1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
35 #include "breakpoint.h"
37 #include "complaints.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
49 #include "observable.h"
51 #include "parser-defs.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
65 #include <sys/types.h>
74 int (*deprecated_ui_load_progress_hook) (const char *section,
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
91 /* Functions this file defines. */
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
96 static const struct sym_fns *find_sym_fns (bfd *);
98 static void overlay_invalidate_all (void);
100 static void simple_free_overlay_table (void);
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
105 static int simple_read_overlay_table (void);
107 static int simple_overlay_update_1 (struct obj_section *);
109 static void symfile_find_segment_sections (struct objfile *objfile);
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
115 struct registered_sym_fns
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
128 static std::vector<registered_sym_fns> symtab_fns;
130 /* Values for "set print symbol-loading". */
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
142 static const char *print_symbol_loading = print_symbol_loading_full;
144 /* If non-zero, shared library symbols will be added automatically
145 when the inferior is created, new libraries are loaded, or when
146 attaching to the inferior. This is almost always what users will
147 want to have happen; but for very large programs, the startup time
148 will be excessive, and so if this is a problem, the user can clear
149 this flag and then add the shared library symbols as needed. Note
150 that there is a potential for confusion, since if the shared
151 library symbols are not loaded, commands like "info fun" will *not*
152 report all the functions that are actually present. */
154 int auto_solib_add = 1;
157 /* Return non-zero if symbol-loading messages should be printed.
158 FROM_TTY is the standard from_tty argument to gdb commands.
159 If EXEC is non-zero the messages are for the executable.
160 Otherwise, messages are for shared libraries.
161 If FULL is non-zero then the caller is printing a detailed message.
162 E.g., the message includes the shared library name.
163 Otherwise, the caller is printing a brief "summary" message. */
166 print_symbol_loading_p (int from_tty, int exec, int full)
168 if (!from_tty && !info_verbose)
173 /* We don't check FULL for executables, there are few such
174 messages, therefore brief == full. */
175 return print_symbol_loading != print_symbol_loading_off;
178 return print_symbol_loading == print_symbol_loading_full;
179 return print_symbol_loading == print_symbol_loading_brief;
182 /* True if we are reading a symbol table. */
184 int currently_reading_symtab = 0;
186 /* Increment currently_reading_symtab and return a cleanup that can be
187 used to decrement it. */
189 scoped_restore_tmpl<int>
190 increment_reading_symtab (void)
192 gdb_assert (currently_reading_symtab >= 0);
193 return make_scoped_restore (¤tly_reading_symtab,
194 currently_reading_symtab + 1);
197 /* Remember the lowest-addressed loadable section we've seen.
198 This function is called via bfd_map_over_sections.
200 In case of equal vmas, the section with the largest size becomes the
201 lowest-addressed loadable section.
203 If the vmas and sizes are equal, the last section is considered the
204 lowest-addressed loadable section. */
207 find_lowest_section (bfd *abfd, asection *sect, void *obj)
209 asection **lowest = (asection **) obj;
211 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
214 *lowest = sect; /* First loadable section */
215 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216 *lowest = sect; /* A lower loadable section */
217 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 && (bfd_section_size (abfd, (*lowest))
219 <= bfd_section_size (abfd, sect)))
223 /* Build (allocate and populate) a section_addr_info struct from
224 an existing section table. */
227 build_section_addr_info_from_section_table (const struct target_section *start,
228 const struct target_section *end)
230 const struct target_section *stp;
232 section_addr_info sap;
234 for (stp = start; stp != end; stp++)
236 struct bfd_section *asect = stp->the_bfd_section;
237 bfd *abfd = asect->owner;
239 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
240 && sap.size () < end - start)
241 sap.emplace_back (stp->addr,
242 bfd_section_name (abfd, asect),
243 gdb_bfd_section_index (abfd, asect));
249 /* Create a section_addr_info from section offsets in ABFD. */
251 static section_addr_info
252 build_section_addr_info_from_bfd (bfd *abfd)
254 struct bfd_section *sec;
256 section_addr_info sap;
257 for (sec = abfd->sections; sec != NULL; sec = sec->next)
258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259 sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 bfd_get_section_name (abfd, sec),
261 gdb_bfd_section_index (abfd, sec));
266 /* Create a section_addr_info from section offsets in OBJFILE. */
269 build_section_addr_info_from_objfile (const struct objfile *objfile)
273 /* Before reread_symbols gets rewritten it is not safe to call:
274 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
276 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277 for (i = 0; i < sap.size (); i++)
279 int sectindex = sap[i].sectindex;
281 sap[i].addr += objfile->section_offsets->offsets[sectindex];
286 /* Initialize OBJFILE's sect_index_* members. */
289 init_objfile_sect_indices (struct objfile *objfile)
294 sect = bfd_get_section_by_name (objfile->obfd, ".text");
296 objfile->sect_index_text = sect->index;
298 sect = bfd_get_section_by_name (objfile->obfd, ".data");
300 objfile->sect_index_data = sect->index;
302 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
304 objfile->sect_index_bss = sect->index;
306 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
308 objfile->sect_index_rodata = sect->index;
310 /* This is where things get really weird... We MUST have valid
311 indices for the various sect_index_* members or gdb will abort.
312 So if for example, there is no ".text" section, we have to
313 accomodate that. First, check for a file with the standard
314 one or two segments. */
316 symfile_find_segment_sections (objfile);
318 /* Except when explicitly adding symbol files at some address,
319 section_offsets contains nothing but zeros, so it doesn't matter
320 which slot in section_offsets the individual sect_index_* members
321 index into. So if they are all zero, it is safe to just point
322 all the currently uninitialized indices to the first slot. But
323 beware: if this is the main executable, it may be relocated
324 later, e.g. by the remote qOffsets packet, and then this will
325 be wrong! That's why we try segments first. */
327 for (i = 0; i < objfile->num_sections; i++)
329 if (ANOFFSET (objfile->section_offsets, i) != 0)
334 if (i == objfile->num_sections)
336 if (objfile->sect_index_text == -1)
337 objfile->sect_index_text = 0;
338 if (objfile->sect_index_data == -1)
339 objfile->sect_index_data = 0;
340 if (objfile->sect_index_bss == -1)
341 objfile->sect_index_bss = 0;
342 if (objfile->sect_index_rodata == -1)
343 objfile->sect_index_rodata = 0;
347 /* The arguments to place_section. */
349 struct place_section_arg
351 struct section_offsets *offsets;
355 /* Find a unique offset to use for loadable section SECT if
356 the user did not provide an offset. */
359 place_section (bfd *abfd, asection *sect, void *obj)
361 struct place_section_arg *arg = (struct place_section_arg *) obj;
362 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
364 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
366 /* We are only interested in allocated sections. */
367 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
370 /* If the user specified an offset, honor it. */
371 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
374 /* Otherwise, let's try to find a place for the section. */
375 start_addr = (arg->lowest + align - 1) & -align;
382 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
384 int indx = cur_sec->index;
386 /* We don't need to compare against ourself. */
390 /* We can only conflict with allocated sections. */
391 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
394 /* If the section offset is 0, either the section has not been placed
395 yet, or it was the lowest section placed (in which case LOWEST
396 will be past its end). */
397 if (offsets[indx] == 0)
400 /* If this section would overlap us, then we must move up. */
401 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
404 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 start_addr = (start_addr + align - 1) & -align;
410 /* Otherwise, we appear to be OK. So far. */
415 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
416 arg->lowest = start_addr + bfd_get_section_size (sect);
419 /* Store section_addr_info as prepared (made relative and with SECTINDEX
420 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
424 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
426 const section_addr_info &addrs)
430 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
432 /* Now calculate offsets for section that were specified by the caller. */
433 for (i = 0; i < addrs.size (); i++)
435 const struct other_sections *osp;
438 if (osp->sectindex == -1)
441 /* Record all sections in offsets. */
442 /* The section_offsets in the objfile are here filled in using
444 section_offsets->offsets[osp->sectindex] = osp->addr;
448 /* Transform section name S for a name comparison. prelink can split section
449 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
450 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
451 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452 (`.sbss') section has invalid (increased) virtual address. */
455 addr_section_name (const char *s)
457 if (strcmp (s, ".dynbss") == 0)
459 if (strcmp (s, ".sdynbss") == 0)
465 /* std::sort comparator for addrs_section_sort. Sort entries in
466 ascending order by their (name, sectindex) pair. sectindex makes
467 the sort by name stable. */
470 addrs_section_compar (const struct other_sections *a,
471 const struct other_sections *b)
475 retval = strcmp (addr_section_name (a->name.c_str ()),
476 addr_section_name (b->name.c_str ()));
480 return a->sectindex < b->sectindex;
483 /* Provide sorted array of pointers to sections of ADDRS. */
485 static std::vector<const struct other_sections *>
486 addrs_section_sort (const section_addr_info &addrs)
490 std::vector<const struct other_sections *> array (addrs.size ());
491 for (i = 0; i < addrs.size (); i++)
492 array[i] = &addrs[i];
494 std::sort (array.begin (), array.end (), addrs_section_compar);
499 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
500 also SECTINDEXes specific to ABFD there. This function can be used to
501 rebase ADDRS to start referencing different BFD than before. */
504 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
506 asection *lower_sect;
507 CORE_ADDR lower_offset;
510 /* Find lowest loadable section to be used as starting point for
511 continguous sections. */
513 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
514 if (lower_sect == NULL)
516 warning (_("no loadable sections found in added symbol-file %s"),
517 bfd_get_filename (abfd));
521 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
523 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524 in ABFD. Section names are not unique - there can be multiple sections of
525 the same name. Also the sections of the same name do not have to be
526 adjacent to each other. Some sections may be present only in one of the
527 files. Even sections present in both files do not have to be in the same
530 Use stable sort by name for the sections in both files. Then linearly
531 scan both lists matching as most of the entries as possible. */
533 std::vector<const struct other_sections *> addrs_sorted
534 = addrs_section_sort (*addrs);
536 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537 std::vector<const struct other_sections *> abfd_addrs_sorted
538 = addrs_section_sort (abfd_addrs);
540 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541 ABFD_ADDRS_SORTED. */
543 std::vector<const struct other_sections *>
544 addrs_to_abfd_addrs (addrs->size (), nullptr);
546 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547 = abfd_addrs_sorted.begin ();
548 for (const other_sections *sect : addrs_sorted)
550 const char *sect_name = addr_section_name (sect->name.c_str ());
552 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
557 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
563 /* Make the found item directly addressable from ADDRS. */
564 index_in_addrs = sect - addrs->data ();
565 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
566 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
568 /* Never use the same ABFD entry twice. */
573 /* Calculate offsets for the loadable sections.
574 FIXME! Sections must be in order of increasing loadable section
575 so that contiguous sections can use the lower-offset!!!
577 Adjust offsets if the segments are not contiguous.
578 If the section is contiguous, its offset should be set to
579 the offset of the highest loadable section lower than it
580 (the loadable section directly below it in memory).
581 this_offset = lower_offset = lower_addr - lower_orig_addr */
583 for (i = 0; i < addrs->size (); i++)
585 const struct other_sections *sect = addrs_to_abfd_addrs[i];
589 /* This is the index used by BFD. */
590 (*addrs)[i].sectindex = sect->sectindex;
592 if ((*addrs)[i].addr != 0)
594 (*addrs)[i].addr -= sect->addr;
595 lower_offset = (*addrs)[i].addr;
598 (*addrs)[i].addr = lower_offset;
602 /* addr_section_name transformation is not used for SECT_NAME. */
603 const std::string §_name = (*addrs)[i].name;
605 /* This section does not exist in ABFD, which is normally
606 unexpected and we want to issue a warning.
608 However, the ELF prelinker does create a few sections which are
609 marked in the main executable as loadable (they are loaded in
610 memory from the DYNAMIC segment) and yet are not present in
611 separate debug info files. This is fine, and should not cause
612 a warning. Shared libraries contain just the section
613 ".gnu.liblist" but it is not marked as loadable there. There is
614 no other way to identify them than by their name as the sections
615 created by prelink have no special flags.
