\"'\t ")))
1851 temp.append (prev, parg - prev);
1853 temp.push_back ('\\');
1855 /* If we have not copied anything yet, then we didn't see a
1856 character to quote, and we can just leave ARG unchanged. */
1860 arg = temp.c_str ();
1864 target_load (arg, from_tty);
1866 /* After re-loading the executable, we don't really know which
1867 overlays are mapped any more. */
1868 overlay_cache_invalid = 1;
1871 /* This version of "load" should be usable for any target. Currently
1872 it is just used for remote targets, not inftarg.c or core files,
1873 on the theory that only in that case is it useful.
1875 Avoiding xmodem and the like seems like a win (a) because we don't have
1876 to worry about finding it, and (b) On VMS, fork() is very slow and so
1877 we don't want to run a subprocess. On the other hand, I'm not sure how
1878 performance compares. */
1880 static int validate_download = 0;
1882 /* Callback service function for generic_load (bfd_map_over_sections). */
1885 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1887 bfd_size_type *sum = (bfd_size_type *) data;
1889 *sum += bfd_get_section_size (asec);
1892 /* Opaque data for load_progress. */
1893 struct load_progress_data
1895 /* Cumulative data. */
1896 unsigned long write_count = 0;
1897 unsigned long data_count = 0;
1898 bfd_size_type total_size = 0;
1901 /* Opaque data for load_progress for a single section. */
1902 struct load_progress_section_data
1904 load_progress_section_data (load_progress_data *cumulative_,
1905 const char *section_name_, ULONGEST section_size_,
1906 CORE_ADDR lma_, gdb_byte *buffer_)
1907 : cumulative (cumulative_), section_name (section_name_),
1908 section_size (section_size_), lma (lma_), buffer (buffer_)
1911 struct load_progress_data *cumulative;
1913 /* Per-section data. */
1914 const char *section_name;
1915 ULONGEST section_sent = 0;
1916 ULONGEST section_size;
1921 /* Opaque data for load_section_callback. */
1922 struct load_section_data
1924 load_section_data (load_progress_data *progress_data_)
1925 : progress_data (progress_data_)
1928 ~load_section_data ()
1930 for (auto &&request : requests)
1932 xfree (request.data);
1933 delete ((load_progress_section_data *) request.baton);
1937 CORE_ADDR load_offset = 0;
1938 struct load_progress_data *progress_data;
1939 std::vector<struct memory_write_request> requests;
1942 /* Target write callback routine for progress reporting. */
1945 load_progress (ULONGEST bytes, void *untyped_arg)
1947 struct load_progress_section_data *args
1948 = (struct load_progress_section_data *) untyped_arg;
1949 struct load_progress_data *totals;
1952 /* Writing padding data. No easy way to get at the cumulative
1953 stats, so just ignore this. */
1956 totals = args->cumulative;
1958 if (bytes == 0 && args->section_sent == 0)
1960 /* The write is just starting. Let the user know we've started
1962 current_uiout->message ("Loading section %s, size %s lma %s\n",
1964 hex_string (args->section_size),
1965 paddress (target_gdbarch (), args->lma));
1969 if (validate_download)
1971 /* Broken memories and broken monitors manifest themselves here
1972 when bring new computers to life. This doubles already slow
1974 /* NOTE: cagney/1999-10-18: A more efficient implementation
1975 might add a verify_memory() method to the target vector and
1976 then use that. remote.c could implement that method using
1977 the ``qCRC'' packet. */
1978 gdb::byte_vector check (bytes);
1980 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1981 error (_("Download verify read failed at %s"),
1982 paddress (target_gdbarch (), args->lma));
1983 if (memcmp (args->buffer, check.data (), bytes) != 0)
1984 error (_("Download verify compare failed at %s"),
1985 paddress (target_gdbarch (), args->lma));
1987 totals->data_count += bytes;
1989 args->buffer += bytes;
1990 totals->write_count += 1;
1991 args->section_sent += bytes;
1992 if (check_quit_flag ()
1993 || (deprecated_ui_load_progress_hook != NULL
1994 && deprecated_ui_load_progress_hook (args->section_name,
1995 args->section_sent)))
1996 error (_("Canceled the download"));
1998 if (deprecated_show_load_progress != NULL)
1999 deprecated_show_load_progress (args->section_name,
2003 totals->total_size);
2006 /* Callback service function for generic_load (bfd_map_over_sections). */
2009 load_section_callback (bfd *abfd, asection *asec, void *data)
2011 struct load_section_data *args = (struct load_section_data *) data;
2012 bfd_size_type size = bfd_get_section_size (asec);
2013 const char *sect_name = bfd_get_section_name (abfd, asec);
2015 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2021 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
2022 ULONGEST end = begin + size;
2023 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2024 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2026 load_progress_section_data *section_data
2027 = new load_progress_section_data (args->progress_data, sect_name, size,
2030 args->requests.emplace_back (begin, end, buffer, section_data);
2033 static void print_transfer_performance (struct ui_file *stream,
2034 unsigned long data_count,
2035 unsigned long write_count,
2036 std::chrono::steady_clock::duration d);
2039 generic_load (const char *args, int from_tty)
2041 struct load_progress_data total_progress;
2042 struct load_section_data cbdata (&total_progress);
2043 struct ui_out *uiout = current_uiout;
2046 error_no_arg (_("file to load"));
2048 gdb_argv argv (args);
2050 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2052 if (argv[1] != NULL)
2056 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2058 /* If the last word was not a valid number then
2059 treat it as a file name with spaces in. */
2060 if (argv[1] == endptr)
2061 error (_("Invalid download offset:%s."), argv[1]);
2063 if (argv[2] != NULL)
2064 error (_("Too many parameters."));
2067 /* Open the file for loading. */
2068 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2069 if (loadfile_bfd == NULL)
2070 perror_with_name (filename.get ());
2072 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2074 error (_("\"%s\" is not an object file: %s"), filename.get (),
2075 bfd_errmsg (bfd_get_error ()));
2078 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2079 (void *) &total_progress.total_size);
2081 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2083 using namespace std::chrono;
2085 steady_clock::time_point start_time = steady_clock::now ();
2087 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2088 load_progress) != 0)
2089 error (_("Load failed"));
2091 steady_clock::time_point end_time = steady_clock::now ();
2093 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2094 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2095 uiout->text ("Start address ");
2096 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2097 uiout->text (", load size ");
2098 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2100 regcache_write_pc (get_current_regcache (), entry);
2102 /* Reset breakpoints, now that we have changed the load image. For
2103 instance, breakpoints may have been set (or reset, by
2104 post_create_inferior) while connected to the target but before we
2105 loaded the program. In that case, the prologue analyzer could
2106 have read instructions from the target to find the right
2107 breakpoint locations. Loading has changed the contents of that
2110 breakpoint_re_set ();
2112 print_transfer_performance (gdb_stdout, total_progress.data_count,
2113 total_progress.write_count,
2114 end_time - start_time);
2117 /* Report on STREAM the performance of a memory transfer operation,
2118 such as 'load'. DATA_COUNT is the number of bytes transferred.
