1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
35 #include "breakpoint.h"
37 #include "complaints.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
52 #include "parser-defs.h"
59 #include "cli/cli-utils.h"
61 #include <sys/types.h>
71 int (*deprecated_ui_load_progress_hook) (const char *section,
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
81 static void clear_symtab_users_cleanup (void *ignore);
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
86 /* Functions this file defines. */
88 static void load_command (char *, int);
90 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
92 static void add_symbol_file_command (char *, int);
94 static const struct sym_fns *find_sym_fns (bfd *);
96 static void decrement_reading_symtab (void *);
98 static void overlay_invalidate_all (void);
100 static void overlay_auto_command (char *, int);
102 static void overlay_manual_command (char *, int);
104 static void overlay_off_command (char *, int);
106 static void overlay_load_command (char *, int);
108 static void overlay_command (char *, int);
110 static void simple_free_overlay_table (void);
112 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
115 static int simple_read_overlay_table (void);
117 static int simple_overlay_update_1 (struct obj_section *);
119 static void add_filename_language (char *ext, enum language lang);
121 static void info_ext_lang_command (char *args, int from_tty);
123 static void init_filename_language_table (void);
125 static void symfile_find_segment_sections (struct objfile *objfile);
127 void _initialize_symfile (void);
129 /* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140 } registered_sym_fns;
142 DEF_VEC_O (registered_sym_fns);
144 static VEC (registered_sym_fns) *symtab_fns = NULL;
146 /* Values for "set print symbol-loading". */
148 const char print_symbol_loading_off[] = "off";
149 const char print_symbol_loading_brief[] = "brief";
150 const char print_symbol_loading_full[] = "full";
151 static const char *print_symbol_loading_enums[] =
153 print_symbol_loading_off,
154 print_symbol_loading_brief,
155 print_symbol_loading_full,
158 static const char *print_symbol_loading = print_symbol_loading_full;
160 /* If non-zero, shared library symbols will be added automatically
161 when the inferior is created, new libraries are loaded, or when
162 attaching to the inferior. This is almost always what users will
163 want to have happen; but for very large programs, the startup time
164 will be excessive, and so if this is a problem, the user can clear
165 this flag and then add the shared library symbols as needed. Note
166 that there is a potential for confusion, since if the shared
167 library symbols are not loaded, commands like "info fun" will *not*
168 report all the functions that are actually present. */
170 int auto_solib_add = 1;
173 /* Return non-zero if symbol-loading messages should be printed.
174 FROM_TTY is the standard from_tty argument to gdb commands.
175 If EXEC is non-zero the messages are for the executable.
176 Otherwise, messages are for shared libraries.
177 If FULL is non-zero then the caller is printing a detailed message.
178 E.g., the message includes the shared library name.
179 Otherwise, the caller is printing a brief "summary" message. */
182 print_symbol_loading_p (int from_tty, int exec, int full)
184 if (!from_tty && !info_verbose)
189 /* We don't check FULL for executables, there are few such
190 messages, therefore brief == full. */
191 return print_symbol_loading != print_symbol_loading_off;
194 return print_symbol_loading == print_symbol_loading_full;
195 return print_symbol_loading == print_symbol_loading_brief;
198 /* True if we are reading a symbol table. */
200 int currently_reading_symtab = 0;
203 decrement_reading_symtab (void *dummy)
205 currently_reading_symtab--;
206 gdb_assert (currently_reading_symtab >= 0);
209 /* Increment currently_reading_symtab and return a cleanup that can be
210 used to decrement it. */
213 increment_reading_symtab (void)
215 ++currently_reading_symtab;
216 gdb_assert (currently_reading_symtab > 0);
217 return make_cleanup (decrement_reading_symtab, NULL);
220 /* Remember the lowest-addressed loadable section we've seen.
221 This function is called via bfd_map_over_sections.
223 In case of equal vmas, the section with the largest size becomes the
224 lowest-addressed loadable section.
226 If the vmas and sizes are equal, the last section is considered the
227 lowest-addressed loadable section. */
230 find_lowest_section (bfd *abfd, asection *sect, void *obj)
232 asection **lowest = (asection **) obj;
234 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
237 *lowest = sect; /* First loadable section */
238 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
239 *lowest = sect; /* A lower loadable section */
240 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
241 && (bfd_section_size (abfd, (*lowest))
242 <= bfd_section_size (abfd, sect)))
246 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
247 new object's 'num_sections' field is set to 0; it must be updated
250 struct section_addr_info *
251 alloc_section_addr_info (size_t num_sections)
253 struct section_addr_info *sap;
256 size = (sizeof (struct section_addr_info)
257 + sizeof (struct other_sections) * (num_sections - 1));
258 sap = (struct section_addr_info *) xmalloc (size);
259 memset (sap, 0, size);
264 /* Build (allocate and populate) a section_addr_info struct from
265 an existing section table. */
267 extern struct section_addr_info *
268 build_section_addr_info_from_section_table (const struct target_section *start,
269 const struct target_section *end)
271 struct section_addr_info *sap;
272 const struct target_section *stp;
275 sap = alloc_section_addr_info (end - start);
277 for (stp = start, oidx = 0; stp != end; stp++)
279 struct bfd_section *asect = stp->the_bfd_section;
280 bfd *abfd = asect->owner;
282 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
283 && oidx < end - start)
285 sap->other[oidx].addr = stp->addr;
286 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
287 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
292 sap->num_sections = oidx;
297 /* Create a section_addr_info from section offsets in ABFD. */
299 static struct section_addr_info *
300 build_section_addr_info_from_bfd (bfd *abfd)
302 struct section_addr_info *sap;
304 struct bfd_section *sec;
306 sap = alloc_section_addr_info (bfd_count_sections (abfd));
307 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
308 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
310 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
311 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
312 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
316 sap->num_sections = i;
321 /* Create a section_addr_info from section offsets in OBJFILE. */
323 struct section_addr_info *
324 build_section_addr_info_from_objfile (const struct objfile *objfile)
326 struct section_addr_info *sap;
329 /* Before reread_symbols gets rewritten it is not safe to call:
330 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
332 sap = build_section_addr_info_from_bfd (objfile->obfd);
333 for (i = 0; i < sap->num_sections; i++)
335 int sectindex = sap->other[i].sectindex;
337 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
342 /* Free all memory allocated by build_section_addr_info_from_section_table. */
345 free_section_addr_info (struct section_addr_info *sap)
349 for (idx = 0; idx < sap->num_sections; idx++)
350 xfree (sap->other[idx].name);
354 /* Initialize OBJFILE's sect_index_* members. */
357 init_objfile_sect_indices (struct objfile *objfile)
362 sect = bfd_get_section_by_name (objfile->obfd, ".text");
364 objfile->sect_index_text = sect->index;
366 sect = bfd_get_section_by_name (objfile->obfd, ".data");
368 objfile->sect_index_data = sect->index;
370 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
372 objfile->sect_index_bss = sect->index;
374 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
376 objfile->sect_index_rodata = sect->index;
378 /* This is where things get really weird... We MUST have valid
379 indices for the various sect_index_* members or gdb will abort.
380 So if for example, there is no ".text" section, we have to
381 accomodate that. First, check for a file with the standard
382 one or two segments. */
384 symfile_find_segment_sections (objfile);
386 /* Except when explicitly adding symbol files at some address,
387 section_offsets contains nothing but zeros, so it doesn't matter
388 which slot in section_offsets the individual sect_index_* members
389 index into. So if they are all zero, it is safe to just point
390 all the currently uninitialized indices to the first slot. But
391 beware: if this is the main executable, it may be relocated
392 later, e.g. by the remote qOffsets packet, and then this will
393 be wrong! That's why we try segments first. */
395 for (i = 0; i < objfile->num_sections; i++)
397 if (ANOFFSET (objfile->section_offsets, i) != 0)
402 if (i == objfile->num_sections)
404 if (objfile->sect_index_text == -1)
405 objfile->sect_index_text = 0;
406 if (objfile->sect_index_data == -1)
407 objfile->sect_index_data = 0;
408 if (objfile->sect_index_bss == -1)
409 objfile->sect_index_bss = 0;
410 if (objfile->sect_index_rodata == -1)
411 objfile->sect_index_rodata = 0;
415 /* The arguments to place_section. */
417 struct place_section_arg
419 struct section_offsets *offsets;
423 /* Find a unique offset to use for loadable section SECT if
424 the user did not provide an offset. */
427 place_section (bfd *abfd, asection *sect, void *obj)
429 struct place_section_arg *arg = obj;
430 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
432 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
434 /* We are only interested in allocated sections. */
435 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
438 /* If the user specified an offset, honor it. */
439 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
442 /* Otherwise, let's try to find a place for the section. */
443 start_addr = (arg->lowest + align - 1) & -align;
450 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
452 int indx = cur_sec->index;
454 /* We don't need to compare against ourself. */
458 /* We can only conflict with allocated sections. */
459 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
462 /* If the section offset is 0, either the section has not been placed
463 yet, or it was the lowest section placed (in which case LOWEST
464 will be past its end). */
465 if (offsets[indx] == 0)
468 /* If this section would overlap us, then we must move up. */
469 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
470 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
472 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
473 start_addr = (start_addr + align - 1) & -align;
478 /* Otherwise, we appear to be OK. So far. */
483 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
484 arg->lowest = start_addr + bfd_get_section_size (sect);
487 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
488 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
492 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
494 const struct section_addr_info *addrs)
498 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
500 /* Now calculate offsets for section that were specified by the caller. */
501 for (i = 0; i < addrs->num_sections; i++)
503 const struct other_sections *osp;
505 osp = &addrs->other[i];
506 if (osp->sectindex == -1)
509 /* Record all sections in offsets. */
510 /* The section_offsets in the objfile are here filled in using
512 section_offsets->offsets[osp->sectindex] = osp->addr;
516 /* Transform section name S for a name comparison. prelink can split section
517 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
518 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
519 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
520 (`.sbss') section has invalid (increased) virtual address. */
523 addr_section_name (const char *s)
525 if (strcmp (s, ".dynbss") == 0)
527 if (strcmp (s, ".sdynbss") == 0)
533 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
534 their (name, sectindex) pair. sectindex makes the sort by name stable. */
537 addrs_section_compar (const void *ap, const void *bp)
539 const struct other_sections *a = *((struct other_sections **) ap);
540 const struct other_sections *b = *((struct other_sections **) bp);
543 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
547 return a->sectindex - b->sectindex;
550 /* Provide sorted array of pointers to sections of ADDRS. The array is
551 terminated by NULL. Caller is responsible to call xfree for it. */
553 static struct other_sections **
554 addrs_section_sort (struct section_addr_info *addrs)
556 struct other_sections **array;
559 /* `+ 1' for the NULL terminator. */
560 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
561 for (i = 0; i < addrs->num_sections; i++)
562 array[i] = &addrs->other[i];
565 qsort (array, i, sizeof (*array), addrs_section_compar);
570 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
571 also SECTINDEXes specific to ABFD there. This function can be used to
572 rebase ADDRS to start referencing different BFD than before. */
575 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
577 asection *lower_sect;
578 CORE_ADDR lower_offset;
580 struct cleanup *my_cleanup;
581 struct section_addr_info *abfd_addrs;
582 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
583 struct other_sections **addrs_to_abfd_addrs;
585 /* Find lowest loadable section to be used as starting point for
586 continguous sections. */
588 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
589 if (lower_sect == NULL)
591 warning (_("no loadable sections found in added symbol-file %s"),
592 bfd_get_filename (abfd));
596 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
598 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
599 in ABFD. Section names are not unique - there can be multiple sections of
600 the same name. Also the sections of the same name do not have to be
601 adjacent to each other. Some sections may be present only in one of the
602 files. Even sections present in both files do not have to be in the same
605 Use stable sort by name for the sections in both files. Then linearly
606 scan both lists matching as most of the entries as possible. */
608 addrs_sorted = addrs_section_sort (addrs);
609 my_cleanup = make_cleanup (xfree, addrs_sorted);
611 abfd_addrs = build_section_addr_info_from_bfd (abfd);
612 make_cleanup_free_section_addr_info (abfd_addrs);
613 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
614 make_cleanup (xfree, abfd_addrs_sorted);
616 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
617 ABFD_ADDRS_SORTED. */
619 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
620 * addrs->num_sections);
621 make_cleanup (xfree, addrs_to_abfd_addrs);
623 while (*addrs_sorted)
625 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
627 while (*abfd_addrs_sorted
628 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 if (*abfd_addrs_sorted
633 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
638 /* Make the found item directly addressable from ADDRS. */
639 index_in_addrs = *addrs_sorted - addrs->other;
640 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
641 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
643 /* Never use the same ABFD entry twice. */
650 /* Calculate offsets for the loadable sections.
