1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
35 #include "breakpoint.h"
37 #include "complaints.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
51 #include "parser-defs.h"
58 #include "cli/cli-utils.h"
60 #include <sys/types.h>
65 #include "gdb_sys_time.h"
69 int (*deprecated_ui_load_progress_hook) (const char *section,
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
79 static void clear_symtab_users_cleanup (void *ignore);
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
84 /* Functions this file defines. */
86 static void load_command (char *, int);
88 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
90 static void add_symbol_file_command (char *, int);
92 static const struct sym_fns *find_sym_fns (bfd *);
94 static void decrement_reading_symtab (void *);
96 static void overlay_invalidate_all (void);
98 static void overlay_auto_command (char *, int);
100 static void overlay_manual_command (char *, int);
102 static void overlay_off_command (char *, int);
104 static void overlay_load_command (char *, int);
106 static void overlay_command (char *, int);
108 static void simple_free_overlay_table (void);
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 static int simple_read_overlay_table (void);
115 static int simple_overlay_update_1 (struct obj_section *);
117 static void add_filename_language (char *ext, enum language lang);
119 static void info_ext_lang_command (char *args, int from_tty);
121 static void init_filename_language_table (void);
123 static void symfile_find_segment_sections (struct objfile *objfile);
125 void _initialize_symfile (void);
127 /* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138 } registered_sym_fns;
140 DEF_VEC_O (registered_sym_fns);
142 static VEC (registered_sym_fns) *symtab_fns = NULL;
144 /* Values for "set print symbol-loading". */
146 const char print_symbol_loading_off[] = "off";
147 const char print_symbol_loading_brief[] = "brief";
148 const char print_symbol_loading_full[] = "full";
149 static const char *print_symbol_loading_enums[] =
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
156 static const char *print_symbol_loading = print_symbol_loading_full;
158 /* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
165 library symbols are not loaded, commands like "info fun" will *not*
166 report all the functions that are actually present. */
168 int auto_solib_add = 1;
171 /* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
180 print_symbol_loading_p (int from_tty, int exec, int full)
182 if (!from_tty && !info_verbose)
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
196 /* True if we are reading a symbol table. */
198 int currently_reading_symtab = 0;
201 decrement_reading_symtab (void *dummy)
203 currently_reading_symtab--;
204 gdb_assert (currently_reading_symtab >= 0);
207 /* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
211 increment_reading_symtab (void)
213 ++currently_reading_symtab;
214 gdb_assert (currently_reading_symtab > 0);
215 return make_cleanup (decrement_reading_symtab, NULL);
218 /* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
228 find_lowest_section (bfd *abfd, asection *sect, void *obj)
230 asection **lowest = (asection **) obj;
232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
244 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
248 struct section_addr_info *
249 alloc_section_addr_info (size_t num_sections)
251 struct section_addr_info *sap;
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
262 /* Build (allocate and populate) a section_addr_info struct from
263 an existing section table. */
265 extern struct section_addr_info *
266 build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
269 struct section_addr_info *sap;
270 const struct target_section *stp;
273 sap = alloc_section_addr_info (end - start);
275 for (stp = start, oidx = 0; stp != end; stp++)
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
281 && oidx < end - start)
283 sap->other[oidx].addr = stp->addr;
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
290 sap->num_sections = oidx;
295 /* Create a section_addr_info from section offsets in ABFD. */
297 static struct section_addr_info *
298 build_section_addr_info_from_bfd (bfd *abfd)
300 struct section_addr_info *sap;
302 struct bfd_section *sec;
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
314 sap->num_sections = i;
319 /* Create a section_addr_info from section offsets in OBJFILE. */
321 struct section_addr_info *
322 build_section_addr_info_from_objfile (const struct objfile *objfile)
324 struct section_addr_info *sap;
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
331 for (i = 0; i < sap->num_sections; i++)
333 int sectindex = sap->other[i].sectindex;
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
340 /* Free all memory allocated by build_section_addr_info_from_section_table. */
343 free_section_addr_info (struct section_addr_info *sap)
347 for (idx = 0; idx < sap->num_sections; idx++)
348 xfree (sap->other[idx].name);
352 /* Initialize OBJFILE's sect_index_* members. */
355 init_objfile_sect_indices (struct objfile *objfile)
360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
362 objfile->sect_index_text = sect->index;
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
366 objfile->sect_index_data = sect->index;
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
370 objfile->sect_index_bss = sect->index;
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
374 objfile->sect_index_rodata = sect->index;
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
382 symfile_find_segment_sections (objfile);
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
393 for (i = 0; i < objfile->num_sections; i++)
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
400 if (i == objfile->num_sections)
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
413 /* The arguments to place_section. */
415 struct place_section_arg
417 struct section_offsets *offsets;
421 /* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
425 place_section (bfd *abfd, asection *sect, void *obj)
427 struct place_section_arg *arg = (struct place_section_arg *) obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
436 /* If the user specified an offset, honor it. */
437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
440 /* Otherwise, let's try to find a place for the section. */
441 start_addr = (arg->lowest + align - 1) & -align;
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
450 int indx = cur_sec->index;
452 /* We don't need to compare against ourself. */
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
476 /* Otherwise, we appear to be OK. So far. */
481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
482 arg->lowest = start_addr + bfd_get_section_size (sect);
485 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
490 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
492 const struct section_addr_info *addrs)
496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
498 /* Now calculate offsets for section that were specified by the caller. */
499 for (i = 0; i < addrs->num_sections; i++)
501 const struct other_sections *osp;
503 osp = &addrs->other[i];
504 if (osp->sectindex == -1)
507 /* Record all sections in offsets. */
508 /* The section_offsets in the objfile are here filled in using
510 section_offsets->offsets[osp->sectindex] = osp->addr;
514 /* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
521 addr_section_name (const char *s)
523 if (strcmp (s, ".dynbss") == 0)
525 if (strcmp (s, ".sdynbss") == 0)
531 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
535 addrs_section_compar (const void *ap, const void *bp)
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
545 return a->sectindex - b->sectindex;
548 /* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
551 static struct other_sections **
552 addrs_section_sort (struct section_addr_info *addrs)
554 struct other_sections **array;
557 /* `+ 1' for the NULL terminator. */
558 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
559 for (i = 0; i < addrs->num_sections; i++)
560 array[i] = &addrs->other[i];
563 qsort (array, i, sizeof (*array), addrs_section_compar);
568 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
573 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
575 asection *lower_sect;
576 CORE_ADDR lower_offset;
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
583 /* Find lowest loadable section to be used as starting point for
584 continguous sections. */
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
587 if (lower_sect == NULL)
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
617 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
618 make_cleanup (xfree, addrs_to_abfd_addrs);
620 while (*addrs_sorted)
622 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
624 while (*abfd_addrs_sorted
625 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
629 if (*abfd_addrs_sorted
630 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
635 /* Make the found item directly addressable from ADDRS. */
636 index_in_addrs = *addrs_sorted - addrs->other;
637 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
638 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
640 /* Never use the same ABFD entry twice. */
647 /* Calculate offsets for the loadable sections.
648 FIXME! Sections must be in order of increasing loadable section
649 so that contiguous sections can use the lower-offset!!!
651 Adjust offsets if the segments are not contiguous.
652 If the section is contiguous, its offset should be set to
653 the offset of the highest loadable section lower than it
654 (the loadable section directly below it in memory).
655 this_offset = lower_offset = lower_addr - lower_orig_addr */
657 for (i = 0; i < addrs->num_sections; i++)
659 struct other_sections *sect = addrs_to_abfd_addrs[i];
663 /* This is the index used by BFD. */
664 addrs->other[i].sectindex = sect->sectindex;
666 if (addrs->other[i].addr != 0)
668 addrs->other[i].addr -= sect->addr;
669 lower_offset = addrs->other[i].addr;
672 addrs->other[i].addr = lower_offset;
676 /* addr_section_name transformation is not used for SECT_NAME. */
677 const char *sect_name = addrs->other[i].name;
679 /* This section does not exist in ABFD, which is normally
680 unexpected and we want to issue a warning.
682 However, the ELF prelinker does create a few sections which are
683 marked in the main executable as loadable (they are loaded in
684 memory from the DYNAMIC segment) and yet are not present in
685 separate debug info files. This is fine, and should not cause
686 a warning. Shared libraries contain just the section
687 ".gnu.liblist" but it is not marked as loadable there. There is
688 no other way to identify them than by their name as the sections
689 created by prelink have no special flags.
691 For the sections `.bss' and `.sbss' see addr_section_name. */
693 if (!(strcmp (sect_name, ".gnu.liblist") == 0
694 || strcmp (sect_name, ".gnu.conflict") == 0
695 || (strcmp (sect_name, ".bss") == 0
697 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)
699 || (strcmp (sect_name, ".sbss") == 0
701 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
702 && addrs_to_abfd_addrs[i - 1] != NULL)))
703 warning (_("section %s not found in %s"), sect_name,
704 bfd_get_filename (abfd));
706 addrs->other[i].addr = 0;
707 addrs->other[i].sectindex = -1;
711 do_cleanups (my_cleanup);
714 /* Parse the user's idea of an offset for dynamic linking, into our idea
715 of how to represent it for fast symbol reading. This is the default
716 version of the sym_fns.sym_offsets function for symbol readers that
717 don't need to do anything special. It allocates a section_offsets table
718 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
721 default_symfile_offsets (struct objfile *objfile,
722 const struct section_addr_info *addrs)
724 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
725 objfile->section_offsets = (struct section_offsets *)
726 obstack_alloc (&objfile->objfile_obstack,
727 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
728 relative_addr_info_to_section_offsets (objfile->section_offsets,
729 objfile->num_sections, addrs);
731 /* For relocatable files, all loadable sections will start at zero.
732 The zero is meaningless, so try to pick arbitrary addresses such
733 that no loadable sections overlap. This algorithm is quadratic,
734 but the number of sections in a single object file is generally
736 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 struct place_section_arg arg;
739 bfd *abfd = objfile->obfd;
742 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
743 /* We do not expect this to happen; just skip this step if the
744 relocatable file has a section with an assigned VMA. */
745 if (bfd_section_vma (abfd, cur_sec) != 0)
750 CORE_ADDR *offsets = objfile->section_offsets->offsets;
752 /* Pick non-overlapping offsets for sections the user did not
754 arg.offsets = objfile->section_offsets;
756 bfd_map_over_sections (objfile->obfd, place_section, &arg);
758 /* Correctly filling in the section offsets is not quite
759 enough. Relocatable files have two properties that
760 (most) shared objects do not:
762 - Their debug information will contain relocations. Some
763 shared libraries do also, but many do not, so this can not
766 - If there are multiple code sections they will be loaded
767 at different relative addresses in memory than they are
768 in the objfile, since all sections in the file will start
771 Because GDB has very limited ability to map from an
772 address in debug info to the correct code section,
773 it relies on adding SECT_OFF_TEXT to things which might be
774 code. If we clear all the section offsets, and set the
775 section VMAs instead, then symfile_relocate_debug_section
776 will return meaningful debug information pointing at the
779 GDB has too many different data structures for section
780 addresses - a bfd, objfile, and so_list all have section
781 tables, as does exec_ops. Some of these could probably
784 for (cur_sec = abfd->sections; cur_sec != NULL;
785 cur_sec = cur_sec->next)
787 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
790 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
791 exec_set_section_address (bfd_get_filename (abfd),
793 offsets[cur_sec->index]);
794 offsets[cur_sec->index] = 0;
799 /* Remember the bfd indexes for the .text, .data, .bss and
801 init_objfile_sect_indices (objfile);
804 /* Divide the file into segments, which are individual relocatable units.
