1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
35 #include "breakpoint.h"
37 #include "complaints.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
47 #include "readline/readline.h"
49 #include "observable.h"
51 #include "parser-defs.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
62 #include <sys/types.h>
71 int (*deprecated_ui_load_progress_hook) (const char *section,
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
81 static void clear_symtab_users_cleanup (void *ignore);
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85 int readnever_symbol_files; /* Never read full symbols. */
87 /* Functions this file defines. */
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
92 static const struct sym_fns *find_sym_fns (bfd *);
94 static void overlay_invalidate_all (void);
96 static void simple_free_overlay_table (void);
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
101 static int simple_read_overlay_table (void);
103 static int simple_overlay_update_1 (struct obj_section *);
105 static void symfile_find_segment_sections (struct objfile *objfile);
107 /* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
111 struct registered_sym_fns
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
124 static std::vector<registered_sym_fns> symtab_fns;
126 /* Values for "set print symbol-loading". */
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
138 static const char *print_symbol_loading = print_symbol_loading_full;
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
150 int auto_solib_add = 1;
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
162 print_symbol_loading_p (int from_tty, int exec, int full)
164 if (!from_tty && !info_verbose)
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
178 /* True if we are reading a symbol table. */
180 int currently_reading_symtab = 0;
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (¤tly_reading_symtab,
190 currently_reading_symtab + 1);
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
205 asection **lowest = (asection **) obj;
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
219 /* Build (allocate and populate) a section_addr_info struct from
220 an existing section table. */
223 build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
226 const struct target_section *stp;
228 section_addr_info sap;
230 for (stp = start; stp != end; stp++)
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
245 /* Create a section_addr_info from section offsets in ABFD. */
247 static section_addr_info
248 build_section_addr_info_from_bfd (bfd *abfd)
250 struct bfd_section *sec;
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
262 /* Create a section_addr_info from section offsets in OBJFILE. */
265 build_section_addr_info_from_objfile (const struct objfile *objfile)
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
275 int sectindex = sap[i].sectindex;
277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
282 /* Initialize OBJFILE's sect_index_* members. */
285 init_objfile_sect_indices (struct objfile *objfile)
290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
292 objfile->sect_index_text = sect->index;
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
296 objfile->sect_index_data = sect->index;
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
300 objfile->sect_index_bss = sect->index;
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
304 objfile->sect_index_rodata = sect->index;
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
312 symfile_find_segment_sections (objfile);
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
323 for (i = 0; i < objfile->num_sections; i++)
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
330 if (i == objfile->num_sections)
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
343 /* The arguments to place_section. */
345 struct place_section_arg
347 struct section_offsets *offsets;
351 /* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
355 place_section (bfd *abfd, asection *sect, void *obj)
357 struct place_section_arg *arg = (struct place_section_arg *) obj;
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
366 /* If the user specified an offset, honor it. */
367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
370 /* Otherwise, let's try to find a place for the section. */
371 start_addr = (arg->lowest + align - 1) & -align;
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
380 int indx = cur_sec->index;
382 /* We don't need to compare against ourself. */
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
406 /* Otherwise, we appear to be OK. So far. */
411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
412 arg->lowest = start_addr + bfd_get_section_size (sect);
415 /* Store section_addr_info as prepared (made relative and with SECTINDEX
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
420 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
422 const section_addr_info &addrs)
426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
428 /* Now calculate offsets for section that were specified by the caller. */
429 for (i = 0; i < addrs.size (); i++)
431 const struct other_sections *osp;
434 if (osp->sectindex == -1)
437 /* Record all sections in offsets. */
438 /* The section_offsets in the objfile are here filled in using
440 section_offsets->offsets[osp->sectindex] = osp->addr;
444 /* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
451 addr_section_name (const char *s)
453 if (strcmp (s, ".dynbss") == 0)
455 if (strcmp (s, ".sdynbss") == 0)
461 /* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
466 addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
476 return a->sectindex < b->sectindex;
479 /* Provide sorted array of pointers to sections of ADDRS. */
481 static std::vector<const struct other_sections *>
482 addrs_section_sort (const section_addr_info &addrs)
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
490 std::sort (array.begin (), array.end (), addrs_section_compar);
495 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
500 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
502 asection *lower_sect;
503 CORE_ADDR lower_offset;
506 /* Find lowest loadable section to be used as starting point for
507 continguous sections. */
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
510 if (lower_sect == NULL)
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
544 for (const struct other_sections *sect : addrs_sorted)
546 const char *sect_name = addr_section_name (sect->name.c_str ());
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
559 /* Make the found item directly addressable from ADDRS. */
560 index_in_addrs = sect - addrs->data ();
561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
564 /* Never use the same ABFD entry twice. */
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
579 for (i = 0; i < addrs->size (); i++)
581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
585 /* This is the index used by BFD. */
586 (*addrs)[i].sectindex = sect->sectindex;
588 if ((*addrs)[i].addr != 0)
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
594 (*addrs)[i].addr = lower_offset;
598 /* addr_section_name transformation is not used for SECT_NAME. */
599 const std::string §_name = (*addrs)[i].name;
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
611 created by prelink have no special flags.
613 For the sections `.bss' and `.sbss' see addr_section_name. */
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
619 && (*addrs)[i - 1].name == ".dynbss"
620 && addrs_to_abfd_addrs[i - 1] != NULL)
621 || (sect_name == ".sbss"
623 && (*addrs)[i - 1].name == ".sdynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)))
625 warning (_("section %s not found in %s"), sect_name.c_str (),
626 bfd_get_filename (abfd));
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
634 /* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
641 default_symfile_offsets (struct objfile *objfile,
642 const section_addr_info &addrs)
644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
658 struct place_section_arg arg;
659 bfd *abfd = objfile->obfd;
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
672 /* Pick non-overlapping offsets for sections the user did not
674 arg.offsets = objfile->section_offsets;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
711 exec_set_section_address (bfd_get_filename (abfd),
713 offsets[cur_sec->index]);
714 offsets[cur_sec->index] = 0;
719 /* Remember the bfd indexes for the .text, .data, .bss and
721 init_objfile_sect_indices (objfile);
724 /* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
730 struct symfile_segment_data *
731 default_symfile_segments (bfd *abfd)
735 struct symfile_segment_data *data;
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
758 data = XCNEW (struct symfile_segment_data);
759 data->num_segments = 1;
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
763 num_sections = bfd_count_sections (abfd);
764 data->segment_info = XCNEWVEC (int, num_sections);
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
773 vma = bfd_get_section_vma (abfd, sect);
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
779 data->segment_info[i] = 1;
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
788 /* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
792 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
794 (*objfile->sf->sym_read) (objfile, add_flags);
795 objfile->per_bfd->minsyms_read = true;
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
820 /* Initialize entry point information for this objfile. */
823 init_entry_point_info (struct objfile *objfile)
825 struct entry_info *ei = &objfile->per_bfd->ei;
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
853 ei->entry_point_p = 0;
856 if (ei->entry_point_p)
858 struct obj_section *osect;
859 CORE_ADDR entry_point = ei->entry_point;
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
869 /* Remove any ISA markers, so that this matches entries in the
872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
877 struct bfd_section *sect = osect->the_bfd_section;
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
883 ei->the_bfd_section_index
884 = gdb_bfd_section_index (objfile->obfd, sect);
891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
895 /* Process a symbol file, as either the main file or as a dynamically
898 This function does not set the OBJFILE's entry-point info.
900 OBJFILE is where the symbols are to be read from.
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
912 ADD_FLAGS encodes verbosity level, whether this is main symbol or
913 an extra symbol file such as dynamically loaded code, and wether
914 breakpoint reset should be deferred. */
917 syms_from_objfile_1 (struct objfile *objfile,
918 section_addr_info *addrs,
919 symfile_add_flags add_flags)
921 section_addr_info local_addr;
922 struct cleanup *old_chain;
923 const int mainline = add_flags & SYMFILE_MAINLINE;
925 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
927 if (objfile->sf == NULL)
929 /* No symbols to load, but we still need to make sure
930 that the section_offsets table is allocated. */
931 int num_sections = gdb_bfd_count_sections (objfile->obfd);
932 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
934 objfile->num_sections = num_sections;
935 objfile->section_offsets
936 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
938 memset (objfile->section_offsets, 0, size);
942 /* Make sure that partially constructed symbol tables will be cleaned up
943 if an error occurs during symbol reading. */
944 old_chain = make_cleanup (null_cleanup, NULL);
945 std::unique_ptr<struct objfile> objfile_holder (objfile);
947 /* If ADDRS is NULL, put together a dummy address list.
948 We now establish the convention that an addr of zero means
949 no load address was specified. */
955 /* We will modify the main symbol table, make sure that all its users
956 will be cleaned up if an error occurs during symbol reading. */
957 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
959 /* Since no error yet, throw away the old symbol table. */
961 if (symfile_objfile != NULL)
963 delete symfile_objfile;
964 gdb_assert (symfile_objfile == NULL);
967 /* Currently we keep symbols from the add-symbol-file command.
968 If the user wants to get rid of them, they should do "symbol-file"
969 without arguments first. Not sure this is the best behavior
972 (*objfile->sf->sym_new_init) (objfile);
975 /* Convert addr into an offset rather than an absolute address.
976 We find the lowest address of a loaded segment in the objfile,
977 and assume that <addr> is where that got loaded.
979 We no longer warn if the lowest section is not a text segment (as
980 happens for the PA64 port. */
981 if (addrs->size () > 0)
982 addr_info_make_relative (addrs, objfile->obfd);
984 /* Initialize symbol reading routines for this objfile, allow complaints to
985 appear for this new file, and record how verbose to be, then do the
986 initial symbol reading for this file. */
988 (*objfile->sf->sym_init) (objfile);
989 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
991 (*objfile->sf->sym_offsets) (objfile, *addrs);
993 read_symbols (objfile, add_flags);
995 /* Discard cleanups as symbol reading was successful. */
997 objfile_holder.release ();
998 discard_cleanups (old_chain);
1001 /* Same as syms_from_objfile_1, but also initializes the objfile
1002 entry-point info. */
1005 syms_from_objfile (struct objfile *objfile,
1006 section_addr_info *addrs,
1007 symfile_add_flags add_flags)
1009 syms_from_objfile_1 (objfile, addrs, add_flags);
1010 init_entry_point_info (objfile);
1013 /* Perform required actions after either reading in the initial
1014 symbols for a new objfile, or mapping in the symbols from a reusable
1015 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1018 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1020 /* If this is the main symbol file we have to clean up all users of the
1021 old main symbol file. Otherwise it is sufficient to fixup all the
1022 breakpoints that may have been redefined by this symbol file. */
1023 if (add_flags & SYMFILE_MAINLINE)
1025 /* OK, make it the "real" symbol file. */
1026 symfile_objfile = objfile;
1028 clear_symtab_users (add_flags);
1030 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1032 breakpoint_re_set ();
1035 /* We're done reading the symbol file; finish off complaints. */
1036 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1039 /* Process a symbol file, as either the main file or as a dynamically
1042 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1043 A new reference is acquired by this function.