651 FIXME! Sections must be in order of increasing loadable section
652 so that contiguous sections can use the lower-offset!!!
654 Adjust offsets if the segments are not contiguous.
655 If the section is contiguous, its offset should be set to
656 the offset of the highest loadable section lower than it
657 (the loadable section directly below it in memory).
658 this_offset = lower_offset = lower_addr - lower_orig_addr */
660 for (i = 0; i < addrs->num_sections; i++)
662 struct other_sections *sect = addrs_to_abfd_addrs[i];
666 /* This is the index used by BFD. */
667 addrs->other[i].sectindex = sect->sectindex;
669 if (addrs->other[i].addr != 0)
671 addrs->other[i].addr -= sect->addr;
672 lower_offset = addrs->other[i].addr;
675 addrs->other[i].addr = lower_offset;
679 /* addr_section_name transformation is not used for SECT_NAME. */
680 const char *sect_name = addrs->other[i].name;
682 /* This section does not exist in ABFD, which is normally
683 unexpected and we want to issue a warning.
685 However, the ELF prelinker does create a few sections which are
686 marked in the main executable as loadable (they are loaded in
687 memory from the DYNAMIC segment) and yet are not present in
688 separate debug info files. This is fine, and should not cause
689 a warning. Shared libraries contain just the section
690 ".gnu.liblist" but it is not marked as loadable there. There is
691 no other way to identify them than by their name as the sections
692 created by prelink have no special flags.
694 For the sections `.bss' and `.sbss' see addr_section_name. */
696 if (!(strcmp (sect_name, ".gnu.liblist") == 0
697 || strcmp (sect_name, ".gnu.conflict") == 0
698 || (strcmp (sect_name, ".bss") == 0
700 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
701 && addrs_to_abfd_addrs[i - 1] != NULL)
702 || (strcmp (sect_name, ".sbss") == 0
704 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
705 && addrs_to_abfd_addrs[i - 1] != NULL)))
706 warning (_("section %s not found in %s"), sect_name,
707 bfd_get_filename (abfd));
709 addrs->other[i].addr = 0;
710 addrs->other[i].sectindex = -1;
714 do_cleanups (my_cleanup);
717 /* Parse the user's idea of an offset for dynamic linking, into our idea
718 of how to represent it for fast symbol reading. This is the default
719 version of the sym_fns.sym_offsets function for symbol readers that
720 don't need to do anything special. It allocates a section_offsets table
721 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
724 default_symfile_offsets (struct objfile *objfile,
725 const struct section_addr_info *addrs)
727 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
728 objfile->section_offsets = (struct section_offsets *)
729 obstack_alloc (&objfile->objfile_obstack,
730 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
731 relative_addr_info_to_section_offsets (objfile->section_offsets,
732 objfile->num_sections, addrs);
734 /* For relocatable files, all loadable sections will start at zero.
735 The zero is meaningless, so try to pick arbitrary addresses such
736 that no loadable sections overlap. This algorithm is quadratic,
737 but the number of sections in a single object file is generally
739 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
741 struct place_section_arg arg;
742 bfd *abfd = objfile->obfd;
745 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
746 /* We do not expect this to happen; just skip this step if the
747 relocatable file has a section with an assigned VMA. */
748 if (bfd_section_vma (abfd, cur_sec) != 0)
753 CORE_ADDR *offsets = objfile->section_offsets->offsets;
755 /* Pick non-overlapping offsets for sections the user did not
757 arg.offsets = objfile->section_offsets;
759 bfd_map_over_sections (objfile->obfd, place_section, &arg);
761 /* Correctly filling in the section offsets is not quite
762 enough. Relocatable files have two properties that
763 (most) shared objects do not:
765 - Their debug information will contain relocations. Some
766 shared libraries do also, but many do not, so this can not
769 - If there are multiple code sections they will be loaded
770 at different relative addresses in memory than they are
771 in the objfile, since all sections in the file will start
774 Because GDB has very limited ability to map from an
775 address in debug info to the correct code section,
776 it relies on adding SECT_OFF_TEXT to things which might be
777 code. If we clear all the section offsets, and set the
778 section VMAs instead, then symfile_relocate_debug_section
779 will return meaningful debug information pointing at the
782 GDB has too many different data structures for section
783 addresses - a bfd, objfile, and so_list all have section
784 tables, as does exec_ops. Some of these could probably
787 for (cur_sec = abfd->sections; cur_sec != NULL;
788 cur_sec = cur_sec->next)
790 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
793 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
794 exec_set_section_address (bfd_get_filename (abfd),
796 offsets[cur_sec->index]);
797 offsets[cur_sec->index] = 0;
802 /* Remember the bfd indexes for the .text, .data, .bss and
804 init_objfile_sect_indices (objfile);
807 /* Divide the file into segments, which are individual relocatable units.
808 This is the default version of the sym_fns.sym_segments function for
809 symbol readers that do not have an explicit representation of segments.
810 It assumes that object files do not have segments, and fully linked
811 files have a single segment. */
813 struct symfile_segment_data *
814 default_symfile_segments (bfd *abfd)
818 struct symfile_segment_data *data;
821 /* Relocatable files contain enough information to position each
822 loadable section independently; they should not be relocated
824 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
827 /* Make sure there is at least one loadable section in the file. */
828 for (sect = abfd->sections; sect != NULL; sect = sect->next)
830 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 low = bfd_get_section_vma (abfd, sect);
839 high = low + bfd_get_section_size (sect);
841 data = XCNEW (struct symfile_segment_data);
842 data->num_segments = 1;
843 data->segment_bases = XCNEW (CORE_ADDR);
844 data->segment_sizes = XCNEW (CORE_ADDR);
846 num_sections = bfd_count_sections (abfd);
847 data->segment_info = XCNEWVEC (int, num_sections);
849 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
853 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
856 vma = bfd_get_section_vma (abfd, sect);
859 if (vma + bfd_get_section_size (sect) > high)
860 high = vma + bfd_get_section_size (sect);
862 data->segment_info[i] = 1;
865 data->segment_bases[0] = low;
866 data->segment_sizes[0] = high - low;
871 /* This is a convenience function to call sym_read for OBJFILE and
872 possibly force the partial symbols to be read. */
875 read_symbols (struct objfile *objfile, int add_flags)
877 (*objfile->sf->sym_read) (objfile, add_flags);
878 objfile->per_bfd->minsyms_read = 1;
880 /* find_separate_debug_file_in_section should be called only if there is
881 single binary with no existing separate debug info file. */
882 if (!objfile_has_partial_symbols (objfile)
883 && objfile->separate_debug_objfile == NULL
884 && objfile->separate_debug_objfile_backlink == NULL)
886 bfd *abfd = find_separate_debug_file_in_section (objfile);
887 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
891 /* find_separate_debug_file_in_section uses the same filename for the
892 virtual section-as-bfd like the bfd filename containing the
893 section. Therefore use also non-canonical name form for the same
894 file containing the section. */
895 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
899 do_cleanups (cleanup);
901 if ((add_flags & SYMFILE_NO_READ) == 0)
902 require_partial_symbols (objfile, 0);
905 /* Initialize entry point information for this objfile. */
908 init_entry_point_info (struct objfile *objfile)
910 struct entry_info *ei = &objfile->per_bfd->ei;
916 /* Save startup file's range of PC addresses to help blockframe.c
917 decide where the bottom of the stack is. */
919 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
921 /* Executable file -- record its entry point so we'll recognize
922 the startup file because it contains the entry point. */
923 ei->entry_point = bfd_get_start_address (objfile->obfd);
924 ei->entry_point_p = 1;
926 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
927 && bfd_get_start_address (objfile->obfd) != 0)
929 /* Some shared libraries may have entry points set and be
930 runnable. There's no clear way to indicate this, so just check
931 for values other than zero. */
932 ei->entry_point = bfd_get_start_address (objfile->obfd);
933 ei->entry_point_p = 1;
937 /* Examination of non-executable.o files. Short-circuit this stuff. */
938 ei->entry_point_p = 0;
941 if (ei->entry_point_p)
943 struct obj_section *osect;
944 CORE_ADDR entry_point = ei->entry_point;
947 /* Make certain that the address points at real code, and not a
948 function descriptor. */
950 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
954 /* Remove any ISA markers, so that this matches entries in the
957 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
960 ALL_OBJFILE_OSECTIONS (objfile, osect)
962 struct bfd_section *sect = osect->the_bfd_section;
964 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
965 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
966 + bfd_get_section_size (sect)))
968 ei->the_bfd_section_index
969 = gdb_bfd_section_index (objfile->obfd, sect);
976 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
980 /* Process a symbol file, as either the main file or as a dynamically
983 This function does not set the OBJFILE's entry-point info.
985 OBJFILE is where the symbols are to be read from.
987 ADDRS is the list of section load addresses. If the user has given
988 an 'add-symbol-file' command, then this is the list of offsets and
989 addresses he or she provided as arguments to the command; or, if
990 we're handling a shared library, these are the actual addresses the
991 sections are loaded at, according to the inferior's dynamic linker
992 (as gleaned by GDB's shared library code). We convert each address
993 into an offset from the section VMA's as it appears in the object
994 file, and then call the file's sym_offsets function to convert this
995 into a format-specific offset table --- a `struct section_offsets'.
997 ADD_FLAGS encodes verbosity level, whether this is main symbol or
998 an extra symbol file such as dynamically loaded code, and wether
999 breakpoint reset should be deferred. */
1002 syms_from_objfile_1 (struct objfile *objfile,
1003 struct section_addr_info *addrs,
1006 struct section_addr_info *local_addr = NULL;
1007 struct cleanup *old_chain;
1008 const int mainline = add_flags & SYMFILE_MAINLINE;
1010 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1012 if (objfile->sf == NULL)
1014 /* No symbols to load, but we still need to make sure
1015 that the section_offsets table is allocated. */
1016 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1017 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1019 objfile->num_sections = num_sections;
1020 objfile->section_offsets
1021 = obstack_alloc (&objfile->objfile_obstack, size);
1022 memset (objfile->section_offsets, 0, size);
1026 /* Make sure that partially constructed symbol tables will be cleaned up
1027 if an error occurs during symbol reading. */
1028 old_chain = make_cleanup_free_objfile (objfile);
1030 /* If ADDRS is NULL, put together a dummy address list.
1031 We now establish the convention that an addr of zero means
1032 no load address was specified. */
1035 local_addr = alloc_section_addr_info (1);
1036 make_cleanup (xfree, local_addr);
1042 /* We will modify the main symbol table, make sure that all its users
1043 will be cleaned up if an error occurs during symbol reading. */
1044 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1046 /* Since no error yet, throw away the old symbol table. */
1048 if (symfile_objfile != NULL)
1050 free_objfile (symfile_objfile);
1051 gdb_assert (symfile_objfile == NULL);
1054 /* Currently we keep symbols from the add-symbol-file command.
1055 If the user wants to get rid of them, they should do "symbol-file"
1056 without arguments first. Not sure this is the best behavior
1059 (*objfile->sf->sym_new_init) (objfile);
1062 /* Convert addr into an offset rather than an absolute address.
1063 We find the lowest address of a loaded segment in the objfile,
1064 and assume that <addr> is where that got loaded.
1066 We no longer warn if the lowest section is not a text segment (as
1067 happens for the PA64 port. */
1068 if (addrs->num_sections > 0)
1069 addr_info_make_relative (addrs, objfile->obfd);
1071 /* Initialize symbol reading routines for this objfile, allow complaints to
1072 appear for this new file, and record how verbose to be, then do the
1073 initial symbol reading for this file. */
1075 (*objfile->sf->sym_init) (objfile);
1076 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1078 (*objfile->sf->sym_offsets) (objfile, addrs);
1080 read_symbols (objfile, add_flags);
1082 /* Discard cleanups as symbol reading was successful. */
1084 discard_cleanups (old_chain);
1088 /* Same as syms_from_objfile_1, but also initializes the objfile
1089 entry-point info. */
1092 syms_from_objfile (struct objfile *objfile,
1093 struct section_addr_info *addrs,
1096 syms_from_objfile_1 (objfile, addrs, add_flags);
1097 init_entry_point_info (objfile);
1100 /* Perform required actions after either reading in the initial
1101 symbols for a new objfile, or mapping in the symbols from a reusable
1102 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1105 new_symfile_objfile (struct objfile *objfile, int add_flags)
1107 /* If this is the main symbol file we have to clean up all users of the
1108 old main symbol file. Otherwise it is sufficient to fixup all the
1109 breakpoints that may have been redefined by this symbol file. */
1110 if (add_flags & SYMFILE_MAINLINE)
1112 /* OK, make it the "real" symbol file. */
1113 symfile_objfile = objfile;
1115 clear_symtab_users (add_flags);
1117 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1119 breakpoint_re_set ();
1122 /* We're done reading the symbol file; finish off complaints. */
1123 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1126 /* Process a symbol file, as either the main file or as a dynamically
1129 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1130 A new reference is acquired by this function.
