1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
29 #include "gdb_string.h"
31 #include "gdb_obstack.h"
34 #include "expression.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
42 #include "complaints.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
55 #include "stabsread.h" /* Our own declarations */
58 extern void _initialize_stabsread (void);
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
70 struct nextfield *next;
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
80 struct next_fnfieldlist
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
94 static long read_huge_number (char **, int, int *, int);
96 static struct type *error_type (char **, struct objfile *);
99 patch_block_stabs (struct pending *, struct pending_stabs *,
102 static void fix_common_block (struct symbol *, int);
104 static int read_type_number (char **, int *);
106 static struct type *read_type (char **, struct objfile *);
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112 static struct type *read_sun_floating_type (char **, int[2],
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117 static struct type *rs6000_builtin_type (int, struct objfile *);
120 read_member_functions (struct field_info *, char **, struct type *,
124 read_struct_fields (struct field_info *, char **, struct type *,
128 read_baseclasses (struct field_info *, char **, struct type *,
132 read_tilde_fields (struct field_info *, char **, struct type *,
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137 static int attach_fields_to_type (struct field_info *, struct type *,
140 static struct type *read_struct_type (char **, struct type *,
144 static struct type *read_array_type (char **, struct type *,
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149 static void add_undefined_type (struct type *, int[2]);
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
155 static char *find_name_end (char *name);
157 static int process_reference (char **string);
159 void stabsread_clear_cache (void);
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
165 invalid_cpp_abbrev_complaint (const char *arg1)
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
179 stabs_general_complaint (const char *arg1)
181 complaint (&symfile_complaints, "%s", arg1);
184 /* Make a list of forward references which haven't been defined. */
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
223 int filenum = typenums[0];
224 int index = typenums[1];
227 struct header_file *f;
230 if (filenum == -1) /* -1,-1 is for temporary types. */
233 if (filenum < 0 || filenum >= n_this_object_header_files)
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
252 temp_type = rs6000_builtin_type (index, objfile);
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
260 old_len = type_vector_length;
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
267 while (index >= type_vector_length)
269 type_vector_length *= 2;
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
277 return (&type_vector[index]);
281 real_filenum = this_object_header_files[filenum];
283 if (real_filenum >= N_HEADER_FILES (objfile))
285 static struct type *temp_type;
287 warning (_("GDB internal error: bad real_filenum"));
290 temp_type = objfile_type (objfile)->builtin_error;
294 f = HEADER_FILES (objfile) + real_filenum;
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
299 while (index >= f->length)
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
308 return (&f->vector[index]);
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
321 struct type **type_addr;
323 if (typenums[0] == -1)
325 return (alloc_type (objfile));
328 type_addr = dbx_lookup_type (typenums, objfile);
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
335 *type_addr = alloc_type (objfile);
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
359 for (ii = 0; ii < stabs->count; ++ii)
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
367 pp = (char *) strchr (pp, ':');
369 sym = find_symbol_in_list (symbols, name, pp - name);
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
400 lookup_function_type (read_type (&pp, objfile));
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
406 add_symbol_to_list (sym, &global_symbols);
411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
414 lookup_function_type (read_type (&pp, objfile));
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
432 Returns 0 for success, -1 for error. */
435 read_type_number (char **pp, int *typenums)
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
478 static struct ref_map *ref_map;
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
490 stabsread_clear_cache (void)
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511 ref_map = (struct ref_map *)
512 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
513 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
514 ref_chunk += new_chunks;
516 ref_map[refnum].stabs = stabs;
517 ref_map[refnum].sym = sym;
518 ref_map[refnum].value = value;
521 /* Return defined sym for the reference REFNUM. */
523 ref_search (int refnum)
525 if (refnum < 0 || refnum > ref_count)
527 return ref_map[refnum].sym;
530 /* Parse a reference id in STRING and return the resulting
531 reference number. Move STRING beyond the reference id. */
534 process_reference (char **string)
542 /* Advance beyond the initial '#'. */
545 /* Read number as reference id. */
546 while (*p && isdigit (*p))
548 refnum = refnum * 10 + *p - '0';
555 /* If STRING defines a reference, store away a pointer to the reference
556 definition for later use. Return the reference number. */
559 symbol_reference_defined (char **string)
564 refnum = process_reference (&p);
566 /* Defining symbols end in '=' */
569 /* Symbol is being defined here. */
575 /* Must be a reference. Either the symbol has already been defined,
576 or this is a forward reference to it. */
583 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
585 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
587 if (regno >= gdbarch_num_regs (gdbarch)
588 + gdbarch_num_pseudo_regs (gdbarch))
590 reg_value_complaint (regno,
591 gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch),
593 SYMBOL_PRINT_NAME (sym));
595 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
601 static const struct symbol_register_ops stab_register_funcs = {
606 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
607 struct objfile *objfile)
609 struct gdbarch *gdbarch = get_objfile_arch (objfile);
611 char *p = (char *) find_name_end (string);
615 char *new_name = NULL;
617 /* We would like to eliminate nameless symbols, but keep their types.
618 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
619 to type 2, but, should not create a symbol to address that type. Since
620 the symbol will be nameless, there is no way any user can refer to it. */
624 /* Ignore syms with empty names. */
628 /* Ignore old-style symbols from cc -go */
638 /* If a nameless stab entry, all we need is the type, not the symbol.
639 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
640 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
642 current_symbol = sym = (struct symbol *)
643 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
644 memset (sym, 0, sizeof (struct symbol));
646 switch (type & N_TYPE)
649 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
652 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
655 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
659 if (processing_gcc_compilation)
661 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
662 number of bytes occupied by a type or object, which we ignore. */
663 SYMBOL_LINE (sym) = desc;
667 SYMBOL_LINE (sym) = 0; /* unknown */
670 if (is_cplus_marker (string[0]))
672 /* Special GNU C++ names. */
676 SYMBOL_SET_LINKAGE_NAME (sym, "this");
679 case 'v': /* $vtbl_ptr_type */
683 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
687 /* This was an anonymous type that was never fixed up. */
691 /* SunPRO (3.0 at least) static variable encoding. */
692 if (gdbarch_static_transform_name_p (gdbarch))
694 /* ... fall through ... */
697 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
699 goto normal; /* Do *something* with it */
705 SYMBOL_LANGUAGE (sym) = current_subfile->language;
706 if (SYMBOL_LANGUAGE (sym) == language_cplus)
708 char *name = alloca (p - string + 1);
709 memcpy (name, string, p - string);
710 name[p - string] = '\0';
711 new_name = cp_canonicalize_string (name);
712 cp_scan_for_anonymous_namespaces (sym);
714 if (new_name != NULL)
716 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
720 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
724 /* Determine the type of name being defined. */
726 /* Getting GDB to correctly skip the symbol on an undefined symbol
727 descriptor and not ever dump core is a very dodgy proposition if
728 we do things this way. I say the acorn RISC machine can just
729 fix their compiler. */
730 /* The Acorn RISC machine's compiler can put out locals that don't
731 start with "234=" or "(3,4)=", so assume anything other than the
732 deftypes we know how to handle is a local. */
733 if (!strchr ("cfFGpPrStTvVXCR", *p))
735 if (isdigit (*p) || *p == '(' || *p == '-')
744 /* c is a special case, not followed by a type-number.
745 SYMBOL:c=iVALUE for an integer constant symbol.
746 SYMBOL:c=rVALUE for a floating constant symbol.
747 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
748 e.g. "b:c=e6,0" for "const b = blob1"
749 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
752 SYMBOL_CLASS (sym) = LOC_CONST;
753 SYMBOL_TYPE (sym) = error_type (&p, objfile);
754 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
755 add_symbol_to_list (sym, &file_symbols);
765 struct type *dbl_type;
767 /* FIXME-if-picky-about-floating-accuracy: Should be using
768 target arithmetic to get the value. real.c in GCC
769 probably has the necessary code. */
771 dbl_type = objfile_type (objfile)->builtin_double;
773 obstack_alloc (&objfile->objfile_obstack,
774 TYPE_LENGTH (dbl_type));
775 store_typed_floating (dbl_valu, dbl_type, d);
777 SYMBOL_TYPE (sym) = dbl_type;
778 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
779 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
784 /* Defining integer constants this way is kind of silly,
785 since 'e' constants allows the compiler to give not
786 only the value, but the type as well. C has at least
787 int, long, unsigned int, and long long as constant
788 types; other languages probably should have at least
789 unsigned as well as signed constants. */
791 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
792 SYMBOL_VALUE (sym) = atoi (p);
793 SYMBOL_CLASS (sym) = LOC_CONST;
799 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
800 SYMBOL_VALUE (sym) = atoi (p);
801 SYMBOL_CLASS (sym) = LOC_CONST;
807 struct type *range_type;
810 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
811 gdb_byte *string_value;
813 if (quote != '\'' && quote != '"')
815 SYMBOL_CLASS (sym) = LOC_CONST;
816 SYMBOL_TYPE (sym) = error_type (&p, objfile);
817 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
818 add_symbol_to_list (sym, &file_symbols);
822 /* Find matching quote, rejecting escaped quotes. */
823 while (*p && *p != quote)
825 if (*p == '\\' && p[1] == quote)
827 string_local[ind] = (gdb_byte) quote;
833 string_local[ind] = (gdb_byte) (*p);
840 SYMBOL_CLASS (sym) = LOC_CONST;
841 SYMBOL_TYPE (sym) = error_type (&p, objfile);
842 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
843 add_symbol_to_list (sym, &file_symbols);
847 /* NULL terminate the string. */
848 string_local[ind] = 0;
849 range_type = create_range_type (NULL,
850 objfile_type (objfile)->builtin_int,
852 SYMBOL_TYPE (sym) = create_array_type (NULL,
853 objfile_type (objfile)->builtin_char,
855 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
856 memcpy (string_value, string_local, ind + 1);
859 SYMBOL_VALUE_BYTES (sym) = string_value;
860 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
865 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
866 can be represented as integral.
867 e.g. "b:c=e6,0" for "const b = blob1"
868 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
870 SYMBOL_CLASS (sym) = LOC_CONST;
871 SYMBOL_TYPE (sym) = read_type (&p, objfile);
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
880 /* If the value is too big to fit in an int (perhaps because
881 it is unsigned), or something like that, we silently get
882 a bogus value. The type and everything else about it is
883 correct. Ideally, we should be using whatever we have
884 available for parsing unsigned and long long values,
886 SYMBOL_VALUE (sym) = atoi (p);
891 SYMBOL_CLASS (sym) = LOC_CONST;
892 SYMBOL_TYPE (sym) = error_type (&p, objfile);
895 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
896 add_symbol_to_list (sym, &file_symbols);
900 /* The name of a caught exception. */
901 SYMBOL_TYPE (sym) = read_type (&p, objfile);
902 SYMBOL_CLASS (sym) = LOC_LABEL;
903 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
904 SYMBOL_VALUE_ADDRESS (sym) = valu;
905 add_symbol_to_list (sym, &local_symbols);
909 /* A static function definition. */
910 SYMBOL_TYPE (sym) = read_type (&p, objfile);
911 SYMBOL_CLASS (sym) = LOC_BLOCK;
912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
913 add_symbol_to_list (sym, &file_symbols);
914 /* fall into process_function_types. */
916 process_function_types:
917 /* Function result types are described as the result type in stabs.
918 We need to convert this to the function-returning-type-X type
919 in GDB. E.g. "int" is converted to "function returning int". */
920 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
921 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
923 /* All functions in C++ have prototypes. Stabs does not offer an
924 explicit way to identify prototyped or unprototyped functions,
925 but both GCC and Sun CC emit stabs for the "call-as" type rather
926 than the "declared-as" type for unprototyped functions, so
927 we treat all functions as if they were prototyped. This is used
928 primarily for promotion when calling the function from GDB. */
929 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
931 /* fall into process_prototype_types */
933 process_prototype_types:
934 /* Sun acc puts declared types of arguments here. */
937 struct type *ftype = SYMBOL_TYPE (sym);
942 /* Obtain a worst case guess for the number of arguments
943 by counting the semicolons. */
950 /* Allocate parameter information fields and fill them in. */
951 TYPE_FIELDS (ftype) = (struct field *)
952 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
957 /* A type number of zero indicates the start of varargs.