617 For the sections `.bss' and `.sbss' see addr_section_name. */
619 if (!(sect_name == ".gnu.liblist"
620 || sect_name == ".gnu.conflict"
621 || (sect_name == ".bss"
623 && (*addrs)[i - 1].name == ".dynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)
625 || (sect_name == ".sbss"
627 && (*addrs)[i - 1].name == ".sdynbss"
628 && addrs_to_abfd_addrs[i - 1] != NULL)))
629 warning (_("section %s not found in %s"), sect_name.c_str (),
630 bfd_get_filename (abfd));
632 (*addrs)[i].addr = 0;
633 (*addrs)[i].sectindex = -1;
638 /* Parse the user's idea of an offset for dynamic linking, into our idea
639 of how to represent it for fast symbol reading. This is the default
640 version of the sym_fns.sym_offsets function for symbol readers that
641 don't need to do anything special. It allocates a section_offsets table
642 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
645 default_symfile_offsets (struct objfile *objfile,
646 const section_addr_info &addrs)
648 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
649 objfile->section_offsets = (struct section_offsets *)
650 obstack_alloc (&objfile->objfile_obstack,
651 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652 relative_addr_info_to_section_offsets (objfile->section_offsets,
653 objfile->num_sections, addrs);
655 /* For relocatable files, all loadable sections will start at zero.
656 The zero is meaningless, so try to pick arbitrary addresses such
657 that no loadable sections overlap. This algorithm is quadratic,
658 but the number of sections in a single object file is generally
660 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
662 struct place_section_arg arg;
663 bfd *abfd = objfile->obfd;
666 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 /* We do not expect this to happen; just skip this step if the
668 relocatable file has a section with an assigned VMA. */
669 if (bfd_section_vma (abfd, cur_sec) != 0)
674 CORE_ADDR *offsets = objfile->section_offsets->offsets;
676 /* Pick non-overlapping offsets for sections the user did not
678 arg.offsets = objfile->section_offsets;
680 bfd_map_over_sections (objfile->obfd, place_section, &arg);
682 /* Correctly filling in the section offsets is not quite
683 enough. Relocatable files have two properties that
684 (most) shared objects do not:
686 - Their debug information will contain relocations. Some
687 shared libraries do also, but many do not, so this can not
690 - If there are multiple code sections they will be loaded
691 at different relative addresses in memory than they are
692 in the objfile, since all sections in the file will start
695 Because GDB has very limited ability to map from an
696 address in debug info to the correct code section,
697 it relies on adding SECT_OFF_TEXT to things which might be
698 code. If we clear all the section offsets, and set the
699 section VMAs instead, then symfile_relocate_debug_section
700 will return meaningful debug information pointing at the
703 GDB has too many different data structures for section
704 addresses - a bfd, objfile, and so_list all have section
705 tables, as does exec_ops. Some of these could probably
708 for (cur_sec = abfd->sections; cur_sec != NULL;
709 cur_sec = cur_sec->next)
711 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
714 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
715 exec_set_section_address (bfd_get_filename (abfd),
717 offsets[cur_sec->index]);
718 offsets[cur_sec->index] = 0;
723 /* Remember the bfd indexes for the .text, .data, .bss and
725 init_objfile_sect_indices (objfile);
728 /* Divide the file into segments, which are individual relocatable units.
729 This is the default version of the sym_fns.sym_segments function for
730 symbol readers that do not have an explicit representation of segments.
731 It assumes that object files do not have segments, and fully linked
732 files have a single segment. */
734 struct symfile_segment_data *
735 default_symfile_segments (bfd *abfd)
739 struct symfile_segment_data *data;
742 /* Relocatable files contain enough information to position each
743 loadable section independently; they should not be relocated
745 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
748 /* Make sure there is at least one loadable section in the file. */
749 for (sect = abfd->sections; sect != NULL; sect = sect->next)
751 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
759 low = bfd_get_section_vma (abfd, sect);
760 high = low + bfd_get_section_size (sect);
762 data = XCNEW (struct symfile_segment_data);
763 data->num_segments = 1;
764 data->segment_bases = XCNEW (CORE_ADDR);
765 data->segment_sizes = XCNEW (CORE_ADDR);
767 num_sections = bfd_count_sections (abfd);
768 data->segment_info = XCNEWVEC (int, num_sections);
770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
774 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
777 vma = bfd_get_section_vma (abfd, sect);
780 if (vma + bfd_get_section_size (sect) > high)
781 high = vma + bfd_get_section_size (sect);
783 data->segment_info[i] = 1;
786 data->segment_bases[0] = low;
787 data->segment_sizes[0] = high - low;
792 /* This is a convenience function to call sym_read for OBJFILE and
793 possibly force the partial symbols to be read. */
796 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
798 (*objfile->sf->sym_read) (objfile, add_flags);
799 objfile->per_bfd->minsyms_read = true;
801 /* find_separate_debug_file_in_section should be called only if there is
802 single binary with no existing separate debug info file. */
803 if (!objfile_has_partial_symbols (objfile)
804 && objfile->separate_debug_objfile == NULL
805 && objfile->separate_debug_objfile_backlink == NULL)
807 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
811 /* find_separate_debug_file_in_section uses the same filename for the
812 virtual section-as-bfd like the bfd filename containing the
813 section. Therefore use also non-canonical name form for the same
814 file containing the section. */
815 symbol_file_add_separate (abfd.get (),
816 bfd_get_filename (abfd.get ()),
817 add_flags | SYMFILE_NOT_FILENAME, objfile);
820 if ((add_flags & SYMFILE_NO_READ) == 0)
821 require_partial_symbols (objfile, 0);
824 /* Initialize entry point information for this objfile. */
827 init_entry_point_info (struct objfile *objfile)
829 struct entry_info *ei = &objfile->per_bfd->ei;
835 /* Save startup file's range of PC addresses to help blockframe.c
836 decide where the bottom of the stack is. */
838 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
840 /* Executable file -- record its entry point so we'll recognize
841 the startup file because it contains the entry point. */
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
845 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 && bfd_get_start_address (objfile->obfd) != 0)
848 /* Some shared libraries may have entry points set and be
849 runnable. There's no clear way to indicate this, so just check
850 for values other than zero. */
851 ei->entry_point = bfd_get_start_address (objfile->obfd);
852 ei->entry_point_p = 1;
856 /* Examination of non-executable.o files. Short-circuit this stuff. */
857 ei->entry_point_p = 0;
860 if (ei->entry_point_p)
862 struct obj_section *osect;
863 CORE_ADDR entry_point = ei->entry_point;
866 /* Make certain that the address points at real code, and not a
867 function descriptor. */
869 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
871 current_top_target ());
873 /* Remove any ISA markers, so that this matches entries in the
876 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
879 ALL_OBJFILE_OSECTIONS (objfile, osect)
881 struct bfd_section *sect = osect->the_bfd_section;
883 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 + bfd_get_section_size (sect)))
887 ei->the_bfd_section_index
888 = gdb_bfd_section_index (objfile->obfd, sect);
895 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
899 /* Process a symbol file, as either the main file or as a dynamically
902 This function does not set the OBJFILE's entry-point info.
904 OBJFILE is where the symbols are to be read from.
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
915 The sectindex field is used to control the ordering of sections
916 with the same name. Upon return, it is updated to contain the
917 correspondig BFD section index, or -1 if the section was not found.
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
924 syms_from_objfile_1 (struct objfile *objfile,
925 section_addr_info *addrs,
926 symfile_add_flags add_flags)
928 section_addr_info local_addr;
929 const int mainline = add_flags & SYMFILE_MAINLINE;
931 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
933 if (objfile->sf == NULL)
935 /* No symbols to load, but we still need to make sure
936 that the section_offsets table is allocated. */
937 int num_sections = gdb_bfd_count_sections (objfile->obfd);
938 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
940 objfile->num_sections = num_sections;
941 objfile->section_offsets
942 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
944 memset (objfile->section_offsets, 0, size);
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
952 std::unique_ptr<struct objfile> objfile_holder (objfile);
954 /* If ADDRS is NULL, put together a dummy address list.
955 We now establish the convention that an addr of zero means
956 no load address was specified. */
962 /* We will modify the main symbol table, make sure that all its users
963 will be cleaned up if an error occurs during symbol reading. */
964 defer_clear_users.emplace ((symfile_add_flag) 0);
966 /* Since no error yet, throw away the old symbol table. */
968 if (symfile_objfile != NULL)
970 delete symfile_objfile;
971 gdb_assert (symfile_objfile == NULL);
974 /* Currently we keep symbols from the add-symbol-file command.
975 If the user wants to get rid of them, they should do "symbol-file"
976 without arguments first. Not sure this is the best behavior
979 (*objfile->sf->sym_new_init) (objfile);
982 /* Convert addr into an offset rather than an absolute address.
983 We find the lowest address of a loaded segment in the objfile,
984 and assume that <addr> is where that got loaded.
986 We no longer warn if the lowest section is not a text segment (as
987 happens for the PA64 port. */
988 if (addrs->size () > 0)
989 addr_info_make_relative (addrs, objfile->obfd);
991 /* Initialize symbol reading routines for this objfile, allow complaints to
992 appear for this new file, and record how verbose to be, then do the
993 initial symbol reading for this file. */
995 (*objfile->sf->sym_init) (objfile);
998 (*objfile->sf->sym_offsets) (objfile, *addrs);
1000 read_symbols (objfile, add_flags);
1002 /* Discard cleanups as symbol reading was successful. */
1004 objfile_holder.release ();
1005 if (defer_clear_users)
1006 defer_clear_users->release ();
1009 /* Same as syms_from_objfile_1, but also initializes the objfile
1010 entry-point info. */
1013 syms_from_objfile (struct objfile *objfile,
1014 section_addr_info *addrs,
1015 symfile_add_flags add_flags)
1017 syms_from_objfile_1 (objfile, addrs, add_flags);
1018 init_entry_point_info (objfile);
1021 /* Perform required actions after either reading in the initial
1022 symbols for a new objfile, or mapping in the symbols from a reusable
1023 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1026 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1028 /* If this is the main symbol file we have to clean up all users of the
1029 old main symbol file. Otherwise it is sufficient to fixup all the
1030 breakpoints that may have been redefined by this symbol file. */
1031 if (add_flags & SYMFILE_MAINLINE)
1033 /* OK, make it the "real" symbol file. */
1034 symfile_objfile = objfile;
1036 clear_symtab_users (add_flags);
1038 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1040 breakpoint_re_set ();
1043 /* We're done reading the symbol file; finish off complaints. */
1044 clear_complaints ();
1047 /* Process a symbol file, as either the main file or as a dynamically
1050 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1051 A new reference is acquired by this function.
1053 For NAME description see the objfile constructor.
1055 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056 extra, such as dynamically loaded code, and what to do with breakpoins.
1058 ADDRS is as described for syms_from_objfile_1, above.
1059 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1061 PARENT is the original objfile if ABFD is a separate debug info file.