1132 For NAME description see allocate_objfile's definition.
1134 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1135 extra, such as dynamically loaded code, and what to do with breakpoins.
1137 ADDRS is as described for syms_from_objfile_1, above.
1138 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1140 PARENT is the original objfile if ABFD is a separate debug info file.
1141 Otherwise PARENT is NULL.
1143 Upon success, returns a pointer to the objfile that was added.
1144 Upon failure, jumps back to command level (never returns). */
1146 static struct objfile *
1147 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1148 struct section_addr_info *addrs,
1149 int flags, struct objfile *parent)
1151 struct objfile *objfile;
1152 const int from_tty = add_flags & SYMFILE_VERBOSE;
1153 const int mainline = add_flags & SYMFILE_MAINLINE;
1154 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1155 && (readnow_symbol_files
1156 || (add_flags & SYMFILE_NO_READ) == 0));
1158 if (readnow_symbol_files)
1160 flags |= OBJF_READNOW;
1161 add_flags &= ~SYMFILE_NO_READ;
1164 /* Give user a chance to burp if we'd be
1165 interactively wiping out any existing symbols. */
1167 if ((have_full_symbols () || have_partial_symbols ())
1170 && !query (_("Load new symbol table from \"%s\"? "), name))
1171 error (_("Not confirmed."));
1173 objfile = allocate_objfile (abfd, name,
1174 flags | (mainline ? OBJF_MAINLINE : 0));
1177 add_separate_debug_objfile (objfile, parent);
1179 /* We either created a new mapped symbol table, mapped an existing
1180 symbol table file which has not had initial symbol reading
1181 performed, or need to read an unmapped symbol table. */
1184 if (deprecated_pre_add_symbol_hook)
1185 deprecated_pre_add_symbol_hook (name);
1188 printf_unfiltered (_("Reading symbols from %s..."), name);
1190 gdb_flush (gdb_stdout);
1193 syms_from_objfile (objfile, addrs, add_flags);
1195 /* We now have at least a partial symbol table. Check to see if the
1196 user requested that all symbols be read on initial access via either
1197 the gdb startup command line or on a per symbol file basis. Expand
1198 all partial symbol tables for this objfile if so. */
1200 if ((flags & OBJF_READNOW))
1204 printf_unfiltered (_("expanding to full symbols..."));
1206 gdb_flush (gdb_stdout);
1210 objfile->sf->qf->expand_all_symtabs (objfile);
1213 if (should_print && !objfile_has_symbols (objfile))
1216 printf_unfiltered (_("(no debugging symbols found)..."));
1222 if (deprecated_post_add_symbol_hook)
1223 deprecated_post_add_symbol_hook ();
1225 printf_unfiltered (_("done.\n"));
1228 /* We print some messages regardless of whether 'from_tty ||
1229 info_verbose' is true, so make sure they go out at the right
1231 gdb_flush (gdb_stdout);
1233 if (objfile->sf == NULL)
1235 observer_notify_new_objfile (objfile);
1236 return objfile; /* No symbols. */
1239 new_symfile_objfile (objfile, add_flags);
1241 observer_notify_new_objfile (objfile);
1243 bfd_cache_close_all ();
1247 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1248 see allocate_objfile's definition. */
1251 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1252 struct objfile *objfile)
1254 struct objfile *new_objfile;
1255 struct section_addr_info *sap;
1256 struct cleanup *my_cleanup;
1258 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1259 because sections of BFD may not match sections of OBJFILE and because
1260 vma may have been modified by tools such as prelink. */
1261 sap = build_section_addr_info_from_objfile (objfile);
1262 my_cleanup = make_cleanup_free_section_addr_info (sap);
1264 new_objfile = symbol_file_add_with_addrs
1265 (bfd, name, symfile_flags, sap,
1266 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1270 do_cleanups (my_cleanup);
1273 /* Process the symbol file ABFD, as either the main file or as a
1274 dynamically loaded file.
1275 See symbol_file_add_with_addrs's comments for details. */
1278 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1279 struct section_addr_info *addrs,
1280 int flags, struct objfile *parent)
1282 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1286 /* Process a symbol file, as either the main file or as a dynamically
1287 loaded file. See symbol_file_add_with_addrs's comments for details. */
1290 symbol_file_add (const char *name, int add_flags,
1291 struct section_addr_info *addrs, int flags)
1293 bfd *bfd = symfile_bfd_open (name);
1294 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1295 struct objfile *objf;
1297 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1298 do_cleanups (cleanup);
1302 /* Call symbol_file_add() with default values and update whatever is
1303 affected by the loading of a new main().
1304 Used when the file is supplied in the gdb command line
1305 and by some targets with special loading requirements.
1306 The auxiliary function, symbol_file_add_main_1(), has the flags
1307 argument for the switches that can only be specified in the symbol_file
1311 symbol_file_add_main (const char *args, int from_tty)
1313 symbol_file_add_main_1 (args, from_tty, 0);
1317 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1319 const int add_flags = (current_inferior ()->symfile_flags
1320 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1322 symbol_file_add (args, add_flags, NULL, flags);
1324 /* Getting new symbols may change our opinion about
1325 what is frameless. */
1326 reinit_frame_cache ();
1328 if ((flags & SYMFILE_NO_READ) == 0)
1329 set_initial_language ();
1333 symbol_file_clear (int from_tty)
1335 if ((have_full_symbols () || have_partial_symbols ())
1338 ? !query (_("Discard symbol table from `%s'? "),
1339 objfile_name (symfile_objfile))
1340 : !query (_("Discard symbol table? "))))
1341 error (_("Not confirmed."));
1343 /* solib descriptors may have handles to objfiles. Wipe them before their
1344 objfiles get stale by free_all_objfiles. */
1345 no_shared_libraries (NULL, from_tty);
1347 free_all_objfiles ();
1349 gdb_assert (symfile_objfile == NULL);
1351 printf_unfiltered (_("No symbol file now.\n"));
1355 separate_debug_file_exists (const char *name, unsigned long crc,
1356 struct objfile *parent_objfile)
1358 unsigned long file_crc;
1361 struct stat parent_stat, abfd_stat;
1362 int verified_as_different;
1364 /* Find a separate debug info file as if symbols would be present in
1365 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1366 section can contain just the basename of PARENT_OBJFILE without any
1367 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1368 the separate debug infos with the same basename can exist. */
1370 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1373 abfd = gdb_bfd_open_maybe_remote (name);
1378 /* Verify symlinks were not the cause of filename_cmp name difference above.
1380 Some operating systems, e.g. Windows, do not provide a meaningful
1381 st_ino; they always set it to zero. (Windows does provide a
1382 meaningful st_dev.) Do not indicate a duplicate library in that
1383 case. While there is no guarantee that a system that provides
1384 meaningful inode numbers will never set st_ino to zero, this is
1385 merely an optimization, so we do not need to worry about false
1388 if (bfd_stat (abfd, &abfd_stat) == 0
1389 && abfd_stat.st_ino != 0
1390 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1392 if (abfd_stat.st_dev == parent_stat.st_dev
1393 && abfd_stat.st_ino == parent_stat.st_ino)
1395 gdb_bfd_unref (abfd);
1398 verified_as_different = 1;
1401 verified_as_different = 0;
1403 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1405 gdb_bfd_unref (abfd);
1410 if (crc != file_crc)
1412 unsigned long parent_crc;
1414 /* If one (or both) the files are accessed for example the via "remote:"
1415 gdbserver way it does not support the bfd_stat operation. Verify
1416 whether those two files are not the same manually. */
1418 if (!verified_as_different)
1420 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1424 if (verified_as_different || parent_crc != file_crc)
1425 warning (_("the debug information found in \"%s\""
1426 " does not match \"%s\" (CRC mismatch).\n"),
1427 name, objfile_name (parent_objfile));
1435 char *debug_file_directory = NULL;
1437 show_debug_file_directory (struct ui_file *file, int from_tty,
1438 struct cmd_list_element *c, const char *value)
1440 fprintf_filtered (file,
1441 _("The directory where separate debug "
1442 "symbols are searched for is \"%s\".\n"),
1446 #if ! defined (DEBUG_SUBDIRECTORY)
1447 #define DEBUG_SUBDIRECTORY ".debug"
1450 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1451 where the original file resides (may not be the same as
1452 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1453 looking for. CANON_DIR is the "realpath" form of DIR.
1454 DIR must contain a trailing '/'.
1455 Returns the path of the file with separate debug info, of NULL. */
1458 find_separate_debug_file (const char *dir,
1459 const char *canon_dir,
1460 const char *debuglink,
1461 unsigned long crc32, struct objfile *objfile)
1466 VEC (char_ptr) *debugdir_vec;
1467 struct cleanup *back_to;
1470 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1472 if (canon_dir != NULL && strlen (canon_dir) > i)
1473 i = strlen (canon_dir);
1475 debugfile = xmalloc (strlen (debug_file_directory) + 1
1477 + strlen (DEBUG_SUBDIRECTORY)
1479 + strlen (debuglink)
1482 /* First try in the same directory as the original file. */
1483 strcpy (debugfile, dir);
1484 strcat (debugfile, debuglink);
1486 if (separate_debug_file_exists (debugfile, crc32, objfile))
1489 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1490 strcpy (debugfile, dir);
1491 strcat (debugfile, DEBUG_SUBDIRECTORY);
1492 strcat (debugfile, "/");
1493 strcat (debugfile, debuglink);
1495 if (separate_debug_file_exists (debugfile, crc32, objfile))
1498 /* Then try in the global debugfile directories.
1500 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1501 cause "/..." lookups. */
1503 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1504 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1506 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1508 strcpy (debugfile, debugdir);
1509 strcat (debugfile, "/");
1510 strcat (debugfile, dir);
1511 strcat (debugfile, debuglink);
1513 if (separate_debug_file_exists (debugfile, crc32, objfile))
1515 do_cleanups (back_to);
1519 /* If the file is in the sysroot, try using its base path in the
1520 global debugfile directory. */
1521 if (canon_dir != NULL
1522 && filename_ncmp (canon_dir, gdb_sysroot,
1523 strlen (gdb_sysroot)) == 0
1524 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1526 strcpy (debugfile, debugdir);
1527 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1528 strcat (debugfile, "/");
1529 strcat (debugfile, debuglink);
1531 if (separate_debug_file_exists (debugfile, crc32, objfile))
1533 do_cleanups (back_to);
1539 do_cleanups (back_to);
1544 /* Modify PATH to contain only "[/]directory/" part of PATH.
1545 If there were no directory separators in PATH, PATH will be empty
1546 string on return. */
1549 terminate_after_last_dir_separator (char *path)
1553 /* Strip off the final filename part, leaving the directory name,
1554 followed by a slash. The directory can be relative or absolute. */
1555 for (i = strlen(path) - 1; i >= 0; i--)
1556 if (IS_DIR_SEPARATOR (path[i]))
1559 /* If I is -1 then no directory is present there and DIR will be "". */
1563 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1564 Returns pathname, or NULL. */
1567 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1570 char *dir, *canon_dir;
1572 unsigned long crc32;
1573 struct cleanup *cleanups;
1575 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1577 if (debuglink == NULL)
1579 /* There's no separate debug info, hence there's no way we could
1580 load it => no warning. */
1584 cleanups = make_cleanup (xfree, debuglink);
1585 dir = xstrdup (objfile_name (objfile));
1586 make_cleanup (xfree, dir);
1587 terminate_after_last_dir_separator (dir);
1588 canon_dir = lrealpath (dir);
1590 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1594 if (debugfile == NULL)
1597 /* For PR gdb/9538, try again with realpath (if different from the
1602 if (lstat (objfile_name (objfile), &st_buf) == 0
1603 && S_ISLNK (st_buf.st_mode))
1607 symlink_dir = lrealpath (objfile_name (objfile));
1608 if (symlink_dir != NULL)
1610 make_cleanup (xfree, symlink_dir);
1611 terminate_after_last_dir_separator (symlink_dir);
1612 if (strcmp (dir, symlink_dir) != 0)
1614 /* Different directory, so try using it. */
1615 debugfile = find_separate_debug_file (symlink_dir,
1623 #endif /* HAVE_LSTAT */
1626 do_cleanups (cleanups);
1630 /* This is the symbol-file command. Read the file, analyze its
1631 symbols, and add a struct symtab to a symtab list. The syntax of
1632 the command is rather bizarre:
1634 1. The function buildargv implements various quoting conventions
1635 which are undocumented and have little or nothing in common with
1636 the way things are quoted (or not quoted) elsewhere in GDB.