958 FIXME: GDB currently ignores vararg functions. */
959 if (p[0] == '0' && p[1] == '\0')
961 ptype = read_type (&p, objfile);
963 /* The Sun compilers mark integer arguments, which should
964 be promoted to the width of the calling conventions, with
965 a type which references itself. This type is turned into
966 a TYPE_CODE_VOID type by read_type, and we have to turn
967 it back into builtin_int here.
968 FIXME: Do we need a new builtin_promoted_int_arg ? */
969 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
970 ptype = objfile_type (objfile)->builtin_int;
971 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
972 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
974 TYPE_NFIELDS (ftype) = nparams;
975 TYPE_PROTOTYPED (ftype) = 1;
980 /* A global function definition. */
981 SYMBOL_TYPE (sym) = read_type (&p, objfile);
982 SYMBOL_CLASS (sym) = LOC_BLOCK;
983 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
984 add_symbol_to_list (sym, &global_symbols);
985 goto process_function_types;
988 /* For a class G (global) symbol, it appears that the
989 value is not correct. It is necessary to search for the
990 corresponding linker definition to find the value.
991 These definitions appear at the end of the namelist. */
992 SYMBOL_TYPE (sym) = read_type (&p, objfile);
993 SYMBOL_CLASS (sym) = LOC_STATIC;
994 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
995 /* Don't add symbol references to global_sym_chain.
996 Symbol references don't have valid names and wont't match up with
997 minimal symbols when the global_sym_chain is relocated.
998 We'll fixup symbol references when we fixup the defining symbol. */
999 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1001 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1002 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1003 global_sym_chain[i] = sym;
1005 add_symbol_to_list (sym, &global_symbols);
1008 /* This case is faked by a conditional above,
1009 when there is no code letter in the dbx data.
1010 Dbx data never actually contains 'l'. */
1013 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1014 SYMBOL_CLASS (sym) = LOC_LOCAL;
1015 SYMBOL_VALUE (sym) = valu;
1016 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1017 add_symbol_to_list (sym, &local_symbols);
1022 /* pF is a two-letter code that means a function parameter in Fortran.
1023 The type-number specifies the type of the return value.
1024 Translate it into a pointer-to-function type. */
1028 = lookup_pointer_type
1029 (lookup_function_type (read_type (&p, objfile)));
1032 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1034 SYMBOL_CLASS (sym) = LOC_ARG;
1035 SYMBOL_VALUE (sym) = valu;
1036 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1037 SYMBOL_IS_ARGUMENT (sym) = 1;
1038 add_symbol_to_list (sym, &local_symbols);
1040 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1042 /* On little-endian machines, this crud is never necessary,
1043 and, if the extra bytes contain garbage, is harmful. */
1047 /* If it's gcc-compiled, if it says `short', believe it. */
1048 if (processing_gcc_compilation
1049 || gdbarch_believe_pcc_promotion (gdbarch))
1052 if (!gdbarch_believe_pcc_promotion (gdbarch))
1054 /* If PCC says a parameter is a short or a char, it is
1056 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1057 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1058 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1061 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1062 ? objfile_type (objfile)->builtin_unsigned_int
1063 : objfile_type (objfile)->builtin_int;
1069 /* acc seems to use P to declare the prototypes of functions that
1070 are referenced by this file. gdb is not prepared to deal
1071 with this extra information. FIXME, it ought to. */
1074 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1075 goto process_prototype_types;
1080 /* Parameter which is in a register. */
1081 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1082 SYMBOL_CLASS (sym) = LOC_REGISTER;
1083 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1084 SYMBOL_IS_ARGUMENT (sym) = 1;
1085 SYMBOL_VALUE (sym) = valu;
1086 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1087 add_symbol_to_list (sym, &local_symbols);
1091 /* Register variable (either global or local). */
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 SYMBOL_CLASS (sym) = LOC_REGISTER;
1094 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1095 SYMBOL_VALUE (sym) = valu;
1096 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1097 if (within_function)
1099 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1100 the same name to represent an argument passed in a
1101 register. GCC uses 'P' for the same case. So if we find
1102 such a symbol pair we combine it into one 'P' symbol.
1103 For Sun cc we need to do this regardless of
1104 stabs_argument_has_addr, because the compiler puts out
1105 the 'p' symbol even if it never saves the argument onto
1108 On most machines, we want to preserve both symbols, so
1109 that we can still get information about what is going on
1110 with the stack (VAX for computing args_printed, using
1111 stack slots instead of saved registers in backtraces,
1114 Note that this code illegally combines
1115 main(argc) struct foo argc; { register struct foo argc; }
1116 but this case is considered pathological and causes a warning
1117 from a decent compiler. */
1120 && local_symbols->nsyms > 0
1121 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1123 struct symbol *prev_sym;
1124 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1125 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1126 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1127 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1128 SYMBOL_LINKAGE_NAME (sym)) == 0)
1130 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1131 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1132 /* Use the type from the LOC_REGISTER; that is the type
1133 that is actually in that register. */
1134 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1135 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1140 add_symbol_to_list (sym, &local_symbols);
1143 add_symbol_to_list (sym, &file_symbols);
1147 /* Static symbol at top level of file */
1148 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1149 SYMBOL_CLASS (sym) = LOC_STATIC;
1150 SYMBOL_VALUE_ADDRESS (sym) = valu;
1151 if (gdbarch_static_transform_name_p (gdbarch)
1152 && gdbarch_static_transform_name (gdbarch,
1153 SYMBOL_LINKAGE_NAME (sym))
1154 != SYMBOL_LINKAGE_NAME (sym))
1156 struct minimal_symbol *msym;
1157 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1160 char *new_name = gdbarch_static_transform_name
1161 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1162 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1163 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1166 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1167 add_symbol_to_list (sym, &file_symbols);
1171 /* In Ada, there is no distinction between typedef and non-typedef;
1172 any type declaration implicitly has the equivalent of a typedef,
1173 and thus 't' is in fact equivalent to 'Tt'.
1175 Therefore, for Ada units, we check the character immediately
1176 before the 't', and if we do not find a 'T', then make sure to
1177 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1178 will be stored in the VAR_DOMAIN). If the symbol was indeed
1179 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1180 elsewhere, so we don't need to take care of that.
1182 This is important to do, because of forward references:
1183 The cleanup of undefined types stored in undef_types only uses
1184 STRUCT_DOMAIN symbols to perform the replacement. */
1185 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1188 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1190 /* For a nameless type, we don't want a create a symbol, thus we
1191 did not use `sym'. Return without further processing. */
1195 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1196 SYMBOL_VALUE (sym) = valu;
1197 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1198 /* C++ vagaries: we may have a type which is derived from
1199 a base type which did not have its name defined when the
1200 derived class was output. We fill in the derived class's
1201 base part member's name here in that case. */
1202 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1203 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1204 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1205 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1208 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1209 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1210 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1211 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1214 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1216 /* gcc-2.6 or later (when using -fvtable-thunks)
1217 emits a unique named type for a vtable entry.
1218 Some gdb code depends on that specific name. */
1219 extern const char vtbl_ptr_name[];
1221 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1222 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1223 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1225 /* If we are giving a name to a type such as "pointer to
1226 foo" or "function returning foo", we better not set
1227 the TYPE_NAME. If the program contains "typedef char
1228 *caddr_t;", we don't want all variables of type char
1229 * to print as caddr_t. This is not just a
1230 consequence of GDB's type management; PCC and GCC (at
1231 least through version 2.4) both output variables of
1232 either type char * or caddr_t with the type number
1233 defined in the 't' symbol for caddr_t. If a future
1234 compiler cleans this up it GDB is not ready for it
1235 yet, but if it becomes ready we somehow need to
1236 disable this check (without breaking the PCC/GCC2.4
1241 Fortunately, this check seems not to be necessary
1242 for anything except pointers or functions. */
1243 /* ezannoni: 2000-10-26. This seems to apply for
1244 versions of gcc older than 2.8. This was the original
1245 problem: with the following code gdb would tell that
1246 the type for name1 is caddr_t, and func is char()
1247 typedef char *caddr_t;
1259 /* Pascal accepts names for pointer types. */
1260 if (current_subfile->language == language_pascal)
1262 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1266 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1269 add_symbol_to_list (sym, &file_symbols);
1273 /* Create the STRUCT_DOMAIN clone. */
1274 struct symbol *struct_sym = (struct symbol *)
1275 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1278 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1279 SYMBOL_VALUE (struct_sym) = valu;
1280 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1281 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1282 TYPE_NAME (SYMBOL_TYPE (sym))
1283 = obconcat (&objfile->objfile_obstack, "", "",
1284 SYMBOL_LINKAGE_NAME (sym));
1285 add_symbol_to_list (struct_sym, &file_symbols);
1291 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1292 by 't' which means we are typedef'ing it as well. */
1293 synonym = *p == 't';
1298 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1300 /* For a nameless type, we don't want a create a symbol, thus we
1301 did not use `sym'. Return without further processing. */
1305 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1306 SYMBOL_VALUE (sym) = valu;
1307 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1308 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1309 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1310 = obconcat (&objfile->objfile_obstack, "", "",
1311 SYMBOL_LINKAGE_NAME (sym));
1312 add_symbol_to_list (sym, &file_symbols);
1316 /* Clone the sym and then modify it. */
1317 struct symbol *typedef_sym = (struct symbol *)
1318 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1319 *typedef_sym = *sym;
1320 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1321 SYMBOL_VALUE (typedef_sym) = valu;
1322 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1323 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1324 TYPE_NAME (SYMBOL_TYPE (sym))
1325 = obconcat (&objfile->objfile_obstack, "", "",
1326 SYMBOL_LINKAGE_NAME (sym));
1327 add_symbol_to_list (typedef_sym, &file_symbols);
1332 /* Static symbol of local scope */
1333 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1334 SYMBOL_CLASS (sym) = LOC_STATIC;
1335 SYMBOL_VALUE_ADDRESS (sym) = valu;
1336 if (gdbarch_static_transform_name_p (gdbarch)
1337 && gdbarch_static_transform_name (gdbarch,
1338 SYMBOL_LINKAGE_NAME (sym))
1339 != SYMBOL_LINKAGE_NAME (sym))
1341 struct minimal_symbol *msym;
1342 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1345 char *new_name = gdbarch_static_transform_name
1346 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1347 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1348 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1351 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1352 add_symbol_to_list (sym, &local_symbols);
1356 /* Reference parameter */
1357 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1358 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1359 SYMBOL_IS_ARGUMENT (sym) = 1;
1360 SYMBOL_VALUE (sym) = valu;
1361 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1362 add_symbol_to_list (sym, &local_symbols);
1366 /* Reference parameter which is in a register. */
1367 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1368 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1369 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1370 SYMBOL_IS_ARGUMENT (sym) = 1;
1371 SYMBOL_VALUE (sym) = valu;
1372 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1373 add_symbol_to_list (sym, &local_symbols);
1377 /* This is used by Sun FORTRAN for "function result value".
1378 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1379 that Pascal uses it too, but when I tried it Pascal used
1380 "x:3" (local symbol) instead. */
1381 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1382 SYMBOL_CLASS (sym) = LOC_LOCAL;
1383 SYMBOL_VALUE (sym) = valu;
1384 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1385 add_symbol_to_list (sym, &local_symbols);
1389 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1390 SYMBOL_CLASS (sym) = LOC_CONST;
1391 SYMBOL_VALUE (sym) = 0;
1392 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1393 add_symbol_to_list (sym, &file_symbols);
1397 /* Some systems pass variables of certain types by reference instead
1398 of by value, i.e. they will pass the address of a structure (in a
1399 register or on the stack) instead of the structure itself. */
1401 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1402 && SYMBOL_IS_ARGUMENT (sym))
1404 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1405 variables passed in a register). */
1406 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1407 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1408 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1409 and subsequent arguments on SPARC, for example). */
1410 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1411 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1417 /* Skip rest of this symbol and return an error type.