2119 WRITE_COUNT is the number of separate write operations, or 0, if
2120 that information is not available. TIME is how long the operation
2124 print_transfer_performance (struct ui_file *stream,
2125 unsigned long data_count,
2126 unsigned long write_count,
2127 std::chrono::steady_clock::duration time)
2129 using namespace std::chrono;
2130 struct ui_out *uiout = current_uiout;
2132 milliseconds ms = duration_cast<milliseconds> (time);
2134 uiout->text ("Transfer rate: ");
2135 if (ms.count () > 0)
2137 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2139 if (uiout->is_mi_like_p ())
2141 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2142 uiout->text (" bits/sec");
2144 else if (rate < 1024)
2146 uiout->field_fmt ("transfer-rate", "%lu", rate);
2147 uiout->text (" bytes/sec");
2151 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2152 uiout->text (" KB/sec");
2157 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2158 uiout->text (" bits in <1 sec");
2160 if (write_count > 0)
2163 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2164 uiout->text (" bytes/write");
2166 uiout->text (".\n");
2169 /* Add an OFFSET to the start address of each section in OBJF, except
2170 sections that were specified in ADDRS. */
2173 set_objfile_default_section_offset (struct objfile *objf,
2174 const section_addr_info &addrs,
2177 /* Add OFFSET to all sections by default. */
2178 std::vector<struct section_offsets> offsets (objf->num_sections,
2181 /* Create sorted lists of all sections in ADDRS as well as all
2182 sections in OBJF. */
2184 std::vector<const struct other_sections *> addrs_sorted
2185 = addrs_section_sort (addrs);
2187 section_addr_info objf_addrs
2188 = build_section_addr_info_from_objfile (objf);
2189 std::vector<const struct other_sections *> objf_addrs_sorted
2190 = addrs_section_sort (objf_addrs);
2192 /* Walk the BFD section list, and if a matching section is found in
2193 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2196 Note that both lists may contain multiple sections with the same
2197 name, and then the sections from ADDRS are matched in BFD order
2198 (thanks to sectindex). */
2200 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2201 = addrs_sorted.begin ();
2202 for (const other_sections *objf_sect : objf_addrs_sorted)
2204 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2207 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2209 const struct other_sections *sect = *addrs_sorted_iter;
2210 const char *sect_name = addr_section_name (sect->name.c_str ());
2211 cmp = strcmp (sect_name, objf_name);
2213 ++addrs_sorted_iter;
2217 offsets[objf_sect->sectindex].offsets[0] = 0;
2220 /* Apply the new section offsets. */
2221 objfile_relocate (objf, offsets.data ());
2224 /* This function allows the addition of incrementally linked object files.
2225 It does not modify any state in the target, only in the debugger. */
2226 /* Note: ezannoni 2000-04-13 This function/command used to have a
2227 special case syntax for the rombug target (Rombug is the boot
2228 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2229 rombug case, the user doesn't need to supply a text address,
2230 instead a call to target_link() (in target.c) would supply the
2231 value to use. We are now discontinuing this type of ad hoc syntax. */
2234 add_symbol_file_command (const char *args, int from_tty)
2236 struct gdbarch *gdbarch = get_current_arch ();
2237 gdb::unique_xmalloc_ptr<char> filename;
2240 struct objfile *objf;
2241 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2242 symfile_add_flags add_flags = 0;
2245 add_flags |= SYMFILE_VERBOSE;
2253 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2254 bool stop_processing_options = false;
2255 CORE_ADDR offset = 0;
2260 error (_("add-symbol-file takes a file name and an address"));
2262 bool seen_addr = false;
2263 bool seen_offset = false;
2264 gdb_argv argv (args);
2266 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2268 if (stop_processing_options || *arg != '-')
2270 if (filename == NULL)
2272 /* First non-option argument is always the filename. */
2273 filename.reset (tilde_expand (arg));
2275 else if (!seen_addr)
2277 /* The second non-option argument is always the text
2278 address at which to load the program. */
2279 sect_opts[0].value = arg;
2283 error (_("Unrecognized argument \"%s\""), arg);
2285 else if (strcmp (arg, "-readnow") == 0)
2286 flags |= OBJF_READNOW;
2287 else if (strcmp (arg, "-readnever") == 0)
2288 flags |= OBJF_READNEVER;
2289 else if (strcmp (arg, "-s") == 0)
2291 if (argv[argcnt + 1] == NULL)
2292 error (_("Missing section name after \"-s\""));
2293 else if (argv[argcnt + 2] == NULL)
2294 error (_("Missing section address after \"-s\""));
2296 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2298 sect_opts.push_back (sect);
2301 else if (strcmp (arg, "-o") == 0)
2303 arg = argv[++argcnt];
2305 error (_("Missing argument to -o"));
2307 offset = parse_and_eval_address (arg);
2310 else if (strcmp (arg, "--") == 0)
2311 stop_processing_options = true;
2313 error (_("Unrecognized argument \"%s\""), arg);
2316 if (filename == NULL)
2317 error (_("You must provide a filename to be loaded."));
2319 validate_readnow_readnever (flags);
2321 /* Print the prompt for the query below. And save the arguments into
2322 a sect_addr_info structure to be passed around to other
2323 functions. We have to split this up into separate print
2324 statements because hex_string returns a local static
2327 printf_unfiltered (_("add symbol table from file \"%s\""),
2329 section_addr_info section_addrs;
2330 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2333 for (; it != sect_opts.end (); ++it)
2336 const char *val = it->value;
2337 const char *sec = it->name;
2339 if (section_addrs.empty ())
2340 printf_unfiltered (_(" at\n"));
2341 addr = parse_and_eval_address (val);
2343 /* Here we store the section offsets in the order they were
2344 entered on the command line. Every array element is
2345 assigned an ascending section index to preserve the above
2346 order over an unstable sorting algorithm. This dummy
2347 index is not used for any other purpose.
2349 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2350 printf_filtered ("\t%s_addr = %s\n", sec,
2351 paddress (gdbarch, addr));
2353 /* The object's sections are initialized when a
2354 call is made to build_objfile_section_table (objfile).
2355 This happens in reread_symbols.
2356 At this point, we don't know what file type this is,
2357 so we can't determine what section names are valid. */
2360 printf_unfiltered (_("%s offset by %s\n"),
2361 (section_addrs.empty ()
2362 ? _(" with all sections")
2363 : _("with other sections")),
2364 paddress (gdbarch, offset));
2365 else if (section_addrs.empty ())
2366 printf_unfiltered ("\n");
2368 if (from_tty && (!query ("%s", "")))
2369 error (_("Not confirmed."));
2371 objf = symbol_file_add (filename.get (), add_flags, §ion_addrs,
2375 set_objfile_default_section_offset (objf, section_addrs, offset);
2377 add_target_sections_of_objfile (objf);
2379 /* Getting new symbols may change our opinion about what is
2381 reinit_frame_cache ();
2385 /* This function removes a symbol file that was added via add-symbol-file. */
2388 remove_symbol_file_command (const char *args, int from_tty)
2390 struct objfile *objf = NULL;
2391 struct program_space *pspace = current_program_space;
2396 error (_("remove-symbol-file: no symbol file provided"));
2398 gdb_argv argv (args);
2400 if (strcmp (argv[0], "-a") == 0)
2402 /* Interpret the next argument as an address. */
2405 if (argv[1] == NULL)
2406 error (_("Missing address argument"));
2408 if (argv[2] != NULL)
2409 error (_("Junk after %s"), argv[1]);
2411 addr = parse_and_eval_address (argv[1]);
2413 for (objfile *objfile : current_program_space->objfiles ())
2415 if ((objfile->flags & OBJF_USERLOADED) != 0
2416 && (objfile->flags & OBJF_SHARED) != 0
2417 && objfile->pspace == pspace
2418 && is_addr_in_objfile (addr, objfile))
2425 else if (argv[0] != NULL)
2427 /* Interpret the current argument as a file name. */
2429 if (argv[1] != NULL)
2430 error (_("Junk after %s"), argv[0]);
2432 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2434 for (objfile *objfile : current_program_space->objfiles ())
2436 if ((objfile->flags & OBJF_USERLOADED) != 0
2437 && (objfile->flags & OBJF_SHARED) != 0
2438 && objfile->pspace == pspace
2439 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2448 error (_("No symbol file found"));
2451 && !query (_("Remove symbol table from file \"%s\"? "),
2452 objfile_name (objf)))
2453 error (_("Not confirmed."));
2456 clear_symtab_users (0);
2459 /* Re-read symbols if a symbol-file has changed. */
2462 reread_symbols (void)
2464 struct objfile *objfile;
2466 struct stat new_statbuf;
2468 std::vector<struct objfile *> new_objfiles;
2470 /* With the addition of shared libraries, this should be modified,
2471 the load time should be saved in the partial symbol tables, since
2472 different tables may come from different source files. FIXME.
