1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
29 #include "gdb_string.h"
31 #include "gdb_obstack.h"
34 #include "expression.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
42 #include "complaints.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
55 #include "stabsread.h" /* Our own declarations */
58 extern void _initialize_stabsread (void);
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
70 struct nextfield *next;
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
80 struct next_fnfieldlist
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
94 static long read_huge_number (char **, int, int *, int);
96 static struct type *error_type (char **, struct objfile *);
99 patch_block_stabs (struct pending *, struct pending_stabs *,
102 static void fix_common_block (struct symbol *, int);
104 static int read_type_number (char **, int *);
106 static struct type *read_type (char **, struct objfile *);
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112 static struct type *read_sun_floating_type (char **, int[2],
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117 static struct type *rs6000_builtin_type (int);
120 read_member_functions (struct field_info *, char **, struct type *,
124 read_struct_fields (struct field_info *, char **, struct type *,
128 read_baseclasses (struct field_info *, char **, struct type *,
132 read_tilde_fields (struct field_info *, char **, struct type *,
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137 static int attach_fields_to_type (struct field_info *, struct type *,
140 static struct type *read_struct_type (char **, struct type *,
144 static struct type *read_array_type (char **, struct type *,
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149 static void add_undefined_type (struct type *, int[2]);
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
155 static char *find_name_end (char *name);
157 static int process_reference (char **string);
159 void stabsread_clear_cache (void);
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
165 invalid_cpp_abbrev_complaint (const char *arg1)
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
179 stabs_general_complaint (const char *arg1)
181 complaint (&symfile_complaints, "%s", arg1);
184 /* Make a list of forward references which haven't been defined. */
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
220 static struct type **
221 dbx_lookup_type (int typenums[2])
223 int filenum = typenums[0];
224 int index = typenums[1];
227 struct header_file *f;
230 if (filenum == -1) /* -1,-1 is for temporary types. */
233 if (filenum < 0 || filenum >= n_this_object_header_files)
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
252 temp_type = rs6000_builtin_type (index);
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
260 old_len = type_vector_length;
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
267 while (index >= type_vector_length)
269 type_vector_length *= 2;
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
277 return (&type_vector[index]);
281 real_filenum = this_object_header_files[filenum];
283 if (real_filenum >= N_HEADER_FILES (current_objfile))
285 static struct type **temp_type_p;
287 warning (_("GDB internal error: bad real_filenum"));
290 temp_type_p = &builtin_type_error;
294 f = HEADER_FILES (current_objfile) + real_filenum;
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
299 while (index >= f->length)
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
308 return (&f->vector[index]);
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
321 struct type **type_addr;
323 if (typenums[0] == -1)
325 return (alloc_type (objfile));
328 type_addr = dbx_lookup_type (typenums);
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
335 *type_addr = alloc_type (objfile);
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
359 for (ii = 0; ii < stabs->count; ++ii)
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
367 pp = (char *) strchr (pp, ':');
369 sym = find_symbol_in_list (symbols, name, pp - name);
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 DEPRECATED_SYMBOL_NAME (sym) =
391 obsavestring (name, pp - name, &objfile->objfile_obstack);
393 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
395 /* I don't think the linker does this with functions,
396 so as far as I know this is never executed.
397 But it doesn't hurt to check. */
399 lookup_function_type (read_type (&pp, objfile));
403 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 add_symbol_to_list (sym, &global_symbols);
410 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
413 lookup_function_type (read_type (&pp, objfile));
417 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
425 /* Read a number by which a type is referred to in dbx data,
426 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427 Just a single number N is equivalent to (0,N).