1062 Otherwise PARENT is NULL.
1064 Upon success, returns a pointer to the objfile that was added.
1065 Upon failure, jumps back to command level (never returns). */
1067 static struct objfile *
1068 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 symfile_add_flags add_flags,
1070 section_addr_info *addrs,
1071 objfile_flags flags, struct objfile *parent)
1073 struct objfile *objfile;
1074 const int from_tty = add_flags & SYMFILE_VERBOSE;
1075 const int mainline = add_flags & SYMFILE_MAINLINE;
1076 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1077 && (readnow_symbol_files
1078 || (add_flags & SYMFILE_NO_READ) == 0));
1080 if (readnow_symbol_files)
1082 flags |= OBJF_READNOW;
1083 add_flags &= ~SYMFILE_NO_READ;
1085 else if (readnever_symbol_files
1086 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1088 flags |= OBJF_READNEVER;
1089 add_flags |= SYMFILE_NO_READ;
1091 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092 flags |= OBJF_NOT_FILENAME;
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1097 if ((have_full_symbols () || have_partial_symbols ())
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1104 flags |= OBJF_MAINLINE;
1105 objfile = new struct objfile (abfd, name, flags);
1108 add_separate_debug_objfile (objfile, parent);
1110 /* We either created a new mapped symbol table, mapped an existing
1111 symbol table file which has not had initial symbol reading
1112 performed, or need to read an unmapped symbol table. */
1115 if (deprecated_pre_add_symbol_hook)
1116 deprecated_pre_add_symbol_hook (name);
1119 puts_filtered (_("Reading symbols from "));
1120 fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 puts_filtered ("...\n");
1124 syms_from_objfile (objfile, addrs, add_flags);
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1131 if ((flags & OBJF_READNOW))
1134 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1137 objfile->sf->qf->expand_all_symtabs (objfile);
1140 /* Note that we only print a message if we have no symbols and have
1141 no separate debug file. If there is a separate debug file which
1142 does not have symbols, we'll have emitted this message for that
1143 file, and so printing it twice is just redundant. */
1144 if (should_print && !objfile_has_symbols (objfile)
1145 && objfile->separate_debug_objfile == nullptr)
1146 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1150 if (deprecated_post_add_symbol_hook)
1151 deprecated_post_add_symbol_hook ();
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1157 gdb_flush (gdb_stdout);
1159 if (objfile->sf == NULL)
1161 gdb::observers::new_objfile.notify (objfile);
1162 return objfile; /* No symbols. */
1165 finish_new_objfile (objfile, add_flags);
1167 gdb::observers::new_objfile.notify (objfile);
1169 bfd_cache_close_all ();
1173 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1174 see the objfile constructor. */
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
1179 struct objfile *objfile)
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1186 symbol_file_add_with_addrs
1187 (bfd, name, symfile_flags, &sap,
1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1193 /* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
1195 See symbol_file_add_with_addrs's comments for details. */
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
1200 section_addr_info *addrs,
1201 objfile_flags flags, struct objfile *parent)
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1207 /* Process a symbol file, as either the main file or as a dynamically
1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 section_addr_info *addrs, objfile_flags flags)
1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1220 /* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 objfile_flags flags, CORE_ADDR reloff)
1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1242 objfile_rebase (objfile, reloff);
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1248 if ((add_flags & SYMFILE_NO_READ) == 0)
1249 set_initial_language ();
1253 symbol_file_clear (int from_tty)
1255 if ((have_full_symbols () || have_partial_symbols ())
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 objfile_name (symfile_objfile))
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1267 free_all_objfiles ();
1269 gdb_assert (symfile_objfile == NULL);
1271 printf_filtered (_("No symbol file now.\n"));
1274 /* See symfile.h. */
1276 int separate_debug_file_debug = 0;
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 struct objfile *parent_objfile)
1282 unsigned long file_crc;
1284 struct stat parent_stat, abfd_stat;
1285 int verified_as_different;
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291 the separate debug infos with the same basename can exist. */
1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1296 if (separate_debug_file_debug)
1298 printf_filtered (_(" Trying %s..."), name.c_str ());
1299 gdb_flush (gdb_stdout);
1302 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, unable to open.\n"));
1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
1316 meaningful st_dev.) Files accessed from gdbservers that do not
1317 support the vFile:fstat packet will also have st_ino set to zero.
1318 Do not indicate a duplicate library in either case. While there
1319 is no guarantee that a system that provides meaningful inode
1320 numbers will never set st_ino to zero, this is merely an
1321 optimization, so we do not need to worry about false negatives. */
1323 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1324 && abfd_stat.st_ino != 0
1325 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1327 if (abfd_stat.st_dev == parent_stat.st_dev
1328 && abfd_stat.st_ino == parent_stat.st_ino)
1330 if (separate_debug_file_debug)
1331 printf_filtered (_(" no, same file as the objfile.\n"));
1335 verified_as_different = 1;
1338 verified_as_different = 0;
1340 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, error computing CRC.\n"));
1350 if (crc != file_crc)
1352 unsigned long parent_crc;
1354 /* If the files could not be verified as different with
1355 bfd_stat then we need to calculate the parent's CRC
1356 to verify whether the files are different or not. */
1358 if (!verified_as_different)
1360 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1362 if (separate_debug_file_debug)
1363 printf_filtered (_(" no, error computing CRC.\n"));
1369 if (verified_as_different || parent_crc != file_crc)
1370 warning (_("the debug information found in \"%s\""
1371 " does not match \"%s\" (CRC mismatch).\n"),
1372 name.c_str (), objfile_name (parent_objfile));
1374 if (separate_debug_file_debug)
1375 printf_filtered (_(" no, CRC doesn't match.\n"));
1380 if (separate_debug_file_debug)
1381 printf_filtered (_(" yes!\n"));
1386 char *debug_file_directory = NULL;
1388 show_debug_file_directory (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1391 fprintf_filtered (file,
1392 _("The directory where separate debug "
1393 "symbols are searched for is \"%s\".\n"),
1397 #if ! defined (DEBUG_SUBDIRECTORY)
1398 #define DEBUG_SUBDIRECTORY ".debug"
1401 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402 where the original file resides (may not be the same as
1403 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1404 looking for. CANON_DIR is the "realpath" form of DIR.
1405 DIR must contain a trailing '/'.
1406 Returns the path of the file with separate debug info, or an empty
1410 find_separate_debug_file (const char *dir,
1411 const char *canon_dir,
1412 const char *debuglink,
1413 unsigned long crc32, struct objfile *objfile)
1415 if (separate_debug_file_debug)
1416 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 "%s\n"), objfile_name (objfile));
1419 /* First try in the same directory as the original file. */
1420 std::string debugfile = dir;
1421 debugfile += debuglink;
1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1426 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1428 debugfile += DEBUG_SUBDIRECTORY;
1430 debugfile += debuglink;
1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
1435 /* Then try in the global debugfile directories.
1437 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438 cause "/..." lookups. */
1440 bool target_prefix = startswith (dir, "target:");
1441 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1442 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443 = dirnames_to_char_ptr_vec (debug_file_directory);
1444 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1446 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1447 convert the drive letter into a one-letter directory, so that the
1448 file name resulting from splicing below will be valid.
1450 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1451 There are various remote-debugging scenarios where such a
1452 transformation of the drive letter might be required when GDB runs
1453 on a Posix host, see
1455 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1457 If some of those scenarions need to be supported, we will need to
1458 use a different condition for HAS_DRIVE_SPEC and a different macro
1459 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1461 if (HAS_DRIVE_SPEC (dir_notarget))
1463 drive = dir_notarget[0];
1464 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1467 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
1473 debugfile += dir_notarget;
1474 debugfile += debuglink;
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1479 const char *base_path = NULL;
1480 if (canon_dir != NULL)
1482 if (canon_sysroot.get () != NULL)
1483 base_path = child_path (canon_sysroot.get (), canon_dir);
1485 base_path = child_path (gdb_sysroot, canon_dir);
1487 if (base_path != NULL)
1489 /* If the file is in the sysroot, try using its base path in
1490 the global debugfile directory. */
1491 debugfile = target_prefix ? "target:" : "";
1492 debugfile += debugdir.get ();
1494 debugfile += base_path;
1496 debugfile += debuglink;
1498 if (separate_debug_file_exists (debugfile, crc32, objfile))
1501 /* If the file is in the sysroot, try using its base path in
1502 the sysroot's global debugfile directory. */
1503 debugfile = target_prefix ? "target:" : "";
1504 debugfile += gdb_sysroot;
1505 debugfile += debugdir.get ();
1507 debugfile += base_path;
1509 debugfile += debuglink;
1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
1517 return std::string ();
1520 /* Modify PATH to contain only "[/]directory/" part of PATH.
1521 If there were no directory separators in PATH, PATH will be empty
1522 string on return. */
1525 terminate_after_last_dir_separator (char *path)
1529 /* Strip off the final filename part, leaving the directory name,
1530 followed by a slash. The directory can be relative or absolute. */
1531 for (i = strlen(path) - 1; i >= 0; i--)
1532 if (IS_DIR_SEPARATOR (path[i]))
1535 /* If I is -1 then no directory is present there and DIR will be "". */
1539 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1540 Returns pathname, or an empty string. */
1543 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545 unsigned long crc32;
1547 gdb::unique_xmalloc_ptr<char> debuglink
1548 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1550 if (debuglink == NULL)
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return std::string ();
1557 std::string dir = objfile_name (objfile);
1558 terminate_after_last_dir_separator (&dir[0]);
1559 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1561 std::string debugfile
1562 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1563 debuglink.get (), crc32, objfile);
1565 if (debugfile.empty ())
1567 /* For PR gdb/9538, try again with realpath (if different from the
1572 if (lstat (objfile_name (objfile), &st_buf) == 0
1573 && S_ISLNK (st_buf.st_mode))
1575 gdb::unique_xmalloc_ptr<char> symlink_dir
1576 (lrealpath (objfile_name (objfile)));
1577 if (symlink_dir != NULL)
1579 terminate_after_last_dir_separator (symlink_dir.get ());
1580 if (dir != symlink_dir.get ())
1582 /* Different directory, so try using it. */
1583 debugfile = find_separate_debug_file (symlink_dir.get (),
1596 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1600 validate_readnow_readnever (objfile_flags flags)
1602 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1603 error (_("-readnow and -readnever cannot be used simultaneously"));
1606 /* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
1608 the command is rather bizarre:
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1617 3. The order of options matters, which is contrary to GNU
1618 conventions (because it is confusing and inconvenient). */
1621 symbol_file_command (const char *args, int from_tty)
1627 symbol_file_clear (from_tty);
1631 objfile_flags flags = OBJF_USERLOADED;
1632 symfile_add_flags add_flags = 0;
1634 bool stop_processing_options = false;
1635 CORE_ADDR offset = 0;
1640 add_flags |= SYMFILE_VERBOSE;
1642 gdb_argv built_argv (args);
1643 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1645 if (stop_processing_options || *arg != '-')
1650 error (_("Unrecognized argument \"%s\""), arg);
1652 else if (strcmp (arg, "-readnow") == 0)
1653 flags |= OBJF_READNOW;
1654 else if (strcmp (arg, "-readnever") == 0)
1655 flags |= OBJF_READNEVER;
1656 else if (strcmp (arg, "-o") == 0)
1658 arg = built_argv[++idx];
1660 error (_("Missing argument to -o"));
1662 offset = parse_and_eval_address (arg);
1664 else if (strcmp (arg, "--") == 0)
1665 stop_processing_options = true;
1667 error (_("Unrecognized argument \"%s\""), arg);
1671 error (_("no symbol file name was specified"));
1673 validate_readnow_readnever (flags);
1675 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1676 (Position Independent Executable) main symbol file will only be
1677 computed by the solib_create_inferior_hook below. Without it,
1678 breakpoint_re_set would fail to insert the breakpoints with the zero
1680 add_flags |= SYMFILE_DEFER_BP_RESET;
1682 symbol_file_add_main_1 (name, add_flags, flags, offset);
1684 solib_create_inferior_hook (from_tty);
1686 /* Now it's safe to re-add the breakpoints. */
1687 breakpoint_re_set ();
1691 /* Set the initial language.
1693 FIXME: A better solution would be to record the language in the
1694 psymtab when reading partial symbols, and then use it (if known) to
1695 set the language. This would be a win for formats that encode the
1696 language in an easily discoverable place, such as DWARF. For
1697 stabs, we can jump through hoops looking for specially named
1698 symbols or try to intuit the language from the specific type of
1699 stabs we find, but we can't do that until later when we read in
1703 set_initial_language (void)
1705 enum language lang = main_language ();
1707 if (lang == language_unknown)
1709 const char *name = main_name ();
1710 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1713 lang = SYMBOL_LANGUAGE (sym);
1716 if (lang == language_unknown)
1718 /* Make C the default language */
1722 set_language (lang);
1723 expected_language = current_language; /* Don't warn the user. */
1726 /* Open the file specified by NAME and hand it off to BFD for
1727 preliminary analysis. Return a newly initialized bfd *, which
1728 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1729 absolute). In case of trouble, error() is called. */
1732 symfile_bfd_open (const char *name)
1736 gdb::unique_xmalloc_ptr<char> absolute_name;
1737 if (!is_target_filename (name))
1739 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1741 /* Look down path for it, allocate 2nd new malloc'd copy. */
1742 desc = openp (getenv ("PATH"),
1743 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1744 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1745 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1748 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1750 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1751 desc = openp (getenv ("PATH"),
1752 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1753 exename, O_RDONLY | O_BINARY, &absolute_name);
1757 perror_with_name (expanded_name.get ());
1759 name = absolute_name.get ();
1762 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1763 if (sym_bfd == NULL)
1764 error (_("`%s': can't open to read symbols: %s."), name,
1765 bfd_errmsg (bfd_get_error ()));
1767 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1768 bfd_set_cacheable (sym_bfd.get (), 1);
1770 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1771 error (_("`%s': can't read symbols: %s."), name,
1772 bfd_errmsg (bfd_get_error ()));
1777 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1778 the section was not found. */
1781 get_section_index (struct objfile *objfile, const char *section_name)
1783 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1791 /* Link SF into the global symtab_fns list.