2473 This routine should then walk down each partial symbol table
2474 and see if the symbol table that it originates from has been changed. */
2476 for (objfile = object_files; objfile; objfile = objfile->next)
2478 if (objfile->obfd == NULL)
2481 /* Separate debug objfiles are handled in the main objfile. */
2482 if (objfile->separate_debug_objfile_backlink)
2485 /* If this object is from an archive (what you usually create with
2486 `ar', often called a `static library' on most systems, though
2487 a `shared library' on AIX is also an archive), then you should
2488 stat on the archive name, not member name. */
2489 if (objfile->obfd->my_archive)
2490 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2492 res = stat (objfile_name (objfile), &new_statbuf);
2495 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2496 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2497 objfile_name (objfile));
2500 new_modtime = new_statbuf.st_mtime;
2501 if (new_modtime != objfile->mtime)
2503 struct section_offsets *offsets;
2506 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2507 objfile_name (objfile));
2509 /* There are various functions like symbol_file_add,
2510 symfile_bfd_open, syms_from_objfile, etc., which might
2511 appear to do what we want. But they have various other
2512 effects which we *don't* want. So we just do stuff
2513 ourselves. We don't worry about mapped files (for one thing,
2514 any mapped file will be out of date). */
2516 /* If we get an error, blow away this objfile (not sure if
2517 that is the correct response for things like shared
2519 std::unique_ptr<struct objfile> objfile_holder (objfile);
2521 /* We need to do this whenever any symbols go away. */
2522 clear_symtab_users_cleanup defer_clear_users (0);
2524 if (exec_bfd != NULL
2525 && filename_cmp (bfd_get_filename (objfile->obfd),
2526 bfd_get_filename (exec_bfd)) == 0)
2528 /* Reload EXEC_BFD without asking anything. */
2530 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2533 /* Keep the calls order approx. the same as in free_objfile. */
2535 /* Free the separate debug objfiles. It will be
2536 automatically recreated by sym_read. */
2537 free_objfile_separate_debug (objfile);
2539 /* Remove any references to this objfile in the global
2541 preserve_values (objfile);
2543 /* Nuke all the state that we will re-read. Much of the following
2544 code which sets things to NULL really is necessary to tell
2545 other parts of GDB that there is nothing currently there.
2547 Try to keep the freeing order compatible with free_objfile. */
2549 if (objfile->sf != NULL)
2551 (*objfile->sf->sym_finish) (objfile);
2554 clear_objfile_data (objfile);
2556 /* Clean up any state BFD has sitting around. */
2558 gdb_bfd_ref_ptr obfd (objfile->obfd);
2559 char *obfd_filename;
2561 obfd_filename = bfd_get_filename (objfile->obfd);
2562 /* Open the new BFD before freeing the old one, so that
2563 the filename remains live. */
2564 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2565 objfile->obfd = temp.release ();
2566 if (objfile->obfd == NULL)
2567 error (_("Can't open %s to read symbols."), obfd_filename);
2570 std::string original_name = objfile->original_name;
2572 /* bfd_openr sets cacheable to true, which is what we want. */
2573 if (!bfd_check_format (objfile->obfd, bfd_object))
2574 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2575 bfd_errmsg (bfd_get_error ()));
2577 /* Save the offsets, we will nuke them with the rest of the
2579 num_offsets = objfile->num_sections;
2580 offsets = ((struct section_offsets *)
2581 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2582 memcpy (offsets, objfile->section_offsets,
2583 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2585 objfile->reset_psymtabs ();
2587 /* NB: after this call to obstack_free, objfiles_changed
2588 will need to be called (see discussion below). */
2589 obstack_free (&objfile->objfile_obstack, 0);
2590 objfile->sections = NULL;
2591 objfile->compunit_symtabs = NULL;
2592 objfile->template_symbols = NULL;
2593 objfile->static_links = NULL;
2595 /* obstack_init also initializes the obstack so it is
2596 empty. We could use obstack_specify_allocation but
2597 gdb_obstack.h specifies the alloc/dealloc functions. */
2598 obstack_init (&objfile->objfile_obstack);
2600 /* set_objfile_per_bfd potentially allocates the per-bfd
2601 data on the objfile's obstack (if sharing data across
2602 multiple users is not possible), so it's important to
2603 do it *after* the obstack has been initialized. */
2604 set_objfile_per_bfd (objfile);
2606 objfile->original_name
2607 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2608 original_name.c_str (),
2609 original_name.size ());
2611 /* Reset the sym_fns pointer. The ELF reader can change it
2612 based on whether .gdb_index is present, and we need it to
2613 start over. PR symtab/15885 */
2614 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2616 build_objfile_section_table (objfile);
2617 terminate_minimal_symbol_table (objfile);
2619 /* We use the same section offsets as from last time. I'm not
2620 sure whether that is always correct for shared libraries. */
2621 objfile->section_offsets = (struct section_offsets *)
2622 obstack_alloc (&objfile->objfile_obstack,
2623 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2624 memcpy (objfile->section_offsets, offsets,
2625 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2626 objfile->num_sections = num_offsets;
2628 /* What the hell is sym_new_init for, anyway? The concept of
2629 distinguishing between the main file and additional files
2630 in this way seems rather dubious. */
2631 if (objfile == symfile_objfile)
2633 (*objfile->sf->sym_new_init) (objfile);
2636 (*objfile->sf->sym_init) (objfile);
2637 clear_complaints ();
2639 objfile->flags &= ~OBJF_PSYMTABS_READ;
2641 /* We are about to read new symbols and potentially also
2642 DWARF information. Some targets may want to pass addresses
2643 read from DWARF DIE's through an adjustment function before
2644 saving them, like MIPS, which may call into
2645 "find_pc_section". When called, that function will make
2646 use of per-objfile program space data.