428 Return the two numbers by storing them in the vector TYPENUMS.
429 TYPENUMS will then be used as an argument to dbx_lookup_type.
431 Returns 0 for success, -1 for error. */
434 read_type_number (char **pp, int *typenums)
440 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
443 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
450 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
458 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
459 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
460 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
461 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463 /* Structure for storing pointers to reference definitions for fast lookup
464 during "process_later". */
473 #define MAX_CHUNK_REFS 100
474 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
475 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477 static struct ref_map *ref_map;
479 /* Ptr to free cell in chunk's linked list. */
480 static int ref_count = 0;
482 /* Number of chunks malloced. */
483 static int ref_chunk = 0;
485 /* This file maintains a cache of stabs aliases found in the symbol
486 table. If the symbol table changes, this cache must be cleared
487 or we are left holding onto data in invalid obstacks. */
489 stabsread_clear_cache (void)
495 /* Create array of pointers mapping refids to symbols and stab strings.
496 Add pointers to reference definition symbols and/or their values as we
497 find them, using their reference numbers as our index.
498 These will be used later when we resolve references. */
500 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
504 if (refnum >= ref_count)
505 ref_count = refnum + 1;
506 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
509 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
510 ref_map = (struct ref_map *)
511 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
512 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
513 ref_chunk += new_chunks;
515 ref_map[refnum].stabs = stabs;
516 ref_map[refnum].sym = sym;
517 ref_map[refnum].value = value;
520 /* Return defined sym for the reference REFNUM. */
522 ref_search (int refnum)
524 if (refnum < 0 || refnum > ref_count)
526 return ref_map[refnum].sym;
529 /* Parse a reference id in STRING and return the resulting
530 reference number. Move STRING beyond the reference id. */
533 process_reference (char **string)
541 /* Advance beyond the initial '#'. */
544 /* Read number as reference id. */
545 while (*p && isdigit (*p))
547 refnum = refnum * 10 + *p - '0';
554 /* If STRING defines a reference, store away a pointer to the reference
555 definition for later use. Return the reference number. */
558 symbol_reference_defined (char **string)
563 refnum = process_reference (&p);
565 /* Defining symbols end in '=' */
568 /* Symbol is being defined here. */
574 /* Must be a reference. Either the symbol has already been defined,
575 or this is a forward reference to it. */
582 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
583 struct objfile *objfile)
586 char *p = (char *) find_name_end (string);
591 /* We would like to eliminate nameless symbols, but keep their types.
592 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
593 to type 2, but, should not create a symbol to address that type. Since
594 the symbol will be nameless, there is no way any user can refer to it. */
598 /* Ignore syms with empty names. */
602 /* Ignore old-style symbols from cc -go */
612 /* If a nameless stab entry, all we need is the type, not the symbol.
613 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
614 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
616 current_symbol = sym = (struct symbol *)
617 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
618 memset (sym, 0, sizeof (struct symbol));
620 switch (type & N_TYPE)
623 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
626 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
629 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
633 if (processing_gcc_compilation)
635 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
636 number of bytes occupied by a type or object, which we ignore. */
637 SYMBOL_LINE (sym) = desc;
641 SYMBOL_LINE (sym) = 0; /* unknown */
644 if (is_cplus_marker (string[0]))
646 /* Special GNU C++ names. */
650 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
651 &objfile->objfile_obstack);
654 case 'v': /* $vtbl_ptr_type */
655 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
659 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
660 &objfile->objfile_obstack);
664 /* This was an anonymous type that was never fixed up. */
667 #ifdef STATIC_TRANSFORM_NAME
669 /* SunPRO (3.0 at least) static variable encoding. */
674 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
676 goto normal; /* Do *something* with it */
682 SYMBOL_LANGUAGE (sym) = current_subfile->language;
683 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
687 /* Determine the type of name being defined. */
689 /* Getting GDB to correctly skip the symbol on an undefined symbol
690 descriptor and not ever dump core is a very dodgy proposition if
691 we do things this way. I say the acorn RISC machine can just
692 fix their compiler. */
693 /* The Acorn RISC machine's compiler can put out locals that don't
694 start with "234=" or "(3,4)=", so assume anything other than the
695 deftypes we know how to handle is a local. */
696 if (!strchr ("cfFGpPrStTvVXCR", *p))
698 if (isdigit (*p) || *p == '(' || *p == '-')
707 /* c is a special case, not followed by a type-number.