1419 General notes on error recovery: error_type always skips to the
1420 end of the symbol (modulo cretinous dbx symbol name continuation).
1421 Thus code like this:
1423 if (*(*pp)++ != ';')
1424 return error_type (pp, objfile);
1426 is wrong because if *pp starts out pointing at '\0' (typically as the
1427 result of an earlier error), it will be incremented to point to the
1428 start of the next symbol, which might produce strange results, at least
1429 if you run off the end of the string table. Instead use
1432 return error_type (pp, objfile);
1438 foo = error_type (pp, objfile);
1442 And in case it isn't obvious, the point of all this hair is so the compiler
1443 can define new types and new syntaxes, and old versions of the
1444 debugger will be able to read the new symbol tables. */
1446 static struct type *
1447 error_type (char **pp, struct objfile *objfile)
1449 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1452 /* Skip to end of symbol. */
1453 while (**pp != '\0')
1458 /* Check for and handle cretinous dbx symbol name continuation! */
1459 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1461 *pp = next_symbol_text (objfile);
1468 return objfile_type (objfile)->builtin_error;
1472 /* Read type information or a type definition; return the type. Even
1473 though this routine accepts either type information or a type
1474 definition, the distinction is relevant--some parts of stabsread.c
1475 assume that type information starts with a digit, '-', or '(' in
1476 deciding whether to call read_type. */
1478 static struct type *
1479 read_type (char **pp, struct objfile *objfile)
1481 struct type *type = 0;
1484 char type_descriptor;
1486 /* Size in bits of type if specified by a type attribute, or -1 if
1487 there is no size attribute. */
1490 /* Used to distinguish string and bitstring from char-array and set. */
1493 /* Used to distinguish vector from array. */
1496 /* Read type number if present. The type number may be omitted.
1497 for instance in a two-dimensional array declared with type
1498 "ar1;1;10;ar1;1;10;4". */
1499 if ((**pp >= '0' && **pp <= '9')
1503 if (read_type_number (pp, typenums) != 0)
1504 return error_type (pp, objfile);
1508 /* Type is not being defined here. Either it already
1509 exists, or this is a forward reference to it.
1510 dbx_alloc_type handles both cases. */
1511 type = dbx_alloc_type (typenums, objfile);
1513 /* If this is a forward reference, arrange to complain if it
1514 doesn't get patched up by the time we're done
1516 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1517 add_undefined_type (type, typenums);
1522 /* Type is being defined here. */
1524 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1529 /* 'typenums=' not present, type is anonymous. Read and return
1530 the definition, but don't put it in the type vector. */
1531 typenums[0] = typenums[1] = -1;
1536 type_descriptor = (*pp)[-1];
1537 switch (type_descriptor)
1541 enum type_code code;
1543 /* Used to index through file_symbols. */
1544 struct pending *ppt;
1547 /* Name including "struct", etc. */
1551 char *from, *to, *p, *q1, *q2;
1553 /* Set the type code according to the following letter. */
1557 code = TYPE_CODE_STRUCT;
1560 code = TYPE_CODE_UNION;
1563 code = TYPE_CODE_ENUM;
1567 /* Complain and keep going, so compilers can invent new
1568 cross-reference types. */
1569 complaint (&symfile_complaints,
1570 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1571 code = TYPE_CODE_STRUCT;
1576 q1 = strchr (*pp, '<');
1577 p = strchr (*pp, ':');
1579 return error_type (pp, objfile);
1580 if (q1 && p > q1 && p[1] == ':')
1582 int nesting_level = 0;
1583 for (q2 = q1; *q2; q2++)
1587 else if (*q2 == '>')
1589 else if (*q2 == ':' && nesting_level == 0)
1594 return error_type (pp, objfile);
1597 if (current_subfile->language == language_cplus)
1599 char *new_name, *name = alloca (p - *pp + 1);
1600 memcpy (name, *pp, p - *pp);
1601 name[p - *pp] = '\0';
1602 new_name = cp_canonicalize_string (name);
1603 if (new_name != NULL)
1605 type_name = obsavestring (new_name, strlen (new_name),
1606 &objfile->objfile_obstack);
1610 if (type_name == NULL)
1613 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1615 /* Copy the name. */
1622 /* Set the pointer ahead of the name which we just read, and
1627 /* If this type has already been declared, then reuse the same
1628 type, rather than allocating a new one. This saves some
1631 for (ppt = file_symbols; ppt; ppt = ppt->next)
1632 for (i = 0; i < ppt->nsyms; i++)
1634 struct symbol *sym = ppt->symbol[i];
1636 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1637 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1638 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1639 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1641 obstack_free (&objfile->objfile_obstack, type_name);
1642 type = SYMBOL_TYPE (sym);
1643 if (typenums[0] != -1)
1644 *dbx_lookup_type (typenums, objfile) = type;
1649 /* Didn't find the type to which this refers, so we must
1650 be dealing with a forward reference. Allocate a type
1651 structure for it, and keep track of it so we can
1652 fill in the rest of the fields when we get the full
1654 type = dbx_alloc_type (typenums, objfile);
1655 TYPE_CODE (type) = code;
1656 TYPE_TAG_NAME (type) = type_name;
1657 INIT_CPLUS_SPECIFIC (type);
1658 TYPE_STUB (type) = 1;
1660 add_undefined_type (type, typenums);
1664 case '-': /* RS/6000 built-in type */
1678 /* We deal with something like t(1,2)=(3,4)=... which
1679 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1681 /* Allocate and enter the typedef type first.
1682 This handles recursive types. */
1683 type = dbx_alloc_type (typenums, objfile);
1684 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1686 struct type *xtype = read_type (pp, objfile);
1689 /* It's being defined as itself. That means it is "void". */
1690 TYPE_CODE (type) = TYPE_CODE_VOID;
1691 TYPE_LENGTH (type) = 1;
1693 else if (type_size >= 0 || is_string)
1695 /* This is the absolute wrong way to construct types. Every
1696 other debug format has found a way around this problem and
1697 the related problems with unnecessarily stubbed types;
1698 someone motivated should attempt to clean up the issue
1699 here as well. Once a type pointed to has been created it
1700 should not be modified.
1702 Well, it's not *absolutely* wrong. Constructing recursive
1703 types (trees, linked lists) necessarily entails modifying
1704 types after creating them. Constructing any loop structure
1705 entails side effects. The Dwarf 2 reader does handle this
1706 more gracefully (it never constructs more than once
1707 instance of a type object, so it doesn't have to copy type
1708 objects wholesale), but it still mutates type objects after
1709 other folks have references to them.
1711 Keep in mind that this circularity/mutation issue shows up
1712 at the source language level, too: C's "incomplete types",
1713 for example. So the proper cleanup, I think, would be to
1714 limit GDB's type smashing to match exactly those required
1715 by the source language. So GDB could have a
1716 "complete_this_type" function, but never create unnecessary
1717 copies of a type otherwise. */
1718 replace_type (type, xtype);
1719 TYPE_NAME (type) = NULL;
1720 TYPE_TAG_NAME (type) = NULL;
1724 TYPE_TARGET_STUB (type) = 1;
1725 TYPE_TARGET_TYPE (type) = xtype;
1730 /* In the following types, we must be sure to overwrite any existing
1731 type that the typenums refer to, rather than allocating a new one
1732 and making the typenums point to the new one. This is because there
1733 may already be pointers to the existing type (if it had been
1734 forward-referenced), and we must change it to a pointer, function,
1735 reference, or whatever, *in-place*. */
1737 case '*': /* Pointer to another type */
1738 type1 = read_type (pp, objfile);
1739 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1742 case '&': /* Reference to another type */
1743 type1 = read_type (pp, objfile);
1744 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1747 case 'f': /* Function returning another type */
1748 type1 = read_type (pp, objfile);
1749 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1752 case 'g': /* Prototyped function. (Sun) */
1754 /* Unresolved questions:
1756 - According to Sun's ``STABS Interface Manual'', for 'f'
1757 and 'F' symbol descriptors, a `0' in the argument type list
1758 indicates a varargs function. But it doesn't say how 'g'
1759 type descriptors represent that info. Someone with access
1760 to Sun's toolchain should try it out.
1762 - According to the comment in define_symbol (search for
1763 `process_prototype_types:'), Sun emits integer arguments as
1764 types which ref themselves --- like `void' types. Do we
1765 have to deal with that here, too? Again, someone with
1766 access to Sun's toolchain should try it out and let us
1769 const char *type_start = (*pp) - 1;
1770 struct type *return_type = read_type (pp, objfile);
1771 struct type *func_type
1772 = make_function_type (return_type,
1773 dbx_lookup_type (typenums, objfile));
1776 struct type_list *next;
1780 while (**pp && **pp != '#')
1782 struct type *arg_type = read_type (pp, objfile);
1783 struct type_list *new = alloca (sizeof (*new));
1784 new->type = arg_type;
1785 new->next = arg_types;
1793 complaint (&symfile_complaints,
1794 _("Prototyped function type didn't end arguments with `#':\n%s"),
1798 /* If there is just one argument whose type is `void', then
1799 that's just an empty argument list. */
1801 && ! arg_types->next
1802 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1805 TYPE_FIELDS (func_type)
1806 = (struct field *) TYPE_ALLOC (func_type,
1807 num_args * sizeof (struct field));
1808 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1811 struct type_list *t;
1813 /* We stuck each argument type onto the front of the list
1814 when we read it, so the list is reversed. Build the
1815 fields array right-to-left. */
1816 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1817 TYPE_FIELD_TYPE (func_type, i) = t->type;
1819 TYPE_NFIELDS (func_type) = num_args;
1820 TYPE_PROTOTYPED (func_type) = 1;
1826 case 'k': /* Const qualifier on some type (Sun) */
1827 type = read_type (pp, objfile);
1828 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1829 dbx_lookup_type (typenums, objfile));
1832 case 'B': /* Volatile qual on some type (Sun) */
1833 type = read_type (pp, objfile);
1834 type = make_cv_type (TYPE_CONST (type), 1, type,
1835 dbx_lookup_type (typenums, objfile));
1839 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1840 { /* Member (class & variable) type */
1841 /* FIXME -- we should be doing smash_to_XXX types here. */
1843 struct type *domain = read_type (pp, objfile);
1844 struct type *memtype;
1847 /* Invalid member type data format. */
1848 return error_type (pp, objfile);
1851 memtype = read_type (pp, objfile);
1852 type = dbx_alloc_type (typenums, objfile);
1853 smash_to_memberptr_type (type, domain, memtype);
1856 /* type attribute */
1859 /* Skip to the semicolon. */
1860 while (**pp != ';' && **pp != '\0')
1863 return error_type (pp, objfile);
1865 ++ * pp; /* Skip the semicolon. */
1869 case 's': /* Size attribute */
1870 type_size = atoi (attr + 1);
1875 case 'S': /* String attribute */
1876 /* FIXME: check to see if following type is array? */
1880 case 'V': /* Vector attribute */
1881 /* FIXME: check to see if following type is array? */
1886 /* Ignore unrecognized type attributes, so future compilers
1887 can invent new ones. */
1895 case '#': /* Method (class & fn) type */
1896 if ((*pp)[0] == '#')
1898 /* We'll get the parameter types from the name. */
1899 struct type *return_type;
1902 return_type = read_type (pp, objfile);
1903 if (*(*pp)++ != ';')
1904 complaint (&symfile_complaints,
1905 _("invalid (minimal) member type data format at symtab pos %d."),
1907 type = allocate_stub_method (return_type);
1908 if (typenums[0] != -1)
1909 *dbx_lookup_type (typenums, objfile) = type;
1913 struct type *domain = read_type (pp, objfile);
1914 struct type *return_type;
1919 /* Invalid member type data format. */
1920 return error_type (pp, objfile);
1924 return_type = read_type (pp, objfile);
1925 args = read_args (pp, ';', objfile, &nargs, &varargs);
1927 return error_type (pp, objfile);
1928 type = dbx_alloc_type (typenums, objfile);
1929 smash_to_method_type (type, domain, return_type, args,
1934 case 'r': /* Range type */
1935 type = read_range_type (pp, typenums, type_size, objfile);
1936 if (typenums[0] != -1)
1937 *dbx_lookup_type (typenums, objfile) = type;
1942 /* Sun ACC builtin int type */
1943 type = read_sun_builtin_type (pp, typenums, objfile);
1944 if (typenums[0] != -1)
1945 *dbx_lookup_type (typenums, objfile) = type;
1949 case 'R': /* Sun ACC builtin float type */
1950 type = read_sun_floating_type (pp, typenums, objfile);
1951 if (typenums[0] != -1)
1952 *dbx_lookup_type (typenums, objfile) = type;
1955 case 'e': /* Enumeration type */
1956 type = dbx_alloc_type (typenums, objfile);
1957 type = read_enum_type (pp, type, objfile);
1958 if (typenums[0] != -1)
1959 *dbx_lookup_type (typenums, objfile) = type;
1962 case 's': /* Struct type */
1963 case 'u': /* Union type */
1965 enum type_code type_code = TYPE_CODE_UNDEF;
1966 type = dbx_alloc_type (typenums, objfile);
1967 switch (type_descriptor)
1970 type_code = TYPE_CODE_STRUCT;
1973 type_code = TYPE_CODE_UNION;
1976 type = read_struct_type (pp, type, type_code, objfile);
1980 case 'a': /* Array type */
1982 return error_type (pp, objfile);
1985 type = dbx_alloc_type (typenums, objfile);
1986 type = read_array_type (pp, type, objfile);
1988 TYPE_CODE (type) = TYPE_CODE_STRING;
1990 make_vector_type (type);
1993 case 'S': /* Set or bitstring type */
1994 type1 = read_type (pp, objfile);
1995 type = create_set_type ((struct type *) NULL, type1);
1997 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1998 if (typenums[0] != -1)
1999 *dbx_lookup_type (typenums, objfile) = type;
2003 --*pp; /* Go back to the symbol in error */
2004 /* Particularly important if it was \0! */
2005 return error_type (pp, objfile);
2010 warning (_("GDB internal error, type is NULL in stabsread.c."));
2011 return error_type (pp, objfile);
2014 /* Size specified in a type attribute overrides any other size. */
2015 if (type_size != -1)
2016 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2021 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2022 Return the proper type node for a given builtin type number. */
2024 static const struct objfile_data *rs6000_builtin_type_data;
2026 static struct type *
2027 rs6000_builtin_type (int typenum, struct objfile *objfile)
2029 struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
2031 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2032 #define NUMBER_RECOGNIZED 34
2033 struct type *rettype = NULL;
2035 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2037 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2038 return objfile_type (objfile)->builtin_error;
2041 if (!negative_types)
2043 /* This includes an empty slot for type number -0. */
2044 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2045 NUMBER_RECOGNIZED + 1, struct type *);
2046 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2049 if (negative_types[-typenum] != NULL)
2050 return negative_types[-typenum];
2052 #if TARGET_CHAR_BIT != 8
2053 #error This code wrong for TARGET_CHAR_BIT not 8
2054 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2055 that if that ever becomes not true, the correct fix will be to
2056 make the size in the struct type to be in bits, not in units of
2063 /* The size of this and all the other types are fixed, defined
2064 by the debugging format. If there is a type called "int" which
2065 is other than 32 bits, then it should use a new negative type
2066 number (or avoid negative type numbers for that case).