1045 For NAME description see the objfile constructor.
1047 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1048 extra, such as dynamically loaded code, and what to do with breakpoins.
1050 ADDRS is as described for syms_from_objfile_1, above.
1051 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1053 PARENT is the original objfile if ABFD is a separate debug info file.
1054 Otherwise PARENT is NULL.
1056 Upon success, returns a pointer to the objfile that was added.
1057 Upon failure, jumps back to command level (never returns). */
1059 static struct objfile *
1060 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1061 symfile_add_flags add_flags,
1062 section_addr_info *addrs,
1063 objfile_flags flags, struct objfile *parent)
1065 struct objfile *objfile;
1066 const int from_tty = add_flags & SYMFILE_VERBOSE;
1067 const int mainline = add_flags & SYMFILE_MAINLINE;
1068 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1069 && (readnow_symbol_files
1070 || (add_flags & SYMFILE_NO_READ) == 0));
1072 if (readnow_symbol_files)
1074 flags |= OBJF_READNOW;
1075 add_flags &= ~SYMFILE_NO_READ;
1077 else if (readnever_symbol_files
1078 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1080 flags |= OBJF_READNEVER;
1081 add_flags |= SYMFILE_NO_READ;
1083 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1084 flags |= OBJF_NOT_FILENAME;
1086 /* Give user a chance to burp if we'd be
1087 interactively wiping out any existing symbols. */
1089 if ((have_full_symbols () || have_partial_symbols ())
1092 && !query (_("Load new symbol table from \"%s\"? "), name))
1093 error (_("Not confirmed."));
1096 flags |= OBJF_MAINLINE;
1097 objfile = new struct objfile (abfd, name, flags);
1100 add_separate_debug_objfile (objfile, parent);
1102 /* We either created a new mapped symbol table, mapped an existing
1103 symbol table file which has not had initial symbol reading
1104 performed, or need to read an unmapped symbol table. */
1107 if (deprecated_pre_add_symbol_hook)
1108 deprecated_pre_add_symbol_hook (name);
1111 printf_unfiltered (_("Reading symbols from %s..."), name);
1113 gdb_flush (gdb_stdout);
1116 syms_from_objfile (objfile, addrs, add_flags);
1118 /* We now have at least a partial symbol table. Check to see if the
1119 user requested that all symbols be read on initial access via either
1120 the gdb startup command line or on a per symbol file basis. Expand
1121 all partial symbol tables for this objfile if so. */
1123 if ((flags & OBJF_READNOW))
1127 printf_unfiltered (_("expanding to full symbols..."));
1129 gdb_flush (gdb_stdout);
1133 objfile->sf->qf->expand_all_symtabs (objfile);
1136 if (should_print && !objfile_has_symbols (objfile))
1139 printf_unfiltered (_("(no debugging symbols found)..."));
1145 if (deprecated_post_add_symbol_hook)
1146 deprecated_post_add_symbol_hook ();
1148 printf_unfiltered (_("done.\n"));
1151 /* We print some messages regardless of whether 'from_tty ||
1152 info_verbose' is true, so make sure they go out at the right
1154 gdb_flush (gdb_stdout);
1156 if (objfile->sf == NULL)
1158 gdb::observers::new_objfile.notify (objfile);
1159 return objfile; /* No symbols. */
1162 finish_new_objfile (objfile, add_flags);
1164 gdb::observers::new_objfile.notify (objfile);
1166 bfd_cache_close_all ();
1170 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1171 see the objfile constructor. */
1174 symbol_file_add_separate (bfd *bfd, const char *name,
1175 symfile_add_flags symfile_flags,
1176 struct objfile *objfile)
1178 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1179 because sections of BFD may not match sections of OBJFILE and because
1180 vma may have been modified by tools such as prelink. */
1181 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1183 symbol_file_add_with_addrs
1184 (bfd, name, symfile_flags, &sap,
1185 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1190 /* Process the symbol file ABFD, as either the main file or as a
1191 dynamically loaded file.
1192 See symbol_file_add_with_addrs's comments for details. */
1195 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1196 symfile_add_flags add_flags,
1197 section_addr_info *addrs,
1198 objfile_flags flags, struct objfile *parent)
1200 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 /* Process a symbol file, as either the main file or as a dynamically
1205 loaded file. See symbol_file_add_with_addrs's comments for details. */
1208 symbol_file_add (const char *name, symfile_add_flags add_flags,
1209 section_addr_info *addrs, objfile_flags flags)
1211 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1213 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 /* Call symbol_file_add() with default values and update whatever is
1218 affected by the loading of a new main().
1219 Used when the file is supplied in the gdb command line
1220 and by some targets with special loading requirements.
1221 The auxiliary function, symbol_file_add_main_1(), has the flags
1222 argument for the switches that can only be specified in the symbol_file
1226 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1228 symbol_file_add_main_1 (args, add_flags, 0);
1232 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1233 objfile_flags flags)
1235 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1237 symbol_file_add (args, add_flags, NULL, flags);
1239 /* Getting new symbols may change our opinion about
1240 what is frameless. */
1241 reinit_frame_cache ();
1243 if ((add_flags & SYMFILE_NO_READ) == 0)
1244 set_initial_language ();
1248 symbol_file_clear (int from_tty)
1250 if ((have_full_symbols () || have_partial_symbols ())
1253 ? !query (_("Discard symbol table from `%s'? "),
1254 objfile_name (symfile_objfile))
1255 : !query (_("Discard symbol table? "))))
1256 error (_("Not confirmed."));
1258 /* solib descriptors may have handles to objfiles. Wipe them before their
1259 objfiles get stale by free_all_objfiles. */
1260 no_shared_libraries (NULL, from_tty);
1262 free_all_objfiles ();
1264 gdb_assert (symfile_objfile == NULL);
1266 printf_unfiltered (_("No symbol file now.\n"));
1269 /* See symfile.h. */
1271 int separate_debug_file_debug = 0;
1274 separate_debug_file_exists (const std::string &name, unsigned long crc,
1275 struct objfile *parent_objfile)
1277 unsigned long file_crc;
1279 struct stat parent_stat, abfd_stat;
1280 int verified_as_different;
1282 /* Find a separate debug info file as if symbols would be present in
1283 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1284 section can contain just the basename of PARENT_OBJFILE without any
1285 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1286 the separate debug infos with the same basename can exist. */
1288 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1291 if (separate_debug_file_debug)
1292 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
1294 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1299 /* Verify symlinks were not the cause of filename_cmp name difference above.
1301 Some operating systems, e.g. Windows, do not provide a meaningful
1302 st_ino; they always set it to zero. (Windows does provide a
1303 meaningful st_dev.) Files accessed from gdbservers that do not
1304 support the vFile:fstat packet will also have st_ino set to zero.
1305 Do not indicate a duplicate library in either case. While there
1306 is no guarantee that a system that provides meaningful inode
1307 numbers will never set st_ino to zero, this is merely an
1308 optimization, so we do not need to worry about false negatives. */
1310 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1311 && abfd_stat.st_ino != 0
1312 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1314 if (abfd_stat.st_dev == parent_stat.st_dev
1315 && abfd_stat.st_ino == parent_stat.st_ino)
1317 verified_as_different = 1;
1320 verified_as_different = 0;
1322 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1327 if (crc != file_crc)
1329 unsigned long parent_crc;
1331 /* If the files could not be verified as different with
1332 bfd_stat then we need to calculate the parent's CRC
1333 to verify whether the files are different or not. */
1335 if (!verified_as_different)
1337 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1341 if (verified_as_different || parent_crc != file_crc)
1342 warning (_("the debug information found in \"%s\""
1343 " does not match \"%s\" (CRC mismatch).\n"),
1344 name.c_str (), objfile_name (parent_objfile));
1352 char *debug_file_directory = NULL;
1354 show_debug_file_directory (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1357 fprintf_filtered (file,
1358 _("The directory where separate debug "
1359 "symbols are searched for is \"%s\".\n"),
1363 #if ! defined (DEBUG_SUBDIRECTORY)
1364 #define DEBUG_SUBDIRECTORY ".debug"
1367 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1368 where the original file resides (may not be the same as
1369 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1370 looking for. CANON_DIR is the "realpath" form of DIR.
1371 DIR must contain a trailing '/'.
1372 Returns the path of the file with separate debug info, or an empty
1376 find_separate_debug_file (const char *dir,
1377 const char *canon_dir,
1378 const char *debuglink,
1379 unsigned long crc32, struct objfile *objfile)
1381 if (separate_debug_file_debug)
1382 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1383 "%s\n"), objfile_name (objfile));
1385 /* First try in the same directory as the original file. */
1386 std::string debugfile = dir;
1387 debugfile += debuglink;
1389 if (separate_debug_file_exists (debugfile, crc32, objfile))
1392 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1394 debugfile += DEBUG_SUBDIRECTORY;
1396 debugfile += debuglink;
1398 if (separate_debug_file_exists (debugfile, crc32, objfile))
1401 /* Then try in the global debugfile directories.
1403 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1404 cause "/..." lookups. */
1406 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1407 = dirnames_to_char_ptr_vec (debug_file_directory);
1409 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1411 debugfile = debugdir.get ();
1414 debugfile += debuglink;
1416 if (separate_debug_file_exists (debugfile, crc32, objfile))
1419 /* If the file is in the sysroot, try using its base path in the
1420 global debugfile directory. */
1421 if (canon_dir != NULL
1422 && filename_ncmp (canon_dir, gdb_sysroot,
1423 strlen (gdb_sysroot)) == 0
1424 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1426 debugfile = debugdir.get ();
1427 debugfile += (canon_dir + strlen (gdb_sysroot));
1429 debugfile += debuglink;
1431 if (separate_debug_file_exists (debugfile, crc32, objfile))
1436 return std::string ();
1439 /* Modify PATH to contain only "[/]directory/" part of PATH.