708 SYMBOL:c=iVALUE for an integer constant symbol.
709 SYMBOL:c=rVALUE for a floating constant symbol.
710 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
711 e.g. "b:c=e6,0" for "const b = blob1"
712 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
715 SYMBOL_CLASS (sym) = LOC_CONST;
716 SYMBOL_TYPE (sym) = error_type (&p, objfile);
717 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
718 add_symbol_to_list (sym, &file_symbols);
729 /* FIXME-if-picky-about-floating-accuracy: Should be using
730 target arithmetic to get the value. real.c in GCC
731 probably has the necessary code. */
733 /* FIXME: lookup_fundamental_type is a hack. We should be
734 creating a type especially for the type of float constants.
735 Problem is, what type should it be?
737 Also, what should the name of this type be? Should we
738 be using 'S' constants (see stabs.texinfo) instead? */
740 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
743 obstack_alloc (&objfile->objfile_obstack,
744 TYPE_LENGTH (SYMBOL_TYPE (sym)));
745 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
746 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
747 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
752 /* Defining integer constants this way is kind of silly,
753 since 'e' constants allows the compiler to give not
754 only the value, but the type as well. C has at least
755 int, long, unsigned int, and long long as constant
756 types; other languages probably should have at least
757 unsigned as well as signed constants. */
759 /* We just need one int constant type for all objfiles.
760 It doesn't depend on languages or anything (arguably its
761 name should be a language-specific name for a type of
762 that size, but I'm inclined to say that if the compiler
763 wants a nice name for the type, it can use 'e'). */
764 static struct type *int_const_type;
766 /* Yes, this is as long as a *host* int. That is because we
768 if (int_const_type == NULL)
770 init_type (TYPE_CODE_INT,
771 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
773 (struct objfile *) NULL);
774 SYMBOL_TYPE (sym) = int_const_type;
775 SYMBOL_VALUE (sym) = atoi (p);
776 SYMBOL_CLASS (sym) = LOC_CONST;
780 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
781 can be represented as integral.
782 e.g. "b:c=e6,0" for "const b = blob1"
783 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
785 SYMBOL_CLASS (sym) = LOC_CONST;
786 SYMBOL_TYPE (sym) = read_type (&p, objfile);
790 SYMBOL_TYPE (sym) = error_type (&p, objfile);
795 /* If the value is too big to fit in an int (perhaps because
796 it is unsigned), or something like that, we silently get
797 a bogus value. The type and everything else about it is
798 correct. Ideally, we should be using whatever we have
799 available for parsing unsigned and long long values,
801 SYMBOL_VALUE (sym) = atoi (p);
806 SYMBOL_CLASS (sym) = LOC_CONST;
807 SYMBOL_TYPE (sym) = error_type (&p, objfile);
810 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
811 add_symbol_to_list (sym, &file_symbols);
815 /* The name of a caught exception. */
816 SYMBOL_TYPE (sym) = read_type (&p, objfile);
817 SYMBOL_CLASS (sym) = LOC_LABEL;
818 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
819 SYMBOL_VALUE_ADDRESS (sym) = valu;
820 add_symbol_to_list (sym, &local_symbols);
824 /* A static function definition. */
825 SYMBOL_TYPE (sym) = read_type (&p, objfile);
826 SYMBOL_CLASS (sym) = LOC_BLOCK;
827 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
828 add_symbol_to_list (sym, &file_symbols);
829 /* fall into process_function_types. */
831 process_function_types:
832 /* Function result types are described as the result type in stabs.