805 This is the default version of the sym_fns.sym_segments function for
806 symbol readers that do not have an explicit representation of segments.
807 It assumes that object files do not have segments, and fully linked
808 files have a single segment. */
810 struct symfile_segment_data *
811 default_symfile_segments (bfd *abfd)
815 struct symfile_segment_data *data;
818 /* Relocatable files contain enough information to position each
819 loadable section independently; they should not be relocated
821 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
824 /* Make sure there is at least one loadable section in the file. */
825 for (sect = abfd->sections; sect != NULL; sect = sect->next)
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
835 low = bfd_get_section_vma (abfd, sect);
836 high = low + bfd_get_section_size (sect);
838 data = XCNEW (struct symfile_segment_data);
839 data->num_segments = 1;
840 data->segment_bases = XCNEW (CORE_ADDR);
841 data->segment_sizes = XCNEW (CORE_ADDR);
843 num_sections = bfd_count_sections (abfd);
844 data->segment_info = XCNEWVEC (int, num_sections);
846 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
850 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
853 vma = bfd_get_section_vma (abfd, sect);
856 if (vma + bfd_get_section_size (sect) > high)
857 high = vma + bfd_get_section_size (sect);
859 data->segment_info[i] = 1;
862 data->segment_bases[0] = low;
863 data->segment_sizes[0] = high - low;
868 /* This is a convenience function to call sym_read for OBJFILE and
869 possibly force the partial symbols to be read. */
872 read_symbols (struct objfile *objfile, int add_flags)
874 (*objfile->sf->sym_read) (objfile, add_flags);
875 objfile->per_bfd->minsyms_read = 1;
877 /* find_separate_debug_file_in_section should be called only if there is
878 single binary with no existing separate debug info file. */
879 if (!objfile_has_partial_symbols (objfile)
880 && objfile->separate_debug_objfile == NULL
881 && objfile->separate_debug_objfile_backlink == NULL)
883 bfd *abfd = find_separate_debug_file_in_section (objfile);
884 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
888 /* find_separate_debug_file_in_section uses the same filename for the
889 virtual section-as-bfd like the bfd filename containing the
890 section. Therefore use also non-canonical name form for the same
891 file containing the section. */
892 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
896 do_cleanups (cleanup);
898 if ((add_flags & SYMFILE_NO_READ) == 0)
899 require_partial_symbols (objfile, 0);
902 /* Initialize entry point information for this objfile. */
905 init_entry_point_info (struct objfile *objfile)
907 struct entry_info *ei = &objfile->per_bfd->ei;
913 /* Save startup file's range of PC addresses to help blockframe.c
914 decide where the bottom of the stack is. */
916 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
918 /* Executable file -- record its entry point so we'll recognize
919 the startup file because it contains the entry point. */
920 ei->entry_point = bfd_get_start_address (objfile->obfd);
921 ei->entry_point_p = 1;
923 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
924 && bfd_get_start_address (objfile->obfd) != 0)
926 /* Some shared libraries may have entry points set and be
927 runnable. There's no clear way to indicate this, so just check
928 for values other than zero. */
929 ei->entry_point = bfd_get_start_address (objfile->obfd);
930 ei->entry_point_p = 1;
934 /* Examination of non-executable.o files. Short-circuit this stuff. */
935 ei->entry_point_p = 0;
938 if (ei->entry_point_p)
940 struct obj_section *osect;
941 CORE_ADDR entry_point = ei->entry_point;
944 /* Make certain that the address points at real code, and not a
945 function descriptor. */
947 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
951 /* Remove any ISA markers, so that this matches entries in the
954 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
957 ALL_OBJFILE_OSECTIONS (objfile, osect)
959 struct bfd_section *sect = osect->the_bfd_section;
961 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
962 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
963 + bfd_get_section_size (sect)))
965 ei->the_bfd_section_index
966 = gdb_bfd_section_index (objfile->obfd, sect);
973 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
977 /* Process a symbol file, as either the main file or as a dynamically
980 This function does not set the OBJFILE's entry-point info.
982 OBJFILE is where the symbols are to be read from.
984 ADDRS is the list of section load addresses. If the user has given
985 an 'add-symbol-file' command, then this is the list of offsets and
986 addresses he or she provided as arguments to the command; or, if
987 we're handling a shared library, these are the actual addresses the
988 sections are loaded at, according to the inferior's dynamic linker
989 (as gleaned by GDB's shared library code). We convert each address
990 into an offset from the section VMA's as it appears in the object
991 file, and then call the file's sym_offsets function to convert this
992 into a format-specific offset table --- a `struct section_offsets'.
994 ADD_FLAGS encodes verbosity level, whether this is main symbol or
995 an extra symbol file such as dynamically loaded code, and wether
996 breakpoint reset should be deferred. */
999 syms_from_objfile_1 (struct objfile *objfile,
1000 struct section_addr_info *addrs,
1003 struct section_addr_info *local_addr = NULL;
1004 struct cleanup *old_chain;
1005 const int mainline = add_flags & SYMFILE_MAINLINE;
1007 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1009 if (objfile->sf == NULL)
1011 /* No symbols to load, but we still need to make sure
1012 that the section_offsets table is allocated. */
1013 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1016 objfile->num_sections = num_sections;
1017 objfile->section_offsets
1018 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1020 memset (objfile->section_offsets, 0, size);
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
1026 old_chain = make_cleanup_free_objfile (objfile);
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
1030 no load address was specified. */
1033 local_addr = alloc_section_addr_info (1);
1034 make_cleanup (xfree, local_addr);
1040 /* We will modify the main symbol table, make sure that all its users
1041 will be cleaned up if an error occurs during symbol reading. */
1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1044 /* Since no error yet, throw away the old symbol table. */
1046 if (symfile_objfile != NULL)
1048 free_objfile (symfile_objfile);
1049 gdb_assert (symfile_objfile == NULL);
1052 /* Currently we keep symbols from the add-symbol-file command.
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1057 (*objfile->sf->sym_new_init) (objfile);
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
1062 and assume that <addr> is where that got loaded.
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
1066 if (addrs->num_sections > 0)
1067 addr_info_make_relative (addrs, objfile->obfd);
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
1071 initial symbol reading for this file. */
1073 (*objfile->sf->sym_init) (objfile);
1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1076 (*objfile->sf->sym_offsets) (objfile, addrs);
1078 read_symbols (objfile, add_flags);
1080 /* Discard cleanups as symbol reading was successful. */
1082 discard_cleanups (old_chain);
1086 /* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1090 syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
1094 syms_from_objfile_1 (objfile, addrs, add_flags);
1095 init_entry_point_info (objfile);
1098 /* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1103 finish_new_objfile (struct objfile *objfile, int add_flags)
1105 /* If this is the main symbol file we have to clean up all users of the
1106 old main symbol file. Otherwise it is sufficient to fixup all the
1107 breakpoints that may have been redefined by this symbol file. */
1108 if (add_flags & SYMFILE_MAINLINE)
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1113 clear_symtab_users (add_flags);
1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1117 breakpoint_re_set ();
1120 /* We're done reading the symbol file; finish off complaints. */
1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1124 /* Process a symbol file, as either the main file or as a dynamically
1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1128 A new reference is acquired by this function.
1130 For NAME description see allocate_objfile's definition.
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
1135 ADDRS is as described for syms_from_objfile_1, above.
1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1141 Upon success, returns a pointer to the objfile that was added.
1142 Upon failure, jumps back to command level (never returns). */
1144 static struct objfile *
1145 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
1149 struct objfile *objfile;
1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
1151 const int mainline = add_flags & SYMFILE_MAINLINE;
1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
1156 if (readnow_symbol_files)
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
1165 if ((have_full_symbols () || have_partial_symbols ())
1168 && !query (_("Load new symbol table from \"%s\"? "), name))
1169 error (_("Not confirmed."));
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
1175 add_separate_debug_objfile (objfile, parent);
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
1179 performed, or need to read an unmapped symbol table. */
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1188 gdb_flush (gdb_stdout);
1191 syms_from_objfile (objfile, addrs, add_flags);
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
1196 all partial symbol tables for this objfile if so. */
1198 if ((flags & OBJF_READNOW))
1202 printf_unfiltered (_("expanding to full symbols..."));
1204 gdb_flush (gdb_stdout);
1208 objfile->sf->qf->expand_all_symtabs (objfile);
1211 if (should_print && !objfile_has_symbols (objfile))
1214 printf_unfiltered (_("(no debugging symbols found)..."));
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
1223 printf_unfiltered (_("done.\n"));
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1229 gdb_flush (gdb_stdout);
1231 if (objfile->sf == NULL)
1233 observer_notify_new_objfile (objfile);
1234 return objfile; /* No symbols. */
1237 finish_new_objfile (objfile, add_flags);
1239 observer_notify_new_objfile (objfile);
1241 bfd_cache_close_all ();
1245 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
1249 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
1252 struct section_addr_info *sap;
1253 struct cleanup *my_cleanup;
1255 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1256 because sections of BFD may not match sections of OBJFILE and because
1257 vma may have been modified by tools such as prelink. */
1258 sap = build_section_addr_info_from_objfile (objfile);
1259 my_cleanup = make_cleanup_free_section_addr_info (sap);
1261 symbol_file_add_with_addrs
1262 (bfd, name, symfile_flags, sap,
1263 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1267 do_cleanups (my_cleanup);
1270 /* Process the symbol file ABFD, as either the main file or as a
1271 dynamically loaded file.
1272 See symbol_file_add_with_addrs's comments for details. */
1275 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1276 struct section_addr_info *addrs,
1277 int flags, struct objfile *parent)
1279 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1283 /* Process a symbol file, as either the main file or as a dynamically
1284 loaded file. See symbol_file_add_with_addrs's comments for details. */
1287 symbol_file_add (const char *name, int add_flags,
1288 struct section_addr_info *addrs, int flags)
1290 bfd *bfd = symfile_bfd_open (name);
1291 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1292 struct objfile *objf;
1294 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1295 do_cleanups (cleanup);
1299 /* Call symbol_file_add() with default values and update whatever is
1300 affected by the loading of a new main().
1301 Used when the file is supplied in the gdb command line
1302 and by some targets with special loading requirements.
