1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support, using pieces from other GDB modules.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
36 #include "breakpoint.h"
38 #include "complaints.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
53 #include "parser-defs.h"
59 #include <sys/types.h>
61 #include "gdb_string.h"
68 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
69 void (*deprecated_show_load_progress) (const char *section,
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
73 unsigned long total_size);
74 void (*deprecated_pre_add_symbol_hook) (const char *);
75 void (*deprecated_post_add_symbol_hook) (void);
77 static void clear_symtab_users_cleanup (void *ignore);
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
82 /* External variables and functions referenced. */
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
86 /* Functions this file defines */
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
93 static void load_command (char *, int);
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97 static void add_symbol_file_command (char *, int);
99 static void add_shared_symbol_files_command (char *, int);
101 static void reread_separate_symbols (struct objfile *objfile);
103 static void cashier_psymtab (struct partial_symtab *);
105 bfd *symfile_bfd_open (char *);
107 int get_section_index (struct objfile *, char *);
109 static struct sym_fns *find_sym_fns (bfd *);
111 static void decrement_reading_symtab (void *);
113 static void overlay_invalidate_all (void);
115 void list_overlays_command (char *, int);
117 void map_overlay_command (char *, int);
119 void unmap_overlay_command (char *, int);
121 static void overlay_auto_command (char *, int);
123 static void overlay_manual_command (char *, int);
125 static void overlay_off_command (char *, int);
127 static void overlay_load_command (char *, int);
129 static void overlay_command (char *, int);
131 static void simple_free_overlay_table (void);
133 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
135 static int simple_read_overlay_table (void);
137 static int simple_overlay_update_1 (struct obj_section *);
139 static void add_filename_language (char *ext, enum language lang);
141 static void info_ext_lang_command (char *args, int from_tty);
143 static char *find_separate_debug_file (struct objfile *objfile);
145 static void init_filename_language_table (void);
147 static void symfile_find_segment_sections (struct objfile *objfile);
149 void _initialize_symfile (void);
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
155 static struct sym_fns *symtab_fns = NULL;
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163 int symbol_reloading = 0;
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
174 /* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
179 int print_symbol_loading = 1;
181 /* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
188 library symbols are not loaded, commands like "info fun" will *not*
189 report all the functions that are actually present. */
191 int auto_solib_add = 1;
193 /* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
201 int auto_solib_limit;
204 /* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
208 compare_psymbols (const void *s1p, const void *s2p)
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
218 sort_pst_symbols (struct partial_symtab *pst)
220 /* Sort the global list; don't sort the static list */
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
227 /* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
233 obsavestring (const char *ptr, int size, struct obstack *obstackp)
235 char *p = (char *) obstack_alloc (obstackp, size + 1);
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
240 const char *p1 = ptr;
242 const char *end = ptr + size;
250 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
254 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
265 /* True if we are nested inside psymtab_to_symtab. */
267 int currently_reading_symtab = 0;
270 decrement_reading_symtab (void *dummy)
272 currently_reading_symtab--;
275 /* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
281 psymtab_to_symtab (struct partial_symtab *pst)
283 /* If it's been looked up before, return it. */
287 /* If it has not yet been read in, read it. */
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
299 /* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
309 find_lowest_section (bfd *abfd, asection *sect, void *obj)
311 asection **lowest = (asection **) obj;
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
325 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
327 struct section_addr_info *
328 alloc_section_addr_info (size_t num_sections)
330 struct section_addr_info *sap;
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
343 /* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345 struct section_addr_info *
346 copy_section_addr_info (struct section_addr_info *addrs)
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
368 /* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
371 extern struct section_addr_info *
372 build_section_addr_info_from_section_table (const struct section_table *start,
373 const struct section_table *end)
375 struct section_addr_info *sap;
376 const struct section_table *stp;
379 sap = alloc_section_addr_info (end - start);
381 for (stp = start, oidx = 0; stp != end; stp++)
383 if (bfd_get_section_flags (stp->bfd,
384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
385 && oidx < end - start)
387 sap->other[oidx].addr = stp->addr;
388 sap->other[oidx].name
389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
399 /* Free all memory allocated by build_section_addr_info_from_section_table. */
402 free_section_addr_info (struct section_addr_info *sap)
406 for (idx = 0; idx < sap->num_sections; idx++)
407 if (sap->other[idx].name)
408 xfree (sap->other[idx].name);
413 /* Initialize OBJFILE's sect_index_* members. */
415 init_objfile_sect_indices (struct objfile *objfile)
420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
422 objfile->sect_index_text = sect->index;
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
426 objfile->sect_index_data = sect->index;
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
430 objfile->sect_index_bss = sect->index;
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
434 objfile->sect_index_rodata = sect->index;
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
442 symfile_find_segment_sections (objfile);
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
453 for (i = 0; i < objfile->num_sections; i++)
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
460 if (i == objfile->num_sections)
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
473 /* The arguments to place_section. */
475 struct place_section_arg
477 struct section_offsets *offsets;
481 /* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
485 place_section (bfd *abfd, asection *sect, void *obj)
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
500 /* Otherwise, let's try to find a place for the section. */
501 start_addr = (arg->lowest + align - 1) & -align;
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
513 /* We don't need to compare against ourself. */
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
537 /* Otherwise, we appear to be OK. So far. */
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
546 /* Parse the user's idea of an offset for dynamic linking, into our idea
547 of how to represent it for fast symbol reading. This is the default
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
553 default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
558 objfile->num_sections = bfd_count_sections (objfile->obfd);
559 objfile->section_offsets = (struct section_offsets *)
560 obstack_alloc (&objfile->objfile_obstack,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562 memset (objfile->section_offsets, 0,
563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
565 /* Now calculate offsets for section that were specified by the
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 struct other_sections *osp ;
571 osp = &addrs->other[i] ;
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
588 struct place_section_arg arg;
589 bfd *abfd = objfile->obfd;
591 CORE_ADDR lowest = 0;
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
603 /* Pick non-overlapping offsets for sections the user did not
605 arg.offsets = objfile->section_offsets;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
644 offsets[cur_sec->index] = 0;
649 /* Remember the bfd indexes for the .text, .data, .bss and
651 init_objfile_sect_indices (objfile);
655 /* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
661 struct symfile_segment_data *
662 default_symfile_segments (bfd *abfd)
666 struct symfile_segment_data *data;
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
704 vma = bfd_get_section_vma (abfd, sect);
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
710 data->segment_info[i] = 1;
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
719 /* Process a symbol file, as either the main file or as a dynamically
722 OBJFILE is where the symbols are to be read from.
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
745 MAINLINE is nonzero if this is the main symbol file, or zero if
746 it's an extra symbol file such as dynamically loaded code.
748 VERBO is nonzero if the caller has printed a verbose message about
749 the symbol reading (and complaints can be more terse about it). */
752 syms_from_objfile (struct objfile *objfile,
753 struct section_addr_info *addrs,
754 struct section_offsets *offsets,
759 struct section_addr_info *local_addr = NULL;
760 struct cleanup *old_chain;
762 gdb_assert (! (addrs && offsets));
764 init_entry_point_info (objfile);
765 objfile->sf = find_sym_fns (objfile->obfd);
767 if (objfile->sf == NULL)
768 return; /* No symbols. */
770 /* Make sure that partially constructed symbol tables will be cleaned up
771 if an error occurs during symbol reading. */
772 old_chain = make_cleanup_free_objfile (objfile);
774 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
775 list. We now establish the convention that an addr of zero means
776 no load address was specified. */
777 if (! addrs && ! offsets)
780 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
781 make_cleanup (xfree, local_addr);
785 /* Now either addrs or offsets is non-zero. */
789 /* We will modify the main symbol table, make sure that all its users
790 will be cleaned up if an error occurs during symbol reading. */
791 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
793 /* Since no error yet, throw away the old symbol table. */
795 if (symfile_objfile != NULL)
797 free_objfile (symfile_objfile);
798 symfile_objfile = NULL;
801 /* Currently we keep symbols from the add-symbol-file command.
802 If the user wants to get rid of them, they should do "symbol-file"
803 without arguments first. Not sure this is the best behavior
806 (*objfile->sf->sym_new_init) (objfile);
809 /* Convert addr into an offset rather than an absolute address.
810 We find the lowest address of a loaded segment in the objfile,
811 and assume that <addr> is where that got loaded.
813 We no longer warn if the lowest section is not a text segment (as
814 happens for the PA64 port. */
815 if (!mainline && addrs && addrs->other[0].name)
817 asection *lower_sect;
819 CORE_ADDR lower_offset;
822 /* Find lowest loadable section to be used as starting point for
823 continguous sections. FIXME!! won't work without call to find
824 .text first, but this assumes text is lowest section. */
825 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
826 if (lower_sect == NULL)
827 bfd_map_over_sections (objfile->obfd, find_lowest_section,
829 if (lower_sect == NULL)
831 warning (_("no loadable sections found in added symbol-file %s"),
836 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
838 /* Calculate offsets for the loadable sections.
839 FIXME! Sections must be in order of increasing loadable section
840 so that contiguous sections can use the lower-offset!!!
842 Adjust offsets if the segments are not contiguous.
843 If the section is contiguous, its offset should be set to
844 the offset of the highest loadable section lower than it
845 (the loadable section directly below it in memory).
846 this_offset = lower_offset = lower_addr - lower_orig_addr */
848 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
850 if (addrs->other[i].addr != 0)
852 sect = bfd_get_section_by_name (objfile->obfd,
853 addrs->other[i].name);
857 -= bfd_section_vma (objfile->obfd, sect);
858 lower_offset = addrs->other[i].addr;
859 /* This is the index used by BFD. */
860 addrs->other[i].sectindex = sect->index ;
864 warning (_("section %s not found in %s"),
865 addrs->other[i].name,
867 addrs->other[i].addr = 0;
871 addrs->other[i].addr = lower_offset;
875 /* Initialize symbol reading routines for this objfile, allow complaints to
876 appear for this new file, and record how verbose to be, then do the
877 initial symbol reading for this file. */
879 (*objfile->sf->sym_init) (objfile);
880 clear_complaints (&symfile_complaints, 1, verbo);
883 (*objfile->sf->sym_offsets) (objfile, addrs);
886 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
888 /* Just copy in the offset table directly as given to us. */
889 objfile->num_sections = num_offsets;
890 objfile->section_offsets
891 = ((struct section_offsets *)
892 obstack_alloc (&objfile->objfile_obstack, size));
893 memcpy (objfile->section_offsets, offsets, size);
895 init_objfile_sect_indices (objfile);
898 (*objfile->sf->sym_read) (objfile, mainline);
900 /* Discard cleanups as symbol reading was successful. */
902 discard_cleanups (old_chain);
906 /* Perform required actions after either reading in the initial
907 symbols for a new objfile, or mapping in the symbols from a reusable
911 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
914 /* If this is the main symbol file we have to clean up all users of the
915 old main symbol file. Otherwise it is sufficient to fixup all the
916 breakpoints that may have been redefined by this symbol file. */
919 /* OK, make it the "real" symbol file. */
920 symfile_objfile = objfile;
922 clear_symtab_users ();
926 breakpoint_re_set_objfile (objfile);
929 /* We're done reading the symbol file; finish off complaints. */
930 clear_complaints (&symfile_complaints, 0, verbo);
933 /* Process a symbol file, as either the main file or as a dynamically
936 ABFD is a BFD already open on the file, as from symfile_bfd_open.
937 This BFD will be closed on error, and is always consumed by this function.
939 FROM_TTY says how verbose to be.
941 MAINLINE specifies whether this is the main symbol file, or whether
942 it's an extra symbol file such as dynamically loaded code.