833 We need to convert this to the function-returning-type-X type
834 in GDB. E.g. "int" is converted to "function returning int". */
835 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
836 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
838 /* All functions in C++ have prototypes. Stabs does not offer an
839 explicit way to identify prototyped or unprototyped functions,
840 but both GCC and Sun CC emit stabs for the "call-as" type rather
841 than the "declared-as" type for unprototyped functions, so
842 we treat all functions as if they were prototyped. This is used
843 primarily for promotion when calling the function from GDB. */
844 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
846 /* fall into process_prototype_types */
848 process_prototype_types:
849 /* Sun acc puts declared types of arguments here. */
852 struct type *ftype = SYMBOL_TYPE (sym);
857 /* Obtain a worst case guess for the number of arguments
858 by counting the semicolons. */
865 /* Allocate parameter information fields and fill them in. */
866 TYPE_FIELDS (ftype) = (struct field *)
867 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
872 /* A type number of zero indicates the start of varargs.
873 FIXME: GDB currently ignores vararg functions. */
874 if (p[0] == '0' && p[1] == '\0')
876 ptype = read_type (&p, objfile);
878 /* The Sun compilers mark integer arguments, which should
879 be promoted to the width of the calling conventions, with
880 a type which references itself. This type is turned into
881 a TYPE_CODE_VOID type by read_type, and we have to turn
882 it back into builtin_type_int here.
883 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
884 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
885 ptype = builtin_type_int;
886 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
887 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
889 TYPE_NFIELDS (ftype) = nparams;
890 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
895 /* A global function definition. */
896 SYMBOL_TYPE (sym) = read_type (&p, objfile);
897 SYMBOL_CLASS (sym) = LOC_BLOCK;
898 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
899 add_symbol_to_list (sym, &global_symbols);
900 goto process_function_types;
903 /* For a class G (global) symbol, it appears that the
904 value is not correct. It is necessary to search for the
905 corresponding linker definition to find the value.
906 These definitions appear at the end of the namelist. */
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
908 SYMBOL_CLASS (sym) = LOC_STATIC;
909 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
910 /* Don't add symbol references to global_sym_chain.
911 Symbol references don't have valid names and wont't match up with
912 minimal symbols when the global_sym_chain is relocated.
913 We'll fixup symbol references when we fixup the defining symbol. */
914 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
916 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
917 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
918 global_sym_chain[i] = sym;
920 add_symbol_to_list (sym, &global_symbols);
923 /* This case is faked by a conditional above,
924 when there is no code letter in the dbx data.
925 Dbx data never actually contains 'l'. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929 SYMBOL_CLASS (sym) = LOC_LOCAL;
930 SYMBOL_VALUE (sym) = valu;
931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
932 add_symbol_to_list (sym, &local_symbols);
937 /* pF is a two-letter code that means a function parameter in Fortran.
938 The type-number specifies the type of the return value.
939 Translate it into a pointer-to-function type. */
943 = lookup_pointer_type
944 (lookup_function_type (read_type (&p, objfile)));
947 SYMBOL_TYPE (sym) = read_type (&p, objfile);
949 SYMBOL_CLASS (sym) = LOC_ARG;
950 SYMBOL_VALUE (sym) = valu;
951 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
952 add_symbol_to_list (sym, &local_symbols);
954 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_BIG)
956 /* On little-endian machines, this crud is never necessary,
957 and, if the extra bytes contain garbage, is harmful. */
961 /* If it's gcc-compiled, if it says `short', believe it. */
962 if (processing_gcc_compilation
963 || gdbarch_believe_pcc_promotion (current_gdbarch))
966 if (!gdbarch_believe_pcc_promotion (current_gdbarch))
968 /* This is the signed type which arguments get promoted to. */
969 static struct type *pcc_promotion_type;
970 /* This is the unsigned type which arguments get promoted to. */
971 static struct type *pcc_unsigned_promotion_type;
973 /* Call it "int" because this is mainly C lossage. */
974 if (pcc_promotion_type == NULL)
976 init_type (TYPE_CODE_INT,
977 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
980 if (pcc_unsigned_promotion_type == NULL)
981 pcc_unsigned_promotion_type =
982 init_type (TYPE_CODE_INT,
983 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
984 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
986 /* If PCC says a parameter is a short or a char, it is
988 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
989 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
992 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
993 ? pcc_unsigned_promotion_type
994 : pcc_promotion_type;
1000 /* acc seems to use P to declare the prototypes of functions that
1001 are referenced by this file. gdb is not prepared to deal