1303 The auxiliary function, symbol_file_add_main_1(), has the flags
1304 argument for the switches that can only be specified in the symbol_file
1308 symbol_file_add_main (const char *args, int from_tty)
1310 symbol_file_add_main_1 (args, from_tty, 0);
1314 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1316 const int add_flags = (current_inferior ()->symfile_flags
1317 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319 symbol_file_add (args, add_flags, NULL, flags);
1321 /* Getting new symbols may change our opinion about
1322 what is frameless. */
1323 reinit_frame_cache ();
1325 if ((flags & SYMFILE_NO_READ) == 0)
1326 set_initial_language ();
1330 symbol_file_clear (int from_tty)
1332 if ((have_full_symbols () || have_partial_symbols ())
1335 ? !query (_("Discard symbol table from `%s'? "),
1336 objfile_name (symfile_objfile))
1337 : !query (_("Discard symbol table? "))))
1338 error (_("Not confirmed."));
1340 /* solib descriptors may have handles to objfiles. Wipe them before their
1341 objfiles get stale by free_all_objfiles. */
1342 no_shared_libraries (NULL, from_tty);
1344 free_all_objfiles ();
1346 gdb_assert (symfile_objfile == NULL);
1348 printf_unfiltered (_("No symbol file now.\n"));
1352 separate_debug_file_exists (const char *name, unsigned long crc,
1353 struct objfile *parent_objfile)
1355 unsigned long file_crc;
1358 struct stat parent_stat, abfd_stat;
1359 int verified_as_different;
1361 /* Find a separate debug info file as if symbols would be present in
1362 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1363 section can contain just the basename of PARENT_OBJFILE without any
1364 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1365 the separate debug infos with the same basename can exist. */
1367 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1370 abfd = gdb_bfd_open (name, gnutarget, -1);
1375 /* Verify symlinks were not the cause of filename_cmp name difference above.
1377 Some operating systems, e.g. Windows, do not provide a meaningful
1378 st_ino; they always set it to zero. (Windows does provide a
1379 meaningful st_dev.) Files accessed from gdbservers that do not
1380 support the vFile:fstat packet will also have st_ino set to zero.
1381 Do not indicate a duplicate library in either case. While there
1382 is no guarantee that a system that provides meaningful inode
1383 numbers will never set st_ino to zero, this is merely an
1384 optimization, so we do not need to worry about false negatives. */
1386 if (bfd_stat (abfd, &abfd_stat) == 0
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1393 gdb_bfd_unref (abfd);
1396 verified_as_different = 1;
1399 verified_as_different = 0;
1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1403 gdb_bfd_unref (abfd);
1408 if (crc != file_crc)
1410 unsigned long parent_crc;
1412 /* If the files could not be verified as different with
1413 bfd_stat then we need to calculate the parent's CRC
1414 to verify whether the files are different or not. */
1416 if (!verified_as_different)
1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1422 if (verified_as_different || parent_crc != file_crc)
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
1425 name, objfile_name (parent_objfile));
1433 char *debug_file_directory = NULL;
1435 show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
1444 #if ! defined (DEBUG_SUBDIRECTORY)
1445 #define DEBUG_SUBDIRECTORY ".debug"
1448 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1456 find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1468 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1474 = (char *) xmalloc (strlen (debug_file_directory) + 1
1476 + strlen (DEBUG_SUBDIRECTORY)
1478 + strlen (debuglink)
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1483 strcat (debugfile, debuglink);
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1492 strcat (debugfile, debuglink);
1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1497 /* Then try in the global debugfile directories.
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1507 strcpy (debugfile, debugdir);
1508 strcat (debugfile, "/");
1509 strcat (debugfile, dir);
1510 strcat (debugfile, debuglink);
1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
1514 do_cleanups (back_to);
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
1522 strlen (gdb_sysroot)) == 0
1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1525 strcpy (debugfile, debugdir);
1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1527 strcat (debugfile, "/");
1528 strcat (debugfile, debuglink);
1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
1532 do_cleanups (back_to);
1538 do_cleanups (back_to);
1543 /* Modify PATH to contain only "[/]directory/" part of PATH.
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1548 terminate_after_last_dir_separator (char *path)
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1562 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1566 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1569 char *dir, *canon_dir;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1576 if (debuglink == NULL)
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1583 cleanups = make_cleanup (xfree, debuglink);
1584 dir = xstrdup (objfile_name (objfile));
1585 make_cleanup (xfree, dir);
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1593 if (debugfile == NULL)
1595 /* For PR gdb/9538, try again with realpath (if different from the
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1605 symlink_dir = lrealpath (objfile_name (objfile));
1606 if (symlink_dir != NULL)
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1623 do_cleanups (cleanups);
1627 /* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
1629 the command is rather bizarre:
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1638 3. The order of options matters, which is contrary to GNU
1639 conventions (because it is confusing and inconvenient). */
1642 symbol_file_command (char *args, int from_tty)
1648 symbol_file_clear (from_tty);
1652 char **argv = gdb_buildargv (args);
1653 int flags = OBJF_USERLOADED;
1654 struct cleanup *cleanups;
1657 cleanups = make_cleanup_freeargv (argv);
1658 while (*argv != NULL)
1660 if (strcmp (*argv, "-readnow") == 0)
1661 flags |= OBJF_READNOW;
1662 else if (**argv == '-')
1663 error (_("unknown option `%s'"), *argv);
1666 symbol_file_add_main_1 (*argv, from_tty, flags);
1674 error (_("no symbol file name was specified"));
1676 do_cleanups (cleanups);
1680 /* Set the initial language.
1682 FIXME: A better solution would be to record the language in the
1683 psymtab when reading partial symbols, and then use it (if known) to
1684 set the language. This would be a win for formats that encode the
1685 language in an easily discoverable place, such as DWARF. For
1686 stabs, we can jump through hoops looking for specially named
1687 symbols or try to intuit the language from the specific type of
1688 stabs we find, but we can't do that until later when we read in
1692 set_initial_language (void)
1694 enum language lang = main_language ();
1696 if (lang == language_unknown)
1698 char *name = main_name ();
1699 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1702 lang = SYMBOL_LANGUAGE (sym);
1705 if (lang == language_unknown)
1707 /* Make C the default language */
1711 set_language (lang);
1712 expected_language = current_language; /* Don't warn the user. */
1715 /* Open the file specified by NAME and hand it off to BFD for
1716 preliminary analysis. Return a newly initialized bfd *, which
1717 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1718 absolute). In case of trouble, error() is called. */
1721 symfile_bfd_open (const char *name)
1725 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1727 if (!is_target_filename (name))
1729 char *expanded_name, *absolute_name;
1731 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1733 /* Look down path for it, allocate 2nd new malloc'd copy. */
1734 desc = openp (getenv ("PATH"),
1735 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1736 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1737 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1740 char *exename = (char *) alloca (strlen (expanded_name) + 5);
1742 strcat (strcpy (exename, expanded_name), ".exe");
1743 desc = openp (getenv ("PATH"),
1744 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1745 exename, O_RDONLY | O_BINARY, &absolute_name);
1750 make_cleanup (xfree, expanded_name);
1751 perror_with_name (expanded_name);
1754 xfree (expanded_name);
1755 make_cleanup (xfree, absolute_name);
1756 name = absolute_name;
1759 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1761 error (_("`%s': can't open to read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
1764 if (!gdb_bfd_has_target_filename (sym_bfd))
1765 bfd_set_cacheable (sym_bfd, 1);
1767 if (!bfd_check_format (sym_bfd, bfd_object))
1769 make_cleanup_bfd_unref (sym_bfd);
1770 error (_("`%s': can't read symbols: %s."), name,
1771 bfd_errmsg (bfd_get_error ()));
1774 do_cleanups (back_to);
1779 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1780 the section was not found. */
1783 get_section_index (struct objfile *objfile, char *section_name)
1785 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1793 /* Link SF into the global symtab_fns list.
1794 FLAVOUR is the file format that SF handles.
1795 Called on startup by the _initialize routine in each object file format
1796 reader, to register information about each format the reader is prepared
1800 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1802 registered_sym_fns fns = { flavour, sf };
1804 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1807 /* Initialize OBJFILE to read symbols from its associated BFD. It
1808 either returns or calls error(). The result is an initialized
1809 struct sym_fns in the objfile structure, that contains cached
1810 information about the symbol file. */
1812 static const struct sym_fns *
1813 find_sym_fns (bfd *abfd)
1815 registered_sym_fns *rsf;
1816 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1819 if (our_flavour == bfd_target_srec_flavour
1820 || our_flavour == bfd_target_ihex_flavour
1821 || our_flavour == bfd_target_tekhex_flavour)
1822 return NULL; /* No symbols. */
1824 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1825 if (our_flavour == rsf->sym_flavour)
1826 return rsf->sym_fns;
1828 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1829 bfd_get_target (abfd));
1833 /* This function runs the load command of our current target. */
1836 load_command (char *arg, int from_tty)
1838 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1842 /* The user might be reloading because the binary has changed. Take
1843 this opportunity to check. */
1844 reopen_exec_file ();
1852 parg = arg = get_exec_file (1);
1854 /* Count how many \ " ' tab space there are in the name. */
1855 while ((parg = strpbrk (parg, "\\\"'\t ")))
1863 /* We need to quote this string so buildargv can pull it apart. */
1864 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1868 make_cleanup (xfree, temp);
1871 while ((parg = strpbrk (parg, "\\\"'\t ")))
1873 strncpy (ptemp, prev, parg - prev);
1874 ptemp += parg - prev;
1878 strcpy (ptemp, prev);
1884 target_load (arg, from_tty);
1886 /* After re-loading the executable, we don't really know which
1887 overlays are mapped any more. */
1888 overlay_cache_invalid = 1;
1890 do_cleanups (cleanup);
1893 /* This version of "load" should be usable for any target. Currently
1894 it is just used for remote targets, not inftarg.c or core files,
1895 on the theory that only in that case is it useful.