1440 If there were no directory separators in PATH, PATH will be empty
1441 string on return. */
1444 terminate_after_last_dir_separator (char *path)
1448 /* Strip off the final filename part, leaving the directory name,
1449 followed by a slash. The directory can be relative or absolute. */
1450 for (i = strlen(path) - 1; i >= 0; i--)
1451 if (IS_DIR_SEPARATOR (path[i]))
1454 /* If I is -1 then no directory is present there and DIR will be "". */
1458 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1459 Returns pathname, or an empty string. */
1462 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1464 unsigned long crc32;
1466 gdb::unique_xmalloc_ptr<char> debuglink
1467 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1469 if (debuglink == NULL)
1471 /* There's no separate debug info, hence there's no way we could
1472 load it => no warning. */
1473 return std::string ();
1476 std::string dir = objfile_name (objfile);
1477 terminate_after_last_dir_separator (&dir[0]);
1478 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1480 std::string debugfile
1481 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1482 debuglink.get (), crc32, objfile);
1484 if (debugfile.empty ())
1486 /* For PR gdb/9538, try again with realpath (if different from the
1491 if (lstat (objfile_name (objfile), &st_buf) == 0
1492 && S_ISLNK (st_buf.st_mode))
1494 gdb::unique_xmalloc_ptr<char> symlink_dir
1495 (lrealpath (objfile_name (objfile)));
1496 if (symlink_dir != NULL)
1498 terminate_after_last_dir_separator (symlink_dir.get ());
1499 if (dir != symlink_dir.get ())
1501 /* Different directory, so try using it. */
1502 debugfile = find_separate_debug_file (symlink_dir.get (),
1515 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1519 validate_readnow_readnever (objfile_flags flags)
1521 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1522 error (_("-readnow and -readnever cannot be used simultaneously"));
1525 /* This is the symbol-file command. Read the file, analyze its
1526 symbols, and add a struct symtab to a symtab list. The syntax of
1527 the command is rather bizarre:
1529 1. The function buildargv implements various quoting conventions
1530 which are undocumented and have little or nothing in common with
1531 the way things are quoted (or not quoted) elsewhere in GDB.
1533 2. Options are used, which are not generally used in GDB (perhaps
1534 "set mapped on", "set readnow on" would be better)
1536 3. The order of options matters, which is contrary to GNU
1537 conventions (because it is confusing and inconvenient). */
1540 symbol_file_command (const char *args, int from_tty)
1546 symbol_file_clear (from_tty);
1550 objfile_flags flags = OBJF_USERLOADED;
1551 symfile_add_flags add_flags = 0;
1553 bool stop_processing_options = false;
1558 add_flags |= SYMFILE_VERBOSE;
1560 gdb_argv built_argv (args);
1561 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1563 if (stop_processing_options || *arg != '-')
1568 error (_("Unrecognized argument \"%s\""), arg);
1570 else if (strcmp (arg, "-readnow") == 0)
1571 flags |= OBJF_READNOW;
1572 else if (strcmp (arg, "-readnever") == 0)
1573 flags |= OBJF_READNEVER;
1574 else if (strcmp (arg, "--") == 0)
1575 stop_processing_options = true;
1577 error (_("Unrecognized argument \"%s\""), arg);
1581 error (_("no symbol file name was specified"));
1583 validate_readnow_readnever (flags);
1585 symbol_file_add_main_1 (name, add_flags, flags);
1589 /* Set the initial language.
1591 FIXME: A better solution would be to record the language in the
1592 psymtab when reading partial symbols, and then use it (if known) to
1593 set the language. This would be a win for formats that encode the
1594 language in an easily discoverable place, such as DWARF. For
1595 stabs, we can jump through hoops looking for specially named
1596 symbols or try to intuit the language from the specific type of
1597 stabs we find, but we can't do that until later when we read in
1601 set_initial_language (void)
1603 enum language lang = main_language ();
1605 if (lang == language_unknown)
1607 char *name = main_name ();
1608 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1611 lang = SYMBOL_LANGUAGE (sym);
1614 if (lang == language_unknown)
1616 /* Make C the default language */
1620 set_language (lang);
1621 expected_language = current_language; /* Don't warn the user. */
1624 /* Open the file specified by NAME and hand it off to BFD for
1625 preliminary analysis. Return a newly initialized bfd *, which
1626 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1627 absolute). In case of trouble, error() is called. */
1630 symfile_bfd_open (const char *name)
1634 gdb::unique_xmalloc_ptr<char> absolute_name;
1635 if (!is_target_filename (name))
1637 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1639 /* Look down path for it, allocate 2nd new malloc'd copy. */
1640 desc = openp (getenv ("PATH"),
1641 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1642 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1643 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1646 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1648 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1649 desc = openp (getenv ("PATH"),
1650 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1651 exename, O_RDONLY | O_BINARY, &absolute_name);
1655 perror_with_name (expanded_name.get ());
1657 name = absolute_name.get ();
1660 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1661 if (sym_bfd == NULL)
1662 error (_("`%s': can't open to read symbols: %s."), name,
1663 bfd_errmsg (bfd_get_error ()));
1665 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1666 bfd_set_cacheable (sym_bfd.get (), 1);
1668 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1669 error (_("`%s': can't read symbols: %s."), name,
1670 bfd_errmsg (bfd_get_error ()));
1675 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1676 the section was not found. */
1679 get_section_index (struct objfile *objfile, const char *section_name)
1681 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1689 /* Link SF into the global symtab_fns list.
1690 FLAVOUR is the file format that SF handles.
1691 Called on startup by the _initialize routine in each object file format
1692 reader, to register information about each format the reader is prepared
1696 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1698 symtab_fns.emplace_back (flavour, sf);
1701 /* Initialize OBJFILE to read symbols from its associated BFD. It
1702 either returns or calls error(). The result is an initialized
1703 struct sym_fns in the objfile structure, that contains cached
1704 information about the symbol file. */
1706 static const struct sym_fns *
1707 find_sym_fns (bfd *abfd)
1709 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1711 if (our_flavour == bfd_target_srec_flavour
1712 || our_flavour == bfd_target_ihex_flavour
1713 || our_flavour == bfd_target_tekhex_flavour)
1714 return NULL; /* No symbols. */
1716 for (const registered_sym_fns &rsf : symtab_fns)
1717 if (our_flavour == rsf.sym_flavour)
1720 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1721 bfd_get_target (abfd));
1725 /* This function runs the load command of our current target. */
1728 load_command (const char *arg, int from_tty)
1732 /* The user might be reloading because the binary has changed. Take
1733 this opportunity to check. */
1734 reopen_exec_file ();
1740 const char *parg, *prev;
1742 arg = get_exec_file (1);
1744 /* We may need to quote this string so buildargv can pull it
1747 while ((parg = strpbrk (parg, "\\\"'\t ")))
1749 temp.append (prev, parg - prev);
1751 temp.push_back ('\\');
1753 /* If we have not copied anything yet, then we didn't see a
1754 character to quote, and we can just leave ARG unchanged. */
1758 arg = temp.c_str ();
1762 target_load (arg, from_tty);
1764 /* After re-loading the executable, we don't really know which
1765 overlays are mapped any more. */
1766 overlay_cache_invalid = 1;
1769 /* This version of "load" should be usable for any target. Currently
1770 it is just used for remote targets, not inftarg.c or core files,
1771 on the theory that only in that case is it useful.
1773 Avoiding xmodem and the like seems like a win (a) because we don't have
1774 to worry about finding it, and (b) On VMS, fork() is very slow and so
1775 we don't want to run a subprocess. On the other hand, I'm not sure how
1776 performance compares. */
1778 static int validate_download = 0;
1780 /* Callback service function for generic_load (bfd_map_over_sections). */
1783 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1785 bfd_size_type *sum = (bfd_size_type *) data;
1787 *sum += bfd_get_section_size (asec);
1790 /* Opaque data for load_progress. */
1791 struct load_progress_data
1793 /* Cumulative data. */
1794 unsigned long write_count = 0;
1795 unsigned long data_count = 0;
1796 bfd_size_type total_size = 0;
1799 /* Opaque data for load_progress for a single section. */
1800 struct load_progress_section_data
1802 load_progress_section_data (load_progress_data *cumulative_,
1803 const char *section_name_, ULONGEST section_size_,
1804 CORE_ADDR lma_, gdb_byte *buffer_)
1805 : cumulative (cumulative_), section_name (section_name_),
1806 section_size (section_size_), lma (lma_), buffer (buffer_)
1809 struct load_progress_data *cumulative;
1811 /* Per-section data. */
1812 const char *section_name;
1813 ULONGEST section_sent = 0;
1814 ULONGEST section_size;
1819 /* Opaque data for load_section_callback. */
1820 struct load_section_data
1822 load_section_data (load_progress_data *progress_data_)
1823 : progress_data (progress_data_)
1826 ~load_section_data ()
1828 for (auto &&request : requests)
1830 xfree (request.data);
1831 delete ((load_progress_section_data *) request.baton);
1835 CORE_ADDR load_offset = 0;
1836 struct load_progress_data *progress_data;
1837 std::vector<struct memory_write_request> requests;
1840 /* Target write callback routine for progress reporting. */
1843 load_progress (ULONGEST bytes, void *untyped_arg)
1845 struct load_progress_section_data *args
1846 = (struct load_progress_section_data *) untyped_arg;
1847 struct load_progress_data *totals;
1850 /* Writing padding data. No easy way to get at the cumulative
1851 stats, so just ignore this. */
1854 totals = args->cumulative;
1856 if (bytes == 0 && args->section_sent == 0)
1858 /* The write is just starting. Let the user know we've started
1860 current_uiout->message ("Loading section %s, size %s lma %s\n",
1862 hex_string (args->section_size),
1863 paddress (target_gdbarch (), args->lma));
1867 if (validate_download)
1869 /* Broken memories and broken monitors manifest themselves here
1870 when bring new computers to life. This doubles already slow
1872 /* NOTE: cagney/1999-10-18: A more efficient implementation
1873 might add a verify_memory() method to the target vector and
1874 then use that. remote.c could implement that method using
1875 the ``qCRC'' packet. */
1876 gdb::byte_vector check (bytes);
1878 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1879 error (_("Download verify read failed at %s"),
1880 paddress (target_gdbarch (), args->lma));
1881 if (memcmp (args->buffer, check.data (), bytes) != 0)
1882 error (_("Download verify compare failed at %s"),
1883 paddress (target_gdbarch (), args->lma));
1885 totals->data_count += bytes;
1887 args->buffer += bytes;
1888 totals->write_count += 1;
1889 args->section_sent += bytes;
1890 if (check_quit_flag ()
1891 || (deprecated_ui_load_progress_hook != NULL
1892 && deprecated_ui_load_progress_hook (args->section_name,
1893 args->section_sent)))
1894 error (_("Canceled the download"));
1896 if (deprecated_show_load_progress != NULL)
1897 deprecated_show_load_progress (args->section_name,
1901 totals->total_size);
1904 /* Callback service function for generic_load (bfd_map_over_sections). */
1907 load_section_callback (bfd *abfd, asection *asec, void *data)
1909 struct load_section_data *args = (struct load_section_data *) data;
1910 bfd_size_type size = bfd_get_section_size (asec);
1911 const char *sect_name = bfd_get_section_name (abfd, asec);
1913 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1919 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1920 ULONGEST end = begin + size;
1921 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1922 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1924 load_progress_section_data *section_data
1925 = new load_progress_section_data (args->progress_data, sect_name, size,
1928 args->requests.emplace_back (begin, end, buffer, section_data);
1931 static void print_transfer_performance (struct ui_file *stream,
1932 unsigned long data_count,
1933 unsigned long write_count,
1934 std::chrono::steady_clock::duration d);
1937 generic_load (const char *args, int from_tty)
1939 struct load_progress_data total_progress;
1940 struct load_section_data cbdata (&total_progress);
1941 struct ui_out *uiout = current_uiout;
1944 error_no_arg (_("file to load"));
1946 gdb_argv argv (args);
1948 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1950 if (argv[1] != NULL)
1954 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1956 /* If the last word was not a valid number then
1957 treat it as a file name with spaces in. */
1958 if (argv[1] == endptr)
1959 error (_("Invalid download offset:%s."), argv[1]);
1961 if (argv[2] != NULL)
1962 error (_("Too many parameters."));
1965 /* Open the file for loading. */
1966 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
1967 if (loadfile_bfd == NULL)
1968 perror_with_name (filename.get ());
1970 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
1972 error (_("\"%s\" is not an object file: %s"), filename.get (),
1973 bfd_errmsg (bfd_get_error ()));
1976 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
1977 (void *) &total_progress.total_size);
1979 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
1981 using namespace std::chrono;
1983 steady_clock::time_point start_time = steady_clock::now ();
1985 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1986 load_progress) != 0)
1987 error (_("Load failed"));
1989 steady_clock::time_point end_time = steady_clock::now ();
1991 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
1992 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
1993 uiout->text ("Start address ");
1994 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
1995 uiout->text (", load size ");
1996 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
1998 regcache_write_pc (get_current_regcache (), entry);
2000 /* Reset breakpoints, now that we have changed the load image. For
2001 instance, breakpoints may have been set (or reset, by
2002 post_create_inferior) while connected to the target but before we
2003 loaded the program. In that case, the prologue analyzer could
2004 have read instructions from the target to find the right
2005 breakpoint locations. Loading has changed the contents of that
2008 breakpoint_re_set ();
2010 print_transfer_performance (gdb_stdout, total_progress.data_count,
2011 total_progress.write_count,
2012 end_time - start_time);
2015 /* Report on STREAM the performance of a memory transfer operation,
2016 such as 'load'. DATA_COUNT is the number of bytes transferred.