2067 See stabs.texinfo. */
2068 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2071 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2074 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2077 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2080 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2081 "unsigned char", objfile);
2084 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2087 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2088 "unsigned short", objfile);
2091 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2092 "unsigned int", objfile);
2095 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2096 "unsigned", objfile);
2098 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2099 "unsigned long", objfile);
2102 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2105 /* IEEE single precision (32 bit). */
2106 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2109 /* IEEE double precision (64 bit). */
2110 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2113 /* This is an IEEE double on the RS/6000, and different machines with
2114 different sizes for "long double" should use different negative
2115 type numbers. See stabs.texinfo. */
2116 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2119 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2122 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2123 "boolean", objfile);
2126 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2129 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2132 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2135 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2136 "character", objfile);
2139 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2140 "logical*1", objfile);
2143 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2144 "logical*2", objfile);
2147 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2148 "logical*4", objfile);
2151 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2152 "logical", objfile);
2155 /* Complex type consisting of two IEEE single precision values. */
2156 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2157 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2161 /* Complex type consisting of two IEEE double precision values. */
2162 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2163 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2167 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2170 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2173 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2176 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2179 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2182 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2183 "unsigned long long", objfile);
2186 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2187 "logical*8", objfile);
2190 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2193 negative_types[-typenum] = rettype;
2197 /* This page contains subroutines of read_type. */
2199 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2202 update_method_name_from_physname (char **old_name, char *physname)
2206 method_name = method_name_from_physname (physname);
2208 if (method_name == NULL)
2210 complaint (&symfile_complaints,
2211 _("Method has bad physname %s\n"), physname);
2215 if (strcmp (*old_name, method_name) != 0)
2218 *old_name = method_name;
2221 xfree (method_name);
2224 /* Read member function stabs info for C++ classes. The form of each member
2227 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2229 An example with two member functions is:
2231 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2233 For the case of overloaded operators, the format is op$::*.funcs, where
2234 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2235 name (such as `+=') and `.' marks the end of the operator name.
2237 Returns 1 for success, 0 for failure. */
2240 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2241 struct objfile *objfile)
2245 /* Total number of member functions defined in this class. If the class
2246 defines two `f' functions, and one `g' function, then this will have
2248 int total_length = 0;
2252 struct next_fnfield *next;
2253 struct fn_field fn_field;
2256 struct type *look_ahead_type;
2257 struct next_fnfieldlist *new_fnlist;
2258 struct next_fnfield *new_sublist;
2262 /* Process each list until we find something that is not a member function
2263 or find the end of the functions. */
2267 /* We should be positioned at the start of the function name.
2268 Scan forward to find the first ':' and if it is not the
2269 first of a "::" delimiter, then this is not a member function. */
2281 look_ahead_type = NULL;
2284 new_fnlist = (struct next_fnfieldlist *)
2285 xmalloc (sizeof (struct next_fnfieldlist));
2286 make_cleanup (xfree, new_fnlist);
2287 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2289 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2291 /* This is a completely wierd case. In order to stuff in the
2292 names that might contain colons (the usual name delimiter),
2293 Mike Tiemann defined a different name format which is
2294 signalled if the identifier is "op$". In that case, the
2295 format is "op$::XXXX." where XXXX is the name. This is
2296 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2297 /* This lets the user type "break operator+".
2298 We could just put in "+" as the name, but that wouldn't
2300 static char opname[32] = "op$";
2301 char *o = opname + 3;
2303 /* Skip past '::'. */
2306 STABS_CONTINUE (pp, objfile);
2312 main_fn_name = savestring (opname, o - opname);
2318 main_fn_name = savestring (*pp, p - *pp);
2319 /* Skip past '::'. */
2322 new_fnlist->fn_fieldlist.name = main_fn_name;
2327 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2328 make_cleanup (xfree, new_sublist);
2329 memset (new_sublist, 0, sizeof (struct next_fnfield));
2331 /* Check for and handle cretinous dbx symbol name continuation! */
2332 if (look_ahead_type == NULL)
2335 STABS_CONTINUE (pp, objfile);
2337 new_sublist->fn_field.type = read_type (pp, objfile);
2340 /* Invalid symtab info for member function. */
2346 /* g++ version 1 kludge */
2347 new_sublist->fn_field.type = look_ahead_type;
2348 look_ahead_type = NULL;
2358 /* If this is just a stub, then we don't have the real name here. */
2360 if (TYPE_STUB (new_sublist->fn_field.type))
2362 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2363 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2364 new_sublist->fn_field.is_stub = 1;
2366 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2369 /* Set this member function's visibility fields. */
2372 case VISIBILITY_PRIVATE:
2373 new_sublist->fn_field.is_private = 1;
2375 case VISIBILITY_PROTECTED:
2376 new_sublist->fn_field.is_protected = 1;
2380 STABS_CONTINUE (pp, objfile);
2383 case 'A': /* Normal functions. */
2384 new_sublist->fn_field.is_const = 0;
2385 new_sublist->fn_field.is_volatile = 0;
2388 case 'B': /* `const' member functions. */
2389 new_sublist->fn_field.is_const = 1;
2390 new_sublist->fn_field.is_volatile = 0;
2393 case 'C': /* `volatile' member function. */
2394 new_sublist->fn_field.is_const = 0;
2395 new_sublist->fn_field.is_volatile = 1;
2398 case 'D': /* `const volatile' member function. */
2399 new_sublist->fn_field.is_const = 1;
2400 new_sublist->fn_field.is_volatile = 1;
2403 case '*': /* File compiled with g++ version 1 -- no info */
2408 complaint (&symfile_complaints,
2409 _("const/volatile indicator missing, got '%c'"), **pp);
2418 /* virtual member function, followed by index.
2419 The sign bit is set to distinguish pointers-to-methods
2420 from virtual function indicies. Since the array is
2421 in words, the quantity must be shifted left by 1
2422 on 16 bit machine, and by 2 on 32 bit machine, forcing
2423 the sign bit out, and usable as a valid index into
2424 the array. Remove the sign bit here. */
2425 new_sublist->fn_field.voffset =
2426 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2430 STABS_CONTINUE (pp, objfile);
2431 if (**pp == ';' || **pp == '\0')
2433 /* Must be g++ version 1. */
2434 new_sublist->fn_field.fcontext = 0;
2438 /* Figure out from whence this virtual function came.
2439 It may belong to virtual function table of
2440 one of its baseclasses. */
2441 look_ahead_type = read_type (pp, objfile);
2444 /* g++ version 1 overloaded methods. */
2448 new_sublist->fn_field.fcontext = look_ahead_type;
2457 look_ahead_type = NULL;
2463 /* static member function. */
2465 int slen = strlen (main_fn_name);
2467 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2469 /* For static member functions, we can't tell if they
2470 are stubbed, as they are put out as functions, and not as
2472 GCC v2 emits the fully mangled name if
2473 dbxout.c:flag_minimal_debug is not set, so we have to
2474 detect a fully mangled physname here and set is_stub
2475 accordingly. Fully mangled physnames in v2 start with
2476 the member function name, followed by two underscores.
2477 GCC v3 currently always emits stubbed member functions,
2478 but with fully mangled physnames, which start with _Z. */
2479 if (!(strncmp (new_sublist->fn_field.physname,
2480 main_fn_name, slen) == 0
2481 && new_sublist->fn_field.physname[slen] == '_'
2482 && new_sublist->fn_field.physname[slen + 1] == '_'))
2484 new_sublist->fn_field.is_stub = 1;
2491 complaint (&symfile_complaints,
2492 _("member function type missing, got '%c'"), (*pp)[-1]);
2493 /* Fall through into normal member function. */
2496 /* normal member function. */
2497 new_sublist->fn_field.voffset = 0;
2498 new_sublist->fn_field.fcontext = 0;
2502 new_sublist->next = sublist;
2503 sublist = new_sublist;
2505 STABS_CONTINUE (pp, objfile);
2507 while (**pp != ';' && **pp != '\0');
2510 STABS_CONTINUE (pp, objfile);
2512 /* Skip GCC 3.X member functions which are duplicates of the callable
2513 constructor/destructor. */
2514 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2515 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2516 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2518 xfree (main_fn_name);
2523 int has_destructor = 0, has_other = 0;
2525 struct next_fnfield *tmp_sublist;
2527 /* Various versions of GCC emit various mostly-useless
2528 strings in the name field for special member functions.
2530 For stub methods, we need to defer correcting the name
2531 until we are ready to unstub the method, because the current
2532 name string is used by gdb_mangle_name. The only stub methods
2533 of concern here are GNU v2 operators; other methods have their
2534 names correct (see caveat below).