1897 Avoiding xmodem and the like seems like a win (a) because we don't have
1898 to worry about finding it, and (b) On VMS, fork() is very slow and so
1899 we don't want to run a subprocess. On the other hand, I'm not sure how
1900 performance compares. */
1902 static int validate_download = 0;
1904 /* Callback service function for generic_load (bfd_map_over_sections). */
1907 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1909 bfd_size_type *sum = (bfd_size_type *) data;
1911 *sum += bfd_get_section_size (asec);
1914 /* Opaque data for load_section_callback. */
1915 struct load_section_data {
1916 CORE_ADDR load_offset;
1917 struct load_progress_data *progress_data;
1918 VEC(memory_write_request_s) *requests;
1921 /* Opaque data for load_progress. */
1922 struct load_progress_data {
1923 /* Cumulative data. */
1924 unsigned long write_count;
1925 unsigned long data_count;
1926 bfd_size_type total_size;
1929 /* Opaque data for load_progress for a single section. */
1930 struct load_progress_section_data {
1931 struct load_progress_data *cumulative;
1933 /* Per-section data. */
1934 const char *section_name;
1935 ULONGEST section_sent;
1936 ULONGEST section_size;
1941 /* Target write callback routine for progress reporting. */
1944 load_progress (ULONGEST bytes, void *untyped_arg)
1946 struct load_progress_section_data *args
1947 = (struct load_progress_section_data *) untyped_arg;
1948 struct load_progress_data *totals;
1951 /* Writing padding data. No easy way to get at the cumulative
1952 stats, so just ignore this. */
1955 totals = args->cumulative;
1957 if (bytes == 0 && args->section_sent == 0)
1959 /* The write is just starting. Let the user know we've started
1961 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1962 args->section_name, hex_string (args->section_size),
1963 paddress (target_gdbarch (), args->lma));
1967 if (validate_download)
1969 /* Broken memories and broken monitors manifest themselves here
1970 when bring new computers to life. This doubles already slow
1972 /* NOTE: cagney/1999-10-18: A more efficient implementation
1973 might add a verify_memory() method to the target vector and
1974 then use that. remote.c could implement that method using
1975 the ``qCRC'' packet. */
1976 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1977 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1979 if (target_read_memory (args->lma, check, bytes) != 0)
1980 error (_("Download verify read failed at %s"),
1981 paddress (target_gdbarch (), args->lma));
1982 if (memcmp (args->buffer, check, bytes) != 0)
1983 error (_("Download verify compare failed at %s"),
1984 paddress (target_gdbarch (), args->lma));
1985 do_cleanups (verify_cleanups);
1987 totals->data_count += bytes;
1989 args->buffer += bytes;
1990 totals->write_count += 1;
1991 args->section_sent += bytes;
1992 if (check_quit_flag ()
1993 || (deprecated_ui_load_progress_hook != NULL
1994 && deprecated_ui_load_progress_hook (args->section_name,
1995 args->section_sent)))
1996 error (_("Canceled the download"));
1998 if (deprecated_show_load_progress != NULL)
1999 deprecated_show_load_progress (args->section_name,
2003 totals->total_size);
2006 /* Callback service function for generic_load (bfd_map_over_sections). */
2009 load_section_callback (bfd *abfd, asection *asec, void *data)
2011 struct memory_write_request *new_request;
2012 struct load_section_data *args = (struct load_section_data *) data;
2013 struct load_progress_section_data *section_data;
2014 bfd_size_type size = bfd_get_section_size (asec);
2016 const char *sect_name = bfd_get_section_name (abfd, asec);
2018 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2024 new_request = VEC_safe_push (memory_write_request_s,
2025 args->requests, NULL);
2026 memset (new_request, 0, sizeof (struct memory_write_request));
2027 section_data = XCNEW (struct load_progress_section_data);
2028 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2029 new_request->end = new_request->begin + size; /* FIXME Should size
2031 new_request->data = (gdb_byte *) xmalloc (size);
2032 new_request->baton = section_data;
2034 buffer = new_request->data;
2036 section_data->cumulative = args->progress_data;
2037 section_data->section_name = sect_name;
2038 section_data->section_size = size;
2039 section_data->lma = new_request->begin;
2040 section_data->buffer = buffer;
2042 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2045 /* Clean up an entire memory request vector, including load
2046 data and progress records. */
2049 clear_memory_write_data (void *arg)
2051 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2052 VEC(memory_write_request_s) *vec = *vec_p;
2054 struct memory_write_request *mr;
2056 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2061 VEC_free (memory_write_request_s, vec);
2065 generic_load (const char *args, int from_tty)
2068 struct timeval start_time, end_time;
2070 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2071 struct load_section_data cbdata;
2072 struct load_progress_data total_progress;
2073 struct ui_out *uiout = current_uiout;
2078 memset (&cbdata, 0, sizeof (cbdata));
2079 memset (&total_progress, 0, sizeof (total_progress));
2080 cbdata.progress_data = &total_progress;
2082 make_cleanup (clear_memory_write_data, &cbdata.requests);
2085 error_no_arg (_("file to load"));
2087 argv = gdb_buildargv (args);
2088 make_cleanup_freeargv (argv);
2090 filename = tilde_expand (argv[0]);
2091 make_cleanup (xfree, filename);
2093 if (argv[1] != NULL)
2097 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2099 /* If the last word was not a valid number then
2100 treat it as a file name with spaces in. */
2101 if (argv[1] == endptr)
2102 error (_("Invalid download offset:%s."), argv[1]);
2104 if (argv[2] != NULL)
2105 error (_("Too many parameters."));
2108 /* Open the file for loading. */
2109 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2110 if (loadfile_bfd == NULL)
2112 perror_with_name (filename);
2116 make_cleanup_bfd_unref (loadfile_bfd);
2118 if (!bfd_check_format (loadfile_bfd, bfd_object))
2120 error (_("\"%s\" is not an object file: %s"), filename,
2121 bfd_errmsg (bfd_get_error ()));
2124 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2125 (void *) &total_progress.total_size);
2127 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2129 gettimeofday (&start_time, NULL);
2131 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2132 load_progress) != 0)
2133 error (_("Load failed"));
2135 gettimeofday (&end_time, NULL);
2137 entry = bfd_get_start_address (loadfile_bfd);
2138 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2139 ui_out_text (uiout, "Start address ");
2140 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2141 ui_out_text (uiout, ", load size ");
2142 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2143 ui_out_text (uiout, "\n");
2144 regcache_write_pc (get_current_regcache (), entry);
2146 /* Reset breakpoints, now that we have changed the load image. For
2147 instance, breakpoints may have been set (or reset, by
2148 post_create_inferior) while connected to the target but before we
2149 loaded the program. In that case, the prologue analyzer could
2150 have read instructions from the target to find the right
2151 breakpoint locations. Loading has changed the contents of that
2154 breakpoint_re_set ();
2156 print_transfer_performance (gdb_stdout, total_progress.data_count,
2157 total_progress.write_count,
2158 &start_time, &end_time);
2160 do_cleanups (old_cleanups);
2163 /* Report how fast the transfer went. */
2166 print_transfer_performance (struct ui_file *stream,
2167 unsigned long data_count,
2168 unsigned long write_count,
2169 const struct timeval *start_time,
2170 const struct timeval *end_time)
2172 ULONGEST time_count;
2173 struct ui_out *uiout = current_uiout;
2175 /* Compute the elapsed time in milliseconds, as a tradeoff between
2176 accuracy and overflow. */
2177 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2178 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2180 ui_out_text (uiout, "Transfer rate: ");
2183 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2185 if (ui_out_is_mi_like_p (uiout))
2187 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2188 ui_out_text (uiout, " bits/sec");
2190 else if (rate < 1024)
2192 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2193 ui_out_text (uiout, " bytes/sec");
2197 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2198 ui_out_text (uiout, " KB/sec");
2203 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2204 ui_out_text (uiout, " bits in <1 sec");
2206 if (write_count > 0)
2208 ui_out_text (uiout, ", ");
2209 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2210 ui_out_text (uiout, " bytes/write");
2212 ui_out_text (uiout, ".\n");
2215 /* This function allows the addition of incrementally linked object files.
2216 It does not modify any state in the target, only in the debugger. */
2217 /* Note: ezannoni 2000-04-13 This function/command used to have a
2218 special case syntax for the rombug target (Rombug is the boot
2219 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2220 rombug case, the user doesn't need to supply a text address,
2221 instead a call to target_link() (in target.c) would supply the
2222 value to use. We are now discontinuing this type of ad hoc syntax. */
2225 add_symbol_file_command (char *args, int from_tty)
2227 struct gdbarch *gdbarch = get_current_arch ();
2228 char *filename = NULL;
2229 int flags = OBJF_USERLOADED | OBJF_SHARED;
2231 int section_index = 0;
2235 int expecting_sec_name = 0;
2236 int expecting_sec_addr = 0;
2238 struct objfile *objf;
2246 struct section_addr_info *section_addrs;
2247 struct sect_opt *sect_opts = NULL;
2248 size_t num_sect_opts = 0;
2249 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2252 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2257 error (_("add-symbol-file takes a file name and an address"));
2259 argv = gdb_buildargv (args);
2260 make_cleanup_freeargv (argv);
2262 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2264 /* Process the argument. */
2267 /* The first argument is the file name. */
2268 filename = tilde_expand (arg);
2269 make_cleanup (xfree, filename);
2271 else if (argcnt == 1)
2273 /* The second argument is always the text address at which
2274 to load the program. */
2275 sect_opts[section_index].name = ".text";
2276 sect_opts[section_index].value = arg;
2277 if (++section_index >= num_sect_opts)
2280 sect_opts = ((struct sect_opt *)
2281 xrealloc (sect_opts,
2283 * sizeof (struct sect_opt)));
2288 /* It's an option (starting with '-') or it's an argument
2290 if (expecting_sec_name)
2292 sect_opts[section_index].name = arg;
2293 expecting_sec_name = 0;
2295 else if (expecting_sec_addr)
2297 sect_opts[section_index].value = arg;
2298 expecting_sec_addr = 0;
2299 if (++section_index >= num_sect_opts)
2302 sect_opts = ((struct sect_opt *)
2303 xrealloc (sect_opts,
2305 * sizeof (struct sect_opt)));
2308 else if (strcmp (arg, "-readnow") == 0)
2309 flags |= OBJF_READNOW;
2310 else if (strcmp (arg, "-s") == 0)
2312 expecting_sec_name = 1;
2313 expecting_sec_addr = 1;
2316 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2317 " [-readnow] [-s <secname> <addr>]*"));
2321 /* This command takes at least two arguments. The first one is a
2322 filename, and the second is the address where this file has been
2323 loaded. Abort now if this address hasn't been provided by the
2325 if (section_index < 1)
2326 error (_("The address where %s has been loaded is missing"), filename);
2328 /* Print the prompt for the query below. And save the arguments into
2329 a sect_addr_info structure to be passed around to other
2330 functions. We have to split this up into separate print
2331 statements because hex_string returns a local static
2334 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2335 section_addrs = alloc_section_addr_info (section_index);
2336 make_cleanup (xfree, section_addrs);
2337 for (i = 0; i < section_index; i++)
2340 char *val = sect_opts[i].value;
2341 char *sec = sect_opts[i].name;
2343 addr = parse_and_eval_address (val);
2345 /* Here we store the section offsets in the order they were
2346 entered on the command line. */
2347 section_addrs->other[sec_num].name = sec;
2348 section_addrs->other[sec_num].addr = addr;
2349 printf_unfiltered ("\t%s_addr = %s\n", sec,
2350 paddress (gdbarch, addr));
2353 /* The object's sections are initialized when a
2354 call is made to build_objfile_section_table (objfile).
2355 This happens in reread_symbols.
2356 At this point, we don't know what file type this is,
2357 so we can't determine what section names are valid. */
2359 section_addrs->num_sections = sec_num;
2361 if (from_tty && (!query ("%s", "")))
2362 error (_("Not confirmed."));
2364 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2365 section_addrs, flags);
2367 add_target_sections_of_objfile (objf);
2369 /* Getting new symbols may change our opinion about what is
2371 reinit_frame_cache ();
2372 do_cleanups (my_cleanups);
2376 /* This function removes a symbol file that was added via add-symbol-file. */
2379 remove_symbol_file_command (char *args, int from_tty)
2382 struct objfile *objf = NULL;
2383 struct cleanup *my_cleanups;
2384 struct program_space *pspace = current_program_space;
2389 error (_("remove-symbol-file: no symbol file provided"));
2391 my_cleanups = make_cleanup (null_cleanup, NULL);
2393 argv = gdb_buildargv (args);
2395 if (strcmp (argv[0], "-a") == 0)
2397 /* Interpret the next argument as an address. */
2400 if (argv[1] == NULL)
2401 error (_("Missing address argument"));
2403 if (argv[2] != NULL)
2404 error (_("Junk after %s"), argv[1]);
2406 addr = parse_and_eval_address (argv[1]);
2410 if ((objf->flags & OBJF_USERLOADED) != 0
2411 && (objf->flags & OBJF_SHARED) != 0
2412 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2416 else if (argv[0] != NULL)
2418 /* Interpret the current argument as a file name. */
2421 if (argv[1] != NULL)
2422 error (_("Junk after %s"), argv[0]);
2424 filename = tilde_expand (argv[0]);
2425 make_cleanup (xfree, filename);
2429 if ((objf->flags & OBJF_USERLOADED) != 0
2430 && (objf->flags & OBJF_SHARED) != 0
2431 && objf->pspace == pspace
2432 && filename_cmp (filename, objfile_name (objf)) == 0)
2438 error (_("No symbol file found"));
2441 && !query (_("Remove symbol table from file \"%s\"? "),
2442 objfile_name (objf)))
2443 error (_("Not confirmed."));
2445 free_objfile (objf);
2446 clear_symtab_users (0);
2448 do_cleanups (my_cleanups);
2451 typedef struct objfile *objfilep;
2453 DEF_VEC_P (objfilep);
2455 /* Re-read symbols if a symbol-file has changed. */
2458 reread_symbols (void)
2460 struct objfile *objfile;
2462 struct stat new_statbuf;
2464 VEC (objfilep) *new_objfiles = NULL;
2465 struct cleanup *all_cleanups;
2467 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2469 /* With the addition of shared libraries, this should be modified,
2470 the load time should be saved in the partial symbol tables, since
2471 different tables may come from different source files. FIXME.