2017 WRITE_COUNT is the number of separate write operations, or 0, if
2018 that information is not available. TIME is how long the operation
2022 print_transfer_performance (struct ui_file *stream,
2023 unsigned long data_count,
2024 unsigned long write_count,
2025 std::chrono::steady_clock::duration time)
2027 using namespace std::chrono;
2028 struct ui_out *uiout = current_uiout;
2030 milliseconds ms = duration_cast<milliseconds> (time);
2032 uiout->text ("Transfer rate: ");
2033 if (ms.count () > 0)
2035 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2037 if (uiout->is_mi_like_p ())
2039 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2040 uiout->text (" bits/sec");
2042 else if (rate < 1024)
2044 uiout->field_fmt ("transfer-rate", "%lu", rate);
2045 uiout->text (" bytes/sec");
2049 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2050 uiout->text (" KB/sec");
2055 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2056 uiout->text (" bits in <1 sec");
2058 if (write_count > 0)
2061 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2062 uiout->text (" bytes/write");
2064 uiout->text (".\n");
2067 /* This function allows the addition of incrementally linked object files.
2068 It does not modify any state in the target, only in the debugger. */
2069 /* Note: ezannoni 2000-04-13 This function/command used to have a
2070 special case syntax for the rombug target (Rombug is the boot
2071 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2072 rombug case, the user doesn't need to supply a text address,
2073 instead a call to target_link() (in target.c) would supply the
2074 value to use. We are now discontinuing this type of ad hoc syntax. */
2077 add_symbol_file_command (const char *args, int from_tty)
2079 struct gdbarch *gdbarch = get_current_arch ();
2080 gdb::unique_xmalloc_ptr<char> filename;
2083 struct objfile *objf;
2084 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2085 symfile_add_flags add_flags = 0;
2088 add_flags |= SYMFILE_VERBOSE;
2096 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2097 bool stop_processing_options = false;
2102 error (_("add-symbol-file takes a file name and an address"));
2104 bool seen_addr = false;
2105 gdb_argv argv (args);
2107 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2109 if (stop_processing_options || *arg != '-')
2111 if (filename == NULL)
2113 /* First non-option argument is always the filename. */
2114 filename.reset (tilde_expand (arg));
2116 else if (!seen_addr)
2118 /* The second non-option argument is always the text
2119 address at which to load the program. */
2120 sect_opts[0].value = arg;
2124 error (_("Unrecognized argument \"%s\""), arg);
2126 else if (strcmp (arg, "-readnow") == 0)
2127 flags |= OBJF_READNOW;
2128 else if (strcmp (arg, "-readnever") == 0)
2129 flags |= OBJF_READNEVER;
2130 else if (strcmp (arg, "-s") == 0)
2132 if (argv[argcnt + 1] == NULL)
2133 error (_("Missing section name after \"-s\""));
2134 else if (argv[argcnt + 2] == NULL)
2135 error (_("Missing section address after \"-s\""));
2137 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2139 sect_opts.push_back (sect);
2142 else if (strcmp (arg, "--") == 0)
2143 stop_processing_options = true;
2145 error (_("Unrecognized argument \"%s\""), arg);
2148 if (filename == NULL)
2149 error (_("You must provide a filename to be loaded."));
2151 validate_readnow_readnever (flags);
2153 /* This command takes at least two arguments. The first one is a
2154 filename, and the second is the address where this file has been
2155 loaded. Abort now if this address hasn't been provided by the
2158 error (_("The address where %s has been loaded is missing"),
2161 /* Print the prompt for the query below. And save the arguments into
2162 a sect_addr_info structure to be passed around to other
2163 functions. We have to split this up into separate print
2164 statements because hex_string returns a local static
2167 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2169 section_addr_info section_addrs;
2170 for (sect_opt § : sect_opts)
2173 const char *val = sect.value;
2174 const char *sec = sect.name;
2176 addr = parse_and_eval_address (val);
2178 /* Here we store the section offsets in the order they were
2179 entered on the command line. */
2180 section_addrs.emplace_back (addr, sec, 0);
2181 printf_unfiltered ("\t%s_addr = %s\n", sec,
2182 paddress (gdbarch, addr));
2184 /* The object's sections are initialized when a
2185 call is made to build_objfile_section_table (objfile).
2186 This happens in reread_symbols.
2187 At this point, we don't know what file type this is,
2188 so we can't determine what section names are valid. */
2191 if (from_tty && (!query ("%s", "")))
2192 error (_("Not confirmed."));
2194 objf = symbol_file_add (filename.get (), add_flags, §ion_addrs,
2197 add_target_sections_of_objfile (objf);
2199 /* Getting new symbols may change our opinion about what is
2201 reinit_frame_cache ();
2205 /* This function removes a symbol file that was added via add-symbol-file. */
2208 remove_symbol_file_command (const char *args, int from_tty)
2210 struct objfile *objf = NULL;
2211 struct program_space *pspace = current_program_space;
2216 error (_("remove-symbol-file: no symbol file provided"));
2218 gdb_argv argv (args);
2220 if (strcmp (argv[0], "-a") == 0)
2222 /* Interpret the next argument as an address. */
2225 if (argv[1] == NULL)
2226 error (_("Missing address argument"));
2228 if (argv[2] != NULL)
2229 error (_("Junk after %s"), argv[1]);
2231 addr = parse_and_eval_address (argv[1]);
2235 if ((objf->flags & OBJF_USERLOADED) != 0
2236 && (objf->flags & OBJF_SHARED) != 0
2237 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2241 else if (argv[0] != NULL)
2243 /* Interpret the current argument as a file name. */
2245 if (argv[1] != NULL)
2246 error (_("Junk after %s"), argv[0]);
2248 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2252 if ((objf->flags & OBJF_USERLOADED) != 0
2253 && (objf->flags & OBJF_SHARED) != 0
2254 && objf->pspace == pspace
2255 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2261 error (_("No symbol file found"));
2264 && !query (_("Remove symbol table from file \"%s\"? "),
2265 objfile_name (objf)))
2266 error (_("Not confirmed."));
2269 clear_symtab_users (0);
2272 /* Re-read symbols if a symbol-file has changed. */
2275 reread_symbols (void)
2277 struct objfile *objfile;
2279 struct stat new_statbuf;
2281 std::vector<struct objfile *> new_objfiles;
2283 /* With the addition of shared libraries, this should be modified,
2284 the load time should be saved in the partial symbol tables, since
2285 different tables may come from different source files. FIXME.
2286 This routine should then walk down each partial symbol table
2287 and see if the symbol table that it originates from has been changed. */
2289 for (objfile = object_files; objfile; objfile = objfile->next)
2291 if (objfile->obfd == NULL)
2294 /* Separate debug objfiles are handled in the main objfile. */
2295 if (objfile->separate_debug_objfile_backlink)
2298 /* If this object is from an archive (what you usually create with
2299 `ar', often called a `static library' on most systems, though
2300 a `shared library' on AIX is also an archive), then you should
2301 stat on the archive name, not member name. */
2302 if (objfile->obfd->my_archive)
2303 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2305 res = stat (objfile_name (objfile), &new_statbuf);
2308 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2309 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2310 objfile_name (objfile));
2313 new_modtime = new_statbuf.st_mtime;
2314 if (new_modtime != objfile->mtime)
2316 struct cleanup *old_cleanups;
2317 struct section_offsets *offsets;
2319 char *original_name;
2321 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2322 objfile_name (objfile));
2324 /* There are various functions like symbol_file_add,
2325 symfile_bfd_open, syms_from_objfile, etc., which might
2326 appear to do what we want. But they have various other
2327 effects which we *don't* want. So we just do stuff
2328 ourselves. We don't worry about mapped files (for one thing,
2329 any mapped file will be out of date). */
2331 /* If we get an error, blow away this objfile (not sure if
2332 that is the correct response for things like shared
2334 std::unique_ptr<struct objfile> objfile_holder (objfile);
2336 /* We need to do this whenever any symbols go away. */
2337 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2339 if (exec_bfd != NULL
2340 && filename_cmp (bfd_get_filename (objfile->obfd),
2341 bfd_get_filename (exec_bfd)) == 0)
2343 /* Reload EXEC_BFD without asking anything. */
2345 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2348 /* Keep the calls order approx. the same as in free_objfile. */
2350 /* Free the separate debug objfiles. It will be
2351 automatically recreated by sym_read. */
2352 free_objfile_separate_debug (objfile);
2354 /* Remove any references to this objfile in the global
2356 preserve_values (objfile);
2358 /* Nuke all the state that we will re-read. Much of the following
2359 code which sets things to NULL really is necessary to tell
2360 other parts of GDB that there is nothing currently there.