2536 For non-stub methods, in GNU v3, we have a complete physname.
2537 Therefore we can safely correct the name now. This primarily
2538 affects constructors and destructors, whose name will be
2539 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2540 operators will also have incorrect names; for instance,
2541 "operator int" will be named "operator i" (i.e. the type is
2544 For non-stub methods in GNU v2, we have no easy way to
2545 know if we have a complete physname or not. For most
2546 methods the result depends on the platform (if CPLUS_MARKER
2547 can be `$' or `.', it will use minimal debug information, or
2548 otherwise the full physname will be included).
2550 Rather than dealing with this, we take a different approach.
2551 For v3 mangled names, we can use the full physname; for v2,
2552 we use cplus_demangle_opname (which is actually v2 specific),
2553 because the only interesting names are all operators - once again
2554 barring the caveat below. Skip this process if any method in the
2555 group is a stub, to prevent our fouling up the workings of
2558 The caveat: GCC 2.95.x (and earlier?) put constructors and
2559 destructors in the same method group. We need to split this
2560 into two groups, because they should have different names.
2561 So for each method group we check whether it contains both
2562 routines whose physname appears to be a destructor (the physnames
2563 for and destructors are always provided, due to quirks in v2
2564 mangling) and routines whose physname does not appear to be a
2565 destructor. If so then we break up the list into two halves.
2566 Even if the constructors and destructors aren't in the same group
2567 the destructor will still lack the leading tilde, so that also
2570 So, to summarize what we expect and handle here:
2572 Given Given Real Real Action
2573 method name physname physname method name
2575 __opi [none] __opi__3Foo operator int opname
2577 Foo _._3Foo _._3Foo ~Foo separate and
2579 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2580 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2583 tmp_sublist = sublist;
2584 while (tmp_sublist != NULL)
2586 if (tmp_sublist->fn_field.is_stub)
2588 if (tmp_sublist->fn_field.physname[0] == '_'
2589 && tmp_sublist->fn_field.physname[1] == 'Z')
2592 if (is_destructor_name (tmp_sublist->fn_field.physname))
2597 tmp_sublist = tmp_sublist->next;
2600 if (has_destructor && has_other)
2602 struct next_fnfieldlist *destr_fnlist;
2603 struct next_fnfield *last_sublist;
2605 /* Create a new fn_fieldlist for the destructors. */
2607 destr_fnlist = (struct next_fnfieldlist *)
2608 xmalloc (sizeof (struct next_fnfieldlist));
2609 make_cleanup (xfree, destr_fnlist);
2610 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2611 destr_fnlist->fn_fieldlist.name
2612 = obconcat (&objfile->objfile_obstack, "", "~",
2613 new_fnlist->fn_fieldlist.name);
2615 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2616 obstack_alloc (&objfile->objfile_obstack,
2617 sizeof (struct fn_field) * has_destructor);
2618 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2619 sizeof (struct fn_field) * has_destructor);
2620 tmp_sublist = sublist;
2621 last_sublist = NULL;
2623 while (tmp_sublist != NULL)
2625 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2627 tmp_sublist = tmp_sublist->next;
2631 destr_fnlist->fn_fieldlist.fn_fields[i++]
2632 = tmp_sublist->fn_field;
2634 last_sublist->next = tmp_sublist->next;
2636 sublist = tmp_sublist->next;
2637 last_sublist = tmp_sublist;
2638 tmp_sublist = tmp_sublist->next;
2641 destr_fnlist->fn_fieldlist.length = has_destructor;
2642 destr_fnlist->next = fip->fnlist;
2643 fip->fnlist = destr_fnlist;
2645 total_length += has_destructor;
2646 length -= has_destructor;
2650 /* v3 mangling prevents the use of abbreviated physnames,
2651 so we can do this here. There are stubbed methods in v3
2653 - in -gstabs instead of -gstabs+
2654 - or for static methods, which are output as a function type
2655 instead of a method type. */
2657 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2658 sublist->fn_field.physname);
2660 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2662 new_fnlist->fn_fieldlist.name =
2663 concat ("~", main_fn_name, (char *)NULL);
2664 xfree (main_fn_name);
2668 char dem_opname[256];
2670 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2671 dem_opname, DMGL_ANSI);
2673 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2676 new_fnlist->fn_fieldlist.name
2677 = obsavestring (dem_opname, strlen (dem_opname),
2678 &objfile->objfile_obstack);
2681 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2682 obstack_alloc (&objfile->objfile_obstack,
2683 sizeof (struct fn_field) * length);
2684 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2685 sizeof (struct fn_field) * length);
2686 for (i = length; (i--, sublist); sublist = sublist->next)
2688 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2691 new_fnlist->fn_fieldlist.length = length;
2692 new_fnlist->next = fip->fnlist;
2693 fip->fnlist = new_fnlist;
2695 total_length += length;
2701 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2702 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2703 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2704 memset (TYPE_FN_FIELDLISTS (type), 0,
2705 sizeof (struct fn_fieldlist) * nfn_fields);
2706 TYPE_NFN_FIELDS (type) = nfn_fields;
2707 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2713 /* Special GNU C++ name.
2715 Returns 1 for success, 0 for failure. "failure" means that we can't
2716 keep parsing and it's time for error_type(). */
2719 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2720 struct objfile *objfile)
2725 struct type *context;
2735 /* At this point, *pp points to something like "22:23=*22...",
2736 where the type number before the ':' is the "context" and
2737 everything after is a regular type definition. Lookup the
2738 type, find it's name, and construct the field name. */
2740 context = read_type (pp, objfile);
2744 case 'f': /* $vf -- a virtual function table pointer */
2745 name = type_name_no_tag (context);
2750 fip->list->field.name =
2751 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2754 case 'b': /* $vb -- a virtual bsomethingorother */
2755 name = type_name_no_tag (context);
2758 complaint (&symfile_complaints,
2759 _("C++ abbreviated type name unknown at symtab pos %d"),
2763 fip->list->field.name =
2764 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2768 invalid_cpp_abbrev_complaint (*pp);
2769 fip->list->field.name =
2770 obconcat (&objfile->objfile_obstack,
2771 "INVALID_CPLUSPLUS_ABBREV", "", "");
2775 /* At this point, *pp points to the ':'. Skip it and read the
2781 invalid_cpp_abbrev_complaint (*pp);
2784 fip->list->field.type = read_type (pp, objfile);
2786 (*pp)++; /* Skip the comma. */
2792 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2797 /* This field is unpacked. */
2798 FIELD_BITSIZE (fip->list->field) = 0;
2799 fip->list->visibility = VISIBILITY_PRIVATE;
2803 invalid_cpp_abbrev_complaint (*pp);
2804 /* We have no idea what syntax an unrecognized abbrev would have, so
2805 better return 0. If we returned 1, we would need to at least advance
2806 *pp to avoid an infinite loop. */
2813 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2814 struct type *type, struct objfile *objfile)
2816 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2818 fip->list->field.name =
2819 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2822 /* This means we have a visibility for a field coming. */
2826 fip->list->visibility = *(*pp)++;
2830 /* normal dbx-style format, no explicit visibility */
2831 fip->list->visibility = VISIBILITY_PUBLIC;
2834 fip->list->field.type = read_type (pp, objfile);
2839 /* Possible future hook for nested types. */
2842 fip->list->field.bitpos = (long) -2; /* nested type */
2852 /* Static class member. */
2853 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2857 else if (**pp != ',')
2859 /* Bad structure-type format. */
2860 stabs_general_complaint ("bad structure-type format");
2864 (*pp)++; /* Skip the comma. */
2868 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2871 stabs_general_complaint ("bad structure-type format");
2874 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2877 stabs_general_complaint ("bad structure-type format");
2882 if (FIELD_BITPOS (fip->list->field) == 0
2883 && FIELD_BITSIZE (fip->list->field) == 0)
2885 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2886 it is a field which has been optimized out. The correct stab for
2887 this case is to use VISIBILITY_IGNORE, but that is a recent
2888 invention. (2) It is a 0-size array. For example
2889 union { int num; char str[0]; } foo. Printing _("<no value>" for
2890 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2891 will continue to work, and a 0-size array as a whole doesn't
2892 have any contents to print.
2894 I suspect this probably could also happen with gcc -gstabs (not
2895 -gstabs+) for static fields, and perhaps other C++ extensions.
2896 Hopefully few people use -gstabs with gdb, since it is intended
2897 for dbx compatibility. */
2899 /* Ignore this field. */
2900 fip->list->visibility = VISIBILITY_IGNORE;
2904 /* Detect an unpacked field and mark it as such.
2905 dbx gives a bit size for all fields.
2906 Note that forward refs cannot be packed,
2907 and treat enums as if they had the width of ints. */
2909 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2911 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2912 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2913 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2914 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2916 FIELD_BITSIZE (fip->list->field) = 0;
2918 if ((FIELD_BITSIZE (fip->list->field)
2919 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2920 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2921 && FIELD_BITSIZE (fip->list->field)
2922 == gdbarch_int_bit (gdbarch))
2925 FIELD_BITPOS (fip->list->field) % 8 == 0)
2927 FIELD_BITSIZE (fip->list->field) = 0;
2933 /* Read struct or class data fields. They have the form:
2935 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2937 At the end, we see a semicolon instead of a field.
2939 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2942 The optional VISIBILITY is one of:
2944 '/0' (VISIBILITY_PRIVATE)
2945 '/1' (VISIBILITY_PROTECTED)
2946 '/2' (VISIBILITY_PUBLIC)
2947 '/9' (VISIBILITY_IGNORE)
2949 or nothing, for C style fields with public visibility.
2951 Returns 1 for success, 0 for failure. */
2954 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2955 struct objfile *objfile)
2958 struct nextfield *new;
2960 /* We better set p right now, in case there are no fields at all... */
2964 /* Read each data member type until we find the terminating ';' at the end of
2965 the data member list, or break for some other reason such as finding the
2966 start of the member function list. */
2967 /* Stab string for structure/union does not end with two ';' in
2968 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2970 while (**pp != ';' && **pp != '\0')
2972 STABS_CONTINUE (pp, objfile);
2973 /* Get space to record the next field's data. */
2974 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2975 make_cleanup (xfree, new);
2976 memset (new, 0, sizeof (struct nextfield));
2977 new->next = fip->list;
2980 /* Get the field name. */
2983 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2984 unless the CPLUS_MARKER is followed by an underscore, in
2985 which case it is just the name of an anonymous type, which we
2986 should handle like any other type name. */
2988 if (is_cplus_marker (p[0]) && p[1] != '_')
2990 if (!read_cpp_abbrev (fip, pp, type, objfile))
2995 /* Look for the ':' that separates the field name from the field
2996 values. Data members are delimited by a single ':', while member
2997 functions are delimited by a pair of ':'s. When we hit the member
2998 functions (if any), terminate scan loop and return. */
3000 while (*p != ':' && *p != '\0')
3007 /* Check to see if we have hit the member functions yet. */
3012 read_one_struct_field (fip, pp, p, type, objfile);
3014 if (p[0] == ':' && p[1] == ':')
3016 /* (the deleted) chill the list of fields: the last entry (at
3017 the head) is a partially constructed entry which we now
3019 fip->list = fip->list->next;
3024 /* The stabs for C++ derived classes contain baseclass information which
3025 is marked by a '!' character after the total size. This function is
3026 called when we encounter the baseclass marker, and slurps up all the
3027 baseclass information.
3029 Immediately following the '!' marker is the number of base classes that
3030 the class is derived from, followed by information for each base class.
3031 For each base class, there are two visibility specifiers, a bit offset
3032 to the base class information within the derived class, a reference to
3033 the type for the base class, and a terminating semicolon.