944 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
945 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
948 Upon success, returns a pointer to the objfile that was added.
949 Upon failure, jumps back to command level (never returns). */
950 static struct objfile *
951 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
952 struct section_addr_info *addrs,
953 struct section_offsets *offsets,
955 int mainline, int flags)
957 struct objfile *objfile;
958 struct partial_symtab *psymtab;
959 char *debugfile = NULL;
960 struct section_addr_info *orig_addrs = NULL;
961 struct cleanup *my_cleanups;
962 const char *name = bfd_get_filename (abfd);
964 my_cleanups = make_cleanup_bfd_close (abfd);
966 /* Give user a chance to burp if we'd be
967 interactively wiping out any existing symbols. */
969 if ((have_full_symbols () || have_partial_symbols ())
972 && !query (_("Load new symbol table from \"%s\"? "), name))
973 error (_("Not confirmed."));
975 objfile = allocate_objfile (abfd, flags);
976 discard_cleanups (my_cleanups);
980 orig_addrs = copy_section_addr_info (addrs);
981 make_cleanup_free_section_addr_info (orig_addrs);
984 /* We either created a new mapped symbol table, mapped an existing
985 symbol table file which has not had initial symbol reading
986 performed, or need to read an unmapped symbol table. */
987 if (from_tty || info_verbose)
989 if (deprecated_pre_add_symbol_hook)
990 deprecated_pre_add_symbol_hook (name);
993 if (print_symbol_loading)
995 printf_unfiltered (_("Reading symbols from %s..."), name);
997 gdb_flush (gdb_stdout);
1001 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1002 mainline, from_tty);
1004 /* We now have at least a partial symbol table. Check to see if the
1005 user requested that all symbols be read on initial access via either
1006 the gdb startup command line or on a per symbol file basis. Expand
1007 all partial symbol tables for this objfile if so. */
1009 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1011 if ((from_tty || info_verbose) && print_symbol_loading)
1013 printf_unfiltered (_("expanding to full symbols..."));
1015 gdb_flush (gdb_stdout);
1018 for (psymtab = objfile->psymtabs;
1020 psymtab = psymtab->next)
1022 psymtab_to_symtab (psymtab);
1026 /* If the file has its own symbol tables it has no separate debug info.
1027 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1028 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1029 if (objfile->psymtabs == NULL)
1030 debugfile = find_separate_debug_file (objfile);
1035 objfile->separate_debug_objfile
1036 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1040 objfile->separate_debug_objfile
1041 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1043 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1046 /* Put the separate debug object before the normal one, this is so that
1047 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1048 put_objfile_before (objfile->separate_debug_objfile, objfile);
1053 if (!have_partial_symbols () && !have_full_symbols ()
1054 && print_symbol_loading)
1057 printf_unfiltered (_("(no debugging symbols found)"));
1058 if (from_tty || info_verbose)
1059 printf_unfiltered ("...");
1061 printf_unfiltered ("\n");
1065 if (from_tty || info_verbose)
1067 if (deprecated_post_add_symbol_hook)
1068 deprecated_post_add_symbol_hook ();
1071 if (print_symbol_loading)
1072 printf_unfiltered (_("done.\n"));
1076 /* We print some messages regardless of whether 'from_tty ||
1077 info_verbose' is true, so make sure they go out at the right
1079 gdb_flush (gdb_stdout);
1081 do_cleanups (my_cleanups);
1083 if (objfile->sf == NULL)
1084 return objfile; /* No symbols. */
1086 new_symfile_objfile (objfile, mainline, from_tty);
1088 observer_notify_new_objfile (objfile);
1090 bfd_cache_close_all ();
1095 /* Process the symbol file ABFD, as either the main file or as a
1096 dynamically loaded file.
1098 See symbol_file_add_with_addrs_or_offsets's comments for
1101 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1102 struct section_addr_info *addrs,
1103 int mainline, int flags)
1105 return symbol_file_add_with_addrs_or_offsets (abfd,
1106 from_tty, addrs, 0, 0,
1111 /* Process a symbol file, as either the main file or as a dynamically
1112 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1115 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1116 int mainline, int flags)
1118 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1119 addrs, mainline, flags);
1123 /* Call symbol_file_add() with default values and update whatever is
1124 affected by the loading of a new main().
1125 Used when the file is supplied in the gdb command line
1126 and by some targets with special loading requirements.
1127 The auxiliary function, symbol_file_add_main_1(), has the flags
1128 argument for the switches that can only be specified in the symbol_file
1132 symbol_file_add_main (char *args, int from_tty)
1134 symbol_file_add_main_1 (args, from_tty, 0);
1138 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1140 symbol_file_add (args, from_tty, NULL, 1, flags);
1142 /* Getting new symbols may change our opinion about
1143 what is frameless. */
1144 reinit_frame_cache ();
1146 set_initial_language ();
1150 symbol_file_clear (int from_tty)
1152 if ((have_full_symbols () || have_partial_symbols ())
1155 ? !query (_("Discard symbol table from `%s'? "),
1156 symfile_objfile->name)
1157 : !query (_("Discard symbol table? "))))
1158 error (_("Not confirmed."));
1160 free_all_objfiles ();
1162 /* solib descriptors may have handles to objfiles. Since their
1163 storage has just been released, we'd better wipe the solib
1164 descriptors as well. */
1165 no_shared_libraries (NULL, from_tty);
1167 symfile_objfile = NULL;
1169 printf_unfiltered (_("No symbol file now.\n"));
1178 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1180 static struct build_id *
1181 build_id_bfd_get (bfd *abfd)
1183 struct build_id *retval;
1185 if (!bfd_check_format (abfd, bfd_object)
1186 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1187 || elf_tdata (abfd)->build_id == NULL)
1190 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1191 retval->size = elf_tdata (abfd)->build_id_size;
1192 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1197 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1200 build_id_verify (const char *filename, struct build_id *check)
1203 struct build_id *found = NULL;
1206 /* We expect to be silent on the non-existing files. */
1207 if (remote_filename_p (filename))
1208 abfd = remote_bfd_open (filename, gnutarget);
1210 abfd = bfd_openr (filename, gnutarget);
1214 found = build_id_bfd_get (abfd);
1217 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1218 else if (found->size != check->size
1219 || memcmp (found->data, check->data, found->size) != 0)
1220 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1224 if (!bfd_close (abfd))
1225 warning (_("cannot close \"%s\": %s"), filename,
1226 bfd_errmsg (bfd_get_error ()));
1234 build_id_to_debug_filename (struct build_id *build_id)
1236 char *link, *s, *retval = NULL;
1237 gdb_byte *data = build_id->data;
1238 size_t size = build_id->size;
1240 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1241 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1242 + 2 * size + (sizeof ".debug" - 1) + 1);
1243 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1247 s += sprintf (s, "%02x", (unsigned) *data++);
1252 s += sprintf (s, "%02x", (unsigned) *data++);
1253 strcpy (s, ".debug");
1255 /* lrealpath() is expensive even for the usually non-existent files. */
1256 if (access (link, F_OK) == 0)
1257 retval = lrealpath (link);
1260 if (retval != NULL && !build_id_verify (retval, build_id))
1270 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1273 bfd_size_type debuglink_size;
1274 unsigned long crc32;
1279 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1284 debuglink_size = bfd_section_size (objfile->obfd, sect);
1286 contents = xmalloc (debuglink_size);
1287 bfd_get_section_contents (objfile->obfd, sect, contents,
1288 (file_ptr)0, (bfd_size_type)debuglink_size);
1290 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1291 crc_offset = strlen (contents) + 1;
1292 crc_offset = (crc_offset + 3) & ~3;
1294 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1301 separate_debug_file_exists (const char *name, unsigned long crc)
1303 unsigned long file_crc = 0;
1305 gdb_byte buffer[8*1024];
1308 if (remote_filename_p (name))
1309 abfd = remote_bfd_open (name, gnutarget);
1311 abfd = bfd_openr (name, gnutarget);
1316 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1317 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1321 return crc == file_crc;
1324 char *debug_file_directory = NULL;
1326 show_debug_file_directory (struct ui_file *file, int from_tty,
1327 struct cmd_list_element *c, const char *value)
1329 fprintf_filtered (file, _("\
1330 The directory where separate debug symbols are searched for is \"%s\".\n"),
1334 #if ! defined (DEBUG_SUBDIRECTORY)
1335 #define DEBUG_SUBDIRECTORY ".debug"
1339 find_separate_debug_file (struct objfile *objfile)
1347 bfd_size_type debuglink_size;
1348 unsigned long crc32;
1350 struct build_id *build_id;
1352 build_id = build_id_bfd_get (objfile->obfd);
1353 if (build_id != NULL)
1355 char *build_id_name;
1357 build_id_name = build_id_to_debug_filename (build_id);
1359 /* Prevent looping on a stripped .debug file. */
1360 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1362 warning (_("\"%s\": separate debug info file has no debug info"),
1364 xfree (build_id_name);
1366 else if (build_id_name != NULL)
1367 return build_id_name;
1370 basename = get_debug_link_info (objfile, &crc32);
1372 if (basename == NULL)
1375 dir = xstrdup (objfile->name);
1377 /* Strip off the final filename part, leaving the directory name,
1378 followed by a slash. Objfile names should always be absolute and
1379 tilde-expanded, so there should always be a slash in there
1381 for (i = strlen(dir) - 1; i >= 0; i--)
1383 if (IS_DIR_SEPARATOR (dir[i]))
1386 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1389 debugfile = alloca (strlen (debug_file_directory) + 1
1391 + strlen (DEBUG_SUBDIRECTORY)
1396 /* First try in the same directory as the original file. */
1397 strcpy (debugfile, dir);
1398 strcat (debugfile, basename);
1400 if (separate_debug_file_exists (debugfile, crc32))
1404 return xstrdup (debugfile);
1407 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1408 strcpy (debugfile, dir);
1409 strcat (debugfile, DEBUG_SUBDIRECTORY);
1410 strcat (debugfile, "/");
1411 strcat (debugfile, basename);
1413 if (separate_debug_file_exists (debugfile, crc32))
1417 return xstrdup (debugfile);
1420 /* Then try in the global debugfile directory. */
1421 strcpy (debugfile, debug_file_directory);
1422 strcat (debugfile, "/");
1423 strcat (debugfile, dir);
1424 strcat (debugfile, basename);
1426 if (separate_debug_file_exists (debugfile, crc32))
1430 return xstrdup (debugfile);
1433 /* If the file is in the sysroot, try using its base path in the
1434 global debugfile directory. */
1435 canon_name = lrealpath (dir);
1437 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1438 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1440 strcpy (debugfile, debug_file_directory);
1441 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1442 strcat (debugfile, "/");
1443 strcat (debugfile, basename);
1445 if (separate_debug_file_exists (debugfile, crc32))
1450 return xstrdup (debugfile);
1463 /* This is the symbol-file command. Read the file, analyze its
1464 symbols, and add a struct symtab to a symtab list. The syntax of
1465 the command is rather bizarre:
1467 1. The function buildargv implements various quoting conventions
1468 which are undocumented and have little or nothing in common with
1469 the way things are quoted (or not quoted) elsewhere in GDB.
1471 2. Options are used, which are not generally used in GDB (perhaps
1472 "set mapped on", "set readnow on" would be better)
1474 3. The order of options matters, which is contrary to GNU
1475 conventions (because it is confusing and inconvenient). */
1478 symbol_file_command (char *args, int from_tty)
1484 symbol_file_clear (from_tty);
1488 char **argv = gdb_buildargv (args);
1489 int flags = OBJF_USERLOADED;
1490 struct cleanup *cleanups;
1493 cleanups = make_cleanup_freeargv (argv);
1494 while (*argv != NULL)
1496 if (strcmp (*argv, "-readnow") == 0)
1497 flags |= OBJF_READNOW;
1498 else if (**argv == '-')
1499 error (_("unknown option `%s'"), *argv);
1502 symbol_file_add_main_1 (*argv, from_tty, flags);
1510 error (_("no symbol file name was specified"));
1512 do_cleanups (cleanups);
1516 /* Set the initial language.