1638 2. Options are used, which are not generally used in GDB (perhaps
1639 "set mapped on", "set readnow on" would be better)
1641 3. The order of options matters, which is contrary to GNU
1642 conventions (because it is confusing and inconvenient). */
1645 symbol_file_command (char *args, int from_tty)
1651 symbol_file_clear (from_tty);
1655 char **argv = gdb_buildargv (args);
1656 int flags = OBJF_USERLOADED;
1657 struct cleanup *cleanups;
1660 cleanups = make_cleanup_freeargv (argv);
1661 while (*argv != NULL)
1663 if (strcmp (*argv, "-readnow") == 0)
1664 flags |= OBJF_READNOW;
1665 else if (**argv == '-')
1666 error (_("unknown option `%s'"), *argv);
1669 symbol_file_add_main_1 (*argv, from_tty, flags);
1677 error (_("no symbol file name was specified"));
1679 do_cleanups (cleanups);
1683 /* Set the initial language.
1685 FIXME: A better solution would be to record the language in the
1686 psymtab when reading partial symbols, and then use it (if known) to
1687 set the language. This would be a win for formats that encode the
1688 language in an easily discoverable place, such as DWARF. For
1689 stabs, we can jump through hoops looking for specially named
1690 symbols or try to intuit the language from the specific type of
1691 stabs we find, but we can't do that until later when we read in
1695 set_initial_language (void)
1697 enum language lang = main_language ();
1699 if (lang == language_unknown)
1701 char *name = main_name ();
1702 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1705 lang = SYMBOL_LANGUAGE (sym);
1708 if (lang == language_unknown)
1710 /* Make C the default language */
1714 set_language (lang);
1715 expected_language = current_language; /* Don't warn the user. */
1718 /* If NAME is a remote name open the file using remote protocol, otherwise
1719 open it normally. Returns a new reference to the BFD. On error,
1720 returns NULL with the BFD error set. */
1723 gdb_bfd_open_maybe_remote (const char *name)
1727 if (remote_filename_p (name))
1728 result = remote_bfd_open (name, gnutarget);
1730 result = gdb_bfd_open (name, gnutarget, -1);
1735 /* Open the file specified by NAME and hand it off to BFD for
1736 preliminary analysis. Return a newly initialized bfd *, which
1737 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1738 absolute). In case of trouble, error() is called. */
1741 symfile_bfd_open (const char *cname)
1745 char *name, *absolute_name;
1746 struct cleanup *back_to;
1748 if (remote_filename_p (cname))
1750 sym_bfd = remote_bfd_open (cname, gnutarget);
1752 error (_("`%s': can't open to read symbols: %s."), cname,
1753 bfd_errmsg (bfd_get_error ()));
1755 if (!bfd_check_format (sym_bfd, bfd_object))
1757 make_cleanup_bfd_unref (sym_bfd);
1758 error (_("`%s': can't read symbols: %s."), cname,
1759 bfd_errmsg (bfd_get_error ()));
1765 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1767 /* Look down path for it, allocate 2nd new malloc'd copy. */
1768 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1769 O_RDONLY | O_BINARY, &absolute_name);
1770 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1773 char *exename = alloca (strlen (name) + 5);
1775 strcat (strcpy (exename, name), ".exe");
1776 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1777 exename, O_RDONLY | O_BINARY, &absolute_name);
1782 make_cleanup (xfree, name);
1783 perror_with_name (name);
1787 name = absolute_name;
1788 back_to = make_cleanup (xfree, name);
1790 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1792 error (_("`%s': can't open to read symbols: %s."), name,
1793 bfd_errmsg (bfd_get_error ()));
1794 bfd_set_cacheable (sym_bfd, 1);
1796 if (!bfd_check_format (sym_bfd, bfd_object))
1798 make_cleanup_bfd_unref (sym_bfd);
1799 error (_("`%s': can't read symbols: %s."), name,
1800 bfd_errmsg (bfd_get_error ()));
1803 do_cleanups (back_to);
1808 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1809 the section was not found. */
1812 get_section_index (struct objfile *objfile, char *section_name)
1814 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1822 /* Link SF into the global symtab_fns list.
1823 FLAVOUR is the file format that SF handles.
1824 Called on startup by the _initialize routine in each object file format
1825 reader, to register information about each format the reader is prepared
1829 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1831 registered_sym_fns fns = { flavour, sf };
1833 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1836 /* Initialize OBJFILE to read symbols from its associated BFD. It
1837 either returns or calls error(). The result is an initialized
1838 struct sym_fns in the objfile structure, that contains cached
1839 information about the symbol file. */
1841 static const struct sym_fns *
1842 find_sym_fns (bfd *abfd)
1844 registered_sym_fns *rsf;
1845 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1848 if (our_flavour == bfd_target_srec_flavour
1849 || our_flavour == bfd_target_ihex_flavour
1850 || our_flavour == bfd_target_tekhex_flavour)
1851 return NULL; /* No symbols. */
1853 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1854 if (our_flavour == rsf->sym_flavour)
1855 return rsf->sym_fns;
1857 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1858 bfd_get_target (abfd));
1862 /* This function runs the load command of our current target. */
1865 load_command (char *arg, int from_tty)
1867 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1871 /* The user might be reloading because the binary has changed. Take
1872 this opportunity to check. */
1873 reopen_exec_file ();
1881 parg = arg = get_exec_file (1);
1883 /* Count how many \ " ' tab space there are in the name. */
1884 while ((parg = strpbrk (parg, "\\\"'\t ")))
1892 /* We need to quote this string so buildargv can pull it apart. */
1893 char *temp = xmalloc (strlen (arg) + count + 1 );
1897 make_cleanup (xfree, temp);
1900 while ((parg = strpbrk (parg, "\\\"'\t ")))
1902 strncpy (ptemp, prev, parg - prev);
1903 ptemp += parg - prev;
1907 strcpy (ptemp, prev);
1913 target_load (arg, from_tty);
1915 /* After re-loading the executable, we don't really know which
1916 overlays are mapped any more. */
1917 overlay_cache_invalid = 1;
1919 do_cleanups (cleanup);
1922 /* This version of "load" should be usable for any target. Currently
1923 it is just used for remote targets, not inftarg.c or core files,
1924 on the theory that only in that case is it useful.
1926 Avoiding xmodem and the like seems like a win (a) because we don't have
1927 to worry about finding it, and (b) On VMS, fork() is very slow and so
1928 we don't want to run a subprocess. On the other hand, I'm not sure how
1929 performance compares. */
1931 static int validate_download = 0;
1933 /* Callback service function for generic_load (bfd_map_over_sections). */
1936 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1938 bfd_size_type *sum = data;
1940 *sum += bfd_get_section_size (asec);
1943 /* Opaque data for load_section_callback. */
1944 struct load_section_data {
1945 CORE_ADDR load_offset;
1946 struct load_progress_data *progress_data;
1947 VEC(memory_write_request_s) *requests;
1950 /* Opaque data for load_progress. */
1951 struct load_progress_data {
1952 /* Cumulative data. */
1953 unsigned long write_count;
1954 unsigned long data_count;
1955 bfd_size_type total_size;
1958 /* Opaque data for load_progress for a single section. */
1959 struct load_progress_section_data {
1960 struct load_progress_data *cumulative;
1962 /* Per-section data. */
1963 const char *section_name;
1964 ULONGEST section_sent;
1965 ULONGEST section_size;
1970 /* Target write callback routine for progress reporting. */
1973 load_progress (ULONGEST bytes, void *untyped_arg)
1975 struct load_progress_section_data *args = untyped_arg;
1976 struct load_progress_data *totals;
1979 /* Writing padding data. No easy way to get at the cumulative
1980 stats, so just ignore this. */
1983 totals = args->cumulative;
1985 if (bytes == 0 && args->section_sent == 0)
1987 /* The write is just starting. Let the user know we've started
1989 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1990 args->section_name, hex_string (args->section_size),
1991 paddress (target_gdbarch (), args->lma));
1995 if (validate_download)
1997 /* Broken memories and broken monitors manifest themselves here
1998 when bring new computers to life. This doubles already slow
2000 /* NOTE: cagney/1999-10-18: A more efficient implementation
2001 might add a verify_memory() method to the target vector and
2002 then use that. remote.c could implement that method using
2003 the ``qCRC'' packet. */
2004 gdb_byte *check = xmalloc (bytes);
2005 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2007 if (target_read_memory (args->lma, check, bytes) != 0)
2008 error (_("Download verify read failed at %s"),
2009 paddress (target_gdbarch (), args->lma));
2010 if (memcmp (args->buffer, check, bytes) != 0)
2011 error (_("Download verify compare failed at %s"),
2012 paddress (target_gdbarch (), args->lma));
2013 do_cleanups (verify_cleanups);
2015 totals->data_count += bytes;
2017 args->buffer += bytes;
2018 totals->write_count += 1;
2019 args->section_sent += bytes;
2020 if (check_quit_flag ()
2021 || (deprecated_ui_load_progress_hook != NULL
2022 && deprecated_ui_load_progress_hook (args->section_name,
2023 args->section_sent)))
2024 error (_("Canceled the download"));
2026 if (deprecated_show_load_progress != NULL)
2027 deprecated_show_load_progress (args->section_name,
2031 totals->total_size);
2034 /* Callback service function for generic_load (bfd_map_over_sections). */
2037 load_section_callback (bfd *abfd, asection *asec, void *data)
2039 struct memory_write_request *new_request;
2040 struct load_section_data *args = data;
2041 struct load_progress_section_data *section_data;
2042 bfd_size_type size = bfd_get_section_size (asec);
2044 const char *sect_name = bfd_get_section_name (abfd, asec);
2046 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2052 new_request = VEC_safe_push (memory_write_request_s,
2053 args->requests, NULL);
2054 memset (new_request, 0, sizeof (struct memory_write_request));
2055 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2056 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2057 new_request->end = new_request->begin + size; /* FIXME Should size
2059 new_request->data = xmalloc (size);
2060 new_request->baton = section_data;
2062 buffer = new_request->data;
2064 section_data->cumulative = args->progress_data;
2065 section_data->section_name = sect_name;
2066 section_data->section_size = size;
2067 section_data->lma = new_request->begin;
2068 section_data->buffer = buffer;
2070 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2073 /* Clean up an entire memory request vector, including load
2074 data and progress records. */
2077 clear_memory_write_data (void *arg)
2079 VEC(memory_write_request_s) **vec_p = arg;
2080 VEC(memory_write_request_s) *vec = *vec_p;
2082 struct memory_write_request *mr;
2084 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2089 VEC_free (memory_write_request_s, vec);
2093 generic_load (char *args, int from_tty)
2096 struct timeval start_time, end_time;
2098 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2099 struct load_section_data cbdata;
2100 struct load_progress_data total_progress;
2101 struct ui_out *uiout = current_uiout;
2106 memset (&cbdata, 0, sizeof (cbdata));
2107 memset (&total_progress, 0, sizeof (total_progress));
2108 cbdata.progress_data = &total_progress;
2110 make_cleanup (clear_memory_write_data, &cbdata.requests);
2113 error_no_arg (_("file to load"));
2115 argv = gdb_buildargv (args);
2116 make_cleanup_freeargv (argv);
2118 filename = tilde_expand (argv[0]);
2119 make_cleanup (xfree, filename);
2121 if (argv[1] != NULL)
2125 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2127 /* If the last word was not a valid number then
2128 treat it as a file name with spaces in. */
2129 if (argv[1] == endptr)
2130 error (_("Invalid download offset:%s."), argv[1]);
2132 if (argv[2] != NULL)
2133 error (_("Too many parameters."));
2136 /* Open the file for loading. */
2137 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2138 if (loadfile_bfd == NULL)
2140 perror_with_name (filename);
2144 make_cleanup_bfd_unref (loadfile_bfd);
2146 if (!bfd_check_format (loadfile_bfd, bfd_object))
2148 error (_("\"%s\" is not an object file: %s"), filename,
2149 bfd_errmsg (bfd_get_error ()));
2152 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2153 (void *) &total_progress.total_size);
2155 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2157 gettimeofday (&start_time, NULL);
2159 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2160 load_progress) != 0)
2161 error (_("Load failed"));
2163 gettimeofday (&end_time, NULL);
2165 entry = bfd_get_start_address (loadfile_bfd);
2166 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2167 ui_out_text (uiout, "Start address ");
2168 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2169 ui_out_text (uiout, ", load size ");
2170 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2171 ui_out_text (uiout, "\n");
2172 /* We were doing this in remote-mips.c, I suspect it is right
2173 for other targets too. */
2174 regcache_write_pc (get_current_regcache (), entry);
2176 /* Reset breakpoints, now that we have changed the load image. For
2177 instance, breakpoints may have been set (or reset, by
2178 post_create_inferior) while connected to the target but before we
2179 loaded the program. In that case, the prologue analyzer could
2180 have read instructions from the target to find the right
2181 breakpoint locations. Loading has changed the contents of that
2184 breakpoint_re_set ();
2186 /* FIXME: are we supposed to call symbol_file_add or not? According
2187 to a comment from remote-mips.c (where a call to symbol_file_add
2188 was commented out), making the call confuses GDB if more than one
2189 file is loaded in. Some targets do (e.g., remote-vx.c) but
2190 others don't (or didn't - perhaps they have all been deleted). */
2192 print_transfer_performance (gdb_stdout, total_progress.data_count,
2193 total_progress.write_count,
2194 &start_time, &end_time);
2196 do_cleanups (old_cleanups);
2199 /* Report how fast the transfer went. */
2202 print_transfer_performance (struct ui_file *stream,
2203 unsigned long data_count,
2204 unsigned long write_count,
2205 const struct timeval *start_time,
2206 const struct timeval *end_time)
2208 ULONGEST time_count;
2209 struct ui_out *uiout = current_uiout;
2211 /* Compute the elapsed time in milliseconds, as a tradeoff between
2212 accuracy and overflow. */
2213 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2214 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2216 ui_out_text (uiout, "Transfer rate: ");
2219 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2221 if (ui_out_is_mi_like_p (uiout))
2223 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2224 ui_out_text (uiout, " bits/sec");
2226 else if (rate < 1024)
2228 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2229 ui_out_text (uiout, " bytes/sec");
2233 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2234 ui_out_text (uiout, " KB/sec");
2239 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2240 ui_out_text (uiout, " bits in <1 sec");
2242 if (write_count > 0)
2244 ui_out_text (uiout, ", ");
2245 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2246 ui_out_text (uiout, " bytes/write");
2248 ui_out_text (uiout, ".\n");
2251 /* This function allows the addition of incrementally linked object files.