2472 This routine should then walk down each partial symbol table
2473 and see if the symbol table that it originates from has been changed. */
2475 for (objfile = object_files; objfile; objfile = objfile->next)
2477 if (objfile->obfd == NULL)
2480 /* Separate debug objfiles are handled in the main objfile. */
2481 if (objfile->separate_debug_objfile_backlink)
2484 /* If this object is from an archive (what you usually create with
2485 `ar', often called a `static library' on most systems, though
2486 a `shared library' on AIX is also an archive), then you should
2487 stat on the archive name, not member name. */
2488 if (objfile->obfd->my_archive)
2489 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2491 res = stat (objfile_name (objfile), &new_statbuf);
2494 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2495 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2496 objfile_name (objfile));
2499 new_modtime = new_statbuf.st_mtime;
2500 if (new_modtime != objfile->mtime)
2502 struct cleanup *old_cleanups;
2503 struct section_offsets *offsets;
2505 char *original_name;
2507 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2508 objfile_name (objfile));
2510 /* There are various functions like symbol_file_add,
2511 symfile_bfd_open, syms_from_objfile, etc., which might
2512 appear to do what we want. But they have various other
2513 effects which we *don't* want. So we just do stuff
2514 ourselves. We don't worry about mapped files (for one thing,
2515 any mapped file will be out of date). */
2517 /* If we get an error, blow away this objfile (not sure if
2518 that is the correct response for things like shared
2520 old_cleanups = make_cleanup_free_objfile (objfile);
2521 /* We need to do this whenever any symbols go away. */
2522 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2524 if (exec_bfd != NULL
2525 && filename_cmp (bfd_get_filename (objfile->obfd),
2526 bfd_get_filename (exec_bfd)) == 0)
2528 /* Reload EXEC_BFD without asking anything. */
2530 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2533 /* Keep the calls order approx. the same as in free_objfile. */
2535 /* Free the separate debug objfiles. It will be
2536 automatically recreated by sym_read. */
2537 free_objfile_separate_debug (objfile);
2539 /* Remove any references to this objfile in the global
2541 preserve_values (objfile);
2543 /* Nuke all the state that we will re-read. Much of the following
2544 code which sets things to NULL really is necessary to tell
2545 other parts of GDB that there is nothing currently there.
2547 Try to keep the freeing order compatible with free_objfile. */
2549 if (objfile->sf != NULL)
2551 (*objfile->sf->sym_finish) (objfile);
2554 clear_objfile_data (objfile);
2556 /* Clean up any state BFD has sitting around. */
2558 struct bfd *obfd = objfile->obfd;
2559 char *obfd_filename;
2561 obfd_filename = bfd_get_filename (objfile->obfd);
2562 /* Open the new BFD before freeing the old one, so that
2563 the filename remains live. */
2564 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
2565 if (objfile->obfd == NULL)
2567 /* We have to make a cleanup and error here, rather
2568 than erroring later, because once we unref OBFD,
2569 OBFD_FILENAME will be freed. */
2570 make_cleanup_bfd_unref (obfd);
2571 error (_("Can't open %s to read symbols."), obfd_filename);
2573 gdb_bfd_unref (obfd);
2576 original_name = xstrdup (objfile->original_name);
2577 make_cleanup (xfree, original_name);
2579 /* bfd_openr sets cacheable to true, which is what we want. */
2580 if (!bfd_check_format (objfile->obfd, bfd_object))
2581 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2582 bfd_errmsg (bfd_get_error ()));
2584 /* Save the offsets, we will nuke them with the rest of the
2586 num_offsets = objfile->num_sections;
2587 offsets = ((struct section_offsets *)
2588 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2589 memcpy (offsets, objfile->section_offsets,
2590 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2592 /* FIXME: Do we have to free a whole linked list, or is this
2594 if (objfile->global_psymbols.list)
2595 xfree (objfile->global_psymbols.list);
2596 memset (&objfile->global_psymbols, 0,
2597 sizeof (objfile->global_psymbols));
2598 if (objfile->static_psymbols.list)
2599 xfree (objfile->static_psymbols.list);
2600 memset (&objfile->static_psymbols, 0,
2601 sizeof (objfile->static_psymbols));
2603 /* Free the obstacks for non-reusable objfiles. */
2604 psymbol_bcache_free (objfile->psymbol_cache);
2605 objfile->psymbol_cache = psymbol_bcache_init ();
2606 obstack_free (&objfile->objfile_obstack, 0);
2607 objfile->sections = NULL;
2608 objfile->compunit_symtabs = NULL;
2609 objfile->psymtabs = NULL;
2610 objfile->psymtabs_addrmap = NULL;
2611 objfile->free_psymtabs = NULL;
2612 objfile->template_symbols = NULL;
2614 /* obstack_init also initializes the obstack so it is
2615 empty. We could use obstack_specify_allocation but
2616 gdb_obstack.h specifies the alloc/dealloc functions. */
2617 obstack_init (&objfile->objfile_obstack);
2619 /* set_objfile_per_bfd potentially allocates the per-bfd
2620 data on the objfile's obstack (if sharing data across
2621 multiple users is not possible), so it's important to
2622 do it *after* the obstack has been initialized. */
2623 set_objfile_per_bfd (objfile);
2625 objfile->original_name
2626 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2627 strlen (original_name));
2629 /* Reset the sym_fns pointer. The ELF reader can change it
2630 based on whether .gdb_index is present, and we need it to
2631 start over. PR symtab/15885 */
2632 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2634 build_objfile_section_table (objfile);
2635 terminate_minimal_symbol_table (objfile);
2637 /* We use the same section offsets as from last time. I'm not
2638 sure whether that is always correct for shared libraries. */
2639 objfile->section_offsets = (struct section_offsets *)
2640 obstack_alloc (&objfile->objfile_obstack,
2641 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2642 memcpy (objfile->section_offsets, offsets,
2643 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2644 objfile->num_sections = num_offsets;
2646 /* What the hell is sym_new_init for, anyway? The concept of
2647 distinguishing between the main file and additional files
2648 in this way seems rather dubious. */
2649 if (objfile == symfile_objfile)
2651 (*objfile->sf->sym_new_init) (objfile);
2654 (*objfile->sf->sym_init) (objfile);
2655 clear_complaints (&symfile_complaints, 1, 1);
2657 objfile->flags &= ~OBJF_PSYMTABS_READ;
2658 read_symbols (objfile, 0);
2660 if (!objfile_has_symbols (objfile))
2663 printf_unfiltered (_("(no debugging symbols found)\n"));
2667 /* We're done reading the symbol file; finish off complaints. */
2668 clear_complaints (&symfile_complaints, 0, 1);
2670 /* Getting new symbols may change our opinion about what is
2673 reinit_frame_cache ();
2675 /* Discard cleanups as symbol reading was successful. */
2676 discard_cleanups (old_cleanups);
2678 /* If the mtime has changed between the time we set new_modtime
2679 and now, we *want* this to be out of date, so don't call stat
2681 objfile->mtime = new_modtime;
2682 init_entry_point_info (objfile);
2684 VEC_safe_push (objfilep, new_objfiles, objfile);
2692 /* Notify objfiles that we've modified objfile sections. */
2693 objfiles_changed ();
2695 clear_symtab_users (0);
2697 /* clear_objfile_data for each objfile was called before freeing it and
2698 observer_notify_new_objfile (NULL) has been called by
2699 clear_symtab_users above. Notify the new files now. */
2700 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2701 observer_notify_new_objfile (objfile);
2703 /* At least one objfile has changed, so we can consider that
2704 the executable we're debugging has changed too. */
2705 observer_notify_executable_changed ();
2708 do_cleanups (all_cleanups);
2719 static filename_language *filename_language_table;
2720 static int fl_table_size, fl_table_next;
2723 add_filename_language (char *ext, enum language lang)
2725 if (fl_table_next >= fl_table_size)
2727 fl_table_size += 10;
2728 filename_language_table = XRESIZEVEC (filename_language,
2729 filename_language_table,
2733 filename_language_table[fl_table_next].ext = xstrdup (ext);
2734 filename_language_table[fl_table_next].lang = lang;
2738 static char *ext_args;
2740 show_ext_args (struct ui_file *file, int from_tty,
2741 struct cmd_list_element *c, const char *value)
2743 fprintf_filtered (file,
2744 _("Mapping between filename extension "
2745 "and source language is \"%s\".\n"),
2750 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2753 char *cp = ext_args;
2756 /* First arg is filename extension, starting with '.' */
2758 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2760 /* Find end of first arg. */
2761 while (*cp && !isspace (*cp))
2765 error (_("'%s': two arguments required -- "
2766 "filename extension and language"),
2769 /* Null-terminate first arg. */
2772 /* Find beginning of second arg, which should be a source language. */
2773 cp = skip_spaces (cp);
2776 error (_("'%s': two arguments required -- "
2777 "filename extension and language"),
2780 /* Lookup the language from among those we know. */
2781 lang = language_enum (cp);
2783 /* Now lookup the filename extension: do we already know it? */
2784 for (i = 0; i < fl_table_next; i++)
2785 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2788 if (i >= fl_table_next)
2790 /* New file extension. */
2791 add_filename_language (ext_args, lang);
2795 /* Redefining a previously known filename extension. */
2798 /* query ("Really make files of type %s '%s'?", */
2799 /* ext_args, language_str (lang)); */
2801 xfree (filename_language_table[i].ext);
2802 filename_language_table[i].ext = xstrdup (ext_args);
2803 filename_language_table[i].lang = lang;
2808 info_ext_lang_command (char *args, int from_tty)
2812 printf_filtered (_("Filename extensions and the languages they represent:"));
2813 printf_filtered ("\n\n");
2814 for (i = 0; i < fl_table_next; i++)
2815 printf_filtered ("\t%s\t- %s\n",
2816 filename_language_table[i].ext,
2817 language_str (filename_language_table[i].lang));
2821 init_filename_language_table (void)
2823 if (fl_table_size == 0) /* Protect against repetition. */
2827 filename_language_table = XNEWVEC (filename_language, fl_table_size);
2829 add_filename_language (".c", language_c);
2830 add_filename_language (".d", language_d);
2831 add_filename_language (".C", language_cplus);
2832 add_filename_language (".cc", language_cplus);
2833 add_filename_language (".cp", language_cplus);
2834 add_filename_language (".cpp", language_cplus);
2835 add_filename_language (".cxx", language_cplus);
2836 add_filename_language (".c++", language_cplus);
2837 add_filename_language (".java", language_java);
2838 add_filename_language (".class", language_java);
2839 add_filename_language (".m", language_objc);
2840 add_filename_language (".f", language_fortran);
2841 add_filename_language (".F", language_fortran);
2842 add_filename_language (".for", language_fortran);
2843 add_filename_language (".FOR", language_fortran);
2844 add_filename_language (".ftn", language_fortran);
2845 add_filename_language (".FTN", language_fortran);
2846 add_filename_language (".fpp", language_fortran);
2847 add_filename_language (".FPP", language_fortran);
2848 add_filename_language (".f90", language_fortran);
2849 add_filename_language (".F90", language_fortran);
2850 add_filename_language (".f95", language_fortran);
2851 add_filename_language (".F95", language_fortran);
2852 add_filename_language (".f03", language_fortran);
2853 add_filename_language (".F03", language_fortran);
2854 add_filename_language (".f08", language_fortran);
2855 add_filename_language (".F08", language_fortran);
2856 add_filename_language (".s", language_asm);
2857 add_filename_language (".sx", language_asm);
2858 add_filename_language (".S", language_asm);
2859 add_filename_language (".pas", language_pascal);
2860 add_filename_language (".p", language_pascal);
2861 add_filename_language (".pp", language_pascal);
2862 add_filename_language (".adb", language_ada);
2863 add_filename_language (".ads", language_ada);
2864 add_filename_language (".a", language_ada);
2865 add_filename_language (".ada", language_ada);
2866 add_filename_language (".dg", language_ada);
2871 deduce_language_from_filename (const char *filename)
2876 if (filename != NULL)
2877 if ((cp = strrchr (filename, '.')) != NULL)
2878 for (i = 0; i < fl_table_next; i++)
2879 if (strcmp (cp, filename_language_table[i].ext) == 0)
2880 return filename_language_table[i].lang;
2882 return language_unknown;
2885 /* Allocate and initialize a new symbol table.