1518 FIXME: A better solution would be to record the language in the
1519 psymtab when reading partial symbols, and then use it (if known) to
1520 set the language. This would be a win for formats that encode the
1521 language in an easily discoverable place, such as DWARF. For
1522 stabs, we can jump through hoops looking for specially named
1523 symbols or try to intuit the language from the specific type of
1524 stabs we find, but we can't do that until later when we read in
1528 set_initial_language (void)
1530 struct partial_symtab *pst;
1531 enum language lang = language_unknown;
1533 pst = find_main_psymtab ();
1536 if (pst->filename != NULL)
1537 lang = deduce_language_from_filename (pst->filename);
1539 if (lang == language_unknown)
1541 /* Make C the default language */
1545 set_language (lang);
1546 expected_language = current_language; /* Don't warn the user. */
1550 /* Open the file specified by NAME and hand it off to BFD for
1551 preliminary analysis. Return a newly initialized bfd *, which
1552 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1553 absolute). In case of trouble, error() is called. */
1556 symfile_bfd_open (char *name)
1560 char *absolute_name;
1562 if (remote_filename_p (name))
1564 name = xstrdup (name);
1565 sym_bfd = remote_bfd_open (name, gnutarget);
1568 make_cleanup (xfree, name);
1569 error (_("`%s': can't open to read symbols: %s."), name,
1570 bfd_errmsg (bfd_get_error ()));
1573 if (!bfd_check_format (sym_bfd, bfd_object))
1575 bfd_close (sym_bfd);
1576 make_cleanup (xfree, name);
1577 error (_("`%s': can't read symbols: %s."), name,
1578 bfd_errmsg (bfd_get_error ()));
1584 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1586 /* Look down path for it, allocate 2nd new malloc'd copy. */
1587 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1588 O_RDONLY | O_BINARY, 0, &absolute_name);
1589 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1592 char *exename = alloca (strlen (name) + 5);
1593 strcat (strcpy (exename, name), ".exe");
1594 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1595 O_RDONLY | O_BINARY, 0, &absolute_name);
1600 make_cleanup (xfree, name);
1601 perror_with_name (name);
1604 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1605 bfd. It'll be freed in free_objfile(). */
1607 name = absolute_name;
1609 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1613 make_cleanup (xfree, name);
1614 error (_("`%s': can't open to read symbols: %s."), name,
1615 bfd_errmsg (bfd_get_error ()));
1617 bfd_set_cacheable (sym_bfd, 1);
1619 if (!bfd_check_format (sym_bfd, bfd_object))
1621 /* FIXME: should be checking for errors from bfd_close (for one
1622 thing, on error it does not free all the storage associated
1624 bfd_close (sym_bfd); /* This also closes desc. */
1625 make_cleanup (xfree, name);
1626 error (_("`%s': can't read symbols: %s."), name,
1627 bfd_errmsg (bfd_get_error ()));
1633 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1634 the section was not found. */
1637 get_section_index (struct objfile *objfile, char *section_name)
1639 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1647 /* Link SF into the global symtab_fns list. Called on startup by the
1648 _initialize routine in each object file format reader, to register
1649 information about each format the the reader is prepared to
1653 add_symtab_fns (struct sym_fns *sf)
1655 sf->next = symtab_fns;
1659 /* Initialize OBJFILE to read symbols from its associated BFD. It
1660 either returns or calls error(). The result is an initialized
1661 struct sym_fns in the objfile structure, that contains cached
1662 information about the symbol file. */
1664 static struct sym_fns *
1665 find_sym_fns (bfd *abfd)
1668 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1670 if (our_flavour == bfd_target_srec_flavour
1671 || our_flavour == bfd_target_ihex_flavour
1672 || our_flavour == bfd_target_tekhex_flavour)
1673 return NULL; /* No symbols. */
1675 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1676 if (our_flavour == sf->sym_flavour)
1679 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1680 bfd_get_target (abfd));
1684 /* This function runs the load command of our current target. */
1687 load_command (char *arg, int from_tty)
1689 /* The user might be reloading because the binary has changed. Take
1690 this opportunity to check. */
1691 reopen_exec_file ();
1699 parg = arg = get_exec_file (1);
1701 /* Count how many \ " ' tab space there are in the name. */
1702 while ((parg = strpbrk (parg, "\\\"'\t ")))
1710 /* We need to quote this string so buildargv can pull it apart. */
1711 char *temp = xmalloc (strlen (arg) + count + 1 );
1715 make_cleanup (xfree, temp);
1718 while ((parg = strpbrk (parg, "\\\"'\t ")))
1720 strncpy (ptemp, prev, parg - prev);
1721 ptemp += parg - prev;
1725 strcpy (ptemp, prev);
1731 target_load (arg, from_tty);
1733 /* After re-loading the executable, we don't really know which
1734 overlays are mapped any more. */
1735 overlay_cache_invalid = 1;
1738 /* This version of "load" should be usable for any target. Currently
1739 it is just used for remote targets, not inftarg.c or core files,
1740 on the theory that only in that case is it useful.
1742 Avoiding xmodem and the like seems like a win (a) because we don't have
1743 to worry about finding it, and (b) On VMS, fork() is very slow and so
1744 we don't want to run a subprocess. On the other hand, I'm not sure how
1745 performance compares. */
1747 static int validate_download = 0;
1749 /* Callback service function for generic_load (bfd_map_over_sections). */
1752 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1754 bfd_size_type *sum = data;
1756 *sum += bfd_get_section_size (asec);
1759 /* Opaque data for load_section_callback. */
1760 struct load_section_data {
1761 unsigned long load_offset;
1762 struct load_progress_data *progress_data;
1763 VEC(memory_write_request_s) *requests;
1766 /* Opaque data for load_progress. */
1767 struct load_progress_data {
1768 /* Cumulative data. */
1769 unsigned long write_count;
1770 unsigned long data_count;
1771 bfd_size_type total_size;
1774 /* Opaque data for load_progress for a single section. */
1775 struct load_progress_section_data {
1776 struct load_progress_data *cumulative;
1778 /* Per-section data. */
1779 const char *section_name;
1780 ULONGEST section_sent;
1781 ULONGEST section_size;
1786 /* Target write callback routine for progress reporting. */
1789 load_progress (ULONGEST bytes, void *untyped_arg)
1791 struct load_progress_section_data *args = untyped_arg;
1792 struct load_progress_data *totals;
1795 /* Writing padding data. No easy way to get at the cumulative
1796 stats, so just ignore this. */
1799 totals = args->cumulative;
1801 if (bytes == 0 && args->section_sent == 0)
1803 /* The write is just starting. Let the user know we've started
1805 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1806 args->section_name, paddr_nz (args->section_size),
1807 paddr_nz (args->lma));
1811 if (validate_download)
1813 /* Broken memories and broken monitors manifest themselves here
1814 when bring new computers to life. This doubles already slow
1816 /* NOTE: cagney/1999-10-18: A more efficient implementation
1817 might add a verify_memory() method to the target vector and
1818 then use that. remote.c could implement that method using
1819 the ``qCRC'' packet. */
1820 gdb_byte *check = xmalloc (bytes);
1821 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1823 if (target_read_memory (args->lma, check, bytes) != 0)
1824 error (_("Download verify read failed at 0x%s"),
1826 if (memcmp (args->buffer, check, bytes) != 0)
1827 error (_("Download verify compare failed at 0x%s"),
1829 do_cleanups (verify_cleanups);
1831 totals->data_count += bytes;
1833 args->buffer += bytes;
1834 totals->write_count += 1;
1835 args->section_sent += bytes;
1837 || (deprecated_ui_load_progress_hook != NULL
1838 && deprecated_ui_load_progress_hook (args->section_name,
1839 args->section_sent)))
1840 error (_("Canceled the download"));
1842 if (deprecated_show_load_progress != NULL)
1843 deprecated_show_load_progress (args->section_name,
1847 totals->total_size);
1850 /* Callback service function for generic_load (bfd_map_over_sections). */
1853 load_section_callback (bfd *abfd, asection *asec, void *data)
1855 struct memory_write_request *new_request;
1856 struct load_section_data *args = data;
1857 struct load_progress_section_data *section_data;
1858 bfd_size_type size = bfd_get_section_size (asec);
1860 const char *sect_name = bfd_get_section_name (abfd, asec);
1862 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1868 new_request = VEC_safe_push (memory_write_request_s,
1869 args->requests, NULL);
1870 memset (new_request, 0, sizeof (struct memory_write_request));
1871 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1872 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1873 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1874 new_request->data = xmalloc (size);
1875 new_request->baton = section_data;
1877 buffer = new_request->data;
1879 section_data->cumulative = args->progress_data;
1880 section_data->section_name = sect_name;
1881 section_data->section_size = size;
1882 section_data->lma = new_request->begin;
1883 section_data->buffer = buffer;
1885 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1888 /* Clean up an entire memory request vector, including load
1889 data and progress records. */
1892 clear_memory_write_data (void *arg)
1894 VEC(memory_write_request_s) **vec_p = arg;
1895 VEC(memory_write_request_s) *vec = *vec_p;
1897 struct memory_write_request *mr;
1899 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1904 VEC_free (memory_write_request_s, vec);
1908 generic_load (char *args, int from_tty)
1911 struct timeval start_time, end_time;
1913 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1914 struct load_section_data cbdata;
1915 struct load_progress_data total_progress;
1920 memset (&cbdata, 0, sizeof (cbdata));
1921 memset (&total_progress, 0, sizeof (total_progress));
1922 cbdata.progress_data = &total_progress;
1924 make_cleanup (clear_memory_write_data, &cbdata.requests);
1927 error_no_arg (_("file to load"));
1929 argv = gdb_buildargv (args);
1930 make_cleanup_freeargv (argv);
1932 filename = tilde_expand (argv[0]);
1933 make_cleanup (xfree, filename);
1935 if (argv[1] != NULL)
1939 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1941 /* If the last word was not a valid number then
1942 treat it as a file name with spaces in. */
1943 if (argv[1] == endptr)
1944 error (_("Invalid download offset:%s."), argv[1]);
1946 if (argv[2] != NULL)
1947 error (_("Too many parameters."));
1950 /* Open the file for loading. */
1951 loadfile_bfd = bfd_openr (filename, gnutarget);
1952 if (loadfile_bfd == NULL)
1954 perror_with_name (filename);
1958 /* FIXME: should be checking for errors from bfd_close (for one thing,
1959 on error it does not free all the storage associated with the
1961 make_cleanup_bfd_close (loadfile_bfd);
1963 if (!bfd_check_format (loadfile_bfd, bfd_object))
1965 error (_("\"%s\" is not an object file: %s"), filename,
1966 bfd_errmsg (bfd_get_error ()));
1969 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1970 (void *) &total_progress.total_size);
1972 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1974 gettimeofday (&start_time, NULL);
1976 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1977 load_progress) != 0)
1978 error (_("Load failed"));
1980 gettimeofday (&end_time, NULL);
1982 entry = bfd_get_start_address (loadfile_bfd);
1983 ui_out_text (uiout, "Start address ");
1984 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1985 ui_out_text (uiout, ", load size ");
1986 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1987 ui_out_text (uiout, "\n");
1988 /* We were doing this in remote-mips.c, I suspect it is right
1989 for other targets too. */
1990 regcache_write_pc (get_current_regcache (), entry);
1992 /* FIXME: are we supposed to call symbol_file_add or not? According
1993 to a comment from remote-mips.c (where a call to symbol_file_add
1994 was commented out), making the call confuses GDB if more than one
1995 file is loaded in. Some targets do (e.g., remote-vx.c) but
1996 others don't (or didn't - perhaps they have all been deleted). */
1998 print_transfer_performance (gdb_stdout, total_progress.data_count,
1999 total_progress.write_count,
2000 &start_time, &end_time);
2002 do_cleanups (old_cleanups);
2005 /* Report how fast the transfer went. */
2007 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2008 replaced by print_transfer_performance (with a very different
2009 function signature). */
2012 report_transfer_performance (unsigned long data_count, time_t start_time,
2015 struct timeval start, end;
2017 start.tv_sec = start_time;
2019 end.tv_sec = end_time;
2022 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2026 print_transfer_performance (struct ui_file *stream,
2027 unsigned long data_count,
2028 unsigned long write_count,
2029 const struct timeval *start_time,
2030 const struct timeval *end_time)
2032 ULONGEST time_count;
2034 /* Compute the elapsed time in milliseconds, as a tradeoff between
2035 accuracy and overflow. */
2036 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2037 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2039 ui_out_text (uiout, "Transfer rate: ");
2042 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2044 if (ui_out_is_mi_like_p (uiout))
2046 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2047 ui_out_text (uiout, " bits/sec");
2049 else if (rate < 1024)
2051 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2052 ui_out_text (uiout, " bytes/sec");
2056 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2057 ui_out_text (uiout, " KB/sec");
2062 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2063 ui_out_text (uiout, " bits in <1 sec");
2065 if (write_count > 0)
2067 ui_out_text (uiout, ", ");
2068 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2069 ui_out_text (uiout, " bytes/write");
2071 ui_out_text (uiout, ".\n");
2074 /* This function allows the addition of incrementally linked object files.