3035 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3037 Baseclass information marker __________________|| | | | | | |
3038 Number of baseclasses __________________________| | | | | | |
3039 Visibility specifiers (2) ________________________| | | | | |
3040 Offset in bits from start of class _________________| | | | |
3041 Type number for base class ___________________________| | | |
3042 Visibility specifiers (2) _______________________________| | |
3043 Offset in bits from start of class ________________________| |
3044 Type number of base class ____________________________________|
3046 Return 1 for success, 0 for (error-type-inducing) failure. */
3052 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3053 struct objfile *objfile)
3056 struct nextfield *new;
3064 /* Skip the '!' baseclass information marker. */
3068 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3071 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3077 /* Some stupid compilers have trouble with the following, so break
3078 it up into simpler expressions. */
3079 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3080 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3083 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3086 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3087 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3091 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3093 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3095 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3096 make_cleanup (xfree, new);
3097 memset (new, 0, sizeof (struct nextfield));
3098 new->next = fip->list;
3100 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3102 STABS_CONTINUE (pp, objfile);
3106 /* Nothing to do. */
3109 SET_TYPE_FIELD_VIRTUAL (type, i);
3112 /* Unknown character. Complain and treat it as non-virtual. */
3114 complaint (&symfile_complaints,
3115 _("Unknown virtual character `%c' for baseclass"), **pp);
3120 new->visibility = *(*pp)++;
3121 switch (new->visibility)
3123 case VISIBILITY_PRIVATE:
3124 case VISIBILITY_PROTECTED:
3125 case VISIBILITY_PUBLIC:
3128 /* Bad visibility format. Complain and treat it as
3131 complaint (&symfile_complaints,
3132 _("Unknown visibility `%c' for baseclass"),
3134 new->visibility = VISIBILITY_PUBLIC;
3141 /* The remaining value is the bit offset of the portion of the object
3142 corresponding to this baseclass. Always zero in the absence of
3143 multiple inheritance. */
3145 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3150 /* The last piece of baseclass information is the type of the
3151 base class. Read it, and remember it's type name as this
3154 new->field.type = read_type (pp, objfile);
3155 new->field.name = type_name_no_tag (new->field.type);
3157 /* skip trailing ';' and bump count of number of fields seen */
3166 /* The tail end of stabs for C++ classes that contain a virtual function
3167 pointer contains a tilde, a %, and a type number.
3168 The type number refers to the base class (possibly this class itself) which
3169 contains the vtable pointer for the current class.
3171 This function is called when we have parsed all the method declarations,
3172 so we can look for the vptr base class info. */
3175 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3176 struct objfile *objfile)
3180 STABS_CONTINUE (pp, objfile);
3182 /* If we are positioned at a ';', then skip it. */
3192 if (**pp == '=' || **pp == '+' || **pp == '-')
3194 /* Obsolete flags that used to indicate the presence
3195 of constructors and/or destructors. */
3199 /* Read either a '%' or the final ';'. */
3200 if (*(*pp)++ == '%')
3202 /* The next number is the type number of the base class
3203 (possibly our own class) which supplies the vtable for
3204 this class. Parse it out, and search that class to find
3205 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3206 and TYPE_VPTR_FIELDNO. */
3211 t = read_type (pp, objfile);
3213 while (*p != '\0' && *p != ';')
3219 /* Premature end of symbol. */
3223 TYPE_VPTR_BASETYPE (type) = t;
3224 if (type == t) /* Our own class provides vtbl ptr */
3226 for (i = TYPE_NFIELDS (t) - 1;
3227 i >= TYPE_N_BASECLASSES (t);
3230 char *name = TYPE_FIELD_NAME (t, i);
3231 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3232 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3234 TYPE_VPTR_FIELDNO (type) = i;
3238 /* Virtual function table field not found. */
3239 complaint (&symfile_complaints,
3240 _("virtual function table pointer not found when defining class `%s'"),
3246 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3257 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3261 for (n = TYPE_NFN_FIELDS (type);
3262 fip->fnlist != NULL;
3263 fip->fnlist = fip->fnlist->next)
3265 --n; /* Circumvent Sun3 compiler bug */
3266 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3271 /* Create the vector of fields, and record how big it is.
3272 We need this info to record proper virtual function table information
3273 for this class's virtual functions. */
3276 attach_fields_to_type (struct field_info *fip, struct type *type,
3277 struct objfile *objfile)
3280 int non_public_fields = 0;
3281 struct nextfield *scan;
3283 /* Count up the number of fields that we have, as well as taking note of
3284 whether or not there are any non-public fields, which requires us to
3285 allocate and build the private_field_bits and protected_field_bits
3288 for (scan = fip->list; scan != NULL; scan = scan->next)
3291 if (scan->visibility != VISIBILITY_PUBLIC)
3293 non_public_fields++;
3297 /* Now we know how many fields there are, and whether or not there are any
3298 non-public fields. Record the field count, allocate space for the
3299 array of fields, and create blank visibility bitfields if necessary. */
3301 TYPE_NFIELDS (type) = nfields;
3302 TYPE_FIELDS (type) = (struct field *)
3303 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3304 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3306 if (non_public_fields)
3308 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3310 TYPE_FIELD_PRIVATE_BITS (type) =
3311 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3312 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3314 TYPE_FIELD_PROTECTED_BITS (type) =
3315 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3316 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3318 TYPE_FIELD_IGNORE_BITS (type) =
3319 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3320 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3323 /* Copy the saved-up fields into the field vector. Start from the head
3324 of the list, adding to the tail of the field array, so that they end
3325 up in the same order in the array in which they were added to the list. */
3327 while (nfields-- > 0)
3329 TYPE_FIELD (type, nfields) = fip->list->field;
3330 switch (fip->list->visibility)
3332 case VISIBILITY_PRIVATE:
3333 SET_TYPE_FIELD_PRIVATE (type, nfields);
3336 case VISIBILITY_PROTECTED:
3337 SET_TYPE_FIELD_PROTECTED (type, nfields);
3340 case VISIBILITY_IGNORE:
3341 SET_TYPE_FIELD_IGNORE (type, nfields);
3344 case VISIBILITY_PUBLIC:
3348 /* Unknown visibility. Complain and treat it as public. */
3350 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3351 fip->list->visibility);
3355 fip->list = fip->list->next;
3361 /* Complain that the compiler has emitted more than one definition for the
3362 structure type TYPE. */
3364 complain_about_struct_wipeout (struct type *type)
3369 if (TYPE_TAG_NAME (type))
3371 name = TYPE_TAG_NAME (type);
3372 switch (TYPE_CODE (type))
3374 case TYPE_CODE_STRUCT: kind = "struct "; break;
3375 case TYPE_CODE_UNION: kind = "union "; break;
3376 case TYPE_CODE_ENUM: kind = "enum "; break;
3380 else if (TYPE_NAME (type))
3382 name = TYPE_NAME (type);
3391 complaint (&symfile_complaints,
3392 _("struct/union type gets multiply defined: %s%s"), kind, name);
3395 /* Set the length for all variants of a same main_type, which are
3396 connected in the closed chain.
3398 This is something that needs to be done when a type is defined *after*
3399 some cross references to this type have already been read. Consider
3400 for instance the following scenario where we have the following two
3403 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3404 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3406 A stubbed version of type dummy is created while processing the first
3407 stabs entry. The length of that type is initially set to zero, since
3408 it is unknown at this point. Also, a "constant" variation of type
3409 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3412 The second stabs entry allows us to replace the stubbed definition
3413 with the real definition. However, we still need to adjust the length
3414 of the "constant" variation of that type, as its length was left
3415 untouched during the main type replacement... */
3418 set_length_in_type_chain (struct type *type)
3420 struct type *ntype = TYPE_CHAIN (type);
3422 while (ntype != type)
3424 if (TYPE_LENGTH(ntype) == 0)
3425 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3427 complain_about_struct_wipeout (ntype);
3428 ntype = TYPE_CHAIN (ntype);
3432 /* Read the description of a structure (or union type) and return an object
3433 describing the type.
3435 PP points to a character pointer that points to the next unconsumed token
3436 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3437 *PP will point to "4a:1,0,32;;".
3439 TYPE points to an incomplete type that needs to be filled in.
3441 OBJFILE points to the current objfile from which the stabs information is
3442 being read. (Note that it is redundant in that TYPE also contains a pointer
3443 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3446 static struct type *
3447 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3448 struct objfile *objfile)
3450 struct cleanup *back_to;
3451 struct field_info fi;
3456 /* When describing struct/union/class types in stabs, G++ always drops
3457 all qualifications from the name. So if you've got:
3458 struct A { ... struct B { ... }; ... };
3459 then G++ will emit stabs for `struct A::B' that call it simply
3460 `struct B'. Obviously, if you've got a real top-level definition for
3461 `struct B', or other nested definitions, this is going to cause
3464 Obviously, GDB can't fix this by itself, but it can at least avoid
3465 scribbling on existing structure type objects when new definitions
3467 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3468 || TYPE_STUB (type)))
3470 complain_about_struct_wipeout (type);
3472 /* It's probably best to return the type unchanged. */
3476 back_to = make_cleanup (null_cleanup, 0);
3478 INIT_CPLUS_SPECIFIC (type);
3479 TYPE_CODE (type) = type_code;
3480 TYPE_STUB (type) = 0;
3482 /* First comes the total size in bytes. */
3486 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3488 return error_type (pp, objfile);
3489 set_length_in_type_chain (type);
3492 /* Now read the baseclasses, if any, read the regular C struct or C++
3493 class member fields, attach the fields to the type, read the C++
3494 member functions, attach them to the type, and then read any tilde
3495 field (baseclass specifier for the class holding the main vtable). */
3497 if (!read_baseclasses (&fi, pp, type, objfile)
3498 || !read_struct_fields (&fi, pp, type, objfile)
3499 || !attach_fields_to_type (&fi, type, objfile)
3500 || !read_member_functions (&fi, pp, type, objfile)
3501 || !attach_fn_fields_to_type (&fi, type)
3502 || !read_tilde_fields (&fi, pp, type, objfile))
3504 type = error_type (pp, objfile);
3507 do_cleanups (back_to);
3511 /* Read a definition of an array type,
3512 and create and return a suitable type object.
3513 Also creates a range type which represents the bounds of that
3516 static struct type *
3517 read_array_type (char **pp, struct type *type,
3518 struct objfile *objfile)
3520 struct type *index_type, *element_type, *range_type;
3525 /* Format of an array type:
3526 "ar<index type>;lower;upper;<array_contents_type>".
3527 OS9000: "arlower,upper;<array_contents_type>".
3529 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3530 for these, produce a type like float[][]. */
3533 index_type = read_type (pp, objfile);
3535 /* Improper format of array type decl. */
3536 return error_type (pp, objfile);
3540 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3545 lower = read_huge_number (pp, ';', &nbits, 0);
3548 return error_type (pp, objfile);
3550 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3555 upper = read_huge_number (pp, ';', &nbits, 0);
3557 return error_type (pp, objfile);
3559 element_type = read_type (pp, objfile);
3568 create_range_type ((struct type *) NULL, index_type, lower, upper);
3569 type = create_array_type (type, element_type, range_type);
3575 /* Read a definition of an enumeration type,
3576 and create and return a suitable type object.
3577 Also defines the symbols that represent the values of the type. */
3579 static struct type *
3580 read_enum_type (char **pp, struct type *type,
3581 struct objfile *objfile)
3583 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3589 struct pending **symlist;
3590 struct pending *osyms, *syms;
3593 int unsigned_enum = 1;
3596 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3597 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3598 to do? For now, force all enum values to file scope. */
3599 if (within_function)
3600 symlist = &local_symbols;
3603 symlist = &file_symbols;
3605 o_nsyms = osyms ? osyms->nsyms : 0;
3607 /* The aix4 compiler emits an extra field before the enum members;
3608 my guess is it's a type of some sort. Just ignore it. */
3611 /* Skip over the type. */
3615 /* Skip over the colon. */
3619 /* Read the value-names and their values.