2886 CUST is from the result of allocate_compunit_symtab. */
2889 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2891 struct objfile *objfile = cust->objfile;
2892 struct symtab *symtab
2893 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2896 = (const char *) bcache (filename, strlen (filename) + 1,
2897 objfile->per_bfd->filename_cache);
2898 symtab->fullname = NULL;
2899 symtab->language = deduce_language_from_filename (filename);
2901 /* This can be very verbose with lots of headers.
2902 Only print at higher debug levels. */
2903 if (symtab_create_debug >= 2)
2905 /* Be a bit clever with debugging messages, and don't print objfile
2906 every time, only when it changes. */
2907 static char *last_objfile_name = NULL;
2909 if (last_objfile_name == NULL
2910 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2912 xfree (last_objfile_name);
2913 last_objfile_name = xstrdup (objfile_name (objfile));
2914 fprintf_unfiltered (gdb_stdlog,
2915 "Creating one or more symtabs for objfile %s ...\n",
2918 fprintf_unfiltered (gdb_stdlog,
2919 "Created symtab %s for module %s.\n",
2920 host_address_to_string (symtab), filename);
2923 /* Add it to CUST's list of symtabs. */
2924 if (cust->filetabs == NULL)
2926 cust->filetabs = symtab;
2927 cust->last_filetab = symtab;
2931 cust->last_filetab->next = symtab;
2932 cust->last_filetab = symtab;
2935 /* Backlink to the containing compunit symtab. */
2936 symtab->compunit_symtab = cust;
2941 /* Allocate and initialize a new compunit.
2942 NAME is the name of the main source file, if there is one, or some
2943 descriptive text if there are no source files. */
2945 struct compunit_symtab *
2946 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2948 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2949 struct compunit_symtab);
2950 const char *saved_name;
2952 cu->objfile = objfile;
2954 /* The name we record here is only for display/debugging purposes.
2955 Just save the basename to avoid path issues (too long for display,
2956 relative vs absolute, etc.). */
2957 saved_name = lbasename (name);
2959 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2960 strlen (saved_name));
2962 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2964 if (symtab_create_debug)
2966 fprintf_unfiltered (gdb_stdlog,
2967 "Created compunit symtab %s for %s.\n",
2968 host_address_to_string (cu),
2975 /* Hook CU to the objfile it comes from. */
2978 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2980 cu->next = cu->objfile->compunit_symtabs;
2981 cu->objfile->compunit_symtabs = cu;
2985 /* Reset all data structures in gdb which may contain references to symbol
2986 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2989 clear_symtab_users (int add_flags)
2991 /* Someday, we should do better than this, by only blowing away
2992 the things that really need to be blown. */
2994 /* Clear the "current" symtab first, because it is no longer valid.
2995 breakpoint_re_set may try to access the current symtab. */
2996 clear_current_source_symtab_and_line ();
2999 clear_last_displayed_sal ();
3000 clear_pc_function_cache ();
3001 observer_notify_new_objfile (NULL);
3003 /* Clear globals which might have pointed into a removed objfile.
3004 FIXME: It's not clear which of these are supposed to persist
3005 between expressions and which ought to be reset each time. */
3006 expression_context_block = NULL;
3007 innermost_block = NULL;
3009 /* Varobj may refer to old symbols, perform a cleanup. */
3010 varobj_invalidate ();
3012 /* Now that the various caches have been cleared, we can re_set
3013 our breakpoints without risking it using stale data. */
3014 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3015 breakpoint_re_set ();
3019 clear_symtab_users_cleanup (void *ignore)
3021 clear_symtab_users (0);
3025 The following code implements an abstraction for debugging overlay sections.
3027 The target model is as follows:
3028 1) The gnu linker will permit multiple sections to be mapped into the
3029 same VMA, each with its own unique LMA (or load address).
3030 2) It is assumed that some runtime mechanism exists for mapping the
3031 sections, one by one, from the load address into the VMA address.
3032 3) This code provides a mechanism for gdb to keep track of which
3033 sections should be considered to be mapped from the VMA to the LMA.
3034 This information is used for symbol lookup, and memory read/write.
3035 For instance, if a section has been mapped then its contents
3036 should be read from the VMA, otherwise from the LMA.
3038 Two levels of debugger support for overlays are available. One is
3039 "manual", in which the debugger relies on the user to tell it which
3040 overlays are currently mapped. This level of support is
3041 implemented entirely in the core debugger, and the information about
3042 whether a section is mapped is kept in the objfile->obj_section table.
3044 The second level of support is "automatic", and is only available if
3045 the target-specific code provides functionality to read the target's
3046 overlay mapping table, and translate its contents for the debugger
3047 (by updating the mapped state information in the obj_section tables).
3049 The interface is as follows:
3051 overlay map <name> -- tell gdb to consider this section mapped
3052 overlay unmap <name> -- tell gdb to consider this section unmapped
3053 overlay list -- list the sections that GDB thinks are mapped
3054 overlay read-target -- get the target's state of what's mapped
3055 overlay off/manual/auto -- set overlay debugging state
3056 Functional interface:
3057 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3058 section, return that section.
3059 find_pc_overlay(pc): find any overlay section that contains
3060 the pc, either in its VMA or its LMA
3061 section_is_mapped(sect): true if overlay is marked as mapped
3062 section_is_overlay(sect): true if section's VMA != LMA
3063 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3064 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3065 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3066 overlay_mapped_address(...): map an address from section's LMA to VMA
3067 overlay_unmapped_address(...): map an address from section's VMA to LMA
3068 symbol_overlayed_address(...): Return a "current" address for symbol:
3069 either in VMA or LMA depending on whether
3070 the symbol's section is currently mapped. */
3072 /* Overlay debugging state: */
3074 enum overlay_debugging_state overlay_debugging = ovly_off;
3075 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3077 /* Function: section_is_overlay (SECTION)
3078 Returns true if SECTION has VMA not equal to LMA, ie.
3079 SECTION is loaded at an address different from where it will "run". */
3082 section_is_overlay (struct obj_section *section)
3084 if (overlay_debugging && section)
3086 bfd *abfd = section->objfile->obfd;
3087 asection *bfd_section = section->the_bfd_section;
3089 if (bfd_section_lma (abfd, bfd_section) != 0
3090 && bfd_section_lma (abfd, bfd_section)
3091 != bfd_section_vma (abfd, bfd_section))
3098 /* Function: overlay_invalidate_all (void)
3099 Invalidate the mapped state of all overlay sections (mark it as stale). */
3102 overlay_invalidate_all (void)
3104 struct objfile *objfile;
3105 struct obj_section *sect;
3107 ALL_OBJSECTIONS (objfile, sect)
3108 if (section_is_overlay (sect))
3109 sect->ovly_mapped = -1;
3112 /* Function: section_is_mapped (SECTION)
3113 Returns true if section is an overlay, and is currently mapped.
3115 Access to the ovly_mapped flag is restricted to this function, so
3116 that we can do automatic update. If the global flag
3117 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3118 overlay_invalidate_all. If the mapped state of the particular
3119 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3122 section_is_mapped (struct obj_section *osect)
3124 struct gdbarch *gdbarch;
3126 if (osect == 0 || !section_is_overlay (osect))
3129 switch (overlay_debugging)
3133 return 0; /* overlay debugging off */
3134 case ovly_auto: /* overlay debugging automatic */
3135 /* Unles there is a gdbarch_overlay_update function,
3136 there's really nothing useful to do here (can't really go auto). */
3137 gdbarch = get_objfile_arch (osect->objfile);
3138 if (gdbarch_overlay_update_p (gdbarch))
3140 if (overlay_cache_invalid)
3142 overlay_invalidate_all ();
3143 overlay_cache_invalid = 0;
3145 if (osect->ovly_mapped == -1)
3146 gdbarch_overlay_update (gdbarch, osect);
3148 /* fall thru to manual case */
3149 case ovly_on: /* overlay debugging manual */
3150 return osect->ovly_mapped == 1;
3154 /* Function: pc_in_unmapped_range
3155 If PC falls into the lma range of SECTION, return true, else false. */
3158 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3160 if (section_is_overlay (section))
3162 bfd *abfd = section->objfile->obfd;
3163 asection *bfd_section = section->the_bfd_section;
3165 /* We assume the LMA is relocated by the same offset as the VMA. */
3166 bfd_vma size = bfd_get_section_size (bfd_section);
3167 CORE_ADDR offset = obj_section_offset (section);
3169 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3170 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3177 /* Function: pc_in_mapped_range
3178 If PC falls into the vma range of SECTION, return true, else false. */
3181 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3183 if (section_is_overlay (section))
3185 if (obj_section_addr (section) <= pc
3186 && pc < obj_section_endaddr (section))
3193 /* Return true if the mapped ranges of sections A and B overlap, false
3197 sections_overlap (struct obj_section *a, struct obj_section *b)
3199 CORE_ADDR a_start = obj_section_addr (a);
3200 CORE_ADDR a_end = obj_section_endaddr (a);
3201 CORE_ADDR b_start = obj_section_addr (b);
3202 CORE_ADDR b_end = obj_section_endaddr (b);
3204 return (a_start < b_end && b_start < a_end);
3207 /* Function: overlay_unmapped_address (PC, SECTION)
3208 Returns the address corresponding to PC in the unmapped (load) range.
3209 May be the same as PC. */
3212 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3214 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3216 bfd *abfd = section->objfile->obfd;
3217 asection *bfd_section = section->the_bfd_section;
3219 return pc + bfd_section_lma (abfd, bfd_section)
3220 - bfd_section_vma (abfd, bfd_section);
3226 /* Function: overlay_mapped_address (PC, SECTION)
3227 Returns the address corresponding to PC in the mapped (runtime) range.
3228 May be the same as PC. */
3231 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3233 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3235 bfd *abfd = section->objfile->obfd;
3236 asection *bfd_section = section->the_bfd_section;
3238 return pc + bfd_section_vma (abfd, bfd_section)
3239 - bfd_section_lma (abfd, bfd_section);
3245 /* Function: symbol_overlayed_address
3246 Return one of two addresses (relative to the VMA or to the LMA),
3247 depending on whether the section is mapped or not. */
3250 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3252 if (overlay_debugging)
3254 /* If the symbol has no section, just return its regular address. */
3257 /* If the symbol's section is not an overlay, just return its
3259 if (!section_is_overlay (section))
3261 /* If the symbol's section is mapped, just return its address. */
3262 if (section_is_mapped (section))
3265 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3266 * then return its LOADED address rather than its vma address!!