2362 Try to keep the freeing order compatible with free_objfile. */
2364 if (objfile->sf != NULL)
2366 (*objfile->sf->sym_finish) (objfile);
2369 clear_objfile_data (objfile);
2371 /* Clean up any state BFD has sitting around. */
2373 gdb_bfd_ref_ptr obfd (objfile->obfd);
2374 char *obfd_filename;
2376 obfd_filename = bfd_get_filename (objfile->obfd);
2377 /* Open the new BFD before freeing the old one, so that
2378 the filename remains live. */
2379 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2380 objfile->obfd = temp.release ();
2381 if (objfile->obfd == NULL)
2382 error (_("Can't open %s to read symbols."), obfd_filename);
2385 original_name = xstrdup (objfile->original_name);
2386 make_cleanup (xfree, original_name);
2388 /* bfd_openr sets cacheable to true, which is what we want. */
2389 if (!bfd_check_format (objfile->obfd, bfd_object))
2390 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2391 bfd_errmsg (bfd_get_error ()));
2393 /* Save the offsets, we will nuke them with the rest of the
2395 num_offsets = objfile->num_sections;
2396 offsets = ((struct section_offsets *)
2397 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2398 memcpy (offsets, objfile->section_offsets,
2399 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2401 /* FIXME: Do we have to free a whole linked list, or is this
2403 objfile->global_psymbols.clear ();
2404 objfile->static_psymbols.clear ();
2406 /* Free the obstacks for non-reusable objfiles. */
2407 psymbol_bcache_free (objfile->psymbol_cache);
2408 objfile->psymbol_cache = psymbol_bcache_init ();
2410 /* NB: after this call to obstack_free, objfiles_changed
2411 will need to be called (see discussion below). */
2412 obstack_free (&objfile->objfile_obstack, 0);
2413 objfile->sections = NULL;
2414 objfile->compunit_symtabs = NULL;
2415 objfile->psymtabs = NULL;
2416 objfile->psymtabs_addrmap = NULL;
2417 objfile->free_psymtabs = NULL;
2418 objfile->template_symbols = NULL;
2420 /* obstack_init also initializes the obstack so it is
2421 empty. We could use obstack_specify_allocation but
2422 gdb_obstack.h specifies the alloc/dealloc functions. */
2423 obstack_init (&objfile->objfile_obstack);
2425 /* set_objfile_per_bfd potentially allocates the per-bfd
2426 data on the objfile's obstack (if sharing data across
2427 multiple users is not possible), so it's important to
2428 do it *after* the obstack has been initialized. */
2429 set_objfile_per_bfd (objfile);
2431 objfile->original_name
2432 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2433 strlen (original_name));
2435 /* Reset the sym_fns pointer. The ELF reader can change it
2436 based on whether .gdb_index is present, and we need it to
2437 start over. PR symtab/15885 */
2438 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2440 build_objfile_section_table (objfile);
2441 terminate_minimal_symbol_table (objfile);
2443 /* We use the same section offsets as from last time. I'm not
2444 sure whether that is always correct for shared libraries. */
2445 objfile->section_offsets = (struct section_offsets *)
2446 obstack_alloc (&objfile->objfile_obstack,
2447 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2448 memcpy (objfile->section_offsets, offsets,
2449 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2450 objfile->num_sections = num_offsets;
2452 /* What the hell is sym_new_init for, anyway? The concept of
2453 distinguishing between the main file and additional files
2454 in this way seems rather dubious. */
2455 if (objfile == symfile_objfile)
2457 (*objfile->sf->sym_new_init) (objfile);
2460 (*objfile->sf->sym_init) (objfile);
2461 clear_complaints (&symfile_complaints, 1, 1);
2463 objfile->flags &= ~OBJF_PSYMTABS_READ;
2465 /* We are about to read new symbols and potentially also
2466 DWARF information. Some targets may want to pass addresses
2467 read from DWARF DIE's through an adjustment function before
2468 saving them, like MIPS, which may call into
2469 "find_pc_section". When called, that function will make
2470 use of per-objfile program space data.
2472 Since we discarded our section information above, we have
2473 dangling pointers in the per-objfile program space data
2474 structure. Force GDB to update the section mapping
2475 information by letting it know the objfile has changed,
2476 making the dangling pointers point to correct data
2479 objfiles_changed ();
2481 read_symbols (objfile, 0);
2483 if (!objfile_has_symbols (objfile))
2486 printf_unfiltered (_("(no debugging symbols found)\n"));
2490 /* We're done reading the symbol file; finish off complaints. */
2491 clear_complaints (&symfile_complaints, 0, 1);
2493 /* Getting new symbols may change our opinion about what is
2496 reinit_frame_cache ();
2498 /* Discard cleanups as symbol reading was successful. */
2499 objfile_holder.release ();
2500 discard_cleanups (old_cleanups);
2502 /* If the mtime has changed between the time we set new_modtime
2503 and now, we *want* this to be out of date, so don't call stat
2505 objfile->mtime = new_modtime;
2506 init_entry_point_info (objfile);
2508 new_objfiles.push_back (objfile);
2512 if (!new_objfiles.empty ())
2514 clear_symtab_users (0);
2516 /* clear_objfile_data for each objfile was called before freeing it and
2517 gdb::observers::new_objfile.notify (NULL) has been called by
2518 clear_symtab_users above. Notify the new files now. */
2519 for (auto iter : new_objfiles)
2520 gdb::observers::new_objfile.notify (objfile);
2522 /* At least one objfile has changed, so we can consider that
2523 the executable we're debugging has changed too. */
2524 gdb::observers::executable_changed.notify ();
2529 struct filename_language
2531 filename_language (const std::string &ext_, enum language lang_)
2532 : ext (ext_), lang (lang_)
2539 static std::vector<filename_language> filename_language_table;
2541 /* See symfile.h. */
2544 add_filename_language (const char *ext, enum language lang)
2546 filename_language_table.emplace_back (ext, lang);
2549 static char *ext_args;
2551 show_ext_args (struct ui_file *file, int from_tty,
2552 struct cmd_list_element *c, const char *value)
2554 fprintf_filtered (file,
2555 _("Mapping between filename extension "
2556 "and source language is \"%s\".\n"),
2561 set_ext_lang_command (const char *args,
2562 int from_tty, struct cmd_list_element *e)
2564 char *cp = ext_args;
2567 /* First arg is filename extension, starting with '.' */
2569 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2571 /* Find end of first arg. */
2572 while (*cp && !isspace (*cp))
2576 error (_("'%s': two arguments required -- "
2577 "filename extension and language"),
2580 /* Null-terminate first arg. */
2583 /* Find beginning of second arg, which should be a source language. */
2584 cp = skip_spaces (cp);
2587 error (_("'%s': two arguments required -- "
2588 "filename extension and language"),
2591 /* Lookup the language from among those we know. */
2592 lang = language_enum (cp);
2594 auto it = filename_language_table.begin ();
2595 /* Now lookup the filename extension: do we already know it? */
2596 for (; it != filename_language_table.end (); it++)
2598 if (it->ext == ext_args)
2602 if (it == filename_language_table.end ())
2604 /* New file extension. */
2605 add_filename_language (ext_args, lang);
2609 /* Redefining a previously known filename extension. */
2612 /* query ("Really make files of type %s '%s'?", */
2613 /* ext_args, language_str (lang)); */
2620 info_ext_lang_command (const char *args, int from_tty)
2622 printf_filtered (_("Filename extensions and the languages they represent:"));
2623 printf_filtered ("\n\n");
2624 for (const filename_language &entry : filename_language_table)
2625 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2626 language_str (entry.lang));
2630 deduce_language_from_filename (const char *filename)
2634 if (filename != NULL)
2635 if ((cp = strrchr (filename, '.')) != NULL)
2637 for (const filename_language &entry : filename_language_table)
2638 if (entry.ext == cp)
2642 return language_unknown;
2645 /* Allocate and initialize a new symbol table.
2646 CUST is from the result of allocate_compunit_symtab. */
2649 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2651 struct objfile *objfile = cust->objfile;
2652 struct symtab *symtab
2653 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2656 = (const char *) bcache (filename, strlen (filename) + 1,
2657 objfile->per_bfd->filename_cache);
2658 symtab->fullname = NULL;
2659 symtab->language = deduce_language_from_filename (filename);
2661 /* This can be very verbose with lots of headers.
2662 Only print at higher debug levels. */
2663 if (symtab_create_debug >= 2)
2665 /* Be a bit clever with debugging messages, and don't print objfile
2666 every time, only when it changes. */
2667 static char *last_objfile_name = NULL;
2669 if (last_objfile_name == NULL
2670 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2672 xfree (last_objfile_name);
2673 last_objfile_name = xstrdup (objfile_name (objfile));
2674 fprintf_unfiltered (gdb_stdlog,
2675 "Creating one or more symtabs for objfile %s ...\n",
2678 fprintf_unfiltered (gdb_stdlog,
2679 "Created symtab %s for module %s.\n",
2680 host_address_to_string (symtab), filename);
2683 /* Add it to CUST's list of symtabs. */
2684 if (cust->filetabs == NULL)
2686 cust->filetabs = symtab;
2687 cust->last_filetab = symtab;
2691 cust->last_filetab->next = symtab;
2692 cust->last_filetab = symtab;
2695 /* Backlink to the containing compunit symtab. */
2696 symtab->compunit_symtab = cust;
2701 /* Allocate and initialize a new compunit.
2702 NAME is the name of the main source file, if there is one, or some
2703 descriptive text if there are no source files. */
2705 struct compunit_symtab *
2706 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2708 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2709 struct compunit_symtab);
2710 const char *saved_name;
2712 cu->objfile = objfile;
2714 /* The name we record here is only for display/debugging purposes.