3620 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3621 A semicolon or comma instead of a NAME means the end. */
3622 while (**pp && **pp != ';' && **pp != ',')
3624 STABS_CONTINUE (pp, objfile);
3628 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3630 n = read_huge_number (pp, ',', &nbits, 0);
3632 return error_type (pp, objfile);
3634 sym = (struct symbol *)
3635 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3636 memset (sym, 0, sizeof (struct symbol));
3637 SYMBOL_SET_LINKAGE_NAME (sym, name);
3638 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3639 SYMBOL_CLASS (sym) = LOC_CONST;
3640 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3641 SYMBOL_VALUE (sym) = n;
3644 add_symbol_to_list (sym, symlist);
3649 (*pp)++; /* Skip the semicolon. */
3651 /* Now fill in the fields of the type-structure. */
3653 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3654 set_length_in_type_chain (type);
3655 TYPE_CODE (type) = TYPE_CODE_ENUM;
3656 TYPE_STUB (type) = 0;
3658 TYPE_UNSIGNED (type) = 1;
3659 TYPE_NFIELDS (type) = nsyms;
3660 TYPE_FIELDS (type) = (struct field *)
3661 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3662 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3664 /* Find the symbols for the values and put them into the type.
3665 The symbols can be found in the symlist that we put them on
3666 to cause them to be defined. osyms contains the old value
3667 of that symlist; everything up to there was defined by us. */
3668 /* Note that we preserve the order of the enum constants, so
3669 that in something like "enum {FOO, LAST_THING=FOO}" we print
3670 FOO, not LAST_THING. */
3672 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3674 int last = syms == osyms ? o_nsyms : 0;
3675 int j = syms->nsyms;
3676 for (; --j >= last; --n)
3678 struct symbol *xsym = syms->symbol[j];
3679 SYMBOL_TYPE (xsym) = type;
3680 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3681 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3682 TYPE_FIELD_BITSIZE (type, n) = 0;
3691 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3692 typedefs in every file (for int, long, etc):
3694 type = b <signed> <width> <format type>; <offset>; <nbits>
3696 optional format type = c or b for char or boolean.
3697 offset = offset from high order bit to start bit of type.
3698 width is # bytes in object of this type, nbits is # bits in type.
3700 The width/offset stuff appears to be for small objects stored in
3701 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3704 static struct type *
3705 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3710 enum type_code code = TYPE_CODE_INT;
3721 return error_type (pp, objfile);
3725 /* For some odd reason, all forms of char put a c here. This is strange
3726 because no other type has this honor. We can safely ignore this because
3727 we actually determine 'char'acterness by the number of bits specified in
3729 Boolean forms, e.g Fortran logical*X, put a b here. */
3733 else if (**pp == 'b')
3735 code = TYPE_CODE_BOOL;
3739 /* The first number appears to be the number of bytes occupied
3740 by this type, except that unsigned short is 4 instead of 2.
3741 Since this information is redundant with the third number,
3742 we will ignore it. */
3743 read_huge_number (pp, ';', &nbits, 0);
3745 return error_type (pp, objfile);
3747 /* The second number is always 0, so ignore it too. */
3748 read_huge_number (pp, ';', &nbits, 0);
3750 return error_type (pp, objfile);
3752 /* The third number is the number of bits for this type. */
3753 type_bits = read_huge_number (pp, 0, &nbits, 0);
3755 return error_type (pp, objfile);
3756 /* The type *should* end with a semicolon. If it are embedded
3757 in a larger type the semicolon may be the only way to know where
3758 the type ends. If this type is at the end of the stabstring we
3759 can deal with the omitted semicolon (but we don't have to like
3760 it). Don't bother to complain(), Sun's compiler omits the semicolon
3766 return init_type (TYPE_CODE_VOID, 1,
3767 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3770 return init_type (code,
3771 type_bits / TARGET_CHAR_BIT,
3772 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3776 static struct type *
3777 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3782 struct type *rettype;
3784 /* The first number has more details about the type, for example
3786 details = read_huge_number (pp, ';', &nbits, 0);
3788 return error_type (pp, objfile);
3790 /* The second number is the number of bytes occupied by this type */
3791 nbytes = read_huge_number (pp, ';', &nbits, 0);
3793 return error_type (pp, objfile);
3795 if (details == NF_COMPLEX || details == NF_COMPLEX16
3796 || details == NF_COMPLEX32)
3798 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3799 TYPE_TARGET_TYPE (rettype)
3800 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3804 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3807 /* Read a number from the string pointed to by *PP.
3808 The value of *PP is advanced over the number.
3809 If END is nonzero, the character that ends the
3810 number must match END, or an error happens;
3811 and that character is skipped if it does match.
3812 If END is zero, *PP is left pointing to that character.
3814 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3815 the number is represented in an octal representation, assume that
3816 it is represented in a 2's complement representation with a size of
3817 TWOS_COMPLEMENT_BITS.
3819 If the number fits in a long, set *BITS to 0 and return the value.
3820 If not, set *BITS to be the number of bits in the number and return 0.
3822 If encounter garbage, set *BITS to -1 and return 0. */
3825 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3836 int twos_complement_representation = 0;
3844 /* Leading zero means octal. GCC uses this to output values larger
3845 than an int (because that would be hard in decimal). */
3852 /* Skip extra zeros. */
3856 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3858 /* Octal, possibly signed. Check if we have enough chars for a
3863 while ((c = *p1) >= '0' && c < '8')
3867 if (len > twos_complement_bits / 3
3868 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3870 /* Ok, we have enough characters for a signed value, check
3871 for signness by testing if the sign bit is set. */
3872 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3874 if (c & (1 << sign_bit))
3876 /* Definitely signed. */
3877 twos_complement_representation = 1;
3883 upper_limit = LONG_MAX / radix;
3885 while ((c = *p++) >= '0' && c < ('0' + radix))
3887 if (n <= upper_limit)
3889 if (twos_complement_representation)
3891 /* Octal, signed, twos complement representation. In
3892 this case, n is the corresponding absolute value. */
3895 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3906 /* unsigned representation */
3908 n += c - '0'; /* FIXME this overflows anyway */
3914 /* This depends on large values being output in octal, which is
3921 /* Ignore leading zeroes. */
3925 else if (c == '2' || c == '3')
3946 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3948 /* We were supposed to parse a number with maximum
3949 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3960 /* Large decimal constants are an error (because it is hard to
3961 count how many bits are in them). */
3967 /* -0x7f is the same as 0x80. So deal with it by adding one to
3968 the number of bits. Two's complement represention octals
3969 can't have a '-' in front. */
3970 if (sign == -1 && !twos_complement_representation)
3981 /* It's *BITS which has the interesting information. */
3985 static struct type *
3986 read_range_type (char **pp, int typenums[2], int type_size,
3987 struct objfile *objfile)
3989 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3990 char *orig_pp = *pp;
3995 struct type *result_type;
3996 struct type *index_type = NULL;
3998 /* First comes a type we are a subrange of.
3999 In C it is usually 0, 1 or the type being defined. */
4000 if (read_type_number (pp, rangenums) != 0)
4001 return error_type (pp, objfile);
4002 self_subrange = (rangenums[0] == typenums[0] &&
4003 rangenums[1] == typenums[1]);
4008 index_type = read_type (pp, objfile);
4011 /* A semicolon should now follow; skip it. */
4015 /* The remaining two operands are usually lower and upper bounds
4016 of the range. But in some special cases they mean something else. */
4017 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4018 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4020 if (n2bits == -1 || n3bits == -1)
4021 return error_type (pp, objfile);
4024 goto handle_true_range;
4026 /* If limits are huge, must be large integral type. */
4027 if (n2bits != 0 || n3bits != 0)
4029 char got_signed = 0;
4030 char got_unsigned = 0;
4031 /* Number of bits in the type. */
4034 /* If a type size attribute has been specified, the bounds of
4035 the range should fit in this size. If the lower bounds needs
4036 more bits than the upper bound, then the type is signed. */
4037 if (n2bits <= type_size && n3bits <= type_size)
4039 if (n2bits == type_size && n2bits > n3bits)
4045 /* Range from 0 to <large number> is an unsigned large integral type. */
4046 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4051 /* Range from <large number> to <large number>-1 is a large signed
4052 integral type. Take care of the case where <large number> doesn't
4053 fit in a long but <large number>-1 does. */
4054 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4055 || (n2bits != 0 && n3bits == 0
4056 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4063 if (got_signed || got_unsigned)
4065 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4066 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4070 return error_type (pp, objfile);
4073 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4074 if (self_subrange && n2 == 0 && n3 == 0)
4075 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4077 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4078 is the width in bytes.
4080 Fortran programs appear to use this for complex types also. To
4081 distinguish between floats and complex, g77 (and others?) seem
4082 to use self-subranges for the complexes, and subranges of int for
4085 Also note that for complexes, g77 sets n2 to the size of one of
4086 the member floats, not the whole complex beast. My guess is that
4087 this was to work well with pre-COMPLEX versions of gdb. */
4089 if (n3 == 0 && n2 > 0)
4091 struct type *float_type
4092 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4096 struct type *complex_type =
4097 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4098 TYPE_TARGET_TYPE (complex_type) = float_type;
4099 return complex_type;
4105 /* If the upper bound is -1, it must really be an unsigned integral. */
4107 else if (n2 == 0 && n3 == -1)
4109 int bits = type_size;
4112 /* We don't know its size. It is unsigned int or unsigned
4113 long. GCC 2.3.3 uses this for long long too, but that is
4114 just a GDB 3.5 compatibility hack. */
4115 bits = gdbarch_int_bit (gdbarch);
4118 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4119 TYPE_FLAG_UNSIGNED, NULL, objfile);
4122 /* Special case: char is defined (Who knows why) as a subrange of
4123 itself with range 0-127. */
4124 else if (self_subrange && n2 == 0 && n3 == 127)
4125 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4127 /* We used to do this only for subrange of self or subrange of int. */
4130 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4131 "unsigned long", and we already checked for that,
4132 so don't need to test for it here. */
4135 /* n3 actually gives the size. */
4136 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4139 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4140 unsigned n-byte integer. But do require n to be a power of
4141 two; we don't want 3- and 5-byte integers flying around. */
4147 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4150 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4151 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4155 /* I think this is for Convex "long long". Since I don't know whether
4156 Convex sets self_subrange, I also accept that particular size regardless
4157 of self_subrange. */
4158 else if (n3 == 0 && n2 < 0
4160 || n2 == -gdbarch_long_long_bit
4161 (gdbarch) / TARGET_CHAR_BIT))
4162 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4163 else if (n2 == -n3 - 1)
4166 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4168 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4169 if (n3 == 0x7fffffff)
4170 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4173 /* We have a real range type on our hands. Allocate space and
4174 return a real pointer. */
4178 index_type = objfile_type (objfile)->builtin_int;
4180 index_type = *dbx_lookup_type (rangenums, objfile);
4181 if (index_type == NULL)
4183 /* Does this actually ever happen? Is that why we are worrying
4184 about dealing with it rather than just calling error_type? */
4186 complaint (&symfile_complaints,
4187 _("base type %d of range type is not defined"), rangenums[1]);
4189 index_type = objfile_type (objfile)->builtin_int;
4192 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4193 return (result_type);
4196 /* Read in an argument list. This is a list of types, separated by commas
4197 and terminated with END. Return the list of types read in, or NULL
4198 if there is an error. */
4200 static struct field *
4201 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4204 /* FIXME! Remove this arbitrary limit! */
4205 struct type *types[1024]; /* allow for fns of 1023 parameters */
4212 /* Invalid argument list: no ','. */
4215 STABS_CONTINUE (pp, objfile);
4216 types[n++] = read_type (pp, objfile);
4218 (*pp)++; /* get past `end' (the ':' character) */
4222 /* We should read at least the THIS parameter here. Some broken stabs
4223 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4224 have been present ";-16,(0,43)" reference instead. This way the
4225 excessive ";" marker prematurely stops the parameters parsing. */
4227 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4230 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4238 rval = (struct field *) xmalloc (n * sizeof (struct field));
4239 memset (rval, 0, n * sizeof (struct field));
4240 for (i = 0; i < n; i++)
4241 rval[i].type = types[i];
4246 /* Common block handling. */
4248 /* List of symbols declared since the last BCOMM. This list is a tail
4249 of local_symbols. When ECOMM is seen, the symbols on the list
4250 are noted so their proper addresses can be filled in later,
4251 using the common block base address gotten from the assembler
4254 static struct pending *common_block;
4255 static int common_block_i;
4257 /* Name of the current common block. We get it from the BCOMM instead of the
4258 ECOMM to match IBM documentation (even though IBM puts the name both places
4259 like everyone else). */
4260 static char *common_block_name;
4262 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4263 to remain after this function returns. */
4266 common_block_start (char *name, struct objfile *objfile)
4268 if (common_block_name != NULL)
4270 complaint (&symfile_complaints,
4271 _("Invalid symbol data: common block within common block"));
4273 common_block = local_symbols;
4274 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4275 common_block_name = obsavestring (name, strlen (name),
4276 &objfile->objfile_obstack);
4279 /* Process a N_ECOMM symbol. */
4282 common_block_end (struct objfile *objfile)
4284 /* Symbols declared since the BCOMM are to have the common block
4285 start address added in when we know it. common_block and
4286 common_block_i point to the first symbol after the BCOMM in
4287 the local_symbols list; copy the list and hang it off the
4288 symbol for the common block name for later fixup. */
4291 struct pending *new = 0;
4292 struct pending *next;
4295 if (common_block_name == NULL)
4297 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4301 sym = (struct symbol *)
4302 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4303 memset (sym, 0, sizeof (struct symbol));
4304 /* Note: common_block_name already saved on objfile_obstack */
4305 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4306 SYMBOL_CLASS (sym) = LOC_BLOCK;
4308 /* Now we copy all the symbols which have been defined since the BCOMM. */
4310 /* Copy all the struct pendings before common_block. */
4311 for (next = local_symbols;
4312 next != NULL && next != common_block;
4315 for (j = 0; j < next->nsyms; j++)
4316 add_symbol_to_list (next->symbol[j], &new);
4319 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4320 NULL, it means copy all the local symbols (which we already did
4323 if (common_block != NULL)
4324 for (j = common_block_i; j < common_block->nsyms; j++)
4325 add_symbol_to_list (common_block->symbol[j], &new);
4327 SYMBOL_TYPE (sym) = (struct type *) new;
4329 /* Should we be putting local_symbols back to what it was?