2252 It does not modify any state in the target, only in the debugger. */
2253 /* Note: ezannoni 2000-04-13 This function/command used to have a
2254 special case syntax for the rombug target (Rombug is the boot
2255 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2256 rombug case, the user doesn't need to supply a text address,
2257 instead a call to target_link() (in target.c) would supply the
2258 value to use. We are now discontinuing this type of ad hoc syntax. */
2261 add_symbol_file_command (char *args, int from_tty)
2263 struct gdbarch *gdbarch = get_current_arch ();
2264 char *filename = NULL;
2265 int flags = OBJF_USERLOADED;
2267 int section_index = 0;
2271 int expecting_sec_name = 0;
2272 int expecting_sec_addr = 0;
2274 struct objfile *objf;
2282 struct section_addr_info *section_addrs;
2283 struct sect_opt *sect_opts = NULL;
2284 size_t num_sect_opts = 0;
2285 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2288 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2289 * sizeof (struct sect_opt));
2294 error (_("add-symbol-file takes a file name and an address"));
2296 argv = gdb_buildargv (args);
2297 make_cleanup_freeargv (argv);
2299 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2301 /* Process the argument. */
2304 /* The first argument is the file name. */
2305 filename = tilde_expand (arg);
2306 make_cleanup (xfree, filename);
2308 else if (argcnt == 1)
2310 /* The second argument is always the text address at which
2311 to load the program. */
2312 sect_opts[section_index].name = ".text";
2313 sect_opts[section_index].value = arg;
2314 if (++section_index >= num_sect_opts)
2317 sect_opts = ((struct sect_opt *)
2318 xrealloc (sect_opts,
2320 * sizeof (struct sect_opt)));
2325 /* It's an option (starting with '-') or it's an argument
2327 if (expecting_sec_name)
2329 sect_opts[section_index].name = arg;
2330 expecting_sec_name = 0;
2332 else if (expecting_sec_addr)
2334 sect_opts[section_index].value = arg;
2335 expecting_sec_addr = 0;
2336 if (++section_index >= num_sect_opts)
2339 sect_opts = ((struct sect_opt *)
2340 xrealloc (sect_opts,
2342 * sizeof (struct sect_opt)));
2345 else if (strcmp (arg, "-readnow") == 0)
2346 flags |= OBJF_READNOW;
2347 else if (strcmp (arg, "-s") == 0)
2349 expecting_sec_name = 1;
2350 expecting_sec_addr = 1;
2353 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2354 " [-readnow] [-s <secname> <addr>]*"));
2358 /* This command takes at least two arguments. The first one is a
2359 filename, and the second is the address where this file has been
2360 loaded. Abort now if this address hasn't been provided by the
2362 if (section_index < 1)
2363 error (_("The address where %s has been loaded is missing"), filename);
2365 /* Print the prompt for the query below. And save the arguments into
2366 a sect_addr_info structure to be passed around to other
2367 functions. We have to split this up into separate print
2368 statements because hex_string returns a local static
2371 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2372 section_addrs = alloc_section_addr_info (section_index);
2373 make_cleanup (xfree, section_addrs);
2374 for (i = 0; i < section_index; i++)
2377 char *val = sect_opts[i].value;
2378 char *sec = sect_opts[i].name;
2380 addr = parse_and_eval_address (val);
2382 /* Here we store the section offsets in the order they were
2383 entered on the command line. */
2384 section_addrs->other[sec_num].name = sec;
2385 section_addrs->other[sec_num].addr = addr;
2386 printf_unfiltered ("\t%s_addr = %s\n", sec,
2387 paddress (gdbarch, addr));
2390 /* The object's sections are initialized when a
2391 call is made to build_objfile_section_table (objfile).
2392 This happens in reread_symbols.
2393 At this point, we don't know what file type this is,
2394 so we can't determine what section names are valid. */
2396 section_addrs->num_sections = sec_num;
2398 if (from_tty && (!query ("%s", "")))
2399 error (_("Not confirmed."));
2401 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2402 section_addrs, flags);
2404 add_target_sections_of_objfile (objf);
2406 /* Getting new symbols may change our opinion about what is
2408 reinit_frame_cache ();
2409 do_cleanups (my_cleanups);
2413 /* This function removes a symbol file that was added via add-symbol-file. */
2416 remove_symbol_file_command (char *args, int from_tty)
2419 struct objfile *objf = NULL;
2420 struct cleanup *my_cleanups;
2421 struct program_space *pspace = current_program_space;
2422 struct gdbarch *gdbarch = get_current_arch ();
2427 error (_("remove-symbol-file: no symbol file provided"));
2429 my_cleanups = make_cleanup (null_cleanup, NULL);
2431 argv = gdb_buildargv (args);
2433 if (strcmp (argv[0], "-a") == 0)
2435 /* Interpret the next argument as an address. */
2438 if (argv[1] == NULL)
2439 error (_("Missing address argument"));
2441 if (argv[2] != NULL)
2442 error (_("Junk after %s"), argv[1]);
2444 addr = parse_and_eval_address (argv[1]);
2449 && objf->flags & OBJF_USERLOADED
2450 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2454 else if (argv[0] != NULL)
2456 /* Interpret the current argument as a file name. */
2459 if (argv[1] != NULL)
2460 error (_("Junk after %s"), argv[0]);
2462 filename = tilde_expand (argv[0]);
2463 make_cleanup (xfree, filename);
2468 && objf->flags & OBJF_USERLOADED
2469 && objf->pspace == pspace
2470 && filename_cmp (filename, objfile_name (objf)) == 0)
2476 error (_("No symbol file found"));
2479 && !query (_("Remove symbol table from file \"%s\"? "),
2480 objfile_name (objf)))
2481 error (_("Not confirmed."));
2483 free_objfile (objf);
2484 clear_symtab_users (0);
2486 do_cleanups (my_cleanups);
2489 typedef struct objfile *objfilep;
2491 DEF_VEC_P (objfilep);
2493 /* Re-read symbols if a symbol-file has changed. */
2496 reread_symbols (void)
2498 struct objfile *objfile;
2500 struct stat new_statbuf;
2502 VEC (objfilep) *new_objfiles = NULL;
2503 struct cleanup *all_cleanups;
2505 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2507 /* With the addition of shared libraries, this should be modified,
2508 the load time should be saved in the partial symbol tables, since
2509 different tables may come from different source files. FIXME.
2510 This routine should then walk down each partial symbol table
2511 and see if the symbol table that it originates from has been changed. */
2513 for (objfile = object_files; objfile; objfile = objfile->next)
2515 if (objfile->obfd == NULL)
2518 /* Separate debug objfiles are handled in the main objfile. */
2519 if (objfile->separate_debug_objfile_backlink)
2522 /* If this object is from an archive (what you usually create with
2523 `ar', often called a `static library' on most systems, though
2524 a `shared library' on AIX is also an archive), then you should
2525 stat on the archive name, not member name. */
2526 if (objfile->obfd->my_archive)
2527 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2529 res = stat (objfile_name (objfile), &new_statbuf);
2532 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2533 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2534 objfile_name (objfile));
2537 new_modtime = new_statbuf.st_mtime;
2538 if (new_modtime != objfile->mtime)
2540 struct cleanup *old_cleanups;
2541 struct section_offsets *offsets;
2543 char *original_name;
2545 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2546 objfile_name (objfile));
2548 /* There are various functions like symbol_file_add,
2549 symfile_bfd_open, syms_from_objfile, etc., which might
2550 appear to do what we want. But they have various other
2551 effects which we *don't* want. So we just do stuff
2552 ourselves. We don't worry about mapped files (for one thing,
2553 any mapped file will be out of date). */
2555 /* If we get an error, blow away this objfile (not sure if
2556 that is the correct response for things like shared
2558 old_cleanups = make_cleanup_free_objfile (objfile);
2559 /* We need to do this whenever any symbols go away. */
2560 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2562 if (exec_bfd != NULL
2563 && filename_cmp (bfd_get_filename (objfile->obfd),
2564 bfd_get_filename (exec_bfd)) == 0)
2566 /* Reload EXEC_BFD without asking anything. */
2568 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2571 /* Keep the calls order approx. the same as in free_objfile. */
2573 /* Free the separate debug objfiles. It will be
2574 automatically recreated by sym_read. */
2575 free_objfile_separate_debug (objfile);
2577 /* Remove any references to this objfile in the global
2579 preserve_values (objfile);
2581 /* Nuke all the state that we will re-read. Much of the following
2582 code which sets things to NULL really is necessary to tell
2583 other parts of GDB that there is nothing currently there.