3268 return overlay_unmapped_address (address, section);
3273 /* Function: find_pc_overlay (PC)
3274 Return the best-match overlay section for PC:
3275 If PC matches a mapped overlay section's VMA, return that section.
3276 Else if PC matches an unmapped section's VMA, return that section.
3277 Else if PC matches an unmapped section's LMA, return that section. */
3279 struct obj_section *
3280 find_pc_overlay (CORE_ADDR pc)
3282 struct objfile *objfile;
3283 struct obj_section *osect, *best_match = NULL;
3285 if (overlay_debugging)
3287 ALL_OBJSECTIONS (objfile, osect)
3288 if (section_is_overlay (osect))
3290 if (pc_in_mapped_range (pc, osect))
3292 if (section_is_mapped (osect))
3297 else if (pc_in_unmapped_range (pc, osect))
3304 /* Function: find_pc_mapped_section (PC)
3305 If PC falls into the VMA address range of an overlay section that is
3306 currently marked as MAPPED, return that section. Else return NULL. */
3308 struct obj_section *
3309 find_pc_mapped_section (CORE_ADDR pc)
3311 struct objfile *objfile;
3312 struct obj_section *osect;
3314 if (overlay_debugging)
3316 ALL_OBJSECTIONS (objfile, osect)
3317 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3324 /* Function: list_overlays_command
3325 Print a list of mapped sections and their PC ranges. */
3328 list_overlays_command (char *args, int from_tty)
3331 struct objfile *objfile;
3332 struct obj_section *osect;
3334 if (overlay_debugging)
3336 ALL_OBJSECTIONS (objfile, osect)
3337 if (section_is_mapped (osect))
3339 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3344 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3345 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3346 size = bfd_get_section_size (osect->the_bfd_section);
3347 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3349 printf_filtered ("Section %s, loaded at ", name);
3350 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3351 puts_filtered (" - ");
3352 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3353 printf_filtered (", mapped at ");
3354 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3355 puts_filtered (" - ");
3356 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3357 puts_filtered ("\n");
3363 printf_filtered (_("No sections are mapped.\n"));
3366 /* Function: map_overlay_command
3367 Mark the named section as mapped (ie. residing at its VMA address). */
3370 map_overlay_command (char *args, int from_tty)
3372 struct objfile *objfile, *objfile2;
3373 struct obj_section *sec, *sec2;
3375 if (!overlay_debugging)
3376 error (_("Overlay debugging not enabled. Use "
3377 "either the 'overlay auto' or\n"
3378 "the 'overlay manual' command."));
3380 if (args == 0 || *args == 0)
3381 error (_("Argument required: name of an overlay section"));
3383 /* First, find a section matching the user supplied argument. */
3384 ALL_OBJSECTIONS (objfile, sec)
3385 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3387 /* Now, check to see if the section is an overlay. */
3388 if (!section_is_overlay (sec))
3389 continue; /* not an overlay section */
3391 /* Mark the overlay as "mapped". */
3392 sec->ovly_mapped = 1;
3394 /* Next, make a pass and unmap any sections that are
3395 overlapped by this new section: */
3396 ALL_OBJSECTIONS (objfile2, sec2)
3397 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3400 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3401 bfd_section_name (objfile->obfd,
3402 sec2->the_bfd_section));
3403 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3407 error (_("No overlay section called %s"), args);
3410 /* Function: unmap_overlay_command
3411 Mark the overlay section as unmapped
3412 (ie. resident in its LMA address range, rather than the VMA range). */
3415 unmap_overlay_command (char *args, int from_tty)
3417 struct objfile *objfile;
3418 struct obj_section *sec = NULL;
3420 if (!overlay_debugging)
3421 error (_("Overlay debugging not enabled. "
3422 "Use either the 'overlay auto' or\n"
3423 "the 'overlay manual' command."));
3425 if (args == 0 || *args == 0)
3426 error (_("Argument required: name of an overlay section"));
3428 /* First, find a section matching the user supplied argument. */
3429 ALL_OBJSECTIONS (objfile, sec)
3430 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3432 if (!sec->ovly_mapped)
3433 error (_("Section %s is not mapped"), args);
3434 sec->ovly_mapped = 0;
3437 error (_("No overlay section called %s"), args);
3440 /* Function: overlay_auto_command
3441 A utility command to turn on overlay debugging.
3442 Possibly this should be done via a set/show command. */
3445 overlay_auto_command (char *args, int from_tty)
3447 overlay_debugging = ovly_auto;
3448 enable_overlay_breakpoints ();
3450 printf_unfiltered (_("Automatic overlay debugging enabled."));
3453 /* Function: overlay_manual_command
3454 A utility command to turn on overlay debugging.
3455 Possibly this should be done via a set/show command. */
3458 overlay_manual_command (char *args, int from_tty)
3460 overlay_debugging = ovly_on;
3461 disable_overlay_breakpoints ();
3463 printf_unfiltered (_("Overlay debugging enabled."));
3466 /* Function: overlay_off_command
3467 A utility command to turn on overlay debugging.
3468 Possibly this should be done via a set/show command. */
3471 overlay_off_command (char *args, int from_tty)
3473 overlay_debugging = ovly_off;
3474 disable_overlay_breakpoints ();
3476 printf_unfiltered (_("Overlay debugging disabled."));
3480 overlay_load_command (char *args, int from_tty)
3482 struct gdbarch *gdbarch = get_current_arch ();
3484 if (gdbarch_overlay_update_p (gdbarch))
3485 gdbarch_overlay_update (gdbarch, NULL);
3487 error (_("This target does not know how to read its overlay state."));
3490 /* Function: overlay_command
3491 A place-holder for a mis-typed command. */
3493 /* Command list chain containing all defined "overlay" subcommands. */
3494 static struct cmd_list_element *overlaylist;
3497 overlay_command (char *args, int from_tty)
3500 ("\"overlay\" must be followed by the name of an overlay command.\n");
3501 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3504 /* Target Overlays for the "Simplest" overlay manager:
3506 This is GDB's default target overlay layer. It works with the
3507 minimal overlay manager supplied as an example by Cygnus. The
3508 entry point is via a function pointer "gdbarch_overlay_update",
3509 so targets that use a different runtime overlay manager can
3510 substitute their own overlay_update function and take over the
3513 The overlay_update function pokes around in the target's data structures
3514 to see what overlays are mapped, and updates GDB's overlay mapping with
3517 In this simple implementation, the target data structures are as follows:
3518 unsigned _novlys; /# number of overlay sections #/
3519 unsigned _ovly_table[_novlys][4] = {
3520 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3521 {..., ..., ..., ...},
3523 unsigned _novly_regions; /# number of overlay regions #/
3524 unsigned _ovly_region_table[_novly_regions][3] = {
3525 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3528 These functions will attempt to update GDB's mappedness state in the
3529 symbol section table, based on the target's mappedness state.
3531 To do this, we keep a cached copy of the target's _ovly_table, and
3532 attempt to detect when the cached copy is invalidated. The main
3533 entry point is "simple_overlay_update(SECT), which looks up SECT in
3534 the cached table and re-reads only the entry for that section from
3535 the target (whenever possible). */
3537 /* Cached, dynamically allocated copies of the target data structures: */
3538 static unsigned (*cache_ovly_table)[4] = 0;
3539 static unsigned cache_novlys = 0;
3540 static CORE_ADDR cache_ovly_table_base = 0;
3543 VMA, OSIZE, LMA, MAPPED
3546 /* Throw away the cached copy of _ovly_table. */
3549 simple_free_overlay_table (void)
3551 if (cache_ovly_table)
3552 xfree (cache_ovly_table);
3554 cache_ovly_table = NULL;
3555 cache_ovly_table_base = 0;
3558 /* Read an array of ints of size SIZE from the target into a local buffer.
3559 Convert to host order. int LEN is number of ints. */
3562 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3563 int len, int size, enum bfd_endian byte_order)
3565 /* FIXME (alloca): Not safe if array is very large. */
3566 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3569 read_memory (memaddr, buf, len * size);
3570 for (i = 0; i < len; i++)
3571 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3574 /* Find and grab a copy of the target _ovly_table
3575 (and _novlys, which is needed for the table's size). */
3578 simple_read_overlay_table (void)
3580 struct bound_minimal_symbol novlys_msym;
3581 struct bound_minimal_symbol ovly_table_msym;
3582 struct gdbarch *gdbarch;
3584 enum bfd_endian byte_order;
3586 simple_free_overlay_table ();
3587 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3588 if (! novlys_msym.minsym)
3590 error (_("Error reading inferior's overlay table: "
3591 "couldn't find `_novlys' variable\n"
3592 "in inferior. Use `overlay manual' mode."));
3596 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3597 if (! ovly_table_msym.minsym)
3599 error (_("Error reading inferior's overlay table: couldn't find "
3600 "`_ovly_table' array\n"
3601 "in inferior. Use `overlay manual' mode."));
3605 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3606 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3607 byte_order = gdbarch_byte_order (gdbarch);
3609 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3612 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3613 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3614 read_target_long_array (cache_ovly_table_base,
3615 (unsigned int *) cache_ovly_table,
3616 cache_novlys * 4, word_size, byte_order);
3618 return 1; /* SUCCESS */
3621 /* Function: simple_overlay_update_1
3622 A helper function for simple_overlay_update. Assuming a cached copy
3623 of _ovly_table exists, look through it to find an entry whose vma,
3624 lma and size match those of OSECT. Re-read the entry and make sure
3625 it still matches OSECT (else the table may no longer be valid).
3626 Set OSECT's mapped state to match the entry. Return: 1 for
3627 success, 0 for failure. */
3630 simple_overlay_update_1 (struct obj_section *osect)
3633 bfd *obfd = osect->objfile->obfd;
3634 asection *bsect = osect->the_bfd_section;
3635 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3636 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3637 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3639 size = bfd_get_section_size (osect->the_bfd_section);
3640 for (i = 0; i < cache_novlys; i++)
3641 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3642 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3643 /* && cache_ovly_table[i][OSIZE] == size */ )
3645 read_target_long_array (cache_ovly_table_base + i * word_size,
3646 (unsigned int *) cache_ovly_table[i],
3647 4, word_size, byte_order);
3648 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3649 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3650 /* && cache_ovly_table[i][OSIZE] == size */ )
3652 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3655 else /* Warning! Warning! Target's ovly table has changed! */
3661 /* Function: simple_overlay_update
3662 If OSECT is NULL, then update all sections' mapped state
3663 (after re-reading the entire target _ovly_table).