2715 Just save the basename to avoid path issues (too long for display,
2716 relative vs absolute, etc.). */
2717 saved_name = lbasename (name);
2719 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2720 strlen (saved_name));
2722 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2724 if (symtab_create_debug)
2726 fprintf_unfiltered (gdb_stdlog,
2727 "Created compunit symtab %s for %s.\n",
2728 host_address_to_string (cu),
2735 /* Hook CU to the objfile it comes from. */
2738 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2740 cu->next = cu->objfile->compunit_symtabs;
2741 cu->objfile->compunit_symtabs = cu;
2745 /* Reset all data structures in gdb which may contain references to
2746 symbol table data. */
2749 clear_symtab_users (symfile_add_flags add_flags)
2751 /* Someday, we should do better than this, by only blowing away
2752 the things that really need to be blown. */
2754 /* Clear the "current" symtab first, because it is no longer valid.
2755 breakpoint_re_set may try to access the current symtab. */
2756 clear_current_source_symtab_and_line ();
2759 clear_last_displayed_sal ();
2760 clear_pc_function_cache ();
2761 gdb::observers::new_objfile.notify (NULL);
2763 /* Clear globals which might have pointed into a removed objfile.
2764 FIXME: It's not clear which of these are supposed to persist
2765 between expressions and which ought to be reset each time. */
2766 expression_context_block = NULL;
2767 innermost_block.reset ();
2769 /* Varobj may refer to old symbols, perform a cleanup. */
2770 varobj_invalidate ();
2772 /* Now that the various caches have been cleared, we can re_set
2773 our breakpoints without risking it using stale data. */
2774 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2775 breakpoint_re_set ();
2779 clear_symtab_users_cleanup (void *ignore)
2781 clear_symtab_users (0);
2785 The following code implements an abstraction for debugging overlay sections.
2787 The target model is as follows:
2788 1) The gnu linker will permit multiple sections to be mapped into the
2789 same VMA, each with its own unique LMA (or load address).
2790 2) It is assumed that some runtime mechanism exists for mapping the
2791 sections, one by one, from the load address into the VMA address.
2792 3) This code provides a mechanism for gdb to keep track of which
2793 sections should be considered to be mapped from the VMA to the LMA.
2794 This information is used for symbol lookup, and memory read/write.
2795 For instance, if a section has been mapped then its contents
2796 should be read from the VMA, otherwise from the LMA.
2798 Two levels of debugger support for overlays are available. One is
2799 "manual", in which the debugger relies on the user to tell it which
2800 overlays are currently mapped. This level of support is
2801 implemented entirely in the core debugger, and the information about
2802 whether a section is mapped is kept in the objfile->obj_section table.
2804 The second level of support is "automatic", and is only available if
2805 the target-specific code provides functionality to read the target's
2806 overlay mapping table, and translate its contents for the debugger
2807 (by updating the mapped state information in the obj_section tables).
2809 The interface is as follows:
2811 overlay map <name> -- tell gdb to consider this section mapped
2812 overlay unmap <name> -- tell gdb to consider this section unmapped
2813 overlay list -- list the sections that GDB thinks are mapped
2814 overlay read-target -- get the target's state of what's mapped
2815 overlay off/manual/auto -- set overlay debugging state
2816 Functional interface:
2817 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2818 section, return that section.
2819 find_pc_overlay(pc): find any overlay section that contains
2820 the pc, either in its VMA or its LMA
2821 section_is_mapped(sect): true if overlay is marked as mapped
2822 section_is_overlay(sect): true if section's VMA != LMA
2823 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2824 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2825 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2826 overlay_mapped_address(...): map an address from section's LMA to VMA
2827 overlay_unmapped_address(...): map an address from section's VMA to LMA
2828 symbol_overlayed_address(...): Return a "current" address for symbol:
2829 either in VMA or LMA depending on whether
2830 the symbol's section is currently mapped. */
2832 /* Overlay debugging state: */
2834 enum overlay_debugging_state overlay_debugging = ovly_off;
2835 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2837 /* Function: section_is_overlay (SECTION)
2838 Returns true if SECTION has VMA not equal to LMA, ie.
2839 SECTION is loaded at an address different from where it will "run". */
2842 section_is_overlay (struct obj_section *section)
2844 if (overlay_debugging && section)
2846 asection *bfd_section = section->the_bfd_section;
2848 if (bfd_section_lma (abfd, bfd_section) != 0
2849 && bfd_section_lma (abfd, bfd_section)
2850 != bfd_section_vma (abfd, bfd_section))
2857 /* Function: overlay_invalidate_all (void)
2858 Invalidate the mapped state of all overlay sections (mark it as stale). */
2861 overlay_invalidate_all (void)
2863 struct objfile *objfile;
2864 struct obj_section *sect;
2866 ALL_OBJSECTIONS (objfile, sect)
2867 if (section_is_overlay (sect))
2868 sect->ovly_mapped = -1;
2871 /* Function: section_is_mapped (SECTION)
2872 Returns true if section is an overlay, and is currently mapped.
2874 Access to the ovly_mapped flag is restricted to this function, so
2875 that we can do automatic update. If the global flag
2876 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2877 overlay_invalidate_all. If the mapped state of the particular
2878 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2881 section_is_mapped (struct obj_section *osect)
2883 struct gdbarch *gdbarch;
2885 if (osect == 0 || !section_is_overlay (osect))
2888 switch (overlay_debugging)
2892 return 0; /* overlay debugging off */
2893 case ovly_auto: /* overlay debugging automatic */
2894 /* Unles there is a gdbarch_overlay_update function,
2895 there's really nothing useful to do here (can't really go auto). */
2896 gdbarch = get_objfile_arch (osect->objfile);
2897 if (gdbarch_overlay_update_p (gdbarch))
2899 if (overlay_cache_invalid)
2901 overlay_invalidate_all ();
2902 overlay_cache_invalid = 0;
2904 if (osect->ovly_mapped == -1)
2905 gdbarch_overlay_update (gdbarch, osect);
2908 case ovly_on: /* overlay debugging manual */
2909 return osect->ovly_mapped == 1;
2913 /* Function: pc_in_unmapped_range
2914 If PC falls into the lma range of SECTION, return true, else false. */
2917 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2919 if (section_is_overlay (section))
2921 bfd *abfd = section->objfile->obfd;
2922 asection *bfd_section = section->the_bfd_section;
2924 /* We assume the LMA is relocated by the same offset as the VMA. */
2925 bfd_vma size = bfd_get_section_size (bfd_section);
2926 CORE_ADDR offset = obj_section_offset (section);
2928 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2929 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2936 /* Function: pc_in_mapped_range
2937 If PC falls into the vma range of SECTION, return true, else false. */
2940 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2942 if (section_is_overlay (section))
2944 if (obj_section_addr (section) <= pc
2945 && pc < obj_section_endaddr (section))
2952 /* Return true if the mapped ranges of sections A and B overlap, false
2956 sections_overlap (struct obj_section *a, struct obj_section *b)
2958 CORE_ADDR a_start = obj_section_addr (a);
2959 CORE_ADDR a_end = obj_section_endaddr (a);
2960 CORE_ADDR b_start = obj_section_addr (b);
2961 CORE_ADDR b_end = obj_section_endaddr (b);
2963 return (a_start < b_end && b_start < a_end);
2966 /* Function: overlay_unmapped_address (PC, SECTION)
2967 Returns the address corresponding to PC in the unmapped (load) range.
2968 May be the same as PC. */
2971 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2973 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2975 asection *bfd_section = section->the_bfd_section;
2977 return pc + bfd_section_lma (abfd, bfd_section)
2978 - bfd_section_vma (abfd, bfd_section);
2984 /* Function: overlay_mapped_address (PC, SECTION)
2985 Returns the address corresponding to PC in the mapped (runtime) range.
2986 May be the same as PC. */
2989 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2991 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2993 asection *bfd_section = section->the_bfd_section;
2995 return pc + bfd_section_vma (abfd, bfd_section)
2996 - bfd_section_lma (abfd, bfd_section);
3002 /* Function: symbol_overlayed_address
3003 Return one of two addresses (relative to the VMA or to the LMA),
3004 depending on whether the section is mapped or not. */
3007 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3009 if (overlay_debugging)
3011 /* If the symbol has no section, just return its regular address. */
3014 /* If the symbol's section is not an overlay, just return its
3016 if (!section_is_overlay (section))
3018 /* If the symbol's section is mapped, just return its address. */
3019 if (section_is_mapped (section))
3022 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3023 * then return its LOADED address rather than its vma address!!
3025 return overlay_unmapped_address (address, section);
3030 /* Function: find_pc_overlay (PC)
3031 Return the best-match overlay section for PC:
3032 If PC matches a mapped overlay section's VMA, return that section.
3033 Else if PC matches an unmapped section's VMA, return that section.
3034 Else if PC matches an unmapped section's LMA, return that section. */
3036 struct obj_section *
3037 find_pc_overlay (CORE_ADDR pc)
3039 struct objfile *objfile;
3040 struct obj_section *osect, *best_match = NULL;
3042 if (overlay_debugging)
3044 ALL_OBJSECTIONS (objfile, osect)
3045 if (section_is_overlay (osect))
3047 if (pc_in_mapped_range (pc, osect))
3049 if (section_is_mapped (osect))
3054 else if (pc_in_unmapped_range (pc, osect))
3061 /* Function: find_pc_mapped_section (PC)
3062 If PC falls into the VMA address range of an overlay section that is
3063 currently marked as MAPPED, return that section. Else return NULL. */
3065 struct obj_section *
3066 find_pc_mapped_section (CORE_ADDR pc)
3068 struct objfile *objfile;
3069 struct obj_section *osect;
3071 if (overlay_debugging)
3073 ALL_OBJSECTIONS (objfile, osect)
3074 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3081 /* Function: list_overlays_command
3082 Print a list of mapped sections and their PC ranges. */
3085 list_overlays_command (const char *args, int from_tty)
3088 struct objfile *objfile;
3089 struct obj_section *osect;
3091 if (overlay_debugging)
3093 ALL_OBJSECTIONS (objfile, osect)
3094 if (section_is_mapped (osect))
3096 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3101 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3102 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3103 size = bfd_get_section_size (osect->the_bfd_section);
3104 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3106 printf_filtered ("Section %s, loaded at ", name);
3107 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3108 puts_filtered (" - ");
3109 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3110 printf_filtered (", mapped at ");
3111 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3112 puts_filtered (" - ");
3113 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3114 puts_filtered ("\n");
3120 printf_filtered (_("No sections are mapped.\n"));
3123 /* Function: map_overlay_command
3124 Mark the named section as mapped (ie. residing at its VMA address). */
3127 map_overlay_command (const char *args, int from_tty)
3129 struct objfile *objfile, *objfile2;
3130 struct obj_section *sec, *sec2;
3132 if (!overlay_debugging)
3133 error (_("Overlay debugging not enabled. Use "
3134 "either the 'overlay auto' or\n"
3135 "the 'overlay manual' command."));
3137 if (args == 0 || *args == 0)
3138 error (_("Argument required: name of an overlay section"));
3140 /* First, find a section matching the user supplied argument. */
3141 ALL_OBJSECTIONS (objfile, sec)
3142 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3144 /* Now, check to see if the section is an overlay. */
3145 if (!section_is_overlay (sec))
3146 continue; /* not an overlay section */
3148 /* Mark the overlay as "mapped". */
3149 sec->ovly_mapped = 1;
3151 /* Next, make a pass and unmap any sections that are
3152 overlapped by this new section: */
3153 ALL_OBJSECTIONS (objfile2, sec2)
3154 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3157 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3158 bfd_section_name (objfile->obfd,
3159 sec2->the_bfd_section));
3160 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3164 error (_("No overlay section called %s"), args);
3167 /* Function: unmap_overlay_command
3168 Mark the overlay section as unmapped
3169 (ie. resident in its LMA address range, rather than the VMA range). */
3172 unmap_overlay_command (const char *args, int from_tty)
3174 struct objfile *objfile;
3175 struct obj_section *sec = NULL;
3177 if (!overlay_debugging)
3178 error (_("Overlay debugging not enabled. "
3179 "Use either the 'overlay auto' or\n"
3180 "the 'overlay manual' command."));
3182 if (args == 0 || *args == 0)
3183 error (_("Argument required: name of an overlay section"));
3185 /* First, find a section matching the user supplied argument. */
3186 ALL_OBJSECTIONS (objfile, sec)
3187 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3189 if (!sec->ovly_mapped)
3190 error (_("Section %s is not mapped"), args);
3191 sec->ovly_mapped = 0;
3194 error (_("No overlay section called %s"), args);