2585 Try to keep the freeing order compatible with free_objfile. */
2587 if (objfile->sf != NULL)
2589 (*objfile->sf->sym_finish) (objfile);
2592 clear_objfile_data (objfile);
2594 /* Clean up any state BFD has sitting around. */
2596 struct bfd *obfd = objfile->obfd;
2597 char *obfd_filename;
2599 obfd_filename = bfd_get_filename (objfile->obfd);
2600 /* Open the new BFD before freeing the old one, so that
2601 the filename remains live. */
2602 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2603 if (objfile->obfd == NULL)
2605 /* We have to make a cleanup and error here, rather
2606 than erroring later, because once we unref OBFD,
2607 OBFD_FILENAME will be freed. */
2608 make_cleanup_bfd_unref (obfd);
2609 error (_("Can't open %s to read symbols."), obfd_filename);
2611 gdb_bfd_unref (obfd);
2614 original_name = xstrdup (objfile->original_name);
2615 make_cleanup (xfree, original_name);
2617 /* bfd_openr sets cacheable to true, which is what we want. */
2618 if (!bfd_check_format (objfile->obfd, bfd_object))
2619 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2620 bfd_errmsg (bfd_get_error ()));
2622 /* Save the offsets, we will nuke them with the rest of the
2624 num_offsets = objfile->num_sections;
2625 offsets = ((struct section_offsets *)
2626 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2627 memcpy (offsets, objfile->section_offsets,
2628 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2630 /* FIXME: Do we have to free a whole linked list, or is this
2632 if (objfile->global_psymbols.list)
2633 xfree (objfile->global_psymbols.list);
2634 memset (&objfile->global_psymbols, 0,
2635 sizeof (objfile->global_psymbols));
2636 if (objfile->static_psymbols.list)
2637 xfree (objfile->static_psymbols.list);
2638 memset (&objfile->static_psymbols, 0,
2639 sizeof (objfile->static_psymbols));
2641 /* Free the obstacks for non-reusable objfiles. */
2642 psymbol_bcache_free (objfile->psymbol_cache);
2643 objfile->psymbol_cache = psymbol_bcache_init ();
2644 obstack_free (&objfile->objfile_obstack, 0);
2645 objfile->sections = NULL;
2646 objfile->symtabs = NULL;
2647 objfile->psymtabs = NULL;
2648 objfile->psymtabs_addrmap = NULL;
2649 objfile->free_psymtabs = NULL;
2650 objfile->template_symbols = NULL;
2652 /* obstack_init also initializes the obstack so it is
2653 empty. We could use obstack_specify_allocation but
2654 gdb_obstack.h specifies the alloc/dealloc functions. */
2655 obstack_init (&objfile->objfile_obstack);
2657 /* set_objfile_per_bfd potentially allocates the per-bfd
2658 data on the objfile's obstack (if sharing data across
2659 multiple users is not possible), so it's important to
2660 do it *after* the obstack has been initialized. */
2661 set_objfile_per_bfd (objfile);
2663 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2665 strlen (original_name));
2667 /* Reset the sym_fns pointer. The ELF reader can change it
2668 based on whether .gdb_index is present, and we need it to
2669 start over. PR symtab/15885 */
2670 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2672 build_objfile_section_table (objfile);
2673 terminate_minimal_symbol_table (objfile);
2675 /* We use the same section offsets as from last time. I'm not
2676 sure whether that is always correct for shared libraries. */
2677 objfile->section_offsets = (struct section_offsets *)
2678 obstack_alloc (&objfile->objfile_obstack,
2679 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2680 memcpy (objfile->section_offsets, offsets,
2681 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2682 objfile->num_sections = num_offsets;
2684 /* What the hell is sym_new_init for, anyway? The concept of
2685 distinguishing between the main file and additional files
2686 in this way seems rather dubious. */
2687 if (objfile == symfile_objfile)
2689 (*objfile->sf->sym_new_init) (objfile);
2692 (*objfile->sf->sym_init) (objfile);
2693 clear_complaints (&symfile_complaints, 1, 1);
2695 objfile->flags &= ~OBJF_PSYMTABS_READ;
2696 read_symbols (objfile, 0);
2698 if (!objfile_has_symbols (objfile))
2701 printf_unfiltered (_("(no debugging symbols found)\n"));
2705 /* We're done reading the symbol file; finish off complaints. */
2706 clear_complaints (&symfile_complaints, 0, 1);
2708 /* Getting new symbols may change our opinion about what is
2711 reinit_frame_cache ();
2713 /* Discard cleanups as symbol reading was successful. */
2714 discard_cleanups (old_cleanups);
2716 /* If the mtime has changed between the time we set new_modtime
2717 and now, we *want* this to be out of date, so don't call stat
2719 objfile->mtime = new_modtime;
2720 init_entry_point_info (objfile);
2722 VEC_safe_push (objfilep, new_objfiles, objfile);
2730 /* Notify objfiles that we've modified objfile sections. */
2731 objfiles_changed ();
2733 clear_symtab_users (0);
2735 /* clear_objfile_data for each objfile was called before freeing it and
2736 observer_notify_new_objfile (NULL) has been called by
2737 clear_symtab_users above. Notify the new files now. */
2738 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2739 observer_notify_new_objfile (objfile);
2741 /* At least one objfile has changed, so we can consider that
2742 the executable we're debugging has changed too. */
2743 observer_notify_executable_changed ();
2746 do_cleanups (all_cleanups);
2757 static filename_language *filename_language_table;
2758 static int fl_table_size, fl_table_next;
2761 add_filename_language (char *ext, enum language lang)
2763 if (fl_table_next >= fl_table_size)
2765 fl_table_size += 10;
2766 filename_language_table =
2767 xrealloc (filename_language_table,
2768 fl_table_size * sizeof (*filename_language_table));
2771 filename_language_table[fl_table_next].ext = xstrdup (ext);
2772 filename_language_table[fl_table_next].lang = lang;
2776 static char *ext_args;
2778 show_ext_args (struct ui_file *file, int from_tty,
2779 struct cmd_list_element *c, const char *value)
2781 fprintf_filtered (file,
2782 _("Mapping between filename extension "
2783 "and source language is \"%s\".\n"),
2788 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2791 char *cp = ext_args;
2794 /* First arg is filename extension, starting with '.' */
2796 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2798 /* Find end of first arg. */
2799 while (*cp && !isspace (*cp))
2803 error (_("'%s': two arguments required -- "
2804 "filename extension and language"),
2807 /* Null-terminate first arg. */
2810 /* Find beginning of second arg, which should be a source language. */
2811 cp = skip_spaces (cp);
2814 error (_("'%s': two arguments required -- "
2815 "filename extension and language"),
2818 /* Lookup the language from among those we know. */
2819 lang = language_enum (cp);
2821 /* Now lookup the filename extension: do we already know it? */
2822 for (i = 0; i < fl_table_next; i++)
2823 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2826 if (i >= fl_table_next)
2828 /* New file extension. */
2829 add_filename_language (ext_args, lang);
2833 /* Redefining a previously known filename extension. */
2836 /* query ("Really make files of type %s '%s'?", */
2837 /* ext_args, language_str (lang)); */
2839 xfree (filename_language_table[i].ext);
2840 filename_language_table[i].ext = xstrdup (ext_args);
2841 filename_language_table[i].lang = lang;
2846 info_ext_lang_command (char *args, int from_tty)
2850 printf_filtered (_("Filename extensions and the languages they represent:"));
2851 printf_filtered ("\n\n");
2852 for (i = 0; i < fl_table_next; i++)
2853 printf_filtered ("\t%s\t- %s\n",
2854 filename_language_table[i].ext,
2855 language_str (filename_language_table[i].lang));
2859 init_filename_language_table (void)
2861 if (fl_table_size == 0) /* Protect against repetition. */
2865 filename_language_table =
2866 xmalloc (fl_table_size * sizeof (*filename_language_table));
2867 add_filename_language (".c", language_c);
2868 add_filename_language (".d", language_d);
2869 add_filename_language (".C", language_cplus);
2870 add_filename_language (".cc", language_cplus);
2871 add_filename_language (".cp", language_cplus);
2872 add_filename_language (".cpp", language_cplus);
2873 add_filename_language (".cxx", language_cplus);
2874 add_filename_language (".c++", language_cplus);
2875 add_filename_language (".java", language_java);
2876 add_filename_language (".class", language_java);
2877 add_filename_language (".m", language_objc);
2878 add_filename_language (".f", language_fortran);
2879 add_filename_language (".F", language_fortran);
2880 add_filename_language (".for", language_fortran);
2881 add_filename_language (".FOR", language_fortran);
2882 add_filename_language (".ftn", language_fortran);
2883 add_filename_language (".FTN", language_fortran);
2884 add_filename_language (".fpp", language_fortran);
2885 add_filename_language (".FPP", language_fortran);
2886 add_filename_language (".f90", language_fortran);
2887 add_filename_language (".F90", language_fortran);
2888 add_filename_language (".f95", language_fortran);
2889 add_filename_language (".F95", language_fortran);
2890 add_filename_language (".f03", language_fortran);
2891 add_filename_language (".F03", language_fortran);
2892 add_filename_language (".f08", language_fortran);
2893 add_filename_language (".F08", language_fortran);
2894 add_filename_language (".s", language_asm);
2895 add_filename_language (".sx", language_asm);
2896 add_filename_language (".S", language_asm);
2897 add_filename_language (".pas", language_pascal);
2898 add_filename_language (".p", language_pascal);
2899 add_filename_language (".pp", language_pascal);
2900 add_filename_language (".adb", language_ada);
2901 add_filename_language (".ads", language_ada);
2902 add_filename_language (".a", language_ada);
2903 add_filename_language (".ada", language_ada);
2904 add_filename_language (".dg", language_ada);
2909 deduce_language_from_filename (const char *filename)
2914 if (filename != NULL)
2915 if ((cp = strrchr (filename, '.')) != NULL)
2916 for (i = 0; i < fl_table_next; i++)
2917 if (strcmp (cp, filename_language_table[i].ext) == 0)
2918 return filename_language_table[i].lang;
2920 return language_unknown;
2925 Allocate and partly initialize a new symbol table. Return a pointer
2926 to it. error() if no space.
2928 Caller must set these fields:
2937 allocate_symtab (const char *filename, struct objfile *objfile)
2939 struct symtab *symtab;
2941 symtab = (struct symtab *)
2942 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2943 memset (symtab, 0, sizeof (*symtab));
2944 symtab->filename = bcache (filename, strlen (filename) + 1,
2945 objfile->per_bfd->filename_cache);
2946 symtab->fullname = NULL;
2947 symtab->language = deduce_language_from_filename (filename);
2948 symtab->debugformat = "unknown";
2950 /* Hook it to the objfile it comes from. */
2952 symtab->objfile = objfile;
2953 symtab->next = objfile->symtabs;
2954 objfile->symtabs = symtab;
2956 /* This can be very verbose with lots of headers.
2957 Only print at higher debug levels. */
2958 if (symtab_create_debug >= 2)
2960 /* Be a bit clever with debugging messages, and don't print objfile
2961 every time, only when it changes. */
2962 static char *last_objfile_name = NULL;
2964 if (last_objfile_name == NULL
2965 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2967 xfree (last_objfile_name);
2968 last_objfile_name = xstrdup (objfile_name (objfile));
2969 fprintf_unfiltered (gdb_stdlog,
2970 "Creating one or more symtabs for objfile %s ...\n",
2973 fprintf_unfiltered (gdb_stdlog,
2974 "Created symtab %s for module %s.\n",
2975 host_address_to_string (symtab), filename);
2982 /* Reset all data structures in gdb which may contain references to symbol
2983 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2986 clear_symtab_users (int add_flags)
2988 /* Someday, we should do better than this, by only blowing away
2989 the things that really need to be blown. */
2991 /* Clear the "current" symtab first, because it is no longer valid.
2992 breakpoint_re_set may try to access the current symtab. */
2993 clear_current_source_symtab_and_line ();
2996 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2997 breakpoint_re_set ();
2998 clear_last_displayed_sal ();
2999 clear_pc_function_cache ();
3000 observer_notify_new_objfile (NULL);
3002 /* Clear globals which might have pointed into a removed objfile.
3003 FIXME: It's not clear which of these are supposed to persist
3004 between expressions and which ought to be reset each time. */
3005 expression_context_block = NULL;
3006 innermost_block = NULL;
3008 /* Varobj may refer to old symbols, perform a cleanup. */
3009 varobj_invalidate ();
3014 clear_symtab_users_cleanup (void *ignore)
3016 clear_symtab_users (0);
3020 The following code implements an abstraction for debugging overlay sections.
3022 The target model is as follows:
3023 1) The gnu linker will permit multiple sections to be mapped into the
3024 same VMA, each with its own unique LMA (or load address).
3025 2) It is assumed that some runtime mechanism exists for mapping the
3026 sections, one by one, from the load address into the VMA address.
3027 3) This code provides a mechanism for gdb to keep track of which
3028 sections should be considered to be mapped from the VMA to the LMA.
3029 This information is used for symbol lookup, and memory read/write.
3030 For instance, if a section has been mapped then its contents
3031 should be read from the VMA, otherwise from the LMA.
3033 Two levels of debugger support for overlays are available. One is
3034 "manual", in which the debugger relies on the user to tell it which
3035 overlays are currently mapped. This level of support is
3036 implemented entirely in the core debugger, and the information about
3037 whether a section is mapped is kept in the objfile->obj_section table.
3039 The second level of support is "automatic", and is only available if
3040 the target-specific code provides functionality to read the target's
3041 overlay mapping table, and translate its contents for the debugger
3042 (by updating the mapped state information in the obj_section tables).
3044 The interface is as follows:
3046 overlay map <name> -- tell gdb to consider this section mapped
3047 overlay unmap <name> -- tell gdb to consider this section unmapped
3048 overlay list -- list the sections that GDB thinks are mapped
3049 overlay read-target -- get the target's state of what's mapped
3050 overlay off/manual/auto -- set overlay debugging state
3051 Functional interface:
3052 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3053 section, return that section.