1792 FLAVOUR is the file format that SF handles.
1793 Called on startup by the _initialize routine in each object file format
1794 reader, to register information about each format the reader is prepared
1798 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1800 symtab_fns.emplace_back (flavour, sf);
1803 /* Initialize OBJFILE to read symbols from its associated BFD. It
1804 either returns or calls error(). The result is an initialized
1805 struct sym_fns in the objfile structure, that contains cached
1806 information about the symbol file. */
1808 static const struct sym_fns *
1809 find_sym_fns (bfd *abfd)
1811 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1813 if (our_flavour == bfd_target_srec_flavour
1814 || our_flavour == bfd_target_ihex_flavour
1815 || our_flavour == bfd_target_tekhex_flavour)
1816 return NULL; /* No symbols. */
1818 for (const registered_sym_fns &rsf : symtab_fns)
1819 if (our_flavour == rsf.sym_flavour)
1822 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1823 bfd_get_target (abfd));
1827 /* This function runs the load command of our current target. */
1830 load_command (const char *arg, int from_tty)
1834 /* The user might be reloading because the binary has changed. Take
1835 this opportunity to check. */
1836 reopen_exec_file ();
1842 const char *parg, *prev;
1844 arg = get_exec_file (1);
1846 /* We may need to quote this string so buildargv can pull it
1849 while ((parg = strpbrk (parg, "\\\"'\t ")))
1851 temp.append (prev, parg - prev);
1853 temp.push_back ('\\');
1855 /* If we have not copied anything yet, then we didn't see a
1856 character to quote, and we can just leave ARG unchanged. */
1860 arg = temp.c_str ();
1864 target_load (arg, from_tty);
1866 /* After re-loading the executable, we don't really know which
1867 overlays are mapped any more. */
1868 overlay_cache_invalid = 1;
1871 /* This version of "load" should be usable for any target. Currently
1872 it is just used for remote targets, not inftarg.c or core files,
1873 on the theory that only in that case is it useful.
1875 Avoiding xmodem and the like seems like a win (a) because we don't have
1876 to worry about finding it, and (b) On VMS, fork() is very slow and so
1877 we don't want to run a subprocess. On the other hand, I'm not sure how
1878 performance compares. */
1880 static int validate_download = 0;
1882 /* Callback service function for generic_load (bfd_map_over_sections). */
1885 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1887 bfd_size_type *sum = (bfd_size_type *) data;
1889 *sum += bfd_get_section_size (asec);
1892 /* Opaque data for load_progress. */
1893 struct load_progress_data
1895 /* Cumulative data. */
1896 unsigned long write_count = 0;
1897 unsigned long data_count = 0;
1898 bfd_size_type total_size = 0;
1901 /* Opaque data for load_progress for a single section. */
1902 struct load_progress_section_data
1904 load_progress_section_data (load_progress_data *cumulative_,
1905 const char *section_name_, ULONGEST section_size_,
1906 CORE_ADDR lma_, gdb_byte *buffer_)
1907 : cumulative (cumulative_), section_name (section_name_),
1908 section_size (section_size_), lma (lma_), buffer (buffer_)
1911 struct load_progress_data *cumulative;
1913 /* Per-section data. */
1914 const char *section_name;
1915 ULONGEST section_sent = 0;
1916 ULONGEST section_size;
1921 /* Opaque data for load_section_callback. */
1922 struct load_section_data
1924 load_section_data (load_progress_data *progress_data_)
1925 : progress_data (progress_data_)
1928 ~load_section_data ()
1930 for (auto &&request : requests)
1932 xfree (request.data);
1933 delete ((load_progress_section_data *) request.baton);
1937 CORE_ADDR load_offset = 0;
1938 struct load_progress_data *progress_data;
1939 std::vector<struct memory_write_request> requests;
1942 /* Target write callback routine for progress reporting. */
1945 load_progress (ULONGEST bytes, void *untyped_arg)
1947 struct load_progress_section_data *args
1948 = (struct load_progress_section_data *) untyped_arg;
1949 struct load_progress_data *totals;
1952 /* Writing padding data. No easy way to get at the cumulative
1953 stats, so just ignore this. */
1956 totals = args->cumulative;
1958 if (bytes == 0 && args->section_sent == 0)
1960 /* The write is just starting. Let the user know we've started
1962 current_uiout->message ("Loading section %s, size %s lma %s\n",
1964 hex_string (args->section_size),
1965 paddress (target_gdbarch (), args->lma));
1969 if (validate_download)
1971 /* Broken memories and broken monitors manifest themselves here
1972 when bring new computers to life. This doubles already slow
1974 /* NOTE: cagney/1999-10-18: A more efficient implementation
1975 might add a verify_memory() method to the target vector and
1976 then use that. remote.c could implement that method using
1977 the ``qCRC'' packet. */
1978 gdb::byte_vector check (bytes);
1980 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1981 error (_("Download verify read failed at %s"),
1982 paddress (target_gdbarch (), args->lma));
1983 if (memcmp (args->buffer, check.data (), bytes) != 0)
1984 error (_("Download verify compare failed at %s"),
1985 paddress (target_gdbarch (), args->lma));
1987 totals->data_count += bytes;
1989 args->buffer += bytes;
1990 totals->write_count += 1;
1991 args->section_sent += bytes;
1992 if (check_quit_flag ()
1993 || (deprecated_ui_load_progress_hook != NULL
1994 && deprecated_ui_load_progress_hook (args->section_name,
1995 args->section_sent)))
1996 error (_("Canceled the download"));
1998 if (deprecated_show_load_progress != NULL)
1999 deprecated_show_load_progress (args->section_name,
2003 totals->total_size);
2006 /* Callback service function for generic_load (bfd_map_over_sections). */
2009 load_section_callback (bfd *abfd, asection *asec, void *data)
2011 struct load_section_data *args = (struct load_section_data *) data;
2012 bfd_size_type size = bfd_get_section_size (asec);
2013 const char *sect_name = bfd_get_section_name (abfd, asec);
2015 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2021 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
2022 ULONGEST end = begin + size;
2023 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2024 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2026 load_progress_section_data *section_data
2027 = new load_progress_section_data (args->progress_data, sect_name, size,
2030 args->requests.emplace_back (begin, end, buffer, section_data);
2033 static void print_transfer_performance (struct ui_file *stream,
2034 unsigned long data_count,
2035 unsigned long write_count,
2036 std::chrono::steady_clock::duration d);
2038 /* See symfile.h. */
2041 generic_load (const char *args, int from_tty)
2043 struct load_progress_data total_progress;
2044 struct load_section_data cbdata (&total_progress);
2045 struct ui_out *uiout = current_uiout;
2048 error_no_arg (_("file to load"));
2050 gdb_argv argv (args);
2052 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2054 if (argv[1] != NULL)
2058 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2060 /* If the last word was not a valid number then
2061 treat it as a file name with spaces in. */
2062 if (argv[1] == endptr)
2063 error (_("Invalid download offset:%s."), argv[1]);
2065 if (argv[2] != NULL)
2066 error (_("Too many parameters."));
2069 /* Open the file for loading. */
2070 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2071 if (loadfile_bfd == NULL)
2072 perror_with_name (filename.get ());
2074 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2076 error (_("\"%s\" is not an object file: %s"), filename.get (),
2077 bfd_errmsg (bfd_get_error ()));
2080 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2081 (void *) &total_progress.total_size);
2083 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2085 using namespace std::chrono;
2087 steady_clock::time_point start_time = steady_clock::now ();
2089 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2090 load_progress) != 0)
2091 error (_("Load failed"));
2093 steady_clock::time_point end_time = steady_clock::now ();
2095 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2096 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2097 uiout->text ("Start address ");
2098 uiout->field_core_addr ("address", target_gdbarch (), entry);
2099 uiout->text (", load size ");
2100 uiout->field_unsigned ("load-size", total_progress.data_count);
2102 regcache_write_pc (get_current_regcache (), entry);
2104 /* Reset breakpoints, now that we have changed the load image. For
2105 instance, breakpoints may have been set (or reset, by
2106 post_create_inferior) while connected to the target but before we
2107 loaded the program. In that case, the prologue analyzer could
2108 have read instructions from the target to find the right
2109 breakpoint locations. Loading has changed the contents of that
2112 breakpoint_re_set ();
2114 print_transfer_performance (gdb_stdout, total_progress.data_count,
2115 total_progress.write_count,
2116 end_time - start_time);
2119 /* Report on STREAM the performance of a memory transfer operation,
2120 such as 'load'. DATA_COUNT is the number of bytes transferred.
2121 WRITE_COUNT is the number of separate write operations, or 0, if
2122 that information is not available. TIME is how long the operation
2126 print_transfer_performance (struct ui_file *stream,
2127 unsigned long data_count,
2128 unsigned long write_count,
2129 std::chrono::steady_clock::duration time)
2131 using namespace std::chrono;
2132 struct ui_out *uiout = current_uiout;
2134 milliseconds ms = duration_cast<milliseconds> (time);
2136 uiout->text ("Transfer rate: ");
2137 if (ms.count () > 0)
2139 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2141 if (uiout->is_mi_like_p ())
2143 uiout->field_unsigned ("transfer-rate", rate * 8);
2144 uiout->text (" bits/sec");
2146 else if (rate < 1024)
2148 uiout->field_unsigned ("transfer-rate", rate);
2149 uiout->text (" bytes/sec");
2153 uiout->field_unsigned ("transfer-rate", rate / 1024);
2154 uiout->text (" KB/sec");
2159 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2160 uiout->text (" bits in <1 sec");
2162 if (write_count > 0)
2165 uiout->field_unsigned ("write-rate", data_count / write_count);
2166 uiout->text (" bytes/write");
2168 uiout->text (".\n");
2171 /* Add an OFFSET to the start address of each section in OBJF, except
2172 sections that were specified in ADDRS. */
2175 set_objfile_default_section_offset (struct objfile *objf,
2176 const section_addr_info &addrs,
2179 /* Add OFFSET to all sections by default. */
2180 std::vector<struct section_offsets> offsets (objf->num_sections,
2183 /* Create sorted lists of all sections in ADDRS as well as all
2184 sections in OBJF. */
2186 std::vector<const struct other_sections *> addrs_sorted
2187 = addrs_section_sort (addrs);
2189 section_addr_info objf_addrs
2190 = build_section_addr_info_from_objfile (objf);
2191 std::vector<const struct other_sections *> objf_addrs_sorted
2192 = addrs_section_sort (objf_addrs);
2194 /* Walk the BFD section list, and if a matching section is found in
2195 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2198 Note that both lists may contain multiple sections with the same
2199 name, and then the sections from ADDRS are matched in BFD order
2200 (thanks to sectindex). */
2202 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2203 = addrs_sorted.begin ();
2204 for (const other_sections *objf_sect : objf_addrs_sorted)
2206 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2209 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2211 const struct other_sections *sect = *addrs_sorted_iter;
2212 const char *sect_name = addr_section_name (sect->name.c_str ());
2213 cmp = strcmp (sect_name, objf_name);
2215 ++addrs_sorted_iter;
2219 offsets[objf_sect->sectindex].offsets[0] = 0;
2222 /* Apply the new section offsets. */
2223 objfile_relocate (objf, offsets.data ());
2226 /* This function allows the addition of incrementally linked object files.