2075 It does not modify any state in the target, only in the debugger. */
2076 /* Note: ezannoni 2000-04-13 This function/command used to have a
2077 special case syntax for the rombug target (Rombug is the boot
2078 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2079 rombug case, the user doesn't need to supply a text address,
2080 instead a call to target_link() (in target.c) would supply the
2081 value to use. We are now discontinuing this type of ad hoc syntax. */
2084 add_symbol_file_command (char *args, int from_tty)
2086 char *filename = NULL;
2087 int flags = OBJF_USERLOADED;
2089 int expecting_option = 0;
2090 int section_index = 0;
2094 int expecting_sec_name = 0;
2095 int expecting_sec_addr = 0;
2104 struct section_addr_info *section_addrs;
2105 struct sect_opt *sect_opts = NULL;
2106 size_t num_sect_opts = 0;
2107 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2110 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2111 * sizeof (struct sect_opt));
2116 error (_("add-symbol-file takes a file name and an address"));
2118 argv = gdb_buildargv (args);
2119 make_cleanup_freeargv (argv);
2121 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2123 /* Process the argument. */
2126 /* The first argument is the file name. */
2127 filename = tilde_expand (arg);
2128 make_cleanup (xfree, filename);
2133 /* The second argument is always the text address at which
2134 to load the program. */
2135 sect_opts[section_index].name = ".text";
2136 sect_opts[section_index].value = arg;
2137 if (++section_index >= num_sect_opts)
2140 sect_opts = ((struct sect_opt *)
2141 xrealloc (sect_opts,
2143 * sizeof (struct sect_opt)));
2148 /* It's an option (starting with '-') or it's an argument
2153 if (strcmp (arg, "-readnow") == 0)
2154 flags |= OBJF_READNOW;
2155 else if (strcmp (arg, "-s") == 0)
2157 expecting_sec_name = 1;
2158 expecting_sec_addr = 1;
2163 if (expecting_sec_name)
2165 sect_opts[section_index].name = arg;
2166 expecting_sec_name = 0;
2169 if (expecting_sec_addr)
2171 sect_opts[section_index].value = arg;
2172 expecting_sec_addr = 0;
2173 if (++section_index >= num_sect_opts)
2176 sect_opts = ((struct sect_opt *)
2177 xrealloc (sect_opts,
2179 * sizeof (struct sect_opt)));
2183 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2188 /* This command takes at least two arguments. The first one is a
2189 filename, and the second is the address where this file has been
2190 loaded. Abort now if this address hasn't been provided by the
2192 if (section_index < 1)
2193 error (_("The address where %s has been loaded is missing"), filename);
2195 /* Print the prompt for the query below. And save the arguments into
2196 a sect_addr_info structure to be passed around to other
2197 functions. We have to split this up into separate print
2198 statements because hex_string returns a local static
2201 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2202 section_addrs = alloc_section_addr_info (section_index);
2203 make_cleanup (xfree, section_addrs);
2204 for (i = 0; i < section_index; i++)
2207 char *val = sect_opts[i].value;
2208 char *sec = sect_opts[i].name;
2210 addr = parse_and_eval_address (val);
2212 /* Here we store the section offsets in the order they were
2213 entered on the command line. */
2214 section_addrs->other[sec_num].name = sec;
2215 section_addrs->other[sec_num].addr = addr;
2216 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2219 /* The object's sections are initialized when a
2220 call is made to build_objfile_section_table (objfile).
2221 This happens in reread_symbols.
2222 At this point, we don't know what file type this is,
2223 so we can't determine what section names are valid. */
2226 if (from_tty && (!query ("%s", "")))
2227 error (_("Not confirmed."));
2229 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2231 /* Getting new symbols may change our opinion about what is
2233 reinit_frame_cache ();
2234 do_cleanups (my_cleanups);
2238 add_shared_symbol_files_command (char *args, int from_tty)
2240 #ifdef ADD_SHARED_SYMBOL_FILES
2241 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2243 error (_("This command is not available in this configuration of GDB."));
2247 /* Re-read symbols if a symbol-file has changed. */
2249 reread_symbols (void)
2251 struct objfile *objfile;
2254 struct stat new_statbuf;
2257 /* With the addition of shared libraries, this should be modified,
2258 the load time should be saved in the partial symbol tables, since
2259 different tables may come from different source files. FIXME.
2260 This routine should then walk down each partial symbol table
2261 and see if the symbol table that it originates from has been changed */
2263 for (objfile = object_files; objfile; objfile = objfile->next)
2267 #ifdef DEPRECATED_IBM6000_TARGET
2268 /* If this object is from a shared library, then you should
2269 stat on the library name, not member name. */
2271 if (objfile->obfd->my_archive)
2272 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2275 res = stat (objfile->name, &new_statbuf);
2278 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2279 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2283 new_modtime = new_statbuf.st_mtime;
2284 if (new_modtime != objfile->mtime)
2286 struct cleanup *old_cleanups;
2287 struct section_offsets *offsets;
2289 char *obfd_filename;
2291 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2294 /* There are various functions like symbol_file_add,
2295 symfile_bfd_open, syms_from_objfile, etc., which might
2296 appear to do what we want. But they have various other
2297 effects which we *don't* want. So we just do stuff
2298 ourselves. We don't worry about mapped files (for one thing,
2299 any mapped file will be out of date). */
2301 /* If we get an error, blow away this objfile (not sure if
2302 that is the correct response for things like shared
2304 old_cleanups = make_cleanup_free_objfile (objfile);
2305 /* We need to do this whenever any symbols go away. */
2306 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2308 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2309 bfd_get_filename (exec_bfd)) == 0)
2311 /* Reload EXEC_BFD without asking anything. */
2313 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2316 /* Clean up any state BFD has sitting around. We don't need
2317 to close the descriptor but BFD lacks a way of closing the
2318 BFD without closing the descriptor. */
2319 obfd_filename = bfd_get_filename (objfile->obfd);
2320 if (!bfd_close (objfile->obfd))
2321 error (_("Can't close BFD for %s: %s"), objfile->name,
2322 bfd_errmsg (bfd_get_error ()));
2323 if (remote_filename_p (obfd_filename))
2324 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2326 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2327 if (objfile->obfd == NULL)
2328 error (_("Can't open %s to read symbols."), objfile->name);
2329 /* bfd_openr sets cacheable to true, which is what we want. */
2330 if (!bfd_check_format (objfile->obfd, bfd_object))
2331 error (_("Can't read symbols from %s: %s."), objfile->name,
2332 bfd_errmsg (bfd_get_error ()));
2334 /* Save the offsets, we will nuke them with the rest of the
2336 num_offsets = objfile->num_sections;
2337 offsets = ((struct section_offsets *)
2338 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2339 memcpy (offsets, objfile->section_offsets,
2340 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2342 /* Remove any references to this objfile in the global
2344 preserve_values (objfile);
2346 /* Nuke all the state that we will re-read. Much of the following
2347 code which sets things to NULL really is necessary to tell
2348 other parts of GDB that there is nothing currently there. */
2350 /* FIXME: Do we have to free a whole linked list, or is this
2352 if (objfile->global_psymbols.list)
2353 xfree (objfile->global_psymbols.list);
2354 memset (&objfile->global_psymbols, 0,
2355 sizeof (objfile->global_psymbols));
2356 if (objfile->static_psymbols.list)
2357 xfree (objfile->static_psymbols.list);
2358 memset (&objfile->static_psymbols, 0,
2359 sizeof (objfile->static_psymbols));
2361 /* Free the obstacks for non-reusable objfiles */
2362 bcache_xfree (objfile->psymbol_cache);
2363 objfile->psymbol_cache = bcache_xmalloc ();
2364 bcache_xfree (objfile->macro_cache);
2365 objfile->macro_cache = bcache_xmalloc ();
2366 if (objfile->demangled_names_hash != NULL)
2368 htab_delete (objfile->demangled_names_hash);
2369 objfile->demangled_names_hash = NULL;
2371 obstack_free (&objfile->objfile_obstack, 0);
2372 objfile->sections = NULL;
2373 objfile->symtabs = NULL;
2374 objfile->psymtabs = NULL;
2375 objfile->free_psymtabs = NULL;
2376 objfile->cp_namespace_symtab = NULL;
2377 objfile->msymbols = NULL;
2378 objfile->deprecated_sym_private = NULL;
2379 objfile->minimal_symbol_count = 0;
2380 memset (&objfile->msymbol_hash, 0,
2381 sizeof (objfile->msymbol_hash));
2382 memset (&objfile->msymbol_demangled_hash, 0,
2383 sizeof (objfile->msymbol_demangled_hash));
2384 clear_objfile_data (objfile);
2385 if (objfile->sf != NULL)
2387 (*objfile->sf->sym_finish) (objfile);
2390 objfile->psymbol_cache = bcache_xmalloc ();
2391 objfile->macro_cache = bcache_xmalloc ();
2392 /* obstack_init also initializes the obstack so it is
2393 empty. We could use obstack_specify_allocation but
2394 gdb_obstack.h specifies the alloc/dealloc
2396 obstack_init (&objfile->objfile_obstack);
2397 if (build_objfile_section_table (objfile))
2399 error (_("Can't find the file sections in `%s': %s"),
2400 objfile->name, bfd_errmsg (bfd_get_error ()));
2402 terminate_minimal_symbol_table (objfile);
2404 /* We use the same section offsets as from last time. I'm not
2405 sure whether that is always correct for shared libraries. */
2406 objfile->section_offsets = (struct section_offsets *)
2407 obstack_alloc (&objfile->objfile_obstack,
2408 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2409 memcpy (objfile->section_offsets, offsets,
2410 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2411 objfile->num_sections = num_offsets;
2413 /* What the hell is sym_new_init for, anyway? The concept of
2414 distinguishing between the main file and additional files
2415 in this way seems rather dubious. */
2416 if (objfile == symfile_objfile)
2418 (*objfile->sf->sym_new_init) (objfile);
2421 (*objfile->sf->sym_init) (objfile);
2422 clear_complaints (&symfile_complaints, 1, 1);
2423 /* The "mainline" parameter is a hideous hack; I think leaving it
2424 zero is OK since dbxread.c also does what it needs to do if
2425 objfile->global_psymbols.size is 0. */
2426 (*objfile->sf->sym_read) (objfile, 0);
2427 if (!have_partial_symbols () && !have_full_symbols ())
2430 printf_unfiltered (_("(no debugging symbols found)\n"));
2434 /* We're done reading the symbol file; finish off complaints. */
2435 clear_complaints (&symfile_complaints, 0, 1);
2437 /* Getting new symbols may change our opinion about what is
2440 reinit_frame_cache ();
2442 /* Discard cleanups as symbol reading was successful. */
2443 discard_cleanups (old_cleanups);
2445 /* If the mtime has changed between the time we set new_modtime
2446 and now, we *want* this to be out of date, so don't call stat
2448 objfile->mtime = new_modtime;
2450 reread_separate_symbols (objfile);
2451 init_entry_point_info (objfile);
2458 clear_symtab_users ();
2459 /* At least one objfile has changed, so we can consider that
2460 the executable we're debugging has changed too. */
2461 observer_notify_executable_changed ();
2467 /* Handle separate debug info for OBJFILE, which has just been
2469 - If we had separate debug info before, but now we don't, get rid
2470 of the separated objfile.