3054 find_pc_overlay(pc): find any overlay section that contains
3055 the pc, either in its VMA or its LMA
3056 section_is_mapped(sect): true if overlay is marked as mapped
3057 section_is_overlay(sect): true if section's VMA != LMA
3058 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3059 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3060 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3061 overlay_mapped_address(...): map an address from section's LMA to VMA
3062 overlay_unmapped_address(...): map an address from section's VMA to LMA
3063 symbol_overlayed_address(...): Return a "current" address for symbol:
3064 either in VMA or LMA depending on whether
3065 the symbol's section is currently mapped. */
3067 /* Overlay debugging state: */
3069 enum overlay_debugging_state overlay_debugging = ovly_off;
3070 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3072 /* Function: section_is_overlay (SECTION)
3073 Returns true if SECTION has VMA not equal to LMA, ie.
3074 SECTION is loaded at an address different from where it will "run". */
3077 section_is_overlay (struct obj_section *section)
3079 if (overlay_debugging && section)
3081 bfd *abfd = section->objfile->obfd;
3082 asection *bfd_section = section->the_bfd_section;
3084 if (bfd_section_lma (abfd, bfd_section) != 0
3085 && bfd_section_lma (abfd, bfd_section)
3086 != bfd_section_vma (abfd, bfd_section))
3093 /* Function: overlay_invalidate_all (void)
3094 Invalidate the mapped state of all overlay sections (mark it as stale). */
3097 overlay_invalidate_all (void)
3099 struct objfile *objfile;
3100 struct obj_section *sect;
3102 ALL_OBJSECTIONS (objfile, sect)
3103 if (section_is_overlay (sect))
3104 sect->ovly_mapped = -1;
3107 /* Function: section_is_mapped (SECTION)
3108 Returns true if section is an overlay, and is currently mapped.
3110 Access to the ovly_mapped flag is restricted to this function, so
3111 that we can do automatic update. If the global flag
3112 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3113 overlay_invalidate_all. If the mapped state of the particular
3114 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3117 section_is_mapped (struct obj_section *osect)
3119 struct gdbarch *gdbarch;
3121 if (osect == 0 || !section_is_overlay (osect))
3124 switch (overlay_debugging)
3128 return 0; /* overlay debugging off */
3129 case ovly_auto: /* overlay debugging automatic */
3130 /* Unles there is a gdbarch_overlay_update function,
3131 there's really nothing useful to do here (can't really go auto). */
3132 gdbarch = get_objfile_arch (osect->objfile);
3133 if (gdbarch_overlay_update_p (gdbarch))
3135 if (overlay_cache_invalid)
3137 overlay_invalidate_all ();
3138 overlay_cache_invalid = 0;
3140 if (osect->ovly_mapped == -1)
3141 gdbarch_overlay_update (gdbarch, osect);
3143 /* fall thru to manual case */
3144 case ovly_on: /* overlay debugging manual */
3145 return osect->ovly_mapped == 1;
3149 /* Function: pc_in_unmapped_range
3150 If PC falls into the lma range of SECTION, return true, else false. */
3153 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3155 if (section_is_overlay (section))
3157 bfd *abfd = section->objfile->obfd;
3158 asection *bfd_section = section->the_bfd_section;
3160 /* We assume the LMA is relocated by the same offset as the VMA. */
3161 bfd_vma size = bfd_get_section_size (bfd_section);
3162 CORE_ADDR offset = obj_section_offset (section);
3164 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3165 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3172 /* Function: pc_in_mapped_range
3173 If PC falls into the vma range of SECTION, return true, else false. */
3176 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3178 if (section_is_overlay (section))
3180 if (obj_section_addr (section) <= pc
3181 && pc < obj_section_endaddr (section))
3188 /* Return true if the mapped ranges of sections A and B overlap, false
3192 sections_overlap (struct obj_section *a, struct obj_section *b)
3194 CORE_ADDR a_start = obj_section_addr (a);
3195 CORE_ADDR a_end = obj_section_endaddr (a);
3196 CORE_ADDR b_start = obj_section_addr (b);
3197 CORE_ADDR b_end = obj_section_endaddr (b);
3199 return (a_start < b_end && b_start < a_end);
3202 /* Function: overlay_unmapped_address (PC, SECTION)
3203 Returns the address corresponding to PC in the unmapped (load) range.
3204 May be the same as PC. */
3207 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3209 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3211 bfd *abfd = section->objfile->obfd;
3212 asection *bfd_section = section->the_bfd_section;
3214 return pc + bfd_section_lma (abfd, bfd_section)
3215 - bfd_section_vma (abfd, bfd_section);
3221 /* Function: overlay_mapped_address (PC, SECTION)
3222 Returns the address corresponding to PC in the mapped (runtime) range.
3223 May be the same as PC. */
3226 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3228 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3230 bfd *abfd = section->objfile->obfd;
3231 asection *bfd_section = section->the_bfd_section;
3233 return pc + bfd_section_vma (abfd, bfd_section)
3234 - bfd_section_lma (abfd, bfd_section);
3240 /* Function: symbol_overlayed_address
3241 Return one of two addresses (relative to the VMA or to the LMA),
3242 depending on whether the section is mapped or not. */
3245 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3247 if (overlay_debugging)
3249 /* If the symbol has no section, just return its regular address. */
3252 /* If the symbol's section is not an overlay, just return its
3254 if (!section_is_overlay (section))
3256 /* If the symbol's section is mapped, just return its address. */
3257 if (section_is_mapped (section))
3260 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3261 * then return its LOADED address rather than its vma address!!
3263 return overlay_unmapped_address (address, section);
3268 /* Function: find_pc_overlay (PC)
3269 Return the best-match overlay section for PC:
3270 If PC matches a mapped overlay section's VMA, return that section.
3271 Else if PC matches an unmapped section's VMA, return that section.
3272 Else if PC matches an unmapped section's LMA, return that section. */
3274 struct obj_section *
3275 find_pc_overlay (CORE_ADDR pc)
3277 struct objfile *objfile;
3278 struct obj_section *osect, *best_match = NULL;
3280 if (overlay_debugging)
3281 ALL_OBJSECTIONS (objfile, osect)
3282 if (section_is_overlay (osect))
3284 if (pc_in_mapped_range (pc, osect))
3286 if (section_is_mapped (osect))
3291 else if (pc_in_unmapped_range (pc, osect))
3297 /* Function: find_pc_mapped_section (PC)
3298 If PC falls into the VMA address range of an overlay section that is
3299 currently marked as MAPPED, return that section. Else return NULL. */
3301 struct obj_section *
3302 find_pc_mapped_section (CORE_ADDR pc)
3304 struct objfile *objfile;
3305 struct obj_section *osect;
3307 if (overlay_debugging)
3308 ALL_OBJSECTIONS (objfile, osect)
3309 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3315 /* Function: list_overlays_command
3316 Print a list of mapped sections and their PC ranges. */
3319 list_overlays_command (char *args, int from_tty)
3322 struct objfile *objfile;
3323 struct obj_section *osect;
3325 if (overlay_debugging)
3326 ALL_OBJSECTIONS (objfile, osect)
3327 if (section_is_mapped (osect))
3329 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3334 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3335 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3336 size = bfd_get_section_size (osect->the_bfd_section);
3337 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3339 printf_filtered ("Section %s, loaded at ", name);
3340 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3341 puts_filtered (" - ");
3342 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3343 printf_filtered (", mapped at ");
3344 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3345 puts_filtered (" - ");
3346 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3347 puts_filtered ("\n");
3352 printf_filtered (_("No sections are mapped.\n"));
3355 /* Function: map_overlay_command
3356 Mark the named section as mapped (ie. residing at its VMA address). */
3359 map_overlay_command (char *args, int from_tty)
3361 struct objfile *objfile, *objfile2;
3362 struct obj_section *sec, *sec2;
3364 if (!overlay_debugging)
3365 error (_("Overlay debugging not enabled. Use "
3366 "either the 'overlay auto' or\n"
3367 "the 'overlay manual' command."));
3369 if (args == 0 || *args == 0)
3370 error (_("Argument required: name of an overlay section"));
3372 /* First, find a section matching the user supplied argument. */
3373 ALL_OBJSECTIONS (objfile, sec)
3374 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3376 /* Now, check to see if the section is an overlay. */
3377 if (!section_is_overlay (sec))
3378 continue; /* not an overlay section */
3380 /* Mark the overlay as "mapped". */
3381 sec->ovly_mapped = 1;
3383 /* Next, make a pass and unmap any sections that are
3384 overlapped by this new section: */
3385 ALL_OBJSECTIONS (objfile2, sec2)
3386 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3389 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3390 bfd_section_name (objfile->obfd,
3391 sec2->the_bfd_section));
3392 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3396 error (_("No overlay section called %s"), args);
3399 /* Function: unmap_overlay_command
3400 Mark the overlay section as unmapped
3401 (ie. resident in its LMA address range, rather than the VMA range). */
3404 unmap_overlay_command (char *args, int from_tty)
3406 struct objfile *objfile;
3407 struct obj_section *sec;
3409 if (!overlay_debugging)
3410 error (_("Overlay debugging not enabled. "
3411 "Use either the 'overlay auto' or\n"
3412 "the 'overlay manual' command."));
3414 if (args == 0 || *args == 0)
3415 error (_("Argument required: name of an overlay section"));
3417 /* First, find a section matching the user supplied argument. */
3418 ALL_OBJSECTIONS (objfile, sec)
3419 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3421 if (!sec->ovly_mapped)
3422 error (_("Section %s is not mapped"), args);
3423 sec->ovly_mapped = 0;
3426 error (_("No overlay section called %s"), args);
3429 /* Function: overlay_auto_command
3430 A utility command to turn on overlay debugging.
3431 Possibly this should be done via a set/show command. */
3434 overlay_auto_command (char *args, int from_tty)
3436 overlay_debugging = ovly_auto;
3437 enable_overlay_breakpoints ();
3439 printf_unfiltered (_("Automatic overlay debugging enabled."));
3442 /* Function: overlay_manual_command
3443 A utility command to turn on overlay debugging.
3444 Possibly this should be done via a set/show command. */
3447 overlay_manual_command (char *args, int from_tty)
3449 overlay_debugging = ovly_on;
3450 disable_overlay_breakpoints ();
3452 printf_unfiltered (_("Overlay debugging enabled."));
3455 /* Function: overlay_off_command
3456 A utility command to turn on overlay debugging.
3457 Possibly this should be done via a set/show command. */
3460 overlay_off_command (char *args, int from_tty)
3462 overlay_debugging = ovly_off;
3463 disable_overlay_breakpoints ();
3465 printf_unfiltered (_("Overlay debugging disabled."));
3469 overlay_load_command (char *args, int from_tty)
3471 struct gdbarch *gdbarch = get_current_arch ();
3473 if (gdbarch_overlay_update_p (gdbarch))
3474 gdbarch_overlay_update (gdbarch, NULL);
3476 error (_("This target does not know how to read its overlay state."));
3479 /* Function: overlay_command
3480 A place-holder for a mis-typed command. */
3482 /* Command list chain containing all defined "overlay" subcommands. */
3483 static struct cmd_list_element *overlaylist;
3486 overlay_command (char *args, int from_tty)
3489 ("\"overlay\" must be followed by the name of an overlay command.\n");
3490 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3493 /* Target Overlays for the "Simplest" overlay manager:
3495 This is GDB's default target overlay layer. It works with the
3496 minimal overlay manager supplied as an example by Cygnus. The
3497 entry point is via a function pointer "gdbarch_overlay_update",
3498 so targets that use a different runtime overlay manager can
3499 substitute their own overlay_update function and take over the
3502 The overlay_update function pokes around in the target's data structures
3503 to see what overlays are mapped, and updates GDB's overlay mapping with
3506 In this simple implementation, the target data structures are as follows:
3507 unsigned _novlys; /# number of overlay sections #/
3508 unsigned _ovly_table[_novlys][4] = {
3509 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3510 {..., ..., ..., ...},
3512 unsigned _novly_regions; /# number of overlay regions #/
3513 unsigned _ovly_region_table[_novly_regions][3] = {
3514 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3517 These functions will attempt to update GDB's mappedness state in the
3518 symbol section table, based on the target's mappedness state.
3520 To do this, we keep a cached copy of the target's _ovly_table, and
3521 attempt to detect when the cached copy is invalidated. The main
3522 entry point is "simple_overlay_update(SECT), which looks up SECT in
3523 the cached table and re-reads only the entry for that section from
3524 the target (whenever possible). */
3526 /* Cached, dynamically allocated copies of the target data structures: */
3527 static unsigned (*cache_ovly_table)[4] = 0;
3528 static unsigned cache_novlys = 0;
3529 static CORE_ADDR cache_ovly_table_base = 0;
3532 VMA, SIZE, LMA, MAPPED
3535 /* Throw away the cached copy of _ovly_table. */
3538 simple_free_overlay_table (void)
3540 if (cache_ovly_table)
3541 xfree (cache_ovly_table);
3543 cache_ovly_table = NULL;
3544 cache_ovly_table_base = 0;
3547 /* Read an array of ints of size SIZE from the target into a local buffer.