2227 It does not modify any state in the target, only in the debugger. */
2230 add_symbol_file_command (const char *args, int from_tty)
2232 struct gdbarch *gdbarch = get_current_arch ();
2233 gdb::unique_xmalloc_ptr<char> filename;
2236 struct objfile *objf;
2237 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2238 symfile_add_flags add_flags = 0;
2241 add_flags |= SYMFILE_VERBOSE;
2249 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2250 bool stop_processing_options = false;
2251 CORE_ADDR offset = 0;
2256 error (_("add-symbol-file takes a file name and an address"));
2258 bool seen_addr = false;
2259 bool seen_offset = false;
2260 gdb_argv argv (args);
2262 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2264 if (stop_processing_options || *arg != '-')
2266 if (filename == NULL)
2268 /* First non-option argument is always the filename. */
2269 filename.reset (tilde_expand (arg));
2271 else if (!seen_addr)
2273 /* The second non-option argument is always the text
2274 address at which to load the program. */
2275 sect_opts[0].value = arg;
2279 error (_("Unrecognized argument \"%s\""), arg);
2281 else if (strcmp (arg, "-readnow") == 0)
2282 flags |= OBJF_READNOW;
2283 else if (strcmp (arg, "-readnever") == 0)
2284 flags |= OBJF_READNEVER;
2285 else if (strcmp (arg, "-s") == 0)
2287 if (argv[argcnt + 1] == NULL)
2288 error (_("Missing section name after \"-s\""));
2289 else if (argv[argcnt + 2] == NULL)
2290 error (_("Missing section address after \"-s\""));
2292 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2294 sect_opts.push_back (sect);
2297 else if (strcmp (arg, "-o") == 0)
2299 arg = argv[++argcnt];
2301 error (_("Missing argument to -o"));
2303 offset = parse_and_eval_address (arg);
2306 else if (strcmp (arg, "--") == 0)
2307 stop_processing_options = true;
2309 error (_("Unrecognized argument \"%s\""), arg);
2312 if (filename == NULL)
2313 error (_("You must provide a filename to be loaded."));
2315 validate_readnow_readnever (flags);
2317 /* Print the prompt for the query below. And save the arguments into
2318 a sect_addr_info structure to be passed around to other
2319 functions. We have to split this up into separate print
2320 statements because hex_string returns a local static
2323 printf_unfiltered (_("add symbol table from file \"%s\""),
2325 section_addr_info section_addrs;
2326 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2329 for (; it != sect_opts.end (); ++it)
2332 const char *val = it->value;
2333 const char *sec = it->name;
2335 if (section_addrs.empty ())
2336 printf_unfiltered (_(" at\n"));
2337 addr = parse_and_eval_address (val);
2339 /* Here we store the section offsets in the order they were
2340 entered on the command line. Every array element is
2341 assigned an ascending section index to preserve the above
2342 order over an unstable sorting algorithm. This dummy
2343 index is not used for any other purpose.
2345 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2346 printf_filtered ("\t%s_addr = %s\n", sec,
2347 paddress (gdbarch, addr));
2349 /* The object's sections are initialized when a
2350 call is made to build_objfile_section_table (objfile).
2351 This happens in reread_symbols.
2352 At this point, we don't know what file type this is,
2353 so we can't determine what section names are valid. */
2356 printf_unfiltered (_("%s offset by %s\n"),
2357 (section_addrs.empty ()
2358 ? _(" with all sections")
2359 : _("with other sections")),
2360 paddress (gdbarch, offset));
2361 else if (section_addrs.empty ())
2362 printf_unfiltered ("\n");
2364 if (from_tty && (!query ("%s", "")))
2365 error (_("Not confirmed."));
2367 objf = symbol_file_add (filename.get (), add_flags, §ion_addrs,
2369 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2370 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2374 set_objfile_default_section_offset (objf, section_addrs, offset);
2376 add_target_sections_of_objfile (objf);
2378 /* Getting new symbols may change our opinion about what is
2380 reinit_frame_cache ();
2384 /* This function removes a symbol file that was added via add-symbol-file. */
2387 remove_symbol_file_command (const char *args, int from_tty)
2389 struct objfile *objf = NULL;
2390 struct program_space *pspace = current_program_space;
2395 error (_("remove-symbol-file: no symbol file provided"));
2397 gdb_argv argv (args);
2399 if (strcmp (argv[0], "-a") == 0)
2401 /* Interpret the next argument as an address. */
2404 if (argv[1] == NULL)
2405 error (_("Missing address argument"));
2407 if (argv[2] != NULL)
2408 error (_("Junk after %s"), argv[1]);
2410 addr = parse_and_eval_address (argv[1]);
2412 for (objfile *objfile : current_program_space->objfiles ())
2414 if ((objfile->flags & OBJF_USERLOADED) != 0
2415 && (objfile->flags & OBJF_SHARED) != 0
2416 && objfile->pspace == pspace
2417 && is_addr_in_objfile (addr, objfile))
2424 else if (argv[0] != NULL)
2426 /* Interpret the current argument as a file name. */
2428 if (argv[1] != NULL)
2429 error (_("Junk after %s"), argv[0]);
2431 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2433 for (objfile *objfile : current_program_space->objfiles ())
2435 if ((objfile->flags & OBJF_USERLOADED) != 0
2436 && (objfile->flags & OBJF_SHARED) != 0
2437 && objfile->pspace == pspace
2438 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2447 error (_("No symbol file found"));
2450 && !query (_("Remove symbol table from file \"%s\"? "),
2451 objfile_name (objf)))
2452 error (_("Not confirmed."));
2455 clear_symtab_users (0);
2458 /* Re-read symbols if a symbol-file has changed. */
2461 reread_symbols (void)
2464 struct stat new_statbuf;
2466 std::vector<struct objfile *> new_objfiles;
2468 for (objfile *objfile : current_program_space->objfiles ())
2470 if (objfile->obfd == NULL)
2473 /* Separate debug objfiles are handled in the main objfile. */
2474 if (objfile->separate_debug_objfile_backlink)
2477 /* If this object is from an archive (what you usually create with
2478 `ar', often called a `static library' on most systems, though
2479 a `shared library' on AIX is also an archive), then you should
2480 stat on the archive name, not member name. */
2481 if (objfile->obfd->my_archive)
2482 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2484 res = stat (objfile_name (objfile), &new_statbuf);
2487 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2488 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2489 objfile_name (objfile));
2492 new_modtime = new_statbuf.st_mtime;
2493 if (new_modtime != objfile->mtime)
2495 struct section_offsets *offsets;
2498 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2499 objfile_name (objfile));
2501 /* There are various functions like symbol_file_add,
2502 symfile_bfd_open, syms_from_objfile, etc., which might
2503 appear to do what we want. But they have various other
2504 effects which we *don't* want. So we just do stuff
2505 ourselves. We don't worry about mapped files (for one thing,
2506 any mapped file will be out of date). */
2508 /* If we get an error, blow away this objfile (not sure if
2509 that is the correct response for things like shared
2511 std::unique_ptr<struct objfile> objfile_holder (objfile);
2513 /* We need to do this whenever any symbols go away. */
2514 clear_symtab_users_cleanup defer_clear_users (0);
2516 if (exec_bfd != NULL
2517 && filename_cmp (bfd_get_filename (objfile->obfd),
2518 bfd_get_filename (exec_bfd)) == 0)
2520 /* Reload EXEC_BFD without asking anything. */
2522 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2525 /* Keep the calls order approx. the same as in free_objfile. */
2527 /* Free the separate debug objfiles. It will be
2528 automatically recreated by sym_read. */
2529 free_objfile_separate_debug (objfile);
2531 /* Remove any references to this objfile in the global
2533 preserve_values (objfile);
2535 /* Nuke all the state that we will re-read. Much of the following
2536 code which sets things to NULL really is necessary to tell
2537 other parts of GDB that there is nothing currently there.
2539 Try to keep the freeing order compatible with free_objfile. */
2541 if (objfile->sf != NULL)
2543 (*objfile->sf->sym_finish) (objfile);
2546 clear_objfile_data (objfile);
2548 /* Clean up any state BFD has sitting around. */
2550 gdb_bfd_ref_ptr obfd (objfile->obfd);
2551 char *obfd_filename;
2553 obfd_filename = bfd_get_filename (objfile->obfd);
2554 /* Open the new BFD before freeing the old one, so that
2555 the filename remains live. */
2556 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2557 objfile->obfd = temp.release ();
2558 if (objfile->obfd == NULL)
2559 error (_("Can't open %s to read symbols."), obfd_filename);
2562 std::string original_name = objfile->original_name;
2564 /* bfd_openr sets cacheable to true, which is what we want. */
2565 if (!bfd_check_format (objfile->obfd, bfd_object))
2566 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2567 bfd_errmsg (bfd_get_error ()));
2569 /* Save the offsets, we will nuke them with the rest of the
2571 num_offsets = objfile->num_sections;
2572 offsets = ((struct section_offsets *)
2573 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2574 memcpy (offsets, objfile->section_offsets,
2575 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2577 objfile->reset_psymtabs ();
2579 /* NB: after this call to obstack_free, objfiles_changed
2580 will need to be called (see discussion below). */
2581 obstack_free (&objfile->objfile_obstack, 0);
2582 objfile->sections = NULL;
2583 objfile->compunit_symtabs = NULL;
2584 objfile->template_symbols = NULL;
2585 objfile->static_links.reset (nullptr);
2587 /* obstack_init also initializes the obstack so it is
2588 empty. We could use obstack_specify_allocation but
2589 gdb_obstack.h specifies the alloc/dealloc functions. */
2590 obstack_init (&objfile->objfile_obstack);
2592 /* set_objfile_per_bfd potentially allocates the per-bfd
2593 data on the objfile's obstack (if sharing data across
2594 multiple users is not possible), so it's important to
2595 do it *after* the obstack has been initialized. */
2596 set_objfile_per_bfd (objfile);
2598 objfile->original_name
2599 = obstack_strdup (&objfile->objfile_obstack, original_name);
2601 /* Reset the sym_fns pointer. The ELF reader can change it
2602 based on whether .gdb_index is present, and we need it to
2603 start over. PR symtab/15885 */
2604 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2606 build_objfile_section_table (objfile);
2608 /* We use the same section offsets as from last time. I'm not
2609 sure whether that is always correct for shared libraries. */
2610 objfile->section_offsets = (struct section_offsets *)
2611 obstack_alloc (&objfile->objfile_obstack,
2612 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2613 memcpy (objfile->section_offsets, offsets,
2614 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2615 objfile->num_sections = num_offsets;
2617 /* What the hell is sym_new_init for, anyway? The concept of
2618 distinguishing between the main file and additional files
2619 in this way seems rather dubious. */
2620 if (objfile == symfile_objfile)
2622 (*objfile->sf->sym_new_init) (objfile);
2625 (*objfile->sf->sym_init) (objfile);
2626 clear_complaints ();
2628 objfile->flags &= ~OBJF_PSYMTABS_READ;
2630 /* We are about to read new symbols and potentially also
2631 DWARF information. Some targets may want to pass addresses
2632 read from DWARF DIE's through an adjustment function before
2633 saving them, like MIPS, which may call into
2634 "find_pc_section". When called, that function will make
2635 use of per-objfile program space data.