4332 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4333 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4334 global_sym_chain[i] = sym;
4335 common_block_name = NULL;
4338 /* Add a common block's start address to the offset of each symbol
4339 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4340 the common block name). */
4343 fix_common_block (struct symbol *sym, int valu)
4345 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4346 for (; next; next = next->next)
4349 for (j = next->nsyms - 1; j >= 0; j--)
4350 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4356 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4357 See add_undefined_type for more details. */
4360 add_undefined_type_noname (struct type *type, int typenums[2])
4364 nat.typenums[0] = typenums [0];
4365 nat.typenums[1] = typenums [1];
4368 if (noname_undefs_length == noname_undefs_allocated)
4370 noname_undefs_allocated *= 2;
4371 noname_undefs = (struct nat *)
4372 xrealloc ((char *) noname_undefs,
4373 noname_undefs_allocated * sizeof (struct nat));
4375 noname_undefs[noname_undefs_length++] = nat;
4378 /* Add TYPE to the UNDEF_TYPES vector.
4379 See add_undefined_type for more details. */
4382 add_undefined_type_1 (struct type *type)
4384 if (undef_types_length == undef_types_allocated)
4386 undef_types_allocated *= 2;
4387 undef_types = (struct type **)
4388 xrealloc ((char *) undef_types,
4389 undef_types_allocated * sizeof (struct type *));
4391 undef_types[undef_types_length++] = type;
4394 /* What about types defined as forward references inside of a small lexical
4396 /* Add a type to the list of undefined types to be checked through
4397 once this file has been read in.
4399 In practice, we actually maintain two such lists: The first list
4400 (UNDEF_TYPES) is used for types whose name has been provided, and
4401 concerns forward references (eg 'xs' or 'xu' forward references);
4402 the second list (NONAME_UNDEFS) is used for types whose name is
4403 unknown at creation time, because they were referenced through
4404 their type number before the actual type was declared.
4405 This function actually adds the given type to the proper list. */
4408 add_undefined_type (struct type *type, int typenums[2])
4410 if (TYPE_TAG_NAME (type) == NULL)
4411 add_undefined_type_noname (type, typenums);
4413 add_undefined_type_1 (type);
4416 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4419 cleanup_undefined_types_noname (struct objfile *objfile)
4423 for (i = 0; i < noname_undefs_length; i++)
4425 struct nat nat = noname_undefs[i];
4428 type = dbx_lookup_type (nat.typenums, objfile);
4429 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4431 /* The instance flags of the undefined type are still unset,
4432 and needs to be copied over from the reference type.
4433 Since replace_type expects them to be identical, we need
4434 to set these flags manually before hand. */
4435 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4436 replace_type (nat.type, *type);
4440 noname_undefs_length = 0;
4443 /* Go through each undefined type, see if it's still undefined, and fix it
4444 up if possible. We have two kinds of undefined types:
4446 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4447 Fix: update array length using the element bounds
4448 and the target type's length.
4449 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4450 yet defined at the time a pointer to it was made.
4451 Fix: Do a full lookup on the struct/union tag. */
4454 cleanup_undefined_types_1 (void)
4458 /* Iterate over every undefined type, and look for a symbol whose type
4459 matches our undefined type. The symbol matches if:
4460 1. It is a typedef in the STRUCT domain;
4461 2. It has the same name, and same type code;
4462 3. The instance flags are identical.
4464 It is important to check the instance flags, because we have seen
4465 examples where the debug info contained definitions such as:
4467 "foo_t:t30=B31=xefoo_t:"
4469 In this case, we have created an undefined type named "foo_t" whose
4470 instance flags is null (when processing "xefoo_t"), and then created
4471 another type with the same name, but with different instance flags
4472 ('B' means volatile). I think that the definition above is wrong,
4473 since the same type cannot be volatile and non-volatile at the same
4474 time, but we need to be able to cope with it when it happens. The
4475 approach taken here is to treat these two types as different. */
4477 for (type = undef_types; type < undef_types + undef_types_length; type++)
4479 switch (TYPE_CODE (*type))
4482 case TYPE_CODE_STRUCT:
4483 case TYPE_CODE_UNION:
4484 case TYPE_CODE_ENUM:
4486 /* Check if it has been defined since. Need to do this here
4487 as well as in check_typedef to deal with the (legitimate in
4488 C though not C++) case of several types with the same name
4489 in different source files. */
4490 if (TYPE_STUB (*type))
4492 struct pending *ppt;
4494 /* Name of the type, without "struct" or "union" */
4495 char *typename = TYPE_TAG_NAME (*type);
4497 if (typename == NULL)
4499 complaint (&symfile_complaints, _("need a type name"));
4502 for (ppt = file_symbols; ppt; ppt = ppt->next)
4504 for (i = 0; i < ppt->nsyms; i++)
4506 struct symbol *sym = ppt->symbol[i];
4508 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4509 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4510 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4512 && (TYPE_INSTANCE_FLAGS (*type) ==
4513 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4514 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4516 replace_type (*type, SYMBOL_TYPE (sym));
4525 complaint (&symfile_complaints,
4526 _("forward-referenced types left unresolved, "
4534 undef_types_length = 0;
4537 /* Try to fix all the undefined types we ecountered while processing
4541 cleanup_undefined_types (struct objfile *objfile)
4543 cleanup_undefined_types_1 ();
4544 cleanup_undefined_types_noname (objfile);
4547 /* Scan through all of the global symbols defined in the object file,
4548 assigning values to the debugging symbols that need to be assigned
4549 to. Get these symbols from the minimal symbol table. */
4552 scan_file_globals (struct objfile *objfile)
4555 struct minimal_symbol *msymbol;
4556 struct symbol *sym, *prev;
4557 struct objfile *resolve_objfile;
4559 /* SVR4 based linkers copy referenced global symbols from shared
4560 libraries to the main executable.
4561 If we are scanning the symbols for a shared library, try to resolve
4562 them from the minimal symbols of the main executable first. */
4564 if (symfile_objfile && objfile != symfile_objfile)
4565 resolve_objfile = symfile_objfile;
4567 resolve_objfile = objfile;
4571 /* Avoid expensive loop through all minimal symbols if there are
4572 no unresolved symbols. */
4573 for (hash = 0; hash < HASHSIZE; hash++)
4575 if (global_sym_chain[hash])
4578 if (hash >= HASHSIZE)
4581 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4585 /* Skip static symbols. */
4586 switch (MSYMBOL_TYPE (msymbol))
4598 /* Get the hash index and check all the symbols
4599 under that hash index. */
4601 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4603 for (sym = global_sym_chain[hash]; sym;)
4605 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4606 SYMBOL_LINKAGE_NAME (sym)) == 0)
4608 /* Splice this symbol out of the hash chain and
4609 assign the value we have to it. */
4612 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4616 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4619 /* Check to see whether we need to fix up a common block. */
4620 /* Note: this code might be executed several times for
4621 the same symbol if there are multiple references. */
4624 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4626 fix_common_block (sym,
4627 SYMBOL_VALUE_ADDRESS (msymbol));
4631 SYMBOL_VALUE_ADDRESS (sym)
4632 = SYMBOL_VALUE_ADDRESS (msymbol);
4634 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4639 sym = SYMBOL_VALUE_CHAIN (prev);
4643 sym = global_sym_chain[hash];
4649 sym = SYMBOL_VALUE_CHAIN (sym);
4653 if (resolve_objfile == objfile)
4655 resolve_objfile = objfile;
4658 /* Change the storage class of any remaining unresolved globals to
4659 LOC_UNRESOLVED and remove them from the chain. */
4660 for (hash = 0; hash < HASHSIZE; hash++)
4662 sym = global_sym_chain[hash];
4666 sym = SYMBOL_VALUE_CHAIN (sym);
4668 /* Change the symbol address from the misleading chain value
4670 SYMBOL_VALUE_ADDRESS (prev) = 0;
4672 /* Complain about unresolved common block symbols. */
4673 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4674 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4676 complaint (&symfile_complaints,
4677 _("%s: common block `%s' from global_sym_chain unresolved"),
4678 objfile->name, SYMBOL_PRINT_NAME (prev));
4681 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4684 /* Initialize anything that needs initializing when starting to read
4685 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4689 stabsread_init (void)
4693 /* Initialize anything that needs initializing when a completely new
4694 symbol file is specified (not just adding some symbols from another
4695 file, e.g. a shared library). */
4698 stabsread_new_init (void)
4700 /* Empty the hash table of global syms looking for values. */
4701 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4704 /* Initialize anything that needs initializing at the same time as
4705 start_symtab() is called. */
4710 global_stabs = NULL; /* AIX COFF */
4711 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4712 n_this_object_header_files = 1;
4713 type_vector_length = 0;
4714 type_vector = (struct type **) 0;
4716 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4717 common_block_name = NULL;
4720 /* Call after end_symtab() */
4727 xfree (type_vector);
4730 type_vector_length = 0;
4731 previous_stab_code = 0;
4735 finish_global_stabs (struct objfile *objfile)
4739 patch_block_stabs (global_symbols, global_stabs, objfile);
4740 xfree (global_stabs);
4741 global_stabs = NULL;
4745 /* Find the end of the name, delimited by a ':', but don't match
4746 ObjC symbols which look like -[Foo bar::]:bla. */
4748 find_name_end (char *name)
4751 if (s[0] == '-' || *s == '+')
4753 /* Must be an ObjC method symbol. */
4756 error (_("invalid symbol name \"%s\""), name);
4758 s = strchr (s, ']');
4761 error (_("invalid symbol name \"%s\""), name);
4763 return strchr (s, ':');
4767 return strchr (s, ':');
4771 /* Initializer for this module */
4774 _initialize_stabsread (void)
4776 rs6000_builtin_type_data = register_objfile_data ();
4778 undef_types_allocated = 20;
4779 undef_types_length = 0;
4780 undef_types = (struct type **)
4781 xmalloc (undef_types_allocated * sizeof (struct type *));
4783 noname_undefs_allocated = 20;
4784 noname_undefs_length = 0;
4785 noname_undefs = (struct nat *)
4786 xmalloc (noname_undefs_allocated * sizeof (struct nat));