2471 - If we didn't have separated debug info before, but now we do,
2472 read in the new separated debug info file.
2473 - If the debug link points to a different file, toss the old one
2474 and read the new one.
2475 This function does *not* handle the case where objfile is still
2476 using the same separate debug info file, but that file's timestamp
2477 has changed. That case should be handled by the loop in
2478 reread_symbols already. */
2480 reread_separate_symbols (struct objfile *objfile)
2483 unsigned long crc32;
2485 /* Does the updated objfile's debug info live in a
2487 debug_file = find_separate_debug_file (objfile);
2489 if (objfile->separate_debug_objfile)
2491 /* There are two cases where we need to get rid of
2492 the old separated debug info objfile:
2493 - if the new primary objfile doesn't have
2494 separated debug info, or
2495 - if the new primary objfile has separate debug
2496 info, but it's under a different filename.
2498 If the old and new objfiles both have separate
2499 debug info, under the same filename, then we're
2500 okay --- if the separated file's contents have
2501 changed, we will have caught that when we
2502 visited it in this function's outermost
2505 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2506 free_objfile (objfile->separate_debug_objfile);
2509 /* If the new objfile has separate debug info, and we
2510 haven't loaded it already, do so now. */
2512 && ! objfile->separate_debug_objfile)
2514 /* Use the same section offset table as objfile itself.
2515 Preserve the flags from objfile that make sense. */
2516 objfile->separate_debug_objfile
2517 = (symbol_file_add_with_addrs_or_offsets
2518 (symfile_bfd_open (debug_file),
2519 info_verbose, /* from_tty: Don't override the default. */
2520 0, /* No addr table. */
2521 objfile->section_offsets, objfile->num_sections,
2522 0, /* Not mainline. See comments about this above. */
2523 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2524 | OBJF_USERLOADED)));
2525 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2543 static filename_language *filename_language_table;
2544 static int fl_table_size, fl_table_next;
2547 add_filename_language (char *ext, enum language lang)
2549 if (fl_table_next >= fl_table_size)
2551 fl_table_size += 10;
2552 filename_language_table =
2553 xrealloc (filename_language_table,
2554 fl_table_size * sizeof (*filename_language_table));
2557 filename_language_table[fl_table_next].ext = xstrdup (ext);
2558 filename_language_table[fl_table_next].lang = lang;
2562 static char *ext_args;
2564 show_ext_args (struct ui_file *file, int from_tty,
2565 struct cmd_list_element *c, const char *value)
2567 fprintf_filtered (file, _("\
2568 Mapping between filename extension and source language is \"%s\".\n"),
2573 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2576 char *cp = ext_args;
2579 /* First arg is filename extension, starting with '.' */
2581 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2583 /* Find end of first arg. */
2584 while (*cp && !isspace (*cp))
2588 error (_("'%s': two arguments required -- filename extension and language"),
2591 /* Null-terminate first arg */
2594 /* Find beginning of second arg, which should be a source language. */
2595 while (*cp && isspace (*cp))
2599 error (_("'%s': two arguments required -- filename extension and language"),
2602 /* Lookup the language from among those we know. */
2603 lang = language_enum (cp);
2605 /* Now lookup the filename extension: do we already know it? */
2606 for (i = 0; i < fl_table_next; i++)
2607 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2610 if (i >= fl_table_next)
2612 /* new file extension */
2613 add_filename_language (ext_args, lang);
2617 /* redefining a previously known filename extension */
2620 /* query ("Really make files of type %s '%s'?", */
2621 /* ext_args, language_str (lang)); */
2623 xfree (filename_language_table[i].ext);
2624 filename_language_table[i].ext = xstrdup (ext_args);
2625 filename_language_table[i].lang = lang;
2630 info_ext_lang_command (char *args, int from_tty)
2634 printf_filtered (_("Filename extensions and the languages they represent:"));
2635 printf_filtered ("\n\n");
2636 for (i = 0; i < fl_table_next; i++)
2637 printf_filtered ("\t%s\t- %s\n",
2638 filename_language_table[i].ext,
2639 language_str (filename_language_table[i].lang));
2643 init_filename_language_table (void)
2645 if (fl_table_size == 0) /* protect against repetition */
2649 filename_language_table =
2650 xmalloc (fl_table_size * sizeof (*filename_language_table));
2651 add_filename_language (".c", language_c);
2652 add_filename_language (".C", language_cplus);
2653 add_filename_language (".cc", language_cplus);
2654 add_filename_language (".cp", language_cplus);
2655 add_filename_language (".cpp", language_cplus);
2656 add_filename_language (".cxx", language_cplus);
2657 add_filename_language (".c++", language_cplus);
2658 add_filename_language (".java", language_java);
2659 add_filename_language (".class", language_java);
2660 add_filename_language (".m", language_objc);
2661 add_filename_language (".f", language_fortran);
2662 add_filename_language (".F", language_fortran);
2663 add_filename_language (".s", language_asm);
2664 add_filename_language (".sx", language_asm);
2665 add_filename_language (".S", language_asm);
2666 add_filename_language (".pas", language_pascal);
2667 add_filename_language (".p", language_pascal);
2668 add_filename_language (".pp", language_pascal);
2669 add_filename_language (".adb", language_ada);
2670 add_filename_language (".ads", language_ada);
2671 add_filename_language (".a", language_ada);
2672 add_filename_language (".ada", language_ada);
2677 deduce_language_from_filename (char *filename)
2682 if (filename != NULL)
2683 if ((cp = strrchr (filename, '.')) != NULL)
2684 for (i = 0; i < fl_table_next; i++)
2685 if (strcmp (cp, filename_language_table[i].ext) == 0)
2686 return filename_language_table[i].lang;
2688 return language_unknown;
2693 Allocate and partly initialize a new symbol table. Return a pointer
2694 to it. error() if no space.
2696 Caller must set these fields:
2702 possibly free_named_symtabs (symtab->filename);
2706 allocate_symtab (char *filename, struct objfile *objfile)
2708 struct symtab *symtab;
2710 symtab = (struct symtab *)
2711 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2712 memset (symtab, 0, sizeof (*symtab));
2713 symtab->filename = obsavestring (filename, strlen (filename),
2714 &objfile->objfile_obstack);
2715 symtab->fullname = NULL;
2716 symtab->language = deduce_language_from_filename (filename);
2717 symtab->debugformat = obsavestring ("unknown", 7,
2718 &objfile->objfile_obstack);
2720 /* Hook it to the objfile it comes from */
2722 symtab->objfile = objfile;
2723 symtab->next = objfile->symtabs;
2724 objfile->symtabs = symtab;
2729 struct partial_symtab *
2730 allocate_psymtab (char *filename, struct objfile *objfile)
2732 struct partial_symtab *psymtab;
2734 if (objfile->free_psymtabs)
2736 psymtab = objfile->free_psymtabs;
2737 objfile->free_psymtabs = psymtab->next;
2740 psymtab = (struct partial_symtab *)
2741 obstack_alloc (&objfile->objfile_obstack,
2742 sizeof (struct partial_symtab));
2744 memset (psymtab, 0, sizeof (struct partial_symtab));
2745 psymtab->filename = obsavestring (filename, strlen (filename),
2746 &objfile->objfile_obstack);
2747 psymtab->symtab = NULL;
2749 /* Prepend it to the psymtab list for the objfile it belongs to.
2750 Psymtabs are searched in most recent inserted -> least recent
2753 psymtab->objfile = objfile;
2754 psymtab->next = objfile->psymtabs;
2755 objfile->psymtabs = psymtab;
2758 struct partial_symtab **prev_pst;
2759 psymtab->objfile = objfile;
2760 psymtab->next = NULL;
2761 prev_pst = &(objfile->psymtabs);
2762 while ((*prev_pst) != NULL)
2763 prev_pst = &((*prev_pst)->next);
2764 (*prev_pst) = psymtab;
2772 discard_psymtab (struct partial_symtab *pst)
2774 struct partial_symtab **prev_pst;
2777 Empty psymtabs happen as a result of header files which don't
2778 have any symbols in them. There can be a lot of them. But this
2779 check is wrong, in that a psymtab with N_SLINE entries but
2780 nothing else is not empty, but we don't realize that. Fixing
2781 that without slowing things down might be tricky. */
2783 /* First, snip it out of the psymtab chain */
2785 prev_pst = &(pst->objfile->psymtabs);
2786 while ((*prev_pst) != pst)
2787 prev_pst = &((*prev_pst)->next);
2788 (*prev_pst) = pst->next;
2790 /* Next, put it on a free list for recycling */
2792 pst->next = pst->objfile->free_psymtabs;
2793 pst->objfile->free_psymtabs = pst;
2797 /* Reset all data structures in gdb which may contain references to symbol
2801 clear_symtab_users (void)
2803 /* Someday, we should do better than this, by only blowing away
2804 the things that really need to be blown. */
2806 /* Clear the "current" symtab first, because it is no longer valid.
2807 breakpoint_re_set may try to access the current symtab. */
2808 clear_current_source_symtab_and_line ();
2811 breakpoint_re_set ();
2812 set_default_breakpoint (0, 0, 0, 0);
2813 clear_pc_function_cache ();
2814 observer_notify_new_objfile (NULL);
2816 /* Clear globals which might have pointed into a removed objfile.
2817 FIXME: It's not clear which of these are supposed to persist
2818 between expressions and which ought to be reset each time. */
2819 expression_context_block = NULL;
2820 innermost_block = NULL;
2822 /* Varobj may refer to old symbols, perform a cleanup. */
2823 varobj_invalidate ();
2828 clear_symtab_users_cleanup (void *ignore)
2830 clear_symtab_users ();
2833 /* clear_symtab_users_once:
2835 This function is run after symbol reading, or from a cleanup.
2836 If an old symbol table was obsoleted, the old symbol table
2837 has been blown away, but the other GDB data structures that may
2838 reference it have not yet been cleared or re-directed. (The old
2839 symtab was zapped, and the cleanup queued, in free_named_symtab()
2842 This function can be queued N times as a cleanup, or called
2843 directly; it will do all the work the first time, and then will be a
2844 no-op until the next time it is queued. This works by bumping a
2845 counter at queueing time. Much later when the cleanup is run, or at
2846 the end of symbol processing (in case the cleanup is discarded), if
2847 the queued count is greater than the "done-count", we do the work
2848 and set the done-count to the queued count. If the queued count is
2849 less than or equal to the done-count, we just ignore the call. This
2850 is needed because reading a single .o file will often replace many
2851 symtabs (one per .h file, for example), and we don't want to reset
2852 the breakpoints N times in the user's face.