2637 Since we discarded our section information above, we have
2638 dangling pointers in the per-objfile program space data
2639 structure. Force GDB to update the section mapping
2640 information by letting it know the objfile has changed,
2641 making the dangling pointers point to correct data
2644 objfiles_changed ();
2646 read_symbols (objfile, 0);
2648 if (!objfile_has_symbols (objfile))
2651 printf_filtered (_("(no debugging symbols found)\n"));
2655 /* We're done reading the symbol file; finish off complaints. */
2656 clear_complaints ();
2658 /* Getting new symbols may change our opinion about what is
2661 reinit_frame_cache ();
2663 /* Discard cleanups as symbol reading was successful. */
2664 objfile_holder.release ();
2665 defer_clear_users.release ();
2667 /* If the mtime has changed between the time we set new_modtime
2668 and now, we *want* this to be out of date, so don't call stat
2670 objfile->mtime = new_modtime;
2671 init_entry_point_info (objfile);
2673 new_objfiles.push_back (objfile);
2677 if (!new_objfiles.empty ())
2679 clear_symtab_users (0);
2681 /* clear_objfile_data for each objfile was called before freeing it and
2682 gdb::observers::new_objfile.notify (NULL) has been called by
2683 clear_symtab_users above. Notify the new files now. */
2684 for (auto iter : new_objfiles)
2685 gdb::observers::new_objfile.notify (iter);
2687 /* At least one objfile has changed, so we can consider that
2688 the executable we're debugging has changed too. */
2689 gdb::observers::executable_changed.notify ();
2694 struct filename_language
2696 filename_language (const std::string &ext_, enum language lang_)
2697 : ext (ext_), lang (lang_)
2704 static std::vector<filename_language> filename_language_table;
2706 /* See symfile.h. */
2709 add_filename_language (const char *ext, enum language lang)
2711 filename_language_table.emplace_back (ext, lang);
2714 static char *ext_args;
2716 show_ext_args (struct ui_file *file, int from_tty,
2717 struct cmd_list_element *c, const char *value)
2719 fprintf_filtered (file,
2720 _("Mapping between filename extension "
2721 "and source language is \"%s\".\n"),
2726 set_ext_lang_command (const char *args,
2727 int from_tty, struct cmd_list_element *e)
2729 char *cp = ext_args;
2732 /* First arg is filename extension, starting with '.' */
2734 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2736 /* Find end of first arg. */
2737 while (*cp && !isspace (*cp))
2741 error (_("'%s': two arguments required -- "
2742 "filename extension and language"),
2745 /* Null-terminate first arg. */
2748 /* Find beginning of second arg, which should be a source language. */
2749 cp = skip_spaces (cp);
2752 error (_("'%s': two arguments required -- "
2753 "filename extension and language"),
2756 /* Lookup the language from among those we know. */
2757 lang = language_enum (cp);
2759 auto it = filename_language_table.begin ();
2760 /* Now lookup the filename extension: do we already know it? */
2761 for (; it != filename_language_table.end (); it++)
2763 if (it->ext == ext_args)
2767 if (it == filename_language_table.end ())
2769 /* New file extension. */
2770 add_filename_language (ext_args, lang);
2774 /* Redefining a previously known filename extension. */
2777 /* query ("Really make files of type %s '%s'?", */
2778 /* ext_args, language_str (lang)); */
2785 info_ext_lang_command (const char *args, int from_tty)
2787 printf_filtered (_("Filename extensions and the languages they represent:"));
2788 printf_filtered ("\n\n");
2789 for (const filename_language &entry : filename_language_table)
2790 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2791 language_str (entry.lang));
2795 deduce_language_from_filename (const char *filename)
2799 if (filename != NULL)
2800 if ((cp = strrchr (filename, '.')) != NULL)
2802 for (const filename_language &entry : filename_language_table)
2803 if (entry.ext == cp)
2807 return language_unknown;
2810 /* Allocate and initialize a new symbol table.
2811 CUST is from the result of allocate_compunit_symtab. */
2814 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2816 struct objfile *objfile = cust->objfile;
2817 struct symtab *symtab
2818 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2821 = ((const char *) objfile->per_bfd->filename_cache.insert
2822 (filename, strlen (filename) + 1));
2823 symtab->fullname = NULL;
2824 symtab->language = deduce_language_from_filename (filename);
2826 /* This can be very verbose with lots of headers.
2827 Only print at higher debug levels. */
2828 if (symtab_create_debug >= 2)
2830 /* Be a bit clever with debugging messages, and don't print objfile
2831 every time, only when it changes. */
2832 static char *last_objfile_name = NULL;
2834 if (last_objfile_name == NULL
2835 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2837 xfree (last_objfile_name);
2838 last_objfile_name = xstrdup (objfile_name (objfile));
2839 fprintf_filtered (gdb_stdlog,
2840 "Creating one or more symtabs for objfile %s ...\n",
2843 fprintf_filtered (gdb_stdlog,
2844 "Created symtab %s for module %s.\n",
2845 host_address_to_string (symtab), filename);
2848 /* Add it to CUST's list of symtabs. */
2849 if (cust->filetabs == NULL)
2851 cust->filetabs = symtab;
2852 cust->last_filetab = symtab;
2856 cust->last_filetab->next = symtab;
2857 cust->last_filetab = symtab;
2860 /* Backlink to the containing compunit symtab. */
2861 symtab->compunit_symtab = cust;
2866 /* Allocate and initialize a new compunit.
2867 NAME is the name of the main source file, if there is one, or some
2868 descriptive text if there are no source files. */
2870 struct compunit_symtab *
2871 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2873 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2874 struct compunit_symtab);
2875 const char *saved_name;
2877 cu->objfile = objfile;
2879 /* The name we record here is only for display/debugging purposes.
2880 Just save the basename to avoid path issues (too long for display,
2881 relative vs absolute, etc.). */
2882 saved_name = lbasename (name);
2883 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2885 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2887 if (symtab_create_debug)
2889 fprintf_filtered (gdb_stdlog,
2890 "Created compunit symtab %s for %s.\n",
2891 host_address_to_string (cu),
2898 /* Hook CU to the objfile it comes from. */
2901 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2903 cu->next = cu->objfile->compunit_symtabs;
2904 cu->objfile->compunit_symtabs = cu;
2908 /* Reset all data structures in gdb which may contain references to
2909 symbol table data. */
2912 clear_symtab_users (symfile_add_flags add_flags)
2914 /* Someday, we should do better than this, by only blowing away
2915 the things that really need to be blown. */
2917 /* Clear the "current" symtab first, because it is no longer valid.
2918 breakpoint_re_set may try to access the current symtab. */
2919 clear_current_source_symtab_and_line ();
2922 clear_last_displayed_sal ();
2923 clear_pc_function_cache ();
2924 gdb::observers::new_objfile.notify (NULL);
2926 /* Varobj may refer to old symbols, perform a cleanup. */
2927 varobj_invalidate ();
2929 /* Now that the various caches have been cleared, we can re_set
2930 our breakpoints without risking it using stale data. */
2931 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2932 breakpoint_re_set ();
2936 The following code implements an abstraction for debugging overlay sections.
2938 The target model is as follows:
2939 1) The gnu linker will permit multiple sections to be mapped into the
2940 same VMA, each with its own unique LMA (or load address).
2941 2) It is assumed that some runtime mechanism exists for mapping the
2942 sections, one by one, from the load address into the VMA address.
2943 3) This code provides a mechanism for gdb to keep track of which
2944 sections should be considered to be mapped from the VMA to the LMA.
2945 This information is used for symbol lookup, and memory read/write.
2946 For instance, if a section has been mapped then its contents
2947 should be read from the VMA, otherwise from the LMA.
2949 Two levels of debugger support for overlays are available. One is
2950 "manual", in which the debugger relies on the user to tell it which
2951 overlays are currently mapped. This level of support is
2952 implemented entirely in the core debugger, and the information about
2953 whether a section is mapped is kept in the objfile->obj_section table.
2955 The second level of support is "automatic", and is only available if
2956 the target-specific code provides functionality to read the target's
2957 overlay mapping table, and translate its contents for the debugger
2958 (by updating the mapped state information in the obj_section tables).
2960 The interface is as follows:
2962 overlay map <name> -- tell gdb to consider this section mapped
2963 overlay unmap <name> -- tell gdb to consider this section unmapped
2964 overlay list -- list the sections that GDB thinks are mapped
2965 overlay read-target -- get the target's state of what's mapped
2966 overlay off/manual/auto -- set overlay debugging state
2967 Functional interface:
2968 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2969 section, return that section.
2970 find_pc_overlay(pc): find any overlay section that contains
2971 the pc, either in its VMA or its LMA
2972 section_is_mapped(sect): true if overlay is marked as mapped
2973 section_is_overlay(sect): true if section's VMA != LMA
2974 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2975 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2976 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2977 overlay_mapped_address(...): map an address from section's LMA to VMA
2978 overlay_unmapped_address(...): map an address from section's VMA to LMA
2979 symbol_overlayed_address(...): Return a "current" address for symbol:
2980 either in VMA or LMA depending on whether
2981 the symbol's section is currently mapped. */
2983 /* Overlay debugging state: */
2985 enum overlay_debugging_state overlay_debugging = ovly_off;
2986 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2988 /* Function: section_is_overlay (SECTION)
2989 Returns true if SECTION has VMA not equal to LMA, ie.
2990 SECTION is loaded at an address different from where it will "run". */
2993 section_is_overlay (struct obj_section *section)
2995 if (overlay_debugging && section)
2997 asection *bfd_section = section->the_bfd_section;
2999 if (bfd_section_lma (abfd, bfd_section) != 0
3000 && bfd_section_lma (abfd, bfd_section)
3001 != bfd_section_vma (abfd, bfd_section))
3008 /* Function: overlay_invalidate_all (void)
3009 Invalidate the mapped state of all overlay sections (mark it as stale). */
3012 overlay_invalidate_all (void)
3014 struct obj_section *sect;
3016 for (objfile *objfile : current_program_space->objfiles ())
3017 ALL_OBJFILE_OSECTIONS (objfile, sect)
3018 if (section_is_overlay (sect))
3019 sect->ovly_mapped = -1;
3022 /* Function: section_is_mapped (SECTION)
3023 Returns true if section is an overlay, and is currently mapped.
3025 Access to the ovly_mapped flag is restricted to this function, so
3026 that we can do automatic update. If the global flag
3027 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3028 overlay_invalidate_all. If the mapped state of the particular
3029 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3032 section_is_mapped (struct obj_section *osect)
3034 struct gdbarch *gdbarch;
3036 if (osect == 0 || !section_is_overlay (osect))
3039 switch (overlay_debugging)
3043 return 0; /* overlay debugging off */
3044 case ovly_auto: /* overlay debugging automatic */
3045 /* Unles there is a gdbarch_overlay_update function,
3046 there's really nothing useful to do here (can't really go auto). */
3047 gdbarch = get_objfile_arch (osect->objfile);
3048 if (gdbarch_overlay_update_p (gdbarch))
3050 if (overlay_cache_invalid)
3052 overlay_invalidate_all ();
3053 overlay_cache_invalid = 0;
3055 if (osect->ovly_mapped == -1)
3056 gdbarch_overlay_update (gdbarch, osect);
3059 case ovly_on: /* overlay debugging manual */
3060 return osect->ovly_mapped == 1;
3064 /* Function: pc_in_unmapped_range
3065 If PC falls into the lma range of SECTION, return true, else false. */
3068 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3070 if (section_is_overlay (section))
3072 bfd *abfd = section->objfile->obfd;
3073 asection *bfd_section = section->the_bfd_section;
3075 /* We assume the LMA is relocated by the same offset as the VMA. */
3076 bfd_vma size = bfd_get_section_size (bfd_section);
3077 CORE_ADDR offset = obj_section_offset (section);
3079 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3080 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3087 /* Function: pc_in_mapped_range
3088 If PC falls into the vma range of SECTION, return true, else false. */
3091 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3093 if (section_is_overlay (section))
3095 if (obj_section_addr (section) <= pc
3096 && pc < obj_section_endaddr (section))
3103 /* Return true if the mapped ranges of sections A and B overlap, false
3107 sections_overlap (struct obj_section *a, struct obj_section *b)
3109 CORE_ADDR a_start = obj_section_addr (a);
3110 CORE_ADDR a_end = obj_section_endaddr (a);
3111 CORE_ADDR b_start = obj_section_addr (b);
3112 CORE_ADDR b_end = obj_section_endaddr (b);
3114 return (a_start < b_end && b_start < a_end);
3117 /* Function: overlay_unmapped_address (PC, SECTION)
3118 Returns the address corresponding to PC in the unmapped (load) range.
3119 May be the same as PC. */
3122 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3124 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3126 asection *bfd_section = section->the_bfd_section;
3128 return pc + bfd_section_lma (abfd, bfd_section)
3129 - bfd_section_vma (abfd, bfd_section);
3135 /* Function: overlay_mapped_address (PC, SECTION)
3136 Returns the address corresponding to PC in the mapped (runtime) range.
3137 May be the same as PC. */
3140 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3142 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3144 asection *bfd_section = section->the_bfd_section;
3146 return pc + bfd_section_vma (abfd, bfd_section)
3147 - bfd_section_lma (abfd, bfd_section);
3153 /* Function: symbol_overlayed_address
3154 Return one of two addresses (relative to the VMA or to the LMA),
3155 depending on whether the section is mapped or not. */
3158 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3160 if (overlay_debugging)
3162 /* If the symbol has no section, just return its regular address. */
3165 /* If the symbol's section is not an overlay, just return its
3167 if (!section_is_overlay (section))
3169 /* If the symbol's section is mapped, just return its address. */
3170 if (section_is_mapped (section))
3173 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3174 * then return its LOADED address rather than its vma address!!