2648 Since we discarded our section information above, we have
2649 dangling pointers in the per-objfile program space data
2650 structure. Force GDB to update the section mapping
2651 information by letting it know the objfile has changed,
2652 making the dangling pointers point to correct data
2655 objfiles_changed ();
2657 read_symbols (objfile, 0);
2659 if (!objfile_has_symbols (objfile))
2662 printf_filtered (_("(no debugging symbols found)\n"));
2666 /* We're done reading the symbol file; finish off complaints. */
2667 clear_complaints ();
2669 /* Getting new symbols may change our opinion about what is
2672 reinit_frame_cache ();
2674 /* Discard cleanups as symbol reading was successful. */
2675 objfile_holder.release ();
2676 defer_clear_users.release ();
2678 /* If the mtime has changed between the time we set new_modtime
2679 and now, we *want* this to be out of date, so don't call stat
2681 objfile->mtime = new_modtime;
2682 init_entry_point_info (objfile);
2684 new_objfiles.push_back (objfile);
2688 if (!new_objfiles.empty ())
2690 clear_symtab_users (0);
2692 /* clear_objfile_data for each objfile was called before freeing it and
2693 gdb::observers::new_objfile.notify (NULL) has been called by
2694 clear_symtab_users above. Notify the new files now. */
2695 for (auto iter : new_objfiles)
2696 gdb::observers::new_objfile.notify (iter);
2698 /* At least one objfile has changed, so we can consider that
2699 the executable we're debugging has changed too. */
2700 gdb::observers::executable_changed.notify ();
2705 struct filename_language
2707 filename_language (const std::string &ext_, enum language lang_)
2708 : ext (ext_), lang (lang_)
2715 static std::vector<filename_language> filename_language_table;
2717 /* See symfile.h. */
2720 add_filename_language (const char *ext, enum language lang)
2722 filename_language_table.emplace_back (ext, lang);
2725 static char *ext_args;
2727 show_ext_args (struct ui_file *file, int from_tty,
2728 struct cmd_list_element *c, const char *value)
2730 fprintf_filtered (file,
2731 _("Mapping between filename extension "
2732 "and source language is \"%s\".\n"),
2737 set_ext_lang_command (const char *args,
2738 int from_tty, struct cmd_list_element *e)
2740 char *cp = ext_args;
2743 /* First arg is filename extension, starting with '.' */
2745 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2747 /* Find end of first arg. */
2748 while (*cp && !isspace (*cp))
2752 error (_("'%s': two arguments required -- "
2753 "filename extension and language"),
2756 /* Null-terminate first arg. */
2759 /* Find beginning of second arg, which should be a source language. */
2760 cp = skip_spaces (cp);
2763 error (_("'%s': two arguments required -- "
2764 "filename extension and language"),
2767 /* Lookup the language from among those we know. */
2768 lang = language_enum (cp);
2770 auto it = filename_language_table.begin ();
2771 /* Now lookup the filename extension: do we already know it? */
2772 for (; it != filename_language_table.end (); it++)
2774 if (it->ext == ext_args)
2778 if (it == filename_language_table.end ())
2780 /* New file extension. */
2781 add_filename_language (ext_args, lang);
2785 /* Redefining a previously known filename extension. */
2788 /* query ("Really make files of type %s '%s'?", */
2789 /* ext_args, language_str (lang)); */
2796 info_ext_lang_command (const char *args, int from_tty)
2798 printf_filtered (_("Filename extensions and the languages they represent:"));
2799 printf_filtered ("\n\n");
2800 for (const filename_language &entry : filename_language_table)
2801 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2802 language_str (entry.lang));
2806 deduce_language_from_filename (const char *filename)
2810 if (filename != NULL)
2811 if ((cp = strrchr (filename, '.')) != NULL)
2813 for (const filename_language &entry : filename_language_table)
2814 if (entry.ext == cp)
2818 return language_unknown;
2821 /* Allocate and initialize a new symbol table.
2822 CUST is from the result of allocate_compunit_symtab. */
2825 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2827 struct objfile *objfile = cust->objfile;
2828 struct symtab *symtab
2829 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2832 = (const char *) bcache (filename, strlen (filename) + 1,
2833 objfile->per_bfd->filename_cache);
2834 symtab->fullname = NULL;
2835 symtab->language = deduce_language_from_filename (filename);
2837 /* This can be very verbose with lots of headers.
2838 Only print at higher debug levels. */
2839 if (symtab_create_debug >= 2)
2841 /* Be a bit clever with debugging messages, and don't print objfile
2842 every time, only when it changes. */
2843 static char *last_objfile_name = NULL;
2845 if (last_objfile_name == NULL
2846 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2848 xfree (last_objfile_name);
2849 last_objfile_name = xstrdup (objfile_name (objfile));
2850 fprintf_filtered (gdb_stdlog,
2851 "Creating one or more symtabs for objfile %s ...\n",
2854 fprintf_filtered (gdb_stdlog,
2855 "Created symtab %s for module %s.\n",
2856 host_address_to_string (symtab), filename);
2859 /* Add it to CUST's list of symtabs. */
2860 if (cust->filetabs == NULL)
2862 cust->filetabs = symtab;
2863 cust->last_filetab = symtab;
2867 cust->last_filetab->next = symtab;
2868 cust->last_filetab = symtab;
2871 /* Backlink to the containing compunit symtab. */
2872 symtab->compunit_symtab = cust;
2877 /* Allocate and initialize a new compunit.
2878 NAME is the name of the main source file, if there is one, or some
2879 descriptive text if there are no source files. */
2881 struct compunit_symtab *
2882 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2884 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2885 struct compunit_symtab);
2886 const char *saved_name;
2888 cu->objfile = objfile;
2890 /* The name we record here is only for display/debugging purposes.
2891 Just save the basename to avoid path issues (too long for display,
2892 relative vs absolute, etc.). */
2893 saved_name = lbasename (name);
2895 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2896 strlen (saved_name));
2898 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2900 if (symtab_create_debug)
2902 fprintf_filtered (gdb_stdlog,
2903 "Created compunit symtab %s for %s.\n",
2904 host_address_to_string (cu),
2911 /* Hook CU to the objfile it comes from. */
2914 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2916 cu->next = cu->objfile->compunit_symtabs;
2917 cu->objfile->compunit_symtabs = cu;
2921 /* Reset all data structures in gdb which may contain references to
2922 symbol table data. */
2925 clear_symtab_users (symfile_add_flags add_flags)
2927 /* Someday, we should do better than this, by only blowing away
2928 the things that really need to be blown. */
2930 /* Clear the "current" symtab first, because it is no longer valid.
2931 breakpoint_re_set may try to access the current symtab. */
2932 clear_current_source_symtab_and_line ();
2935 clear_last_displayed_sal ();
2936 clear_pc_function_cache ();
2937 gdb::observers::new_objfile.notify (NULL);
2939 /* Clear globals which might have pointed into a removed objfile.
2940 FIXME: It's not clear which of these are supposed to persist
2941 between expressions and which ought to be reset each time. */
2942 expression_context_block = NULL;
2943 innermost_block.reset ();
2945 /* Varobj may refer to old symbols, perform a cleanup. */
2946 varobj_invalidate ();
2948 /* Now that the various caches have been cleared, we can re_set
2949 our breakpoints without risking it using stale data. */
2950 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2951 breakpoint_re_set ();
2955 The following code implements an abstraction for debugging overlay sections.
2957 The target model is as follows:
2958 1) The gnu linker will permit multiple sections to be mapped into the
2959 same VMA, each with its own unique LMA (or load address).
2960 2) It is assumed that some runtime mechanism exists for mapping the
2961 sections, one by one, from the load address into the VMA address.
2962 3) This code provides a mechanism for gdb to keep track of which
2963 sections should be considered to be mapped from the VMA to the LMA.
2964 This information is used for symbol lookup, and memory read/write.
2965 For instance, if a section has been mapped then its contents
2966 should be read from the VMA, otherwise from the LMA.
2968 Two levels of debugger support for overlays are available. One is
2969 "manual", in which the debugger relies on the user to tell it which
2970 overlays are currently mapped. This level of support is
2971 implemented entirely in the core debugger, and the information about
2972 whether a section is mapped is kept in the objfile->obj_section table.