3197 /* Function: overlay_auto_command
3198 A utility command to turn on overlay debugging.
3199 Possibly this should be done via a set/show command. */
3202 overlay_auto_command (const char *args, int from_tty)
3204 overlay_debugging = ovly_auto;
3205 enable_overlay_breakpoints ();
3207 printf_unfiltered (_("Automatic overlay debugging enabled."));
3210 /* Function: overlay_manual_command
3211 A utility command to turn on overlay debugging.
3212 Possibly this should be done via a set/show command. */
3215 overlay_manual_command (const char *args, int from_tty)
3217 overlay_debugging = ovly_on;
3218 disable_overlay_breakpoints ();
3220 printf_unfiltered (_("Overlay debugging enabled."));
3223 /* Function: overlay_off_command
3224 A utility command to turn on overlay debugging.
3225 Possibly this should be done via a set/show command. */
3228 overlay_off_command (const char *args, int from_tty)
3230 overlay_debugging = ovly_off;
3231 disable_overlay_breakpoints ();
3233 printf_unfiltered (_("Overlay debugging disabled."));
3237 overlay_load_command (const char *args, int from_tty)
3239 struct gdbarch *gdbarch = get_current_arch ();
3241 if (gdbarch_overlay_update_p (gdbarch))
3242 gdbarch_overlay_update (gdbarch, NULL);
3244 error (_("This target does not know how to read its overlay state."));
3247 /* Function: overlay_command
3248 A place-holder for a mis-typed command. */
3250 /* Command list chain containing all defined "overlay" subcommands. */
3251 static struct cmd_list_element *overlaylist;
3254 overlay_command (const char *args, int from_tty)
3257 ("\"overlay\" must be followed by the name of an overlay command.\n");
3258 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3261 /* Target Overlays for the "Simplest" overlay manager:
3263 This is GDB's default target overlay layer. It works with the
3264 minimal overlay manager supplied as an example by Cygnus. The
3265 entry point is via a function pointer "gdbarch_overlay_update",
3266 so targets that use a different runtime overlay manager can
3267 substitute their own overlay_update function and take over the
3270 The overlay_update function pokes around in the target's data structures
3271 to see what overlays are mapped, and updates GDB's overlay mapping with
3274 In this simple implementation, the target data structures are as follows:
3275 unsigned _novlys; /# number of overlay sections #/
3276 unsigned _ovly_table[_novlys][4] = {
3277 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3278 {..., ..., ..., ...},
3280 unsigned _novly_regions; /# number of overlay regions #/
3281 unsigned _ovly_region_table[_novly_regions][3] = {
3282 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3285 These functions will attempt to update GDB's mappedness state in the
3286 symbol section table, based on the target's mappedness state.
3288 To do this, we keep a cached copy of the target's _ovly_table, and
3289 attempt to detect when the cached copy is invalidated. The main
3290 entry point is "simple_overlay_update(SECT), which looks up SECT in
3291 the cached table and re-reads only the entry for that section from
3292 the target (whenever possible). */
3294 /* Cached, dynamically allocated copies of the target data structures: */
3295 static unsigned (*cache_ovly_table)[4] = 0;
3296 static unsigned cache_novlys = 0;
3297 static CORE_ADDR cache_ovly_table_base = 0;
3300 VMA, OSIZE, LMA, MAPPED
3303 /* Throw away the cached copy of _ovly_table. */
3306 simple_free_overlay_table (void)
3308 if (cache_ovly_table)
3309 xfree (cache_ovly_table);
3311 cache_ovly_table = NULL;
3312 cache_ovly_table_base = 0;
3315 /* Read an array of ints of size SIZE from the target into a local buffer.
3316 Convert to host order. int LEN is number of ints. */
3319 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3320 int len, int size, enum bfd_endian byte_order)
3322 /* FIXME (alloca): Not safe if array is very large. */
3323 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3326 read_memory (memaddr, buf, len * size);
3327 for (i = 0; i < len; i++)
3328 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3331 /* Find and grab a copy of the target _ovly_table
3332 (and _novlys, which is needed for the table's size). */
3335 simple_read_overlay_table (void)
3337 struct bound_minimal_symbol novlys_msym;
3338 struct bound_minimal_symbol ovly_table_msym;
3339 struct gdbarch *gdbarch;
3341 enum bfd_endian byte_order;
3343 simple_free_overlay_table ();
3344 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3345 if (! novlys_msym.minsym)
3347 error (_("Error reading inferior's overlay table: "
3348 "couldn't find `_novlys' variable\n"
3349 "in inferior. Use `overlay manual' mode."));
3353 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3354 if (! ovly_table_msym.minsym)
3356 error (_("Error reading inferior's overlay table: couldn't find "
3357 "`_ovly_table' array\n"
3358 "in inferior. Use `overlay manual' mode."));
3362 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3363 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3364 byte_order = gdbarch_byte_order (gdbarch);
3366 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3369 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3370 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3371 read_target_long_array (cache_ovly_table_base,
3372 (unsigned int *) cache_ovly_table,
3373 cache_novlys * 4, word_size, byte_order);
3375 return 1; /* SUCCESS */
3378 /* Function: simple_overlay_update_1
3379 A helper function for simple_overlay_update. Assuming a cached copy
3380 of _ovly_table exists, look through it to find an entry whose vma,
3381 lma and size match those of OSECT. Re-read the entry and make sure
3382 it still matches OSECT (else the table may no longer be valid).
3383 Set OSECT's mapped state to match the entry. Return: 1 for
3384 success, 0 for failure. */
3387 simple_overlay_update_1 (struct obj_section *osect)
3390 asection *bsect = osect->the_bfd_section;
3391 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3392 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3393 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3395 for (i = 0; i < cache_novlys; i++)
3396 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3397 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3399 read_target_long_array (cache_ovly_table_base + i * word_size,
3400 (unsigned int *) cache_ovly_table[i],
3401 4, word_size, byte_order);
3402 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3403 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3405 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3408 else /* Warning! Warning! Target's ovly table has changed! */
3414 /* Function: simple_overlay_update
3415 If OSECT is NULL, then update all sections' mapped state
3416 (after re-reading the entire target _ovly_table).
3417 If OSECT is non-NULL, then try to find a matching entry in the
3418 cached ovly_table and update only OSECT's mapped state.
3419 If a cached entry can't be found or the cache isn't valid, then
3420 re-read the entire cache, and go ahead and update all sections. */
3423 simple_overlay_update (struct obj_section *osect)
3425 struct objfile *objfile;
3427 /* Were we given an osect to look up? NULL means do all of them. */
3429 /* Have we got a cached copy of the target's overlay table? */
3430 if (cache_ovly_table != NULL)
3432 /* Does its cached location match what's currently in the
3434 struct bound_minimal_symbol minsym
3435 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3437 if (minsym.minsym == NULL)
3438 error (_("Error reading inferior's overlay table: couldn't "
3439 "find `_ovly_table' array\n"
3440 "in inferior. Use `overlay manual' mode."));
3442 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3443 /* Then go ahead and try to look up this single section in
3445 if (simple_overlay_update_1 (osect))
3446 /* Found it! We're done. */
3450 /* Cached table no good: need to read the entire table anew.
3451 Or else we want all the sections, in which case it's actually
3452 more efficient to read the whole table in one block anyway. */
3454 if (! simple_read_overlay_table ())
3457 /* Now may as well update all sections, even if only one was requested. */
3458 ALL_OBJSECTIONS (objfile, osect)
3459 if (section_is_overlay (osect))
3462 asection *bsect = osect->the_bfd_section;
3464 for (i = 0; i < cache_novlys; i++)
3465 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3466 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3467 { /* obj_section matches i'th entry in ovly_table. */
3468 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3469 break; /* finished with inner for loop: break out. */
3474 /* Set the output sections and output offsets for section SECTP in
3475 ABFD. The relocation code in BFD will read these offsets, so we
3476 need to be sure they're initialized. We map each section to itself,
3477 with no offset; this means that SECTP->vma will be honored. */
3480 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3482 sectp->output_section = sectp;
3483 sectp->output_offset = 0;
3486 /* Default implementation for sym_relocate. */
3489 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3492 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3494 bfd *abfd = sectp->owner;
3496 /* We're only interested in sections with relocation
3498 if ((sectp->flags & SEC_RELOC) == 0)
3501 /* We will handle section offsets properly elsewhere, so relocate as if
3502 all sections begin at 0. */
3503 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3505 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3508 /* Relocate the contents of a debug section SECTP in ABFD. The
3509 contents are stored in BUF if it is non-NULL, or returned in a
3510 malloc'd buffer otherwise.
3512 For some platforms and debug info formats, shared libraries contain
3513 relocations against the debug sections (particularly for DWARF-2;
3514 one affected platform is PowerPC GNU/Linux, although it depends on
3515 the version of the linker in use). Also, ELF object files naturally
3516 have unresolved relocations for their debug sections. We need to apply
3517 the relocations in order to get the locations of symbols correct.