2854 The reason we both queue a cleanup, and call it directly after symbol
2855 reading, is because the cleanup protects us in case of errors, but is
2856 discarded if symbol reading is successful. */
2859 /* FIXME: As free_named_symtabs is currently a big noop this function
2860 is no longer needed. */
2861 static void clear_symtab_users_once (void);
2863 static int clear_symtab_users_queued;
2864 static int clear_symtab_users_done;
2867 clear_symtab_users_once (void)
2869 /* Enforce once-per-`do_cleanups'-semantics */
2870 if (clear_symtab_users_queued <= clear_symtab_users_done)
2872 clear_symtab_users_done = clear_symtab_users_queued;
2874 clear_symtab_users ();
2878 /* Delete the specified psymtab, and any others that reference it. */
2881 cashier_psymtab (struct partial_symtab *pst)
2883 struct partial_symtab *ps, *pprev = NULL;
2886 /* Find its previous psymtab in the chain */
2887 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2896 /* Unhook it from the chain. */
2897 if (ps == pst->objfile->psymtabs)
2898 pst->objfile->psymtabs = ps->next;
2900 pprev->next = ps->next;
2902 /* FIXME, we can't conveniently deallocate the entries in the
2903 partial_symbol lists (global_psymbols/static_psymbols) that
2904 this psymtab points to. These just take up space until all
2905 the psymtabs are reclaimed. Ditto the dependencies list and
2906 filename, which are all in the objfile_obstack. */
2908 /* We need to cashier any psymtab that has this one as a dependency... */
2910 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2912 for (i = 0; i < ps->number_of_dependencies; i++)
2914 if (ps->dependencies[i] == pst)
2916 cashier_psymtab (ps);
2917 goto again; /* Must restart, chain has been munged. */
2924 /* If a symtab or psymtab for filename NAME is found, free it along
2925 with any dependent breakpoints, displays, etc.
2926 Used when loading new versions of object modules with the "add-file"
2927 command. This is only called on the top-level symtab or psymtab's name;
2928 it is not called for subsidiary files such as .h files.
2930 Return value is 1 if we blew away the environment, 0 if not.
2931 FIXME. The return value appears to never be used.
2933 FIXME. I think this is not the best way to do this. We should
2934 work on being gentler to the environment while still cleaning up
2935 all stray pointers into the freed symtab. */
2938 free_named_symtabs (char *name)
2941 /* FIXME: With the new method of each objfile having it's own
2942 psymtab list, this function needs serious rethinking. In particular,
2943 why was it ever necessary to toss psymtabs with specific compilation
2944 unit filenames, as opposed to all psymtabs from a particular symbol
2946 Well, the answer is that some systems permit reloading of particular
2947 compilation units. We want to blow away any old info about these
2948 compilation units, regardless of which objfiles they arrived in. --gnu. */
2951 struct symtab *prev;
2952 struct partial_symtab *ps;
2953 struct blockvector *bv;
2956 /* We only wack things if the symbol-reload switch is set. */
2957 if (!symbol_reloading)
2960 /* Some symbol formats have trouble providing file names... */
2961 if (name == 0 || *name == '\0')
2964 /* Look for a psymtab with the specified name. */
2967 for (ps = partial_symtab_list; ps; ps = ps->next)
2969 if (strcmp (name, ps->filename) == 0)
2971 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2972 goto again2; /* Must restart, chain has been munged */
2976 /* Look for a symtab with the specified name. */
2978 for (s = symtab_list; s; s = s->next)
2980 if (strcmp (name, s->filename) == 0)
2987 if (s == symtab_list)
2988 symtab_list = s->next;
2990 prev->next = s->next;
2992 /* For now, queue a delete for all breakpoints, displays, etc., whether
2993 or not they depend on the symtab being freed. This should be
2994 changed so that only those data structures affected are deleted. */
2996 /* But don't delete anything if the symtab is empty.
2997 This test is necessary due to a bug in "dbxread.c" that
2998 causes empty symtabs to be created for N_SO symbols that
2999 contain the pathname of the object file. (This problem
3000 has been fixed in GDB 3.9x). */
3002 bv = BLOCKVECTOR (s);
3003 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3004 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3005 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3007 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3009 clear_symtab_users_queued++;
3010 make_cleanup (clear_symtab_users_once, 0);
3014 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3021 /* It is still possible that some breakpoints will be affected
3022 even though no symtab was found, since the file might have
3023 been compiled without debugging, and hence not be associated
3024 with a symtab. In order to handle this correctly, we would need
3025 to keep a list of text address ranges for undebuggable files.
3026 For now, we do nothing, since this is a fairly obscure case. */
3030 /* FIXME, what about the minimal symbol table? */
3037 /* Allocate and partially fill a partial symtab. It will be
3038 completely filled at the end of the symbol list.
3040 FILENAME is the name of the symbol-file we are reading from. */
3042 struct partial_symtab *
3043 start_psymtab_common (struct objfile *objfile,
3044 struct section_offsets *section_offsets, char *filename,
3045 CORE_ADDR textlow, struct partial_symbol **global_syms,
3046 struct partial_symbol **static_syms)
3048 struct partial_symtab *psymtab;
3050 psymtab = allocate_psymtab (filename, objfile);
3051 psymtab->section_offsets = section_offsets;
3052 psymtab->textlow = textlow;
3053 psymtab->texthigh = psymtab->textlow; /* default */
3054 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3055 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3059 /* Helper function, initialises partial symbol structure and stashes
3060 it into objfile's bcache. Note that our caching mechanism will
3061 use all fields of struct partial_symbol to determine hash value of the
3062 structure. In other words, having two symbols with the same name but
3063 different domain (or address) is possible and correct. */
3065 static const struct partial_symbol *
3066 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3067 enum address_class class,
3068 long val, /* Value as a long */
3069 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3070 enum language language, struct objfile *objfile,
3074 /* psymbol is static so that there will be no uninitialized gaps in the
3075 structure which might contain random data, causing cache misses in
3077 static struct partial_symbol psymbol;
3079 if (name[namelength] != '\0')
3081 buf = alloca (namelength + 1);
3082 /* Create local copy of the partial symbol */
3083 memcpy (buf, name, namelength);
3084 buf[namelength] = '\0';
3086 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3089 SYMBOL_VALUE (&psymbol) = val;
3093 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3095 SYMBOL_SECTION (&psymbol) = 0;
3096 SYMBOL_LANGUAGE (&psymbol) = language;
3097 PSYMBOL_DOMAIN (&psymbol) = domain;
3098 PSYMBOL_CLASS (&psymbol) = class;
3100 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3102 /* Stash the partial symbol away in the cache */
3103 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3104 objfile->psymbol_cache, added);
3107 /* Helper function, adds partial symbol to the given partial symbol
3111 append_psymbol_to_list (struct psymbol_allocation_list *list,
3112 const struct partial_symbol *psym,
3113 struct objfile *objfile)
3115 if (list->next >= list->list + list->size)
3116 extend_psymbol_list (list, objfile);
3117 *list->next++ = (struct partial_symbol *) psym;
3118 OBJSTAT (objfile, n_psyms++);
3121 /* Add a symbol with a long value to a psymtab.
3122 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3123 Return the partial symbol that has been added. */
3125 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3126 symbol is so that callers can get access to the symbol's demangled
3127 name, which they don't have any cheap way to determine otherwise.
3128 (Currenly, dwarf2read.c is the only file who uses that information,
3129 though it's possible that other readers might in the future.)
3130 Elena wasn't thrilled about that, and I don't blame her, but we
3131 couldn't come up with a better way to get that information. If
3132 it's needed in other situations, we could consider breaking up
3133 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3136 const struct partial_symbol *
3137 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3138 enum address_class class,
3139 struct psymbol_allocation_list *list,
3140 long val, /* Value as a long */
3141 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3142 enum language language, struct objfile *objfile)
3144 const struct partial_symbol *psym;
3148 /* Stash the partial symbol away in the cache */
3149 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3150 val, coreaddr, language, objfile, &added);
3152 /* Do not duplicate global partial symbols. */
3153 if (list == &objfile->global_psymbols
3157 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3158 append_psymbol_to_list (list, psym, objfile);
3162 /* Initialize storage for partial symbols. */
3165 init_psymbol_list (struct objfile *objfile, int total_symbols)
3167 /* Free any previously allocated psymbol lists. */
3169 if (objfile->global_psymbols.list)
3171 xfree (objfile->global_psymbols.list);
3173 if (objfile->static_psymbols.list)
3175 xfree (objfile->static_psymbols.list);
3178 /* Current best guess is that approximately a twentieth
3179 of the total symbols (in a debugging file) are global or static
3182 objfile->global_psymbols.size = total_symbols / 10;
3183 objfile->static_psymbols.size = total_symbols / 10;
3185 if (objfile->global_psymbols.size > 0)
3187 objfile->global_psymbols.next =
3188 objfile->global_psymbols.list = (struct partial_symbol **)
3189 xmalloc ((objfile->global_psymbols.size
3190 * sizeof (struct partial_symbol *)));
3192 if (objfile->static_psymbols.size > 0)
3194 objfile->static_psymbols.next =
3195 objfile->static_psymbols.list = (struct partial_symbol **)
3196 xmalloc ((objfile->static_psymbols.size
3197 * sizeof (struct partial_symbol *)));
3202 The following code implements an abstraction for debugging overlay sections.
3204 The target model is as follows:
3205 1) The gnu linker will permit multiple sections to be mapped into the
3206 same VMA, each with its own unique LMA (or load address).
3207 2) It is assumed that some runtime mechanism exists for mapping the
3208 sections, one by one, from the load address into the VMA address.
3209 3) This code provides a mechanism for gdb to keep track of which
3210 sections should be considered to be mapped from the VMA to the LMA.
3211 This information is used for symbol lookup, and memory read/write.
3212 For instance, if a section has been mapped then its contents
3213 should be read from the VMA, otherwise from the LMA.
3215 Two levels of debugger support for overlays are available. One is
3216 "manual", in which the debugger relies on the user to tell it which
3217 overlays are currently mapped. This level of support is
3218 implemented entirely in the core debugger, and the information about
3219 whether a section is mapped is kept in the objfile->obj_section table.
3221 The second level of support is "automatic", and is only available if
3222 the target-specific code provides functionality to read the target's
3223 overlay mapping table, and translate its contents for the debugger
3224 (by updating the mapped state information in the obj_section tables).
3226 The interface is as follows:
3228 overlay map <name> -- tell gdb to consider this section mapped
3229 overlay unmap <name> -- tell gdb to consider this section unmapped
3230 overlay list -- list the sections that GDB thinks are mapped
3231 overlay read-target -- get the target's state of what's mapped
3232 overlay off/manual/auto -- set overlay debugging state
3233 Functional interface:
3234 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3235 section, return that section.