2974 The second level of support is "automatic", and is only available if
2975 the target-specific code provides functionality to read the target's
2976 overlay mapping table, and translate its contents for the debugger
2977 (by updating the mapped state information in the obj_section tables).
2979 The interface is as follows:
2981 overlay map <name> -- tell gdb to consider this section mapped
2982 overlay unmap <name> -- tell gdb to consider this section unmapped
2983 overlay list -- list the sections that GDB thinks are mapped
2984 overlay read-target -- get the target's state of what's mapped
2985 overlay off/manual/auto -- set overlay debugging state
2986 Functional interface:
2987 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2988 section, return that section.
2989 find_pc_overlay(pc): find any overlay section that contains
2990 the pc, either in its VMA or its LMA
2991 section_is_mapped(sect): true if overlay is marked as mapped
2992 section_is_overlay(sect): true if section's VMA != LMA
2993 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2994 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2995 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2996 overlay_mapped_address(...): map an address from section's LMA to VMA
2997 overlay_unmapped_address(...): map an address from section's VMA to LMA
2998 symbol_overlayed_address(...): Return a "current" address for symbol:
2999 either in VMA or LMA depending on whether
3000 the symbol's section is currently mapped. */
3002 /* Overlay debugging state: */
3004 enum overlay_debugging_state overlay_debugging = ovly_off;
3005 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3007 /* Function: section_is_overlay (SECTION)
3008 Returns true if SECTION has VMA not equal to LMA, ie.
3009 SECTION is loaded at an address different from where it will "run". */
3012 section_is_overlay (struct obj_section *section)
3014 if (overlay_debugging && section)
3016 asection *bfd_section = section->the_bfd_section;
3018 if (bfd_section_lma (abfd, bfd_section) != 0
3019 && bfd_section_lma (abfd, bfd_section)
3020 != bfd_section_vma (abfd, bfd_section))
3027 /* Function: overlay_invalidate_all (void)
3028 Invalidate the mapped state of all overlay sections (mark it as stale). */
3031 overlay_invalidate_all (void)
3033 struct obj_section *sect;
3035 for (objfile *objfile : current_program_space->objfiles ())
3036 ALL_OBJFILE_OSECTIONS (objfile, sect)
3037 if (section_is_overlay (sect))
3038 sect->ovly_mapped = -1;
3041 /* Function: section_is_mapped (SECTION)
3042 Returns true if section is an overlay, and is currently mapped.
3044 Access to the ovly_mapped flag is restricted to this function, so
3045 that we can do automatic update. If the global flag
3046 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3047 overlay_invalidate_all. If the mapped state of the particular
3048 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3051 section_is_mapped (struct obj_section *osect)
3053 struct gdbarch *gdbarch;
3055 if (osect == 0 || !section_is_overlay (osect))
3058 switch (overlay_debugging)
3062 return 0; /* overlay debugging off */
3063 case ovly_auto: /* overlay debugging automatic */
3064 /* Unles there is a gdbarch_overlay_update function,
3065 there's really nothing useful to do here (can't really go auto). */
3066 gdbarch = get_objfile_arch (osect->objfile);
3067 if (gdbarch_overlay_update_p (gdbarch))
3069 if (overlay_cache_invalid)
3071 overlay_invalidate_all ();
3072 overlay_cache_invalid = 0;
3074 if (osect->ovly_mapped == -1)
3075 gdbarch_overlay_update (gdbarch, osect);
3078 case ovly_on: /* overlay debugging manual */
3079 return osect->ovly_mapped == 1;
3083 /* Function: pc_in_unmapped_range
3084 If PC falls into the lma range of SECTION, return true, else false. */
3087 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3089 if (section_is_overlay (section))
3091 bfd *abfd = section->objfile->obfd;
3092 asection *bfd_section = section->the_bfd_section;
3094 /* We assume the LMA is relocated by the same offset as the VMA. */
3095 bfd_vma size = bfd_get_section_size (bfd_section);
3096 CORE_ADDR offset = obj_section_offset (section);
3098 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3099 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3106 /* Function: pc_in_mapped_range
3107 If PC falls into the vma range of SECTION, return true, else false. */
3110 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3112 if (section_is_overlay (section))
3114 if (obj_section_addr (section) <= pc
3115 && pc < obj_section_endaddr (section))
3122 /* Return true if the mapped ranges of sections A and B overlap, false
3126 sections_overlap (struct obj_section *a, struct obj_section *b)
3128 CORE_ADDR a_start = obj_section_addr (a);
3129 CORE_ADDR a_end = obj_section_endaddr (a);
3130 CORE_ADDR b_start = obj_section_addr (b);
3131 CORE_ADDR b_end = obj_section_endaddr (b);
3133 return (a_start < b_end && b_start < a_end);
3136 /* Function: overlay_unmapped_address (PC, SECTION)
3137 Returns the address corresponding to PC in the unmapped (load) range.
3138 May be the same as PC. */
3141 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3143 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3145 asection *bfd_section = section->the_bfd_section;
3147 return pc + bfd_section_lma (abfd, bfd_section)
3148 - bfd_section_vma (abfd, bfd_section);
3154 /* Function: overlay_mapped_address (PC, SECTION)
3155 Returns the address corresponding to PC in the mapped (runtime) range.
3156 May be the same as PC. */
3159 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3161 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3163 asection *bfd_section = section->the_bfd_section;
3165 return pc + bfd_section_vma (abfd, bfd_section)
3166 - bfd_section_lma (abfd, bfd_section);
3172 /* Function: symbol_overlayed_address
3173 Return one of two addresses (relative to the VMA or to the LMA),
3174 depending on whether the section is mapped or not. */
3177 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3179 if (overlay_debugging)
3181 /* If the symbol has no section, just return its regular address. */
3184 /* If the symbol's section is not an overlay, just return its
3186 if (!section_is_overlay (section))
3188 /* If the symbol's section is mapped, just return its address. */
3189 if (section_is_mapped (section))
3192 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3193 * then return its LOADED address rather than its vma address!!
3195 return overlay_unmapped_address (address, section);
3200 /* Function: find_pc_overlay (PC)