3518 Another example that may require relocation processing, is the
3519 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3523 symfile_relocate_debug_section (struct objfile *objfile,
3524 asection *sectp, bfd_byte *buf)
3526 gdb_assert (objfile->sf->sym_relocate);
3528 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3531 struct symfile_segment_data *
3532 get_symfile_segment_data (bfd *abfd)
3534 const struct sym_fns *sf = find_sym_fns (abfd);
3539 return sf->sym_segments (abfd);
3543 free_symfile_segment_data (struct symfile_segment_data *data)
3545 xfree (data->segment_bases);
3546 xfree (data->segment_sizes);
3547 xfree (data->segment_info);
3552 - DATA, containing segment addresses from the object file ABFD, and
3553 the mapping from ABFD's sections onto the segments that own them,
3555 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3556 segment addresses reported by the target,
3557 store the appropriate offsets for each section in OFFSETS.
3559 If there are fewer entries in SEGMENT_BASES than there are segments
3560 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3562 If there are more entries, then ignore the extra. The target may
3563 not be able to distinguish between an empty data segment and a
3564 missing data segment; a missing text segment is less plausible. */
3567 symfile_map_offsets_to_segments (bfd *abfd,
3568 const struct symfile_segment_data *data,
3569 struct section_offsets *offsets,
3570 int num_segment_bases,
3571 const CORE_ADDR *segment_bases)
3576 /* It doesn't make sense to call this function unless you have some
3577 segment base addresses. */
3578 gdb_assert (num_segment_bases > 0);
3580 /* If we do not have segment mappings for the object file, we
3581 can not relocate it by segments. */
3582 gdb_assert (data != NULL);
3583 gdb_assert (data->num_segments > 0);
3585 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3587 int which = data->segment_info[i];
3589 gdb_assert (0 <= which && which <= data->num_segments);
3591 /* Don't bother computing offsets for sections that aren't
3592 loaded as part of any segment. */
3596 /* Use the last SEGMENT_BASES entry as the address of any extra
3597 segments mentioned in DATA->segment_info. */
3598 if (which > num_segment_bases)
3599 which = num_segment_bases;
3601 offsets->offsets[i] = (segment_bases[which - 1]
3602 - data->segment_bases[which - 1]);
3609 symfile_find_segment_sections (struct objfile *objfile)
3611 bfd *abfd = objfile->obfd;
3614 struct symfile_segment_data *data;
3616 data = get_symfile_segment_data (objfile->obfd);
3620 if (data->num_segments != 1 && data->num_segments != 2)
3622 free_symfile_segment_data (data);
3626 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3628 int which = data->segment_info[i];
3632 if (objfile->sect_index_text == -1)
3633 objfile->sect_index_text = sect->index;
3635 if (objfile->sect_index_rodata == -1)
3636 objfile->sect_index_rodata = sect->index;
3638 else if (which == 2)
3640 if (objfile->sect_index_data == -1)
3641 objfile->sect_index_data = sect->index;
3643 if (objfile->sect_index_bss == -1)
3644 objfile->sect_index_bss = sect->index;
3648 free_symfile_segment_data (data);
3651 /* Listen for free_objfile events. */
3654 symfile_free_objfile (struct objfile *objfile)
3656 /* Remove the target sections owned by this objfile. */
3657 if (objfile != NULL)
3658 remove_target_sections ((void *) objfile);
3661 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3662 Expand all symtabs that match the specified criteria.
3663 See quick_symbol_functions.expand_symtabs_matching for details. */
3666 expand_symtabs_matching
3667 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3668 const lookup_name_info &lookup_name,
3669 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3670 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3671 enum search_domain kind)
3673 struct objfile *objfile;
3675 ALL_OBJFILES (objfile)
3678 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3681 expansion_notify, kind);
3685 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3686 Map function FUN over every file.
3687 See quick_symbol_functions.map_symbol_filenames for details. */
3690 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3693 struct objfile *objfile;
3695 ALL_OBJFILES (objfile)
3698 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3705 namespace selftests {
3706 namespace filename_language {
3708 static void test_filename_language ()
3710 /* This test messes up the filename_language_table global. */
3711 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3713 /* Test deducing an unknown extension. */
3714 language lang = deduce_language_from_filename ("myfile.blah");
3715 SELF_CHECK (lang == language_unknown);
3717 /* Test deducing a known extension. */
3718 lang = deduce_language_from_filename ("myfile.c");
3719 SELF_CHECK (lang == language_c);
3721 /* Test adding a new extension using the internal API. */
3722 add_filename_language (".blah", language_pascal);
3723 lang = deduce_language_from_filename ("myfile.blah");
3724 SELF_CHECK (lang == language_pascal);
3728 test_set_ext_lang_command ()
3730 /* This test messes up the filename_language_table global. */
3731 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3733 /* Confirm that the .hello extension is not known. */
3734 language lang = deduce_language_from_filename ("cake.hello");
3735 SELF_CHECK (lang == language_unknown);
3737 /* Test adding a new extension using the CLI command. */
3738 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3739 ext_args = args_holder.get ();
3740 set_ext_lang_command (NULL, 1, NULL);
3742 lang = deduce_language_from_filename ("cake.hello");
3743 SELF_CHECK (lang == language_rust);
3745 /* Test overriding an existing extension using the CLI command. */
3746 int size_before = filename_language_table.size ();
3747 args_holder.reset (xstrdup (".hello pascal"));
3748 ext_args = args_holder.get ();
3749 set_ext_lang_command (NULL, 1, NULL);
3750 int size_after = filename_language_table.size ();
3752 lang = deduce_language_from_filename ("cake.hello");
3753 SELF_CHECK (lang == language_pascal);
3754 SELF_CHECK (size_before == size_after);
3757 } /* namespace filename_language */
3758 } /* namespace selftests */
3760 #endif /* GDB_SELF_TEST */
3763 _initialize_symfile (void)
3765 struct cmd_list_element *c;
3767 gdb::observers::free_objfile.attach (symfile_free_objfile);
3769 #define READNOW_READNEVER_HELP \
3770 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3771 immediately. This makes the command slower, but may make future operations\n\
3773 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3774 symbolic debug information."
3776 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3777 Load symbol table from executable file FILE.\n\
3778 Usage: symbol-file [-readnow | -readnever] FILE\n\
3779 The `file' command can also load symbol tables, as well as setting the file\n\
3780 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3781 set_cmd_completer (c, filename_completer);
3783 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3784 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3785 Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3786 -s SECT-NAME SECT-ADDR]...\n\
3787 ADDR is the starting address of the file's text.\n\
3788 Each '-s' argument provides a section name and address, and\n\
3789 should be specified if the data and bss segments are not contiguous\n\
3790 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3791 READNOW_READNEVER_HELP),
3793 set_cmd_completer (c, filename_completer);
3795 c = add_cmd ("remove-symbol-file", class_files,
3796 remove_symbol_file_command, _("\
3797 Remove a symbol file added via the add-symbol-file command.\n\
3798 Usage: remove-symbol-file FILENAME\n\
3799 remove-symbol-file -a ADDRESS\n\
3800 The file to remove can be identified by its filename or by an address\n\
3801 that lies within the boundaries of this symbol file in memory."),
3804 c = add_cmd ("load", class_files, load_command, _("\
3805 Dynamically load FILE into the running program, and record its symbols\n\
3806 for access from GDB.\n\
3807 Usage: load [FILE] [OFFSET]\n\
3808 An optional load OFFSET may also be given as a literal address.\n\
3809 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3810 on its own."), &cmdlist);
3811 set_cmd_completer (c, filename_completer);
3813 add_prefix_cmd ("overlay", class_support, overlay_command,
3814 _("Commands for debugging overlays."), &overlaylist,
3815 "overlay ", 0, &cmdlist);
3817 add_com_alias ("ovly", "overlay", class_alias, 1);
3818 add_com_alias ("ov", "overlay", class_alias, 1);
3820 add_cmd ("map-overlay", class_support, map_overlay_command,
3821 _("Assert that an overlay section is mapped."), &overlaylist);
3823 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3824 _("Assert that an overlay section is unmapped."), &overlaylist);
3826 add_cmd ("list-overlays", class_support, list_overlays_command,
3827 _("List mappings of overlay sections."), &overlaylist);
3829 add_cmd ("manual", class_support, overlay_manual_command,
3830 _("Enable overlay debugging."), &overlaylist);
3831 add_cmd ("off", class_support, overlay_off_command,
3832 _("Disable overlay debugging."), &overlaylist);
3833 add_cmd ("auto", class_support, overlay_auto_command,
3834 _("Enable automatic overlay debugging."), &overlaylist);
3835 add_cmd ("load-target", class_support, overlay_load_command,
3836 _("Read the overlay mapping state from the target."), &overlaylist);
3838 /* Filename extension to source language lookup table: */
3839 add_setshow_string_noescape_cmd ("extension-language", class_files,
3841 Set mapping between filename extension and source language."), _("\
3842 Show mapping between filename extension and source language."), _("\
3843 Usage: set extension-language .foo bar"),
3844 set_ext_lang_command,
3846 &setlist, &showlist);
3848 add_info ("extensions", info_ext_lang_command,
3849 _("All filename extensions associated with a source language."));
3851 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3852 &debug_file_directory, _("\
3853 Set the directories where separate debug symbols are searched for."), _("\
3854 Show the directories where separate debug symbols are searched for."), _("\
3855 Separate debug symbols are first searched for in the same\n\
3856 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3857 and lastly at the path of the directory of the binary with\n\
3858 each global debug-file-directory component prepended."),
3860 show_debug_file_directory,
3861 &setlist, &showlist);
3863 add_setshow_enum_cmd ("symbol-loading", no_class,
3864 print_symbol_loading_enums, &print_symbol_loading,
3866 Set printing of symbol loading messages."), _("\
3867 Show printing of symbol loading messages."), _("\
3868 off == turn all messages off\n\
3869 brief == print messages for the executable,\n\
3870 and brief messages for shared libraries\n\
3871 full == print messages for the executable,\n\
3872 and messages for each shared library."),
3875 &setprintlist, &showprintlist);
3877 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3878 &separate_debug_file_debug, _("\
3879 Set printing of separate debug info file search debug."), _("\
3880 Show printing of separate debug info file search debug."), _("\
3881 When on, GDB prints the searched locations while looking for separate debug \
3882 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3885 selftests::register_test
3886 ("filename_language", selftests::filename_language::test_filename_language);
3887 selftests::register_test
3888 ("set_ext_lang_command",
3889 selftests::filename_language::test_set_ext_lang_command);