3664 If OSECT is non-NULL, then try to find a matching entry in the
3665 cached ovly_table and update only OSECT's mapped state.
3666 If a cached entry can't be found or the cache isn't valid, then
3667 re-read the entire cache, and go ahead and update all sections. */
3670 simple_overlay_update (struct obj_section *osect)
3672 struct objfile *objfile;
3674 /* Were we given an osect to look up? NULL means do all of them. */
3676 /* Have we got a cached copy of the target's overlay table? */
3677 if (cache_ovly_table != NULL)
3679 /* Does its cached location match what's currently in the
3681 struct bound_minimal_symbol minsym
3682 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3684 if (minsym.minsym == NULL)
3685 error (_("Error reading inferior's overlay table: couldn't "
3686 "find `_ovly_table' array\n"
3687 "in inferior. Use `overlay manual' mode."));
3689 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3690 /* Then go ahead and try to look up this single section in
3692 if (simple_overlay_update_1 (osect))
3693 /* Found it! We're done. */
3697 /* Cached table no good: need to read the entire table anew.
3698 Or else we want all the sections, in which case it's actually
3699 more efficient to read the whole table in one block anyway. */
3701 if (! simple_read_overlay_table ())
3704 /* Now may as well update all sections, even if only one was requested. */
3705 ALL_OBJSECTIONS (objfile, osect)
3706 if (section_is_overlay (osect))
3709 bfd *obfd = osect->objfile->obfd;
3710 asection *bsect = osect->the_bfd_section;
3712 size = bfd_get_section_size (bsect);
3713 for (i = 0; i < cache_novlys; i++)
3714 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3715 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3716 /* && cache_ovly_table[i][OSIZE] == size */ )
3717 { /* obj_section matches i'th entry in ovly_table. */
3718 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3719 break; /* finished with inner for loop: break out. */
3724 /* Set the output sections and output offsets for section SECTP in
3725 ABFD. The relocation code in BFD will read these offsets, so we
3726 need to be sure they're initialized. We map each section to itself,
3727 with no offset; this means that SECTP->vma will be honored. */
3730 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3732 sectp->output_section = sectp;
3733 sectp->output_offset = 0;
3736 /* Default implementation for sym_relocate. */
3739 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3742 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3744 bfd *abfd = sectp->owner;
3746 /* We're only interested in sections with relocation
3748 if ((sectp->flags & SEC_RELOC) == 0)
3751 /* We will handle section offsets properly elsewhere, so relocate as if
3752 all sections begin at 0. */
3753 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3755 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3758 /* Relocate the contents of a debug section SECTP in ABFD. The
3759 contents are stored in BUF if it is non-NULL, or returned in a
3760 malloc'd buffer otherwise.
3762 For some platforms and debug info formats, shared libraries contain
3763 relocations against the debug sections (particularly for DWARF-2;
3764 one affected platform is PowerPC GNU/Linux, although it depends on
3765 the version of the linker in use). Also, ELF object files naturally
3766 have unresolved relocations for their debug sections. We need to apply
3767 the relocations in order to get the locations of symbols correct.
3768 Another example that may require relocation processing, is the
3769 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3773 symfile_relocate_debug_section (struct objfile *objfile,
3774 asection *sectp, bfd_byte *buf)
3776 gdb_assert (objfile->sf->sym_relocate);
3778 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3781 struct symfile_segment_data *
3782 get_symfile_segment_data (bfd *abfd)
3784 const struct sym_fns *sf = find_sym_fns (abfd);
3789 return sf->sym_segments (abfd);
3793 free_symfile_segment_data (struct symfile_segment_data *data)
3795 xfree (data->segment_bases);
3796 xfree (data->segment_sizes);
3797 xfree (data->segment_info);
3802 - DATA, containing segment addresses from the object file ABFD, and
3803 the mapping from ABFD's sections onto the segments that own them,
3805 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3806 segment addresses reported by the target,
3807 store the appropriate offsets for each section in OFFSETS.
3809 If there are fewer entries in SEGMENT_BASES than there are segments
3810 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3812 If there are more entries, then ignore the extra. The target may
3813 not be able to distinguish between an empty data segment and a
3814 missing data segment; a missing text segment is less plausible. */
3817 symfile_map_offsets_to_segments (bfd *abfd,
3818 const struct symfile_segment_data *data,
3819 struct section_offsets *offsets,
3820 int num_segment_bases,
3821 const CORE_ADDR *segment_bases)
3826 /* It doesn't make sense to call this function unless you have some
3827 segment base addresses. */
3828 gdb_assert (num_segment_bases > 0);
3830 /* If we do not have segment mappings for the object file, we
3831 can not relocate it by segments. */
3832 gdb_assert (data != NULL);
3833 gdb_assert (data->num_segments > 0);
3835 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3837 int which = data->segment_info[i];
3839 gdb_assert (0 <= which && which <= data->num_segments);
3841 /* Don't bother computing offsets for sections that aren't
3842 loaded as part of any segment. */
3846 /* Use the last SEGMENT_BASES entry as the address of any extra
3847 segments mentioned in DATA->segment_info. */
3848 if (which > num_segment_bases)
3849 which = num_segment_bases;
3851 offsets->offsets[i] = (segment_bases[which - 1]
3852 - data->segment_bases[which - 1]);
3859 symfile_find_segment_sections (struct objfile *objfile)
3861 bfd *abfd = objfile->obfd;
3864 struct symfile_segment_data *data;
3866 data = get_symfile_segment_data (objfile->obfd);
3870 if (data->num_segments != 1 && data->num_segments != 2)
3872 free_symfile_segment_data (data);
3876 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3878 int which = data->segment_info[i];
3882 if (objfile->sect_index_text == -1)
3883 objfile->sect_index_text = sect->index;
3885 if (objfile->sect_index_rodata == -1)
3886 objfile->sect_index_rodata = sect->index;
3888 else if (which == 2)
3890 if (objfile->sect_index_data == -1)
3891 objfile->sect_index_data = sect->index;
3893 if (objfile->sect_index_bss == -1)
3894 objfile->sect_index_bss = sect->index;
3898 free_symfile_segment_data (data);
3901 /* Listen for free_objfile events. */
3904 symfile_free_objfile (struct objfile *objfile)
3906 /* Remove the target sections owned by this objfile. */
3907 if (objfile != NULL)
3908 remove_target_sections ((void *) objfile);
3911 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3912 Expand all symtabs that match the specified criteria.
3913 See quick_symbol_functions.expand_symtabs_matching for details. */
3916 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3917 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3918 expand_symtabs_exp_notify_ftype *expansion_notify,
3919 enum search_domain kind,
3922 struct objfile *objfile;
3924 ALL_OBJFILES (objfile)
3927 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3929 expansion_notify, kind,
3934 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3935 Map function FUN over every file.
3936 See quick_symbol_functions.map_symbol_filenames for details. */
3939 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3942 struct objfile *objfile;
3944 ALL_OBJFILES (objfile)
3947 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3953 _initialize_symfile (void)
3955 struct cmd_list_element *c;
3957 observer_attach_free_objfile (symfile_free_objfile);
3959 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3960 Load symbol table from executable file FILE.\n\
3961 The `file' command can also load symbol tables, as well as setting the file\n\
3962 to execute."), &cmdlist);
3963 set_cmd_completer (c, filename_completer);
3965 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3966 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3967 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3968 ...]\nADDR is the starting address of the file's text.\n\
3969 The optional arguments are section-name section-address pairs and\n\
3970 should be specified if the data and bss segments are not contiguous\n\
3971 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3973 set_cmd_completer (c, filename_completer);
3975 c = add_cmd ("remove-symbol-file", class_files,
3976 remove_symbol_file_command, _("\
3977 Remove a symbol file added via the add-symbol-file command.\n\
3978 Usage: remove-symbol-file FILENAME\n\
3979 remove-symbol-file -a ADDRESS\n\
3980 The file to remove can be identified by its filename or by an address\n\
3981 that lies within the boundaries of this symbol file in memory."),
3984 c = add_cmd ("load", class_files, load_command, _("\
3985 Dynamically load FILE into the running program, and record its symbols\n\
3986 for access from GDB.\n\
3987 A load OFFSET may also be given."), &cmdlist);
3988 set_cmd_completer (c, filename_completer);
3990 add_prefix_cmd ("overlay", class_support, overlay_command,
3991 _("Commands for debugging overlays."), &overlaylist,
3992 "overlay ", 0, &cmdlist);
3994 add_com_alias ("ovly", "overlay", class_alias, 1);
3995 add_com_alias ("ov", "overlay", class_alias, 1);
3997 add_cmd ("map-overlay", class_support, map_overlay_command,
3998 _("Assert that an overlay section is mapped."), &overlaylist);
4000 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4001 _("Assert that an overlay section is unmapped."), &overlaylist);
4003 add_cmd ("list-overlays", class_support, list_overlays_command,
4004 _("List mappings of overlay sections."), &overlaylist);
4006 add_cmd ("manual", class_support, overlay_manual_command,
4007 _("Enable overlay debugging."), &overlaylist);
4008 add_cmd ("off", class_support, overlay_off_command,
4009 _("Disable overlay debugging."), &overlaylist);
4010 add_cmd ("auto", class_support, overlay_auto_command,
4011 _("Enable automatic overlay debugging."), &overlaylist);
4012 add_cmd ("load-target", class_support, overlay_load_command,
4013 _("Read the overlay mapping state from the target."), &overlaylist);
4015 /* Filename extension to source language lookup table: */
4016 init_filename_language_table ();
4017 add_setshow_string_noescape_cmd ("extension-language", class_files,
4019 Set mapping between filename extension and source language."), _("\
4020 Show mapping between filename extension and source language."), _("\
4021 Usage: set extension-language .foo bar"),
4022 set_ext_lang_command,
4024 &setlist, &showlist);
4026 add_info ("extensions", info_ext_lang_command,
4027 _("All filename extensions associated with a source language."));
4029 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4030 &debug_file_directory, _("\
4031 Set the directories where separate debug symbols are searched for."), _("\
4032 Show the directories where separate debug symbols are searched for."), _("\
4033 Separate debug symbols are first searched for in the same\n\
4034 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4035 and lastly at the path of the directory of the binary with\n\
4036 each global debug-file-directory component prepended."),
4038 show_debug_file_directory,
4039 &setlist, &showlist);
4041 add_setshow_enum_cmd ("symbol-loading", no_class,
4042 print_symbol_loading_enums, &print_symbol_loading,
4044 Set printing of symbol loading messages."), _("\
4045 Show printing of symbol loading messages."), _("\
4046 off == turn all messages off\n\
4047 brief == print messages for the executable,\n\
4048 and brief messages for shared libraries\n\
4049 full == print messages for the executable,\n\
4050 and messages for each shared library."),
4053 &setprintlist, &showprintlist);