3176 return overlay_unmapped_address (address, section);
3181 /* Function: find_pc_overlay (PC)
3182 Return the best-match overlay section for PC:
3183 If PC matches a mapped overlay section's VMA, return that section.
3184 Else if PC matches an unmapped section's VMA, return that section.
3185 Else if PC matches an unmapped section's LMA, return that section. */
3187 struct obj_section *
3188 find_pc_overlay (CORE_ADDR pc)
3190 struct obj_section *osect, *best_match = NULL;
3192 if (overlay_debugging)
3194 for (objfile *objfile : current_program_space->objfiles ())
3195 ALL_OBJFILE_OSECTIONS (objfile, osect)
3196 if (section_is_overlay (osect))
3198 if (pc_in_mapped_range (pc, osect))
3200 if (section_is_mapped (osect))
3205 else if (pc_in_unmapped_range (pc, osect))
3212 /* Function: find_pc_mapped_section (PC)
3213 If PC falls into the VMA address range of an overlay section that is
3214 currently marked as MAPPED, return that section. Else return NULL. */
3216 struct obj_section *
3217 find_pc_mapped_section (CORE_ADDR pc)
3219 struct obj_section *osect;
3221 if (overlay_debugging)
3223 for (objfile *objfile : current_program_space->objfiles ())
3224 ALL_OBJFILE_OSECTIONS (objfile, osect)
3225 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3232 /* Function: list_overlays_command
3233 Print a list of mapped sections and their PC ranges. */
3236 list_overlays_command (const char *args, int from_tty)
3239 struct obj_section *osect;
3241 if (overlay_debugging)
3243 for (objfile *objfile : current_program_space->objfiles ())
3244 ALL_OBJFILE_OSECTIONS (objfile, osect)
3245 if (section_is_mapped (osect))
3247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3252 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3253 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3254 size = bfd_get_section_size (osect->the_bfd_section);
3255 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3257 printf_filtered ("Section %s, loaded at ", name);
3258 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3259 puts_filtered (" - ");
3260 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3261 printf_filtered (", mapped at ");
3262 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3263 puts_filtered (" - ");
3264 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3265 puts_filtered ("\n");
3271 printf_filtered (_("No sections are mapped.\n"));
3274 /* Function: map_overlay_command
3275 Mark the named section as mapped (ie. residing at its VMA address). */
3278 map_overlay_command (const char *args, int from_tty)
3280 struct obj_section *sec, *sec2;
3282 if (!overlay_debugging)
3283 error (_("Overlay debugging not enabled. Use "
3284 "either the 'overlay auto' or\n"
3285 "the 'overlay manual' command."));
3287 if (args == 0 || *args == 0)
3288 error (_("Argument required: name of an overlay section"));
3290 /* First, find a section matching the user supplied argument. */
3291 for (objfile *obj_file : current_program_space->objfiles ())
3292 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3293 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3296 /* Now, check to see if the section is an overlay. */
3297 if (!section_is_overlay (sec))
3298 continue; /* not an overlay section */
3300 /* Mark the overlay as "mapped". */
3301 sec->ovly_mapped = 1;
3303 /* Next, make a pass and unmap any sections that are
3304 overlapped by this new section: */
3305 for (objfile *objfile2 : current_program_space->objfiles ())
3306 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3307 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3311 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3312 bfd_section_name (obj_file->obfd,
3313 sec2->the_bfd_section));
3314 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3318 error (_("No overlay section called %s"), args);
3321 /* Function: unmap_overlay_command
3322 Mark the overlay section as unmapped
3323 (ie. resident in its LMA address range, rather than the VMA range). */
3326 unmap_overlay_command (const char *args, int from_tty)
3328 struct obj_section *sec = NULL;
3330 if (!overlay_debugging)
3331 error (_("Overlay debugging not enabled. "
3332 "Use either the 'overlay auto' or\n"
3333 "the 'overlay manual' command."));
3335 if (args == 0 || *args == 0)
3336 error (_("Argument required: name of an overlay section"));
3338 /* First, find a section matching the user supplied argument. */
3339 for (objfile *objfile : current_program_space->objfiles ())
3340 ALL_OBJFILE_OSECTIONS (objfile, sec)
3341 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3343 if (!sec->ovly_mapped)
3344 error (_("Section %s is not mapped"), args);
3345 sec->ovly_mapped = 0;
3348 error (_("No overlay section called %s"), args);
3351 /* Function: overlay_auto_command
3352 A utility command to turn on overlay debugging.
3353 Possibly this should be done via a set/show command. */
3356 overlay_auto_command (const char *args, int from_tty)
3358 overlay_debugging = ovly_auto;
3359 enable_overlay_breakpoints ();
3361 printf_unfiltered (_("Automatic overlay debugging enabled."));
3364 /* Function: overlay_manual_command
3365 A utility command to turn on overlay debugging.
3366 Possibly this should be done via a set/show command. */
3369 overlay_manual_command (const char *args, int from_tty)
3371 overlay_debugging = ovly_on;
3372 disable_overlay_breakpoints ();
3374 printf_unfiltered (_("Overlay debugging enabled."));
3377 /* Function: overlay_off_command
3378 A utility command to turn on overlay debugging.
3379 Possibly this should be done via a set/show command. */
3382 overlay_off_command (const char *args, int from_tty)
3384 overlay_debugging = ovly_off;
3385 disable_overlay_breakpoints ();
3387 printf_unfiltered (_("Overlay debugging disabled."));
3391 overlay_load_command (const char *args, int from_tty)
3393 struct gdbarch *gdbarch = get_current_arch ();
3395 if (gdbarch_overlay_update_p (gdbarch))
3396 gdbarch_overlay_update (gdbarch, NULL);
3398 error (_("This target does not know how to read its overlay state."));
3401 /* Function: overlay_command
3402 A place-holder for a mis-typed command. */
3404 /* Command list chain containing all defined "overlay" subcommands. */
3405 static struct cmd_list_element *overlaylist;
3408 overlay_command (const char *args, int from_tty)
3411 ("\"overlay\" must be followed by the name of an overlay command.\n");
3412 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3415 /* Target Overlays for the "Simplest" overlay manager:
3417 This is GDB's default target overlay layer. It works with the
3418 minimal overlay manager supplied as an example by Cygnus. The
3419 entry point is via a function pointer "gdbarch_overlay_update",
3420 so targets that use a different runtime overlay manager can
3421 substitute their own overlay_update function and take over the
3424 The overlay_update function pokes around in the target's data structures
3425 to see what overlays are mapped, and updates GDB's overlay mapping with
3428 In this simple implementation, the target data structures are as follows:
3429 unsigned _novlys; /# number of overlay sections #/
3430 unsigned _ovly_table[_novlys][4] = {
3431 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3432 {..., ..., ..., ...},
3434 unsigned _novly_regions; /# number of overlay regions #/
3435 unsigned _ovly_region_table[_novly_regions][3] = {
3436 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3439 These functions will attempt to update GDB's mappedness state in the
3440 symbol section table, based on the target's mappedness state.
3442 To do this, we keep a cached copy of the target's _ovly_table, and
3443 attempt to detect when the cached copy is invalidated. The main
3444 entry point is "simple_overlay_update(SECT), which looks up SECT in
3445 the cached table and re-reads only the entry for that section from
3446 the target (whenever possible). */
3448 /* Cached, dynamically allocated copies of the target data structures: */
3449 static unsigned (*cache_ovly_table)[4] = 0;
3450 static unsigned cache_novlys = 0;
3451 static CORE_ADDR cache_ovly_table_base = 0;
3454 VMA, OSIZE, LMA, MAPPED
3457 /* Throw away the cached copy of _ovly_table. */
3460 simple_free_overlay_table (void)
3462 if (cache_ovly_table)
3463 xfree (cache_ovly_table);
3465 cache_ovly_table = NULL;
3466 cache_ovly_table_base = 0;
3469 /* Read an array of ints of size SIZE from the target into a local buffer.
3470 Convert to host order. int LEN is number of ints. */
3473 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3474 int len, int size, enum bfd_endian byte_order)
3476 /* FIXME (alloca): Not safe if array is very large. */
3477 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3480 read_memory (memaddr, buf, len * size);
3481 for (i = 0; i < len; i++)
3482 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3485 /* Find and grab a copy of the target _ovly_table
3486 (and _novlys, which is needed for the table's size). */
3489 simple_read_overlay_table (void)
3491 struct bound_minimal_symbol novlys_msym;
3492 struct bound_minimal_symbol ovly_table_msym;
3493 struct gdbarch *gdbarch;
3495 enum bfd_endian byte_order;
3497 simple_free_overlay_table ();
3498 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3499 if (! novlys_msym.minsym)
3501 error (_("Error reading inferior's overlay table: "
3502 "couldn't find `_novlys' variable\n"
3503 "in inferior. Use `overlay manual' mode."));
3507 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3508 if (! ovly_table_msym.minsym)
3510 error (_("Error reading inferior's overlay table: couldn't find "
3511 "`_ovly_table' array\n"
3512 "in inferior. Use `overlay manual' mode."));
3516 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3517 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3518 byte_order = gdbarch_byte_order (gdbarch);
3520 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3523 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3524 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3525 read_target_long_array (cache_ovly_table_base,
3526 (unsigned int *) cache_ovly_table,
3527 cache_novlys * 4, word_size, byte_order);
3529 return 1; /* SUCCESS */
3532 /* Function: simple_overlay_update_1
3533 A helper function for simple_overlay_update. Assuming a cached copy
3534 of _ovly_table exists, look through it to find an entry whose vma,
3535 lma and size match those of OSECT. Re-read the entry and make sure
3536 it still matches OSECT (else the table may no longer be valid).
3537 Set OSECT's mapped state to match the entry. Return: 1 for
3538 success, 0 for failure. */
3541 simple_overlay_update_1 (struct obj_section *osect)
3544 asection *bsect = osect->the_bfd_section;
3545 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3546 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3547 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3549 for (i = 0; i < cache_novlys; i++)
3550 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3551 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3553 read_target_long_array (cache_ovly_table_base + i * word_size,
3554 (unsigned int *) cache_ovly_table[i],
3555 4, word_size, byte_order);
3556 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3557 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3559 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3562 else /* Warning! Warning! Target's ovly table has changed! */
3568 /* Function: simple_overlay_update
3569 If OSECT is NULL, then update all sections' mapped state
3570 (after re-reading the entire target _ovly_table).
3571 If OSECT is non-NULL, then try to find a matching entry in the
3572 cached ovly_table and update only OSECT's mapped state.
3573 If a cached entry can't be found or the cache isn't valid, then
3574 re-read the entire cache, and go ahead and update all sections. */
3577 simple_overlay_update (struct obj_section *osect)
3579 /* Were we given an osect to look up? NULL means do all of them. */
3581 /* Have we got a cached copy of the target's overlay table? */
3582 if (cache_ovly_table != NULL)
3584 /* Does its cached location match what's currently in the
3586 struct bound_minimal_symbol minsym
3587 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3589 if (minsym.minsym == NULL)
3590 error (_("Error reading inferior's overlay table: couldn't "
3591 "find `_ovly_table' array\n"
3592 "in inferior. Use `overlay manual' mode."));
3594 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3595 /* Then go ahead and try to look up this single section in
3597 if (simple_overlay_update_1 (osect))
3598 /* Found it! We're done. */
3602 /* Cached table no good: need to read the entire table anew.