3236 find_pc_overlay(pc): find any overlay section that contains
3237 the pc, either in its VMA or its LMA
3238 section_is_mapped(sect): true if overlay is marked as mapped
3239 section_is_overlay(sect): true if section's VMA != LMA
3240 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3241 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3242 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3243 overlay_mapped_address(...): map an address from section's LMA to VMA
3244 overlay_unmapped_address(...): map an address from section's VMA to LMA
3245 symbol_overlayed_address(...): Return a "current" address for symbol:
3246 either in VMA or LMA depending on whether
3247 the symbol's section is currently mapped
3250 /* Overlay debugging state: */
3252 enum overlay_debugging_state overlay_debugging = ovly_off;
3253 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3255 /* Function: section_is_overlay (SECTION)
3256 Returns true if SECTION has VMA not equal to LMA, ie.
3257 SECTION is loaded at an address different from where it will "run". */
3260 section_is_overlay (struct obj_section *section)
3262 if (overlay_debugging && section)
3264 bfd *abfd = section->objfile->obfd;
3265 asection *bfd_section = section->the_bfd_section;
3267 if (bfd_section_lma (abfd, bfd_section) != 0
3268 && bfd_section_lma (abfd, bfd_section)
3269 != bfd_section_vma (abfd, bfd_section))
3276 /* Function: overlay_invalidate_all (void)
3277 Invalidate the mapped state of all overlay sections (mark it as stale). */
3280 overlay_invalidate_all (void)
3282 struct objfile *objfile;
3283 struct obj_section *sect;
3285 ALL_OBJSECTIONS (objfile, sect)
3286 if (section_is_overlay (sect))
3287 sect->ovly_mapped = -1;
3290 /* Function: section_is_mapped (SECTION)
3291 Returns true if section is an overlay, and is currently mapped.
3293 Access to the ovly_mapped flag is restricted to this function, so
3294 that we can do automatic update. If the global flag
3295 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3296 overlay_invalidate_all. If the mapped state of the particular
3297 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3300 section_is_mapped (struct obj_section *osect)
3302 if (osect == 0 || !section_is_overlay (osect))
3305 switch (overlay_debugging)
3309 return 0; /* overlay debugging off */
3310 case ovly_auto: /* overlay debugging automatic */
3311 /* Unles there is a gdbarch_overlay_update function,
3312 there's really nothing useful to do here (can't really go auto) */
3313 if (gdbarch_overlay_update_p (current_gdbarch))
3315 if (overlay_cache_invalid)
3317 overlay_invalidate_all ();
3318 overlay_cache_invalid = 0;
3320 if (osect->ovly_mapped == -1)
3321 gdbarch_overlay_update (current_gdbarch, osect);
3323 /* fall thru to manual case */
3324 case ovly_on: /* overlay debugging manual */
3325 return osect->ovly_mapped == 1;
3329 /* Function: pc_in_unmapped_range
3330 If PC falls into the lma range of SECTION, return true, else false. */
3333 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3335 if (section_is_overlay (section))
3337 bfd *abfd = section->objfile->obfd;
3338 asection *bfd_section = section->the_bfd_section;
3340 /* We assume the LMA is relocated by the same offset as the VMA. */
3341 bfd_vma size = bfd_get_section_size (bfd_section);
3342 CORE_ADDR offset = obj_section_offset (section);
3344 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3345 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3352 /* Function: pc_in_mapped_range
3353 If PC falls into the vma range of SECTION, return true, else false. */
3356 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3358 if (section_is_overlay (section))
3360 if (obj_section_addr (section) <= pc
3361 && pc < obj_section_endaddr (section))
3369 /* Return true if the mapped ranges of sections A and B overlap, false
3372 sections_overlap (struct obj_section *a, struct obj_section *b)
3374 CORE_ADDR a_start = obj_section_addr (a);
3375 CORE_ADDR a_end = obj_section_endaddr (a);
3376 CORE_ADDR b_start = obj_section_addr (b);
3377 CORE_ADDR b_end = obj_section_endaddr (b);
3379 return (a_start < b_end && b_start < a_end);
3382 /* Function: overlay_unmapped_address (PC, SECTION)
3383 Returns the address corresponding to PC in the unmapped (load) range.
3384 May be the same as PC. */
3387 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3389 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3391 bfd *abfd = section->objfile->obfd;
3392 asection *bfd_section = section->the_bfd_section;
3394 return pc + bfd_section_lma (abfd, bfd_section)
3395 - bfd_section_vma (abfd, bfd_section);
3401 /* Function: overlay_mapped_address (PC, SECTION)
3402 Returns the address corresponding to PC in the mapped (runtime) range.
3403 May be the same as PC. */
3406 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3408 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3410 bfd *abfd = section->objfile->obfd;
3411 asection *bfd_section = section->the_bfd_section;
3413 return pc + bfd_section_vma (abfd, bfd_section)
3414 - bfd_section_lma (abfd, bfd_section);
3421 /* Function: symbol_overlayed_address
3422 Return one of two addresses (relative to the VMA or to the LMA),
3423 depending on whether the section is mapped or not. */
3426 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3428 if (overlay_debugging)
3430 /* If the symbol has no section, just return its regular address. */
3433 /* If the symbol's section is not an overlay, just return its address */
3434 if (!section_is_overlay (section))
3436 /* If the symbol's section is mapped, just return its address */
3437 if (section_is_mapped (section))
3440 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3441 * then return its LOADED address rather than its vma address!!
3443 return overlay_unmapped_address (address, section);
3448 /* Function: find_pc_overlay (PC)
3449 Return the best-match overlay section for PC:
3450 If PC matches a mapped overlay section's VMA, return that section.
3451 Else if PC matches an unmapped section's VMA, return that section.
3452 Else if PC matches an unmapped section's LMA, return that section. */
3454 struct obj_section *
3455 find_pc_overlay (CORE_ADDR pc)
3457 struct objfile *objfile;
3458 struct obj_section *osect, *best_match = NULL;
3460 if (overlay_debugging)
3461 ALL_OBJSECTIONS (objfile, osect)
3462 if (section_is_overlay (osect))
3464 if (pc_in_mapped_range (pc, osect))
3466 if (section_is_mapped (osect))
3471 else if (pc_in_unmapped_range (pc, osect))
3477 /* Function: find_pc_mapped_section (PC)
3478 If PC falls into the VMA address range of an overlay section that is
3479 currently marked as MAPPED, return that section. Else return NULL. */
3481 struct obj_section *
3482 find_pc_mapped_section (CORE_ADDR pc)
3484 struct objfile *objfile;
3485 struct obj_section *osect;
3487 if (overlay_debugging)
3488 ALL_OBJSECTIONS (objfile, osect)
3489 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3495 /* Function: list_overlays_command
3496 Print a list of mapped sections and their PC ranges */
3499 list_overlays_command (char *args, int from_tty)
3502 struct objfile *objfile;
3503 struct obj_section *osect;
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
3507 if (section_is_mapped (osect))
3513 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3514 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3515 size = bfd_get_section_size (osect->the_bfd_section);
3516 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3518 printf_filtered ("Section %s, loaded at ", name);
3519 fputs_filtered (paddress (lma), gdb_stdout);
3520 puts_filtered (" - ");
3521 fputs_filtered (paddress (lma + size), gdb_stdout);
3522 printf_filtered (", mapped at ");
3523 fputs_filtered (paddress (vma), gdb_stdout);
3524 puts_filtered (" - ");
3525 fputs_filtered (paddress (vma + size), gdb_stdout);
3526 puts_filtered ("\n");
3531 printf_filtered (_("No sections are mapped.\n"));
3534 /* Function: map_overlay_command
3535 Mark the named section as mapped (ie. residing at its VMA address). */
3538 map_overlay_command (char *args, int from_tty)
3540 struct objfile *objfile, *objfile2;
3541 struct obj_section *sec, *sec2;
3543 if (!overlay_debugging)
3545 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3546 the 'overlay manual' command."));
3548 if (args == 0 || *args == 0)
3549 error (_("Argument required: name of an overlay section"));
3551 /* First, find a section matching the user supplied argument */
3552 ALL_OBJSECTIONS (objfile, sec)
3553 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3555 /* Now, check to see if the section is an overlay. */
3556 if (!section_is_overlay (sec))
3557 continue; /* not an overlay section */
3559 /* Mark the overlay as "mapped" */
3560 sec->ovly_mapped = 1;
3562 /* Next, make a pass and unmap any sections that are
3563 overlapped by this new section: */
3564 ALL_OBJSECTIONS (objfile2, sec2)
3565 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3568 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3569 bfd_section_name (objfile->obfd,
3570 sec2->the_bfd_section));
3571 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3575 error (_("No overlay section called %s"), args);
3578 /* Function: unmap_overlay_command
3579 Mark the overlay section as unmapped
3580 (ie. resident in its LMA address range, rather than the VMA range). */
3583 unmap_overlay_command (char *args, int from_tty)
3585 struct objfile *objfile;
3586 struct obj_section *sec;
3588 if (!overlay_debugging)
3590 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3591 the 'overlay manual' command."));
3593 if (args == 0 || *args == 0)
3594 error (_("Argument required: name of an overlay section"));
3596 /* First, find a section matching the user supplied argument */
3597 ALL_OBJSECTIONS (objfile, sec)
3598 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3600 if (!sec->ovly_mapped)
3601 error (_("Section %s is not mapped"), args);
3602 sec->ovly_mapped = 0;
3605 error (_("No overlay section called %s"), args);
3608 /* Function: overlay_auto_command
3609 A utility command to turn on overlay debugging.
3610 Possibly this should be done via a set/show command. */
3613 overlay_auto_command (char *args, int from_tty)
3615 overlay_debugging = ovly_auto;
3616 enable_overlay_breakpoints ();
3618 printf_unfiltered (_("Automatic overlay debugging enabled."));
3621 /* Function: overlay_manual_command
3622 A utility command to turn on overlay debugging.
3623 Possibly this should be done via a set/show command. */
3626 overlay_manual_command (char *args, int from_tty)
3628 overlay_debugging = ovly_on;
3629 disable_overlay_breakpoints ();
3631 printf_unfiltered (_("Overlay debugging enabled."));
3634 /* Function: overlay_off_command
3635 A utility command to turn on overlay debugging.
3636 Possibly this should be done via a set/show command. */
3639 overlay_off_command (char *args, int from_tty)
3641 overlay_debugging = ovly_off;
3642 disable_overlay_breakpoints ();
3644 printf_unfiltered (_("Overlay debugging disabled."));
3648 overlay_load_command (char *args, int from_tty)
3650 if (gdbarch_overlay_update_p (current_gdbarch))
3651 gdbarch_overlay_update (current_gdbarch, NULL);
3653 error (_("This target does not know how to read its overlay state."));
3656 /* Function: overlay_command
3657 A place-holder for a mis-typed command */
3659 /* Command list chain containing all defined "overlay" subcommands. */
3660 struct cmd_list_element *overlaylist;
3663 overlay_command (char *args, int from_tty)
3666 ("\"overlay\" must be followed by the name of an overlay command.\n");
3667 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3671 /* Target Overlays for the "Simplest" overlay manager:
3673 This is GDB's default target overlay layer. It works with the
3674 minimal overlay manager supplied as an example by Cygnus. The
3675 entry point is via a function pointer "gdbarch_overlay_update",
3676 so targets that use a different runtime overlay manager can
3677 substitute their own overlay_update function and take over the
3680 The overlay_update function pokes around in the target's data structures
3681 to see what overlays are mapped, and updates GDB's overlay mapping with
3684 In this simple implementation, the target data structures are as follows:
3685 unsigned _novlys; /# number of overlay sections #/
3686 unsigned _ovly_table[_novlys][4] = {
3687 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3688 {..., ..., ..., ...},
3690 unsigned _novly_regions; /# number of overlay regions #/
3691 unsigned _ovly_region_table[_novly_regions][3] = {
3692 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3695 These functions will attempt to update GDB's mappedness state in the
3696 symbol section table, based on the target's mappedness state.
3698 To do this, we keep a cached copy of the target's _ovly_table, and
3699 attempt to detect when the cached copy is invalidated. The main
3700 entry point is "simple_overlay_update(SECT), which looks up SECT in
3701 the cached table and re-reads only the entry for that section from
3702 the target (whenever possible).
3705 /* Cached, dynamically allocated copies of the target data structures: */
3706 static unsigned (*cache_ovly_table)[4] = 0;
3708 static unsigned (*cache_ovly_region_table)[3] = 0;
3710 static unsigned cache_novlys = 0;
3712 static unsigned cache_novly_regions = 0;
3714 static CORE_ADDR cache_ovly_table_base = 0;
3716 static CORE_ADDR cache_ovly_region_table_base = 0;
3720 VMA, SIZE, LMA, MAPPED
3722 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3725 /* Throw away the cached copy of _ovly_table */
3727 simple_free_overlay_table (void)
3729 if (cache_ovly_table)
3730 xfree (cache_ovly_table);
3732 cache_ovly_table = NULL;
3733 cache_ovly_table_base = 0;
3737 /* Throw away the cached copy of _ovly_region_table */
3739 simple_free_overlay_region_table (void)
3741 if (cache_ovly_region_table)
3742 xfree (cache_ovly_region_table);
3743 cache_novly_regions = 0;
3744 cache_ovly_region_table = NULL;
3745 cache_ovly_region_table_base = 0;
3749 /* Read an array of ints from the target into a local buffer.