3201 Return the best-match overlay section for PC:
3202 If PC matches a mapped overlay section's VMA, return that section.
3203 Else if PC matches an unmapped section's VMA, return that section.
3204 Else if PC matches an unmapped section's LMA, return that section. */
3206 struct obj_section *
3207 find_pc_overlay (CORE_ADDR pc)
3209 struct obj_section *osect, *best_match = NULL;
3211 if (overlay_debugging)
3213 for (objfile *objfile : current_program_space->objfiles ())
3214 ALL_OBJFILE_OSECTIONS (objfile, osect)
3215 if (section_is_overlay (osect))
3217 if (pc_in_mapped_range (pc, osect))
3219 if (section_is_mapped (osect))
3224 else if (pc_in_unmapped_range (pc, osect))
3231 /* Function: find_pc_mapped_section (PC)
3232 If PC falls into the VMA address range of an overlay section that is
3233 currently marked as MAPPED, return that section. Else return NULL. */
3235 struct obj_section *
3236 find_pc_mapped_section (CORE_ADDR pc)
3238 struct obj_section *osect;
3240 if (overlay_debugging)
3242 for (objfile *objfile : current_program_space->objfiles ())
3243 ALL_OBJFILE_OSECTIONS (objfile, osect)
3244 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3251 /* Function: list_overlays_command
3252 Print a list of mapped sections and their PC ranges. */
3255 list_overlays_command (const char *args, int from_tty)
3258 struct obj_section *osect;
3260 if (overlay_debugging)
3262 for (objfile *objfile : current_program_space->objfiles ())
3263 ALL_OBJFILE_OSECTIONS (objfile, osect)
3264 if (section_is_mapped (osect))
3266 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3271 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3272 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3273 size = bfd_get_section_size (osect->the_bfd_section);
3274 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3276 printf_filtered ("Section %s, loaded at ", name);
3277 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3278 puts_filtered (" - ");
3279 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3280 printf_filtered (", mapped at ");
3281 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3282 puts_filtered (" - ");
3283 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3284 puts_filtered ("\n");
3290 printf_filtered (_("No sections are mapped.\n"));
3293 /* Function: map_overlay_command
3294 Mark the named section as mapped (ie. residing at its VMA address). */
3297 map_overlay_command (const char *args, int from_tty)
3299 struct obj_section *sec, *sec2;
3301 if (!overlay_debugging)
3302 error (_("Overlay debugging not enabled. Use "
3303 "either the 'overlay auto' or\n"
3304 "the 'overlay manual' command."));
3306 if (args == 0 || *args == 0)
3307 error (_("Argument required: name of an overlay section"));
3309 /* First, find a section matching the user supplied argument. */
3310 for (objfile *obj_file : current_program_space->objfiles ())
3311 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3312 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3315 /* Now, check to see if the section is an overlay. */
3316 if (!section_is_overlay (sec))
3317 continue; /* not an overlay section */
3319 /* Mark the overlay as "mapped". */
3320 sec->ovly_mapped = 1;
3322 /* Next, make a pass and unmap any sections that are
3323 overlapped by this new section: */
3324 for (objfile *objfile2 : current_program_space->objfiles ())
3325 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3326 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3330 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3331 bfd_section_name (obj_file->obfd,
3332 sec2->the_bfd_section));
3333 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3337 error (_("No overlay section called %s"), args);
3340 /* Function: unmap_overlay_command
3341 Mark the overlay section as unmapped
3342 (ie. resident in its LMA address range, rather than the VMA range). */
3345 unmap_overlay_command (const char *args, int from_tty)
3347 struct obj_section *sec = NULL;
3349 if (!overlay_debugging)
3350 error (_("Overlay debugging not enabled. "
3351 "Use either the 'overlay auto' or\n"
3352 "the 'overlay manual' command."));
3354 if (args == 0 || *args == 0)
3355 error (_("Argument required: name of an overlay section"));
3357 /* First, find a section matching the user supplied argument. */
3358 for (objfile *objfile : current_program_space->objfiles ())
3359 ALL_OBJFILE_OSECTIONS (objfile, sec)
3360 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3362 if (!sec->ovly_mapped)
3363 error (_("Section %s is not mapped"), args);
3364 sec->ovly_mapped = 0;
3367 error (_("No overlay section called %s"), args);
3370 /* Function: overlay_auto_command
3371 A utility command to turn on overlay debugging.
3372 Possibly this should be done via a set/show command. */
3375 overlay_auto_command (const char *args, int from_tty)
3377 overlay_debugging = ovly_auto;
3378 enable_overlay_breakpoints ();
3380 printf_unfiltered (_("Automatic overlay debugging enabled."));
3383 /* Function: overlay_manual_command
3384 A utility command to turn on overlay debugging.
3385 Possibly this should be done via a set/show command. */
3388 overlay_manual_command (const char *args, int from_tty)
3390 overlay_debugging = ovly_on;
3391 disable_overlay_breakpoints ();
3393 printf_unfiltered (_("Overlay debugging enabled."));
3396 /* Function: overlay_off_command
3397 A utility command to turn on overlay debugging.
3398 Possibly this should be done via a set/show command. */
3401 overlay_off_command (const char *args, int from_tty)
3403 overlay_debugging = ovly_off;
3404 disable_overlay_breakpoints ();
3406 printf_unfiltered (_("Overlay debugging disabled."));
3410 overlay_load_command (const char *args, int from_tty)
3412 struct gdbarch *gdbarch = get_current_arch ();
3414 if (gdbarch_overlay_update_p (gdbarch))
3415 gdbarch_overlay_update (gdbarch, NULL);
3417 error (_("This target does not know how to read its overlay state."));
3420 /* Function: overlay_command
3421 A place-holder for a mis-typed command. */
3423 /* Command list chain containing all defined "overlay" subcommands. */
3424 static struct cmd_list_element *overlaylist;
3427 overlay_command (const char *args, int from_tty)
3430 ("\"overlay\" must be followed by the name of an overlay command.\n");
3431 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3434 /* Target Overlays for the "Simplest" overlay manager:
3436 This is GDB's default target overlay layer. It works with the
3437 minimal overlay manager supplied as an example by Cygnus. The
3438 entry point is via a function pointer "gdbarch_overlay_update",
3439 so targets that use a different runtime overlay manager can
3440 substitute their own overlay_update function and take over the
3443 The overlay_update function pokes around in the target's data structures
3444 to see what overlays are mapped, and updates GDB's overlay mapping with
3447 In this simple implementation, the target data structures are as follows:
3448 unsigned _novlys; /# number of overlay sections #/
3449 unsigned _ovly_table[_novlys][4] = {
3450 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3451 {..., ..., ..., ...},
3453 unsigned _novly_regions; /# number of overlay regions #/
3454 unsigned _ovly_region_table[_novly_regions][3] = {
3455 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3458 These functions will attempt to update GDB's mappedness state in the
3459 symbol section table, based on the target's mappedness state.
3461 To do this, we keep a cached copy of the target's _ovly_table, and
3462 attempt to detect when the cached copy is invalidated. The main
3463 entry point is "simple_overlay_update(SECT), which looks up SECT in
3464 the cached table and re-reads only the entry for that section from
3465 the target (whenever possible). */
3467 /* Cached, dynamically allocated copies of the target data structures: */
3468 static unsigned (*cache_ovly_table)[4] = 0;
3469 static unsigned cache_novlys = 0;
3470 static CORE_ADDR cache_ovly_table_base = 0;
3473 VMA, OSIZE, LMA, MAPPED
3476 /* Throw away the cached copy of _ovly_table. */
3479 simple_free_overlay_table (void)
3481 if (cache_ovly_table)
3482 xfree (cache_ovly_table);
3484 cache_ovly_table = NULL;
3485 cache_ovly_table_base = 0;
3488 /* Read an array of ints of size SIZE from the target into a local buffer.
3489 Convert to host order. int LEN is number of ints. */
3492 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3493 int len, int size, enum bfd_endian byte_order)
3495 /* FIXME (alloca): Not safe if array is very large. */
3496 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3499 read_memory (memaddr, buf, len * size);
3500 for (i = 0; i < len; i++)
3501 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3504 /* Find and grab a copy of the target _ovly_table
3505 (and _novlys, which is needed for the table's size). */
3508 simple_read_overlay_table (void)
3510 struct bound_minimal_symbol novlys_msym;
3511 struct bound_minimal_symbol ovly_table_msym;
3512 struct gdbarch *gdbarch;
3514 enum bfd_endian byte_order;
3516 simple_free_overlay_table ();
3517 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3518 if (! novlys_msym.minsym)
3520 error (_("Error reading inferior's overlay table: "
3521 "couldn't find `_novlys' variable\n"
3522 "in inferior. Use `overlay manual' mode."));
3526 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3527 if (! ovly_table_msym.minsym)
3529 error (_("Error reading inferior's overlay table: couldn't find "
3530 "`_ovly_table' array\n"
3531 "in inferior. Use `overlay manual' mode."));
3535 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3536 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3537 byte_order = gdbarch_byte_order (gdbarch);
3539 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3542 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3543 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3544 read_target_long_array (cache_ovly_table_base,
3545 (unsigned int *) cache_ovly_table,
3546 cache_novlys * 4, word_size, byte_order);
3548 return 1; /* SUCCESS */
3551 /* Function: simple_overlay_update_1
3552 A helper function for simple_overlay_update. Assuming a cached copy
3553 of _ovly_table exists, look through it to find an entry whose vma,
3554 lma and size match those of OSECT. Re-read the entry and make sure
3555 it still matches OSECT (else the table may no longer be valid).