3548 Convert to host order. int LEN is number of ints. */
3551 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3552 int len, int size, enum bfd_endian byte_order)
3554 /* FIXME (alloca): Not safe if array is very large. */
3555 gdb_byte *buf = alloca (len * size);
3558 read_memory (memaddr, buf, len * size);
3559 for (i = 0; i < len; i++)
3560 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3563 /* Find and grab a copy of the target _ovly_table
3564 (and _novlys, which is needed for the table's size). */
3567 simple_read_overlay_table (void)
3569 struct bound_minimal_symbol novlys_msym;
3570 struct bound_minimal_symbol ovly_table_msym;
3571 struct gdbarch *gdbarch;
3573 enum bfd_endian byte_order;
3575 simple_free_overlay_table ();
3576 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3577 if (! novlys_msym.minsym)
3579 error (_("Error reading inferior's overlay table: "
3580 "couldn't find `_novlys' variable\n"
3581 "in inferior. Use `overlay manual' mode."));
3585 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3586 if (! ovly_table_msym.minsym)
3588 error (_("Error reading inferior's overlay table: couldn't find "
3589 "`_ovly_table' array\n"
3590 "in inferior. Use `overlay manual' mode."));
3594 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3595 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3596 byte_order = gdbarch_byte_order (gdbarch);
3598 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3601 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3602 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3603 read_target_long_array (cache_ovly_table_base,
3604 (unsigned int *) cache_ovly_table,
3605 cache_novlys * 4, word_size, byte_order);
3607 return 1; /* SUCCESS */
3610 /* Function: simple_overlay_update_1
3611 A helper function for simple_overlay_update. Assuming a cached copy
3612 of _ovly_table exists, look through it to find an entry whose vma,
3613 lma and size match those of OSECT. Re-read the entry and make sure
3614 it still matches OSECT (else the table may no longer be valid).
3615 Set OSECT's mapped state to match the entry. Return: 1 for
3616 success, 0 for failure. */
3619 simple_overlay_update_1 (struct obj_section *osect)
3622 bfd *obfd = osect->objfile->obfd;
3623 asection *bsect = osect->the_bfd_section;
3624 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3625 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3626 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3628 size = bfd_get_section_size (osect->the_bfd_section);
3629 for (i = 0; i < cache_novlys; i++)
3630 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3631 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3632 /* && cache_ovly_table[i][SIZE] == size */ )
3634 read_target_long_array (cache_ovly_table_base + i * word_size,
3635 (unsigned int *) cache_ovly_table[i],
3636 4, word_size, byte_order);
3637 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3638 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3639 /* && cache_ovly_table[i][SIZE] == size */ )
3641 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3644 else /* Warning! Warning! Target's ovly table has changed! */
3650 /* Function: simple_overlay_update
3651 If OSECT is NULL, then update all sections' mapped state
3652 (after re-reading the entire target _ovly_table).
3653 If OSECT is non-NULL, then try to find a matching entry in the
3654 cached ovly_table and update only OSECT's mapped state.
3655 If a cached entry can't be found or the cache isn't valid, then
3656 re-read the entire cache, and go ahead and update all sections. */
3659 simple_overlay_update (struct obj_section *osect)
3661 struct objfile *objfile;
3663 /* Were we given an osect to look up? NULL means do all of them. */
3665 /* Have we got a cached copy of the target's overlay table? */
3666 if (cache_ovly_table != NULL)
3668 /* Does its cached location match what's currently in the
3670 struct bound_minimal_symbol minsym
3671 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3673 if (minsym.minsym == NULL)
3674 error (_("Error reading inferior's overlay table: couldn't "
3675 "find `_ovly_table' array\n"
3676 "in inferior. Use `overlay manual' mode."));
3678 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3679 /* Then go ahead and try to look up this single section in
3681 if (simple_overlay_update_1 (osect))
3682 /* Found it! We're done. */
3686 /* Cached table no good: need to read the entire table anew.
3687 Or else we want all the sections, in which case it's actually
3688 more efficient to read the whole table in one block anyway. */
3690 if (! simple_read_overlay_table ())
3693 /* Now may as well update all sections, even if only one was requested. */
3694 ALL_OBJSECTIONS (objfile, osect)
3695 if (section_is_overlay (osect))
3698 bfd *obfd = osect->objfile->obfd;
3699 asection *bsect = osect->the_bfd_section;
3701 size = bfd_get_section_size (bsect);
3702 for (i = 0; i < cache_novlys; i++)
3703 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3704 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3705 /* && cache_ovly_table[i][SIZE] == size */ )
3706 { /* obj_section matches i'th entry in ovly_table. */
3707 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3708 break; /* finished with inner for loop: break out. */
3713 /* Set the output sections and output offsets for section SECTP in
3714 ABFD. The relocation code in BFD will read these offsets, so we
3715 need to be sure they're initialized. We map each section to itself,
3716 with no offset; this means that SECTP->vma will be honored. */
3719 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3721 sectp->output_section = sectp;
3722 sectp->output_offset = 0;
3725 /* Default implementation for sym_relocate. */
3728 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3731 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3733 bfd *abfd = sectp->owner;
3735 /* We're only interested in sections with relocation
3737 if ((sectp->flags & SEC_RELOC) == 0)
3740 /* We will handle section offsets properly elsewhere, so relocate as if
3741 all sections begin at 0. */
3742 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3744 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3747 /* Relocate the contents of a debug section SECTP in ABFD. The
3748 contents are stored in BUF if it is non-NULL, or returned in a
3749 malloc'd buffer otherwise.
3751 For some platforms and debug info formats, shared libraries contain
3752 relocations against the debug sections (particularly for DWARF-2;
3753 one affected platform is PowerPC GNU/Linux, although it depends on
3754 the version of the linker in use). Also, ELF object files naturally
3755 have unresolved relocations for their debug sections. We need to apply
3756 the relocations in order to get the locations of symbols correct.
3757 Another example that may require relocation processing, is the
3758 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3762 symfile_relocate_debug_section (struct objfile *objfile,
3763 asection *sectp, bfd_byte *buf)
3765 gdb_assert (objfile->sf->sym_relocate);
3767 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3770 struct symfile_segment_data *
3771 get_symfile_segment_data (bfd *abfd)
3773 const struct sym_fns *sf = find_sym_fns (abfd);
3778 return sf->sym_segments (abfd);
3782 free_symfile_segment_data (struct symfile_segment_data *data)
3784 xfree (data->segment_bases);
3785 xfree (data->segment_sizes);
3786 xfree (data->segment_info);
3791 - DATA, containing segment addresses from the object file ABFD, and
3792 the mapping from ABFD's sections onto the segments that own them,
3794 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3795 segment addresses reported by the target,
3796 store the appropriate offsets for each section in OFFSETS.
3798 If there are fewer entries in SEGMENT_BASES than there are segments
3799 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3801 If there are more entries, then ignore the extra. The target may
3802 not be able to distinguish between an empty data segment and a
3803 missing data segment; a missing text segment is less plausible. */
3806 symfile_map_offsets_to_segments (bfd *abfd,
3807 const struct symfile_segment_data *data,
3808 struct section_offsets *offsets,
3809 int num_segment_bases,
3810 const CORE_ADDR *segment_bases)
3815 /* It doesn't make sense to call this function unless you have some
3816 segment base addresses. */
3817 gdb_assert (num_segment_bases > 0);
3819 /* If we do not have segment mappings for the object file, we
3820 can not relocate it by segments. */
3821 gdb_assert (data != NULL);
3822 gdb_assert (data->num_segments > 0);
3824 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3826 int which = data->segment_info[i];
3828 gdb_assert (0 <= which && which <= data->num_segments);
3830 /* Don't bother computing offsets for sections that aren't
3831 loaded as part of any segment. */
3835 /* Use the last SEGMENT_BASES entry as the address of any extra
3836 segments mentioned in DATA->segment_info. */
3837 if (which > num_segment_bases)
3838 which = num_segment_bases;
3840 offsets->offsets[i] = (segment_bases[which - 1]
3841 - data->segment_bases[which - 1]);
3848 symfile_find_segment_sections (struct objfile *objfile)
3850 bfd *abfd = objfile->obfd;
3853 struct symfile_segment_data *data;
3855 data = get_symfile_segment_data (objfile->obfd);
3859 if (data->num_segments != 1 && data->num_segments != 2)
3861 free_symfile_segment_data (data);
3865 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3867 int which = data->segment_info[i];
3871 if (objfile->sect_index_text == -1)
3872 objfile->sect_index_text = sect->index;
3874 if (objfile->sect_index_rodata == -1)
3875 objfile->sect_index_rodata = sect->index;
3877 else if (which == 2)
3879 if (objfile->sect_index_data == -1)
3880 objfile->sect_index_data = sect->index;
3882 if (objfile->sect_index_bss == -1)
3883 objfile->sect_index_bss = sect->index;
3887 free_symfile_segment_data (data);
3890 /* Listen for free_objfile events. */
3893 symfile_free_objfile (struct objfile *objfile)
3895 /* Remove the target sections of user-added objfiles. */
3896 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
3897 remove_target_sections ((void *) objfile);
3900 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3901 Expand all symtabs that match the specified criteria.
3902 See quick_symbol_functions.expand_symtabs_matching for details. */
3905 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3906 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3907 enum search_domain kind,
3910 struct objfile *objfile;
3912 ALL_OBJFILES (objfile)
3915 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3916 symbol_matcher, kind,
3921 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3922 Map function FUN over every file.
3923 See quick_symbol_functions.map_symbol_filenames for details. */
3926 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3929 struct objfile *objfile;
3931 ALL_OBJFILES (objfile)
3934 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3940 _initialize_symfile (void)
3942 struct cmd_list_element *c;
3944 observer_attach_free_objfile (symfile_free_objfile);
3946 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3947 Load symbol table from executable file FILE.\n\
3948 The `file' command can also load symbol tables, as well as setting the file\n\
3949 to execute."), &cmdlist);
3950 set_cmd_completer (c, filename_completer);
3952 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3953 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3954 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3955 ...]\nADDR is the starting address of the file's text.\n\
3956 The optional arguments are section-name section-address pairs and\n\
3957 should be specified if the data and bss segments are not contiguous\n\
3958 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3960 set_cmd_completer (c, filename_completer);
3962 c = add_cmd ("remove-symbol-file", class_files,
3963 remove_symbol_file_command, _("\
3964 Remove a symbol file added via the add-symbol-file command.\n\
3965 Usage: remove-symbol-file FILENAME\n\
3966 remove-symbol-file -a ADDRESS\n\
3967 The file to remove can be identified by its filename or by an address\n\
3968 that lies within the boundaries of this symbol file in memory."),
3971 c = add_cmd ("load", class_files, load_command, _("\
3972 Dynamically load FILE into the running program, and record its symbols\n\
3973 for access from GDB.\n\
3974 A load OFFSET may also be given."), &cmdlist);
3975 set_cmd_completer (c, filename_completer);
3977 add_prefix_cmd ("overlay", class_support, overlay_command,
3978 _("Commands for debugging overlays."), &overlaylist,
3979 "overlay ", 0, &cmdlist);
3981 add_com_alias ("ovly", "overlay", class_alias, 1);
3982 add_com_alias ("ov", "overlay", class_alias, 1);
3984 add_cmd ("map-overlay", class_support, map_overlay_command,
3985 _("Assert that an overlay section is mapped."), &overlaylist);
3987 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3988 _("Assert that an overlay section is unmapped."), &overlaylist);
3990 add_cmd ("list-overlays", class_support, list_overlays_command,
3991 _("List mappings of overlay sections."), &overlaylist);
3993 add_cmd ("manual", class_support, overlay_manual_command,
3994 _("Enable overlay debugging."), &overlaylist);
3995 add_cmd ("off", class_support, overlay_off_command,
3996 _("Disable overlay debugging."), &overlaylist);
3997 add_cmd ("auto", class_support, overlay_auto_command,
3998 _("Enable automatic overlay debugging."), &overlaylist);
3999 add_cmd ("load-target", class_support, overlay_load_command,
4000 _("Read the overlay mapping state from the target."), &overlaylist);
4002 /* Filename extension to source language lookup table: */
4003 init_filename_language_table ();
4004 add_setshow_string_noescape_cmd ("extension-language", class_files,
4006 Set mapping between filename extension and source language."), _("\
4007 Show mapping between filename extension and source language."), _("\
4008 Usage: set extension-language .foo bar"),
4009 set_ext_lang_command,
4011 &setlist, &showlist);
4013 add_info ("extensions", info_ext_lang_command,
4014 _("All filename extensions associated with a source language."));
4016 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4017 &debug_file_directory, _("\
4018 Set the directories where separate debug symbols are searched for."), _("\
4019 Show the directories where separate debug symbols are searched for."), _("\
4020 Separate debug symbols are first searched for in the same\n\
4021 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4022 and lastly at the path of the directory of the binary with\n\
4023 each global debug-file-directory component prepended."),
4025 show_debug_file_directory,
4026 &setlist, &showlist);
4028 add_setshow_enum_cmd ("symbol-loading", no_class,
4029 print_symbol_loading_enums, &print_symbol_loading,
4031 Set printing of symbol loading messages."), _("\
4032 Show printing of symbol loading messages."), _("\
4033 off == turn all messages off\n\
4034 brief == print messages for the executable,\n\
4035 and brief messages for shared libraries\n\
4036 full == print messages for the executable,\n\
4037 and messages for each shared library."),
4040 &setprintlist, &showprintlist);