3750 Convert to host order. int LEN is number of ints */
3752 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3754 /* FIXME (alloca): Not safe if array is very large. */
3755 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3758 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3759 for (i = 0; i < len; i++)
3760 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3764 /* Find and grab a copy of the target _ovly_table
3765 (and _novlys, which is needed for the table's size) */
3767 simple_read_overlay_table (void)
3769 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3771 simple_free_overlay_table ();
3772 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3775 error (_("Error reading inferior's overlay table: "
3776 "couldn't find `_novlys' variable\n"
3777 "in inferior. Use `overlay manual' mode."));
3781 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3782 if (! ovly_table_msym)
3784 error (_("Error reading inferior's overlay table: couldn't find "
3785 "`_ovly_table' array\n"
3786 "in inferior. Use `overlay manual' mode."));
3790 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3792 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3793 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3794 read_target_long_array (cache_ovly_table_base,
3795 (unsigned int *) cache_ovly_table,
3798 return 1; /* SUCCESS */
3802 /* Find and grab a copy of the target _ovly_region_table
3803 (and _novly_regions, which is needed for the table's size) */
3805 simple_read_overlay_region_table (void)
3807 struct minimal_symbol *msym;
3809 simple_free_overlay_region_table ();
3810 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3812 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3814 return 0; /* failure */
3815 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3816 if (cache_ovly_region_table != NULL)
3818 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3821 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3822 read_target_long_array (cache_ovly_region_table_base,
3823 (unsigned int *) cache_ovly_region_table,
3824 cache_novly_regions * 3);
3827 return 0; /* failure */
3830 return 0; /* failure */
3831 return 1; /* SUCCESS */
3835 /* Function: simple_overlay_update_1
3836 A helper function for simple_overlay_update. Assuming a cached copy
3837 of _ovly_table exists, look through it to find an entry whose vma,
3838 lma and size match those of OSECT. Re-read the entry and make sure
3839 it still matches OSECT (else the table may no longer be valid).
3840 Set OSECT's mapped state to match the entry. Return: 1 for
3841 success, 0 for failure. */
3844 simple_overlay_update_1 (struct obj_section *osect)
3847 bfd *obfd = osect->objfile->obfd;
3848 asection *bsect = osect->the_bfd_section;
3850 size = bfd_get_section_size (osect->the_bfd_section);
3851 for (i = 0; i < cache_novlys; i++)
3852 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3853 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3854 /* && cache_ovly_table[i][SIZE] == size */ )
3856 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3857 (unsigned int *) cache_ovly_table[i], 4);
3858 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3859 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3860 /* && cache_ovly_table[i][SIZE] == size */ )
3862 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3865 else /* Warning! Warning! Target's ovly table has changed! */
3871 /* Function: simple_overlay_update
3872 If OSECT is NULL, then update all sections' mapped state
3873 (after re-reading the entire target _ovly_table).
3874 If OSECT is non-NULL, then try to find a matching entry in the
3875 cached ovly_table and update only OSECT's mapped state.
3876 If a cached entry can't be found or the cache isn't valid, then
3877 re-read the entire cache, and go ahead and update all sections. */
3880 simple_overlay_update (struct obj_section *osect)
3882 struct objfile *objfile;
3884 /* Were we given an osect to look up? NULL means do all of them. */
3886 /* Have we got a cached copy of the target's overlay table? */
3887 if (cache_ovly_table != NULL)
3888 /* Does its cached location match what's currently in the symtab? */
3889 if (cache_ovly_table_base ==
3890 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3891 /* Then go ahead and try to look up this single section in the cache */
3892 if (simple_overlay_update_1 (osect))
3893 /* Found it! We're done. */
3896 /* Cached table no good: need to read the entire table anew.
3897 Or else we want all the sections, in which case it's actually
3898 more efficient to read the whole table in one block anyway. */
3900 if (! simple_read_overlay_table ())
3903 /* Now may as well update all sections, even if only one was requested. */
3904 ALL_OBJSECTIONS (objfile, osect)
3905 if (section_is_overlay (osect))
3908 bfd *obfd = osect->objfile->obfd;
3909 asection *bsect = osect->the_bfd_section;
3911 size = bfd_get_section_size (bsect);
3912 for (i = 0; i < cache_novlys; i++)
3913 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3914 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3915 /* && cache_ovly_table[i][SIZE] == size */ )
3916 { /* obj_section matches i'th entry in ovly_table */
3917 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3918 break; /* finished with inner for loop: break out */
3923 /* Set the output sections and output offsets for section SECTP in
3924 ABFD. The relocation code in BFD will read these offsets, so we
3925 need to be sure they're initialized. We map each section to itself,
3926 with no offset; this means that SECTP->vma will be honored. */
3929 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3931 sectp->output_section = sectp;
3932 sectp->output_offset = 0;
3935 /* Relocate the contents of a debug section SECTP in ABFD. The
3936 contents are stored in BUF if it is non-NULL, or returned in a
3937 malloc'd buffer otherwise.
3939 For some platforms and debug info formats, shared libraries contain
3940 relocations against the debug sections (particularly for DWARF-2;
3941 one affected platform is PowerPC GNU/Linux, although it depends on
3942 the version of the linker in use). Also, ELF object files naturally
3943 have unresolved relocations for their debug sections. We need to apply
3944 the relocations in order to get the locations of symbols correct.
3945 Another example that may require relocation processing, is the
3946 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3950 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3952 /* We're only interested in sections with relocation
3954 if ((sectp->flags & SEC_RELOC) == 0)
3957 /* We will handle section offsets properly elsewhere, so relocate as if
3958 all sections begin at 0. */
3959 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3961 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3964 struct symfile_segment_data *
3965 get_symfile_segment_data (bfd *abfd)
3967 struct sym_fns *sf = find_sym_fns (abfd);
3972 return sf->sym_segments (abfd);
3976 free_symfile_segment_data (struct symfile_segment_data *data)
3978 xfree (data->segment_bases);
3979 xfree (data->segment_sizes);
3980 xfree (data->segment_info);
3986 - DATA, containing segment addresses from the object file ABFD, and
3987 the mapping from ABFD's sections onto the segments that own them,
3989 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3990 segment addresses reported by the target,
3991 store the appropriate offsets for each section in OFFSETS.
3993 If there are fewer entries in SEGMENT_BASES than there are segments
3994 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3996 If there are more entries, then ignore the extra. The target may
3997 not be able to distinguish between an empty data segment and a
3998 missing data segment; a missing text segment is less plausible. */
4000 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4001 struct section_offsets *offsets,
4002 int num_segment_bases,
4003 const CORE_ADDR *segment_bases)
4008 /* It doesn't make sense to call this function unless you have some
4009 segment base addresses. */
4010 gdb_assert (segment_bases > 0);
4012 /* If we do not have segment mappings for the object file, we
4013 can not relocate it by segments. */
4014 gdb_assert (data != NULL);
4015 gdb_assert (data->num_segments > 0);
4017 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4019 int which = data->segment_info[i];
4021 gdb_assert (0 <= which && which <= data->num_segments);
4023 /* Don't bother computing offsets for sections that aren't
4024 loaded as part of any segment. */
4028 /* Use the last SEGMENT_BASES entry as the address of any extra
4029 segments mentioned in DATA->segment_info. */
4030 if (which > num_segment_bases)
4031 which = num_segment_bases;
4033 offsets->offsets[i] = (segment_bases[which - 1]
4034 - data->segment_bases[which - 1]);
4041 symfile_find_segment_sections (struct objfile *objfile)
4043 bfd *abfd = objfile->obfd;
4046 struct symfile_segment_data *data;
4048 data = get_symfile_segment_data (objfile->obfd);
4052 if (data->num_segments != 1 && data->num_segments != 2)
4054 free_symfile_segment_data (data);
4058 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4061 int which = data->segment_info[i];
4065 if (objfile->sect_index_text == -1)
4066 objfile->sect_index_text = sect->index;
4068 if (objfile->sect_index_rodata == -1)
4069 objfile->sect_index_rodata = sect->index;
4071 else if (which == 2)
4073 if (objfile->sect_index_data == -1)
4074 objfile->sect_index_data = sect->index;
4076 if (objfile->sect_index_bss == -1)
4077 objfile->sect_index_bss = sect->index;
4081 free_symfile_segment_data (data);
4085 _initialize_symfile (void)
4087 struct cmd_list_element *c;
4089 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4090 Load symbol table from executable file FILE.\n\
4091 The `file' command can also load symbol tables, as well as setting the file\n\
4092 to execute."), &cmdlist);
4093 set_cmd_completer (c, filename_completer);
4095 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4096 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4097 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4098 ADDR is the starting address of the file's text.\n\
4099 The optional arguments are section-name section-address pairs and\n\
4100 should be specified if the data and bss segments are not contiguous\n\
4101 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4103 set_cmd_completer (c, filename_completer);
4105 c = add_cmd ("add-shared-symbol-files", class_files,
4106 add_shared_symbol_files_command, _("\
4107 Load the symbols from shared objects in the dynamic linker's link map."),
4109 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4112 c = add_cmd ("load", class_files, load_command, _("\
4113 Dynamically load FILE into the running program, and record its symbols\n\
4114 for access from GDB.\n\
4115 A load OFFSET may also be given."), &cmdlist);
4116 set_cmd_completer (c, filename_completer);
4118 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4119 &symbol_reloading, _("\
4120 Set dynamic symbol table reloading multiple times in one run."), _("\
4121 Show dynamic symbol table reloading multiple times in one run."), NULL,
4123 show_symbol_reloading,
4124 &setlist, &showlist);
4126 add_prefix_cmd ("overlay", class_support, overlay_command,
4127 _("Commands for debugging overlays."), &overlaylist,
4128 "overlay ", 0, &cmdlist);
4130 add_com_alias ("ovly", "overlay", class_alias, 1);
4131 add_com_alias ("ov", "overlay", class_alias, 1);
4133 add_cmd ("map-overlay", class_support, map_overlay_command,
4134 _("Assert that an overlay section is mapped."), &overlaylist);
4136 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4137 _("Assert that an overlay section is unmapped."), &overlaylist);
4139 add_cmd ("list-overlays", class_support, list_overlays_command,
4140 _("List mappings of overlay sections."), &overlaylist);
4142 add_cmd ("manual", class_support, overlay_manual_command,
4143 _("Enable overlay debugging."), &overlaylist);
4144 add_cmd ("off", class_support, overlay_off_command,
4145 _("Disable overlay debugging."), &overlaylist);
4146 add_cmd ("auto", class_support, overlay_auto_command,
4147 _("Enable automatic overlay debugging."), &overlaylist);
4148 add_cmd ("load-target", class_support, overlay_load_command,
4149 _("Read the overlay mapping state from the target."), &overlaylist);
4151 /* Filename extension to source language lookup table: */
4152 init_filename_language_table ();
4153 add_setshow_string_noescape_cmd ("extension-language", class_files,
4155 Set mapping between filename extension and source language."), _("\
4156 Show mapping between filename extension and source language."), _("\
4157 Usage: set extension-language .foo bar"),
4158 set_ext_lang_command,
4160 &setlist, &showlist);
4162 add_info ("extensions", info_ext_lang_command,
4163 _("All filename extensions associated with a source language."));
4165 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4166 &debug_file_directory, _("\
4167 Set the directory where separate debug symbols are searched for."), _("\
4168 Show the directory where separate debug symbols are searched for."), _("\
4169 Separate debug symbols are first searched for in the same\n\
4170 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4171 and lastly at the path of the directory of the binary with\n\
4172 the global debug-file directory prepended."),
4174 show_debug_file_directory,
4175 &setlist, &showlist);
4177 add_setshow_boolean_cmd ("symbol-loading", no_class,
4178 &print_symbol_loading, _("\
4179 Set printing of symbol loading messages."), _("\
4180 Show printing of symbol loading messages."), NULL,
4183 &setprintlist, &showprintlist);