3603 Or else we want all the sections, in which case it's actually
3604 more efficient to read the whole table in one block anyway. */
3606 if (! simple_read_overlay_table ())
3609 /* Now may as well update all sections, even if only one was requested. */
3610 for (objfile *objfile : current_program_space->objfiles ())
3611 ALL_OBJFILE_OSECTIONS (objfile, osect)
3612 if (section_is_overlay (osect))
3615 asection *bsect = osect->the_bfd_section;
3617 for (i = 0; i < cache_novlys; i++)
3618 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3619 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3620 { /* obj_section matches i'th entry in ovly_table. */
3621 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3622 break; /* finished with inner for loop: break out. */
3627 /* Set the output sections and output offsets for section SECTP in
3628 ABFD. The relocation code in BFD will read these offsets, so we
3629 need to be sure they're initialized. We map each section to itself,
3630 with no offset; this means that SECTP->vma will be honored. */
3633 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3635 sectp->output_section = sectp;
3636 sectp->output_offset = 0;
3639 /* Default implementation for sym_relocate. */
3642 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3645 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3647 bfd *abfd = sectp->owner;
3649 /* We're only interested in sections with relocation
3651 if ((sectp->flags & SEC_RELOC) == 0)
3654 /* We will handle section offsets properly elsewhere, so relocate as if
3655 all sections begin at 0. */
3656 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3658 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3661 /* Relocate the contents of a debug section SECTP in ABFD. The
3662 contents are stored in BUF if it is non-NULL, or returned in a
3663 malloc'd buffer otherwise.
3665 For some platforms and debug info formats, shared libraries contain
3666 relocations against the debug sections (particularly for DWARF-2;
3667 one affected platform is PowerPC GNU/Linux, although it depends on
3668 the version of the linker in use). Also, ELF object files naturally
3669 have unresolved relocations for their debug sections. We need to apply
3670 the relocations in order to get the locations of symbols correct.
3671 Another example that may require relocation processing, is the
3672 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3676 symfile_relocate_debug_section (struct objfile *objfile,
3677 asection *sectp, bfd_byte *buf)
3679 gdb_assert (objfile->sf->sym_relocate);
3681 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3684 struct symfile_segment_data *
3685 get_symfile_segment_data (bfd *abfd)
3687 const struct sym_fns *sf = find_sym_fns (abfd);
3692 return sf->sym_segments (abfd);
3696 free_symfile_segment_data (struct symfile_segment_data *data)
3698 xfree (data->segment_bases);
3699 xfree (data->segment_sizes);
3700 xfree (data->segment_info);
3705 - DATA, containing segment addresses from the object file ABFD, and
3706 the mapping from ABFD's sections onto the segments that own them,
3708 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3709 segment addresses reported by the target,
3710 store the appropriate offsets for each section in OFFSETS.
3712 If there are fewer entries in SEGMENT_BASES than there are segments
3713 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3715 If there are more entries, then ignore the extra. The target may
3716 not be able to distinguish between an empty data segment and a
3717 missing data segment; a missing text segment is less plausible. */
3720 symfile_map_offsets_to_segments (bfd *abfd,
3721 const struct symfile_segment_data *data,
3722 struct section_offsets *offsets,
3723 int num_segment_bases,
3724 const CORE_ADDR *segment_bases)
3729 /* It doesn't make sense to call this function unless you have some
3730 segment base addresses. */
3731 gdb_assert (num_segment_bases > 0);
3733 /* If we do not have segment mappings for the object file, we
3734 can not relocate it by segments. */
3735 gdb_assert (data != NULL);
3736 gdb_assert (data->num_segments > 0);
3738 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3740 int which = data->segment_info[i];
3742 gdb_assert (0 <= which && which <= data->num_segments);
3744 /* Don't bother computing offsets for sections that aren't
3745 loaded as part of any segment. */
3749 /* Use the last SEGMENT_BASES entry as the address of any extra
3750 segments mentioned in DATA->segment_info. */
3751 if (which > num_segment_bases)
3752 which = num_segment_bases;
3754 offsets->offsets[i] = (segment_bases[which - 1]
3755 - data->segment_bases[which - 1]);
3762 symfile_find_segment_sections (struct objfile *objfile)
3764 bfd *abfd = objfile->obfd;
3767 struct symfile_segment_data *data;
3769 data = get_symfile_segment_data (objfile->obfd);
3773 if (data->num_segments != 1 && data->num_segments != 2)
3775 free_symfile_segment_data (data);
3779 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3781 int which = data->segment_info[i];
3785 if (objfile->sect_index_text == -1)
3786 objfile->sect_index_text = sect->index;
3788 if (objfile->sect_index_rodata == -1)
3789 objfile->sect_index_rodata = sect->index;
3791 else if (which == 2)
3793 if (objfile->sect_index_data == -1)
3794 objfile->sect_index_data = sect->index;
3796 if (objfile->sect_index_bss == -1)
3797 objfile->sect_index_bss = sect->index;
3801 free_symfile_segment_data (data);
3804 /* Listen for free_objfile events. */
3807 symfile_free_objfile (struct objfile *objfile)
3809 /* Remove the target sections owned by this objfile. */
3810 if (objfile != NULL)
3811 remove_target_sections ((void *) objfile);
3814 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3815 Expand all symtabs that match the specified criteria.
3816 See quick_symbol_functions.expand_symtabs_matching for details. */
3819 expand_symtabs_matching
3820 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3821 const lookup_name_info &lookup_name,
3822 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3823 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3824 enum search_domain kind)
3826 for (objfile *objfile : current_program_space->objfiles ())
3829 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3832 expansion_notify, kind);
3836 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3837 Map function FUN over every file.
3838 See quick_symbol_functions.map_symbol_filenames for details. */
3841 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3844 for (objfile *objfile : current_program_space->objfiles ())
3847 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3854 namespace selftests {
3855 namespace filename_language {
3857 static void test_filename_language ()
3859 /* This test messes up the filename_language_table global. */
3860 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3862 /* Test deducing an unknown extension. */
3863 language lang = deduce_language_from_filename ("myfile.blah");
3864 SELF_CHECK (lang == language_unknown);
3866 /* Test deducing a known extension. */
3867 lang = deduce_language_from_filename ("myfile.c");
3868 SELF_CHECK (lang == language_c);
3870 /* Test adding a new extension using the internal API. */
3871 add_filename_language (".blah", language_pascal);
3872 lang = deduce_language_from_filename ("myfile.blah");
3873 SELF_CHECK (lang == language_pascal);
3877 test_set_ext_lang_command ()
3879 /* This test messes up the filename_language_table global. */
3880 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3882 /* Confirm that the .hello extension is not known. */
3883 language lang = deduce_language_from_filename ("cake.hello");
3884 SELF_CHECK (lang == language_unknown);
3886 /* Test adding a new extension using the CLI command. */
3887 auto args_holder = make_unique_xstrdup (".hello rust");
3888 ext_args = args_holder.get ();
3889 set_ext_lang_command (NULL, 1, NULL);
3891 lang = deduce_language_from_filename ("cake.hello");
3892 SELF_CHECK (lang == language_rust);
3894 /* Test overriding an existing extension using the CLI command. */
3895 int size_before = filename_language_table.size ();
3896 args_holder.reset (xstrdup (".hello pascal"));
3897 ext_args = args_holder.get ();
3898 set_ext_lang_command (NULL, 1, NULL);
3899 int size_after = filename_language_table.size ();
3901 lang = deduce_language_from_filename ("cake.hello");
3902 SELF_CHECK (lang == language_pascal);
3903 SELF_CHECK (size_before == size_after);
3906 } /* namespace filename_language */
3907 } /* namespace selftests */
3909 #endif /* GDB_SELF_TEST */
3912 _initialize_symfile (void)
3914 struct cmd_list_element *c;
3916 gdb::observers::free_objfile.attach (symfile_free_objfile);
3918 #define READNOW_READNEVER_HELP \
3919 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3920 immediately. This makes the command slower, but may make future operations\n\
3922 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3923 symbolic debug information."
3925 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3926 Load symbol table from executable file FILE.\n\
3927 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3928 OFF is an optional offset which is added to each section address.\n\
3929 The `file' command can also load symbol tables, as well as setting the file\n\
3930 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3931 set_cmd_completer (c, filename_completer);
3933 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3934 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3935 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3936 [-s SECT-NAME SECT-ADDR]...\n\
3937 ADDR is the starting address of the file's text.\n\
3938 Each '-s' argument provides a section name and address, and\n\
3939 should be specified if the data and bss segments are not contiguous\n\
3940 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3941 OFF is an optional offset which is added to the default load addresses\n\
3942 of all sections for which no other address was specified.\n"
3943 READNOW_READNEVER_HELP),
3945 set_cmd_completer (c, filename_completer);
3947 c = add_cmd ("remove-symbol-file", class_files,
3948 remove_symbol_file_command, _("\
3949 Remove a symbol file added via the add-symbol-file command.\n\
3950 Usage: remove-symbol-file FILENAME\n\
3951 remove-symbol-file -a ADDRESS\n\
3952 The file to remove can be identified by its filename or by an address\n\
3953 that lies within the boundaries of this symbol file in memory."),
3956 c = add_cmd ("load", class_files, load_command, _("\
3957 Dynamically load FILE into the running program.\n\
3958 FILE symbols are recorded for access from GDB.\n\
3959 Usage: load [FILE] [OFFSET]\n\
3960 An optional load OFFSET may also be given as a literal address.\n\
3961 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3962 on its own."), &cmdlist);
3963 set_cmd_completer (c, filename_completer);
3965 add_prefix_cmd ("overlay", class_support, overlay_command,
3966 _("Commands for debugging overlays."), &overlaylist,
3967 "overlay ", 0, &cmdlist);
3969 add_com_alias ("ovly", "overlay", class_alias, 1);
3970 add_com_alias ("ov", "overlay", class_alias, 1);
3972 add_cmd ("map-overlay", class_support, map_overlay_command,
3973 _("Assert that an overlay section is mapped."), &overlaylist);
3975 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3976 _("Assert that an overlay section is unmapped."), &overlaylist);
3978 add_cmd ("list-overlays", class_support, list_overlays_command,
3979 _("List mappings of overlay sections."), &overlaylist);
3981 add_cmd ("manual", class_support, overlay_manual_command,
3982 _("Enable overlay debugging."), &overlaylist);
3983 add_cmd ("off", class_support, overlay_off_command,
3984 _("Disable overlay debugging."), &overlaylist);
3985 add_cmd ("auto", class_support, overlay_auto_command,
3986 _("Enable automatic overlay debugging."), &overlaylist);
3987 add_cmd ("load-target", class_support, overlay_load_command,
3988 _("Read the overlay mapping state from the target."), &overlaylist);
3990 /* Filename extension to source language lookup table: */
3991 add_setshow_string_noescape_cmd ("extension-language", class_files,
3993 Set mapping between filename extension and source language."), _("\
3994 Show mapping between filename extension and source language."), _("\
3995 Usage: set extension-language .foo bar"),
3996 set_ext_lang_command,
3998 &setlist, &showlist);
4000 add_info ("extensions", info_ext_lang_command,
4001 _("All filename extensions associated with a source language."));
4003 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4004 &debug_file_directory, _("\
4005 Set the directories where separate debug symbols are searched for."), _("\
4006 Show the directories where separate debug symbols are searched for."), _("\
4007 Separate debug symbols are first searched for in the same\n\
4008 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4009 and lastly at the path of the directory of the binary with\n\
4010 each global debug-file-directory component prepended."),
4012 show_debug_file_directory,
4013 &setlist, &showlist);
4015 add_setshow_enum_cmd ("symbol-loading", no_class,
4016 print_symbol_loading_enums, &print_symbol_loading,
4018 Set printing of symbol loading messages."), _("\
4019 Show printing of symbol loading messages."), _("\
4020 off == turn all messages off\n\
4021 brief == print messages for the executable,\n\
4022 and brief messages for shared libraries\n\
4023 full == print messages for the executable,\n\
4024 and messages for each shared library."),
4027 &setprintlist, &showprintlist);
4029 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4030 &separate_debug_file_debug, _("\
4031 Set printing of separate debug info file search debug."), _("\
4032 Show printing of separate debug info file search debug."), _("\
4033 When on, GDB prints the searched locations while looking for separate debug \
4034 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4037 selftests::register_test
4038 ("filename_language", selftests::filename_language::test_filename_language);
4039 selftests::register_test
4040 ("set_ext_lang_command",
4041 selftests::filename_language::test_set_ext_lang_command);