3556 Set OSECT's mapped state to match the entry. Return: 1 for
3557 success, 0 for failure. */
3560 simple_overlay_update_1 (struct obj_section *osect)
3563 asection *bsect = osect->the_bfd_section;
3564 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3565 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3566 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3568 for (i = 0; i < cache_novlys; i++)
3569 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3570 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3572 read_target_long_array (cache_ovly_table_base + i * word_size,
3573 (unsigned int *) cache_ovly_table[i],
3574 4, word_size, byte_order);
3575 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3576 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3578 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3581 else /* Warning! Warning! Target's ovly table has changed! */
3587 /* Function: simple_overlay_update
3588 If OSECT is NULL, then update all sections' mapped state
3589 (after re-reading the entire target _ovly_table).
3590 If OSECT is non-NULL, then try to find a matching entry in the
3591 cached ovly_table and update only OSECT's mapped state.
3592 If a cached entry can't be found or the cache isn't valid, then
3593 re-read the entire cache, and go ahead and update all sections. */
3596 simple_overlay_update (struct obj_section *osect)
3598 /* Were we given an osect to look up? NULL means do all of them. */
3600 /* Have we got a cached copy of the target's overlay table? */
3601 if (cache_ovly_table != NULL)
3603 /* Does its cached location match what's currently in the
3605 struct bound_minimal_symbol minsym
3606 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3608 if (minsym.minsym == NULL)
3609 error (_("Error reading inferior's overlay table: couldn't "
3610 "find `_ovly_table' array\n"
3611 "in inferior. Use `overlay manual' mode."));
3613 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3614 /* Then go ahead and try to look up this single section in
3616 if (simple_overlay_update_1 (osect))
3617 /* Found it! We're done. */
3621 /* Cached table no good: need to read the entire table anew.
3622 Or else we want all the sections, in which case it's actually
3623 more efficient to read the whole table in one block anyway. */
3625 if (! simple_read_overlay_table ())
3628 /* Now may as well update all sections, even if only one was requested. */
3629 for (objfile *objfile : current_program_space->objfiles ())
3630 ALL_OBJFILE_OSECTIONS (objfile, osect)
3631 if (section_is_overlay (osect))
3634 asection *bsect = osect->the_bfd_section;
3636 for (i = 0; i < cache_novlys; i++)
3637 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3638 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3639 { /* obj_section matches i'th entry in ovly_table. */
3640 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3641 break; /* finished with inner for loop: break out. */
3646 /* Set the output sections and output offsets for section SECTP in
3647 ABFD. The relocation code in BFD will read these offsets, so we
3648 need to be sure they're initialized. We map each section to itself,
3649 with no offset; this means that SECTP->vma will be honored. */
3652 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3654 sectp->output_section = sectp;
3655 sectp->output_offset = 0;
3658 /* Default implementation for sym_relocate. */
3661 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3664 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3666 bfd *abfd = sectp->owner;
3668 /* We're only interested in sections with relocation
3670 if ((sectp->flags & SEC_RELOC) == 0)
3673 /* We will handle section offsets properly elsewhere, so relocate as if
3674 all sections begin at 0. */
3675 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3677 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3680 /* Relocate the contents of a debug section SECTP in ABFD. The
3681 contents are stored in BUF if it is non-NULL, or returned in a
3682 malloc'd buffer otherwise.
3684 For some platforms and debug info formats, shared libraries contain
3685 relocations against the debug sections (particularly for DWARF-2;
3686 one affected platform is PowerPC GNU/Linux, although it depends on
3687 the version of the linker in use). Also, ELF object files naturally
3688 have unresolved relocations for their debug sections. We need to apply
3689 the relocations in order to get the locations of symbols correct.
3690 Another example that may require relocation processing, is the
3691 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3695 symfile_relocate_debug_section (struct objfile *objfile,
3696 asection *sectp, bfd_byte *buf)
3698 gdb_assert (objfile->sf->sym_relocate);
3700 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3703 struct symfile_segment_data *
3704 get_symfile_segment_data (bfd *abfd)
3706 const struct sym_fns *sf = find_sym_fns (abfd);
3711 return sf->sym_segments (abfd);
3715 free_symfile_segment_data (struct symfile_segment_data *data)
3717 xfree (data->segment_bases);
3718 xfree (data->segment_sizes);
3719 xfree (data->segment_info);
3724 - DATA, containing segment addresses from the object file ABFD, and
3725 the mapping from ABFD's sections onto the segments that own them,
3727 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3728 segment addresses reported by the target,
3729 store the appropriate offsets for each section in OFFSETS.
3731 If there are fewer entries in SEGMENT_BASES than there are segments
3732 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3734 If there are more entries, then ignore the extra. The target may
3735 not be able to distinguish between an empty data segment and a
3736 missing data segment; a missing text segment is less plausible. */
3739 symfile_map_offsets_to_segments (bfd *abfd,
3740 const struct symfile_segment_data *data,
3741 struct section_offsets *offsets,
3742 int num_segment_bases,
3743 const CORE_ADDR *segment_bases)
3748 /* It doesn't make sense to call this function unless you have some
3749 segment base addresses. */
3750 gdb_assert (num_segment_bases > 0);
3752 /* If we do not have segment mappings for the object file, we
3753 can not relocate it by segments. */
3754 gdb_assert (data != NULL);
3755 gdb_assert (data->num_segments > 0);
3757 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3759 int which = data->segment_info[i];
3761 gdb_assert (0 <= which && which <= data->num_segments);
3763 /* Don't bother computing offsets for sections that aren't
3764 loaded as part of any segment. */
3768 /* Use the last SEGMENT_BASES entry as the address of any extra
3769 segments mentioned in DATA->segment_info. */
3770 if (which > num_segment_bases)
3771 which = num_segment_bases;
3773 offsets->offsets[i] = (segment_bases[which - 1]
3774 - data->segment_bases[which - 1]);
3781 symfile_find_segment_sections (struct objfile *objfile)
3783 bfd *abfd = objfile->obfd;
3786 struct symfile_segment_data *data;
3788 data = get_symfile_segment_data (objfile->obfd);
3792 if (data->num_segments != 1 && data->num_segments != 2)
3794 free_symfile_segment_data (data);
3798 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3800 int which = data->segment_info[i];
3804 if (objfile->sect_index_text == -1)
3805 objfile->sect_index_text = sect->index;
3807 if (objfile->sect_index_rodata == -1)
3808 objfile->sect_index_rodata = sect->index;
3810 else if (which == 2)
3812 if (objfile->sect_index_data == -1)
3813 objfile->sect_index_data = sect->index;
3815 if (objfile->sect_index_bss == -1)
3816 objfile->sect_index_bss = sect->index;
3820 free_symfile_segment_data (data);
3823 /* Listen for free_objfile events. */
3826 symfile_free_objfile (struct objfile *objfile)
3828 /* Remove the target sections owned by this objfile. */
3829 if (objfile != NULL)
3830 remove_target_sections ((void *) objfile);
3833 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3834 Expand all symtabs that match the specified criteria.
3835 See quick_symbol_functions.expand_symtabs_matching for details. */
3838 expand_symtabs_matching
3839 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3840 const lookup_name_info &lookup_name,
3841 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3842 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3843 enum search_domain kind)
3845 for (objfile *objfile : current_program_space->objfiles ())
3848 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3851 expansion_notify, kind);
3855 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3856 Map function FUN over every file.
3857 See quick_symbol_functions.map_symbol_filenames for details. */
3860 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3863 for (objfile *objfile : current_program_space->objfiles ())
3866 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3873 namespace selftests {
3874 namespace filename_language {
3876 static void test_filename_language ()
3878 /* This test messes up the filename_language_table global. */
3879 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3881 /* Test deducing an unknown extension. */
3882 language lang = deduce_language_from_filename ("myfile.blah");
3883 SELF_CHECK (lang == language_unknown);
3885 /* Test deducing a known extension. */
3886 lang = deduce_language_from_filename ("myfile.c");
3887 SELF_CHECK (lang == language_c);
3889 /* Test adding a new extension using the internal API. */
3890 add_filename_language (".blah", language_pascal);
3891 lang = deduce_language_from_filename ("myfile.blah");
3892 SELF_CHECK (lang == language_pascal);
3896 test_set_ext_lang_command ()
3898 /* This test messes up the filename_language_table global. */
3899 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3901 /* Confirm that the .hello extension is not known. */
3902 language lang = deduce_language_from_filename ("cake.hello");
3903 SELF_CHECK (lang == language_unknown);
3905 /* Test adding a new extension using the CLI command. */
3906 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3907 ext_args = args_holder.get ();
3908 set_ext_lang_command (NULL, 1, NULL);
3910 lang = deduce_language_from_filename ("cake.hello");
3911 SELF_CHECK (lang == language_rust);
3913 /* Test overriding an existing extension using the CLI command. */
3914 int size_before = filename_language_table.size ();
3915 args_holder.reset (xstrdup (".hello pascal"));
3916 ext_args = args_holder.get ();
3917 set_ext_lang_command (NULL, 1, NULL);
3918 int size_after = filename_language_table.size ();
3920 lang = deduce_language_from_filename ("cake.hello");
3921 SELF_CHECK (lang == language_pascal);
3922 SELF_CHECK (size_before == size_after);
3925 } /* namespace filename_language */
3926 } /* namespace selftests */
3928 #endif /* GDB_SELF_TEST */
3931 _initialize_symfile (void)
3933 struct cmd_list_element *c;
3935 gdb::observers::free_objfile.attach (symfile_free_objfile);
3937 #define READNOW_READNEVER_HELP \
3938 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3939 immediately. This makes the command slower, but may make future operations\n\
3941 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3942 symbolic debug information."
3944 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3945 Load symbol table from executable file FILE.\n\
3946 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3947 OFF is an optional offset which is added to each section address.\n\
3948 The `file' command can also load symbol tables, as well as setting the file\n\
3949 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3950 set_cmd_completer (c, filename_completer);
3952 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3953 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3954 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3955 [-s SECT-NAME SECT-ADDR]...\n\
3956 ADDR is the starting address of the file's text.\n\
3957 Each '-s' argument provides a section name and address, and\n\
3958 should be specified if the data and bss segments are not contiguous\n\
3959 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3960 OFF is an optional offset which is added to the default load addresses\n\
3961 of all sections for which no other address was specified.\n"
3962 READNOW_READNEVER_HELP),
3964 set_cmd_completer (c, filename_completer);
3966 c = add_cmd ("remove-symbol-file", class_files,
3967 remove_symbol_file_command, _("\
3968 Remove a symbol file added via the add-symbol-file command.\n\
3969 Usage: remove-symbol-file FILENAME\n\
3970 remove-symbol-file -a ADDRESS\n\
3971 The file to remove can be identified by its filename or by an address\n\
3972 that lies within the boundaries of this symbol file in memory."),
3975 c = add_cmd ("load", class_files, load_command, _("\
3976 Dynamically load FILE into the running program, and record its symbols\n\
3977 for access from GDB.\n\
3978 Usage: load [FILE] [OFFSET]\n\
3979 An optional load OFFSET may also be given as a literal address.\n\
3980 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3981 on its own."), &cmdlist);
3982 set_cmd_completer (c, filename_completer);
3984 add_prefix_cmd ("overlay", class_support, overlay_command,
3985 _("Commands for debugging overlays."), &overlaylist,
3986 "overlay ", 0, &cmdlist);
3988 add_com_alias ("ovly", "overlay", class_alias, 1);
3989 add_com_alias ("ov", "overlay", class_alias, 1);
3991 add_cmd ("map-overlay", class_support, map_overlay_command,
3992 _("Assert that an overlay section is mapped."), &overlaylist);
3994 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3995 _("Assert that an overlay section is unmapped."), &overlaylist);
3997 add_cmd ("list-overlays", class_support, list_overlays_command,
3998 _("List mappings of overlay sections."), &overlaylist);
4000 add_cmd ("manual", class_support, overlay_manual_command,
4001 _("Enable overlay debugging."), &overlaylist);
4002 add_cmd ("off", class_support, overlay_off_command,
4003 _("Disable overlay debugging."), &overlaylist);
4004 add_cmd ("auto", class_support, overlay_auto_command,
4005 _("Enable automatic overlay debugging."), &overlaylist);
4006 add_cmd ("load-target", class_support, overlay_load_command,
4007 _("Read the overlay mapping state from the target."), &overlaylist);
4009 /* Filename extension to source language lookup table: */
4010 add_setshow_string_noescape_cmd ("extension-language", class_files,
4012 Set mapping between filename extension and source language."), _("\
4013 Show mapping between filename extension and source language."), _("\
4014 Usage: set extension-language .foo bar"),
4015 set_ext_lang_command,
4017 &setlist, &showlist);
4019 add_info ("extensions", info_ext_lang_command,
4020 _("All filename extensions associated with a source language."));
4022 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4023 &debug_file_directory, _("\
4024 Set the directories where separate debug symbols are searched for."), _("\
4025 Show the directories where separate debug symbols are searched for."), _("\
4026 Separate debug symbols are first searched for in the same\n\
4027 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4028 and lastly at the path of the directory of the binary with\n\
4029 each global debug-file-directory component prepended."),
4031 show_debug_file_directory,
4032 &setlist, &showlist);
4034 add_setshow_enum_cmd ("symbol-loading", no_class,
4035 print_symbol_loading_enums, &print_symbol_loading,
4037 Set printing of symbol loading messages."), _("\
4038 Show printing of symbol loading messages."), _("\
4039 off == turn all messages off\n\
4040 brief == print messages for the executable,\n\
4041 and brief messages for shared libraries\n\
4042 full == print messages for the executable,\n\
4043 and messages for each shared library."),
4046 &setprintlist, &showprintlist);
4048 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4049 &separate_debug_file_debug, _("\
4050 Set printing of separate debug info file search debug."), _("\
4051 Show printing of separate debug info file search debug."), _("\
4052 When on, GDB prints the searched locations while looking for separate debug \
4053 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4056 selftests::register_test
4057 ("filename_language", selftests::filename_language::test_filename_language);
4058 selftests::register_test
4059 ("set_ext_lang_command",
4060 selftests::filename_language::test_set_ext_lang_command);