1002 with this extra information. FIXME, it ought to. */
1005 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1006 goto process_prototype_types;
1011 /* Parameter which is in a register. */
1012 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1013 SYMBOL_CLASS (sym) = LOC_REGPARM;
1014 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1015 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1016 + gdbarch_num_pseudo_regs (current_gdbarch))
1018 reg_value_complaint (SYMBOL_VALUE (sym),
1019 gdbarch_num_regs (current_gdbarch)
1020 + gdbarch_num_pseudo_regs (current_gdbarch),
1021 SYMBOL_PRINT_NAME (sym));
1022 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1023 /* Known safe, though useless */
1025 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1026 add_symbol_to_list (sym, &local_symbols);
1030 /* Register variable (either global or local). */
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1032 SYMBOL_CLASS (sym) = LOC_REGISTER;
1033 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1034 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1035 + gdbarch_num_pseudo_regs (current_gdbarch))
1037 reg_value_complaint (SYMBOL_VALUE (sym),
1038 gdbarch_num_regs (current_gdbarch)
1039 + gdbarch_num_pseudo_regs (current_gdbarch),
1040 SYMBOL_PRINT_NAME (sym));
1041 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1042 /* Known safe, though useless */
1044 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1045 if (within_function)
1047 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1048 the same name to represent an argument passed in a
1049 register. GCC uses 'P' for the same case. So if we find
1050 such a symbol pair we combine it into one 'P' symbol.
1051 For Sun cc we need to do this regardless of
1052 stabs_argument_has_addr, because the compiler puts out
1053 the 'p' symbol even if it never saves the argument onto
1056 On most machines, we want to preserve both symbols, so
1057 that we can still get information about what is going on
1058 with the stack (VAX for computing args_printed, using
1059 stack slots instead of saved registers in backtraces,
1062 Note that this code illegally combines
1063 main(argc) struct foo argc; { register struct foo argc; }
1064 but this case is considered pathological and causes a warning
1065 from a decent compiler. */
1068 && local_symbols->nsyms > 0
1069 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1072 struct symbol *prev_sym;
1073 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1074 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1075 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1076 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1077 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1079 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1080 /* Use the type from the LOC_REGISTER; that is the type
1081 that is actually in that register. */
1082 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1083 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1088 add_symbol_to_list (sym, &local_symbols);
1091 add_symbol_to_list (sym, &file_symbols);
1095 /* Static symbol at top level of file */
1096 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1097 SYMBOL_CLASS (sym) = LOC_STATIC;
1098 SYMBOL_VALUE_ADDRESS (sym) = valu;
1099 #ifdef STATIC_TRANSFORM_NAME
1100 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1102 struct minimal_symbol *msym;
1103 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1106 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1107 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1112 add_symbol_to_list (sym, &file_symbols);
1116 /* In Ada, there is no distinction between typedef and non-typedef;
1117 any type declaration implicitly has the equivalent of a typedef,
1118 and thus 't' is in fact equivalent to 'Tt'.
1120 Therefore, for Ada units, we check the character immediately
1121 before the 't', and if we do not find a 'T', then make sure to
1122 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1123 will be stored in the VAR_DOMAIN). If the symbol was indeed
1124 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1125 elsewhere, so we don't need to take care of that.
1127 This is important to do, because of forward references:
1128 The cleanup of undefined types stored in undef_types only uses
1129 STRUCT_DOMAIN symbols to perform the replacement. */
1130 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1133 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1135 /* For a nameless type, we don't want a create a symbol, thus we
1136 did not use `sym'. Return without further processing. */
1140 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1141 SYMBOL_VALUE (sym) = valu;
1142 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1143 /* C++ vagaries: we may have a type which is derived from
1144 a base type which did not have its name defined when the
1145 derived class was output. We fill in the derived class's
1146 base part member's name here in that case. */
1147 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1148 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1149 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1150 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1153 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1154 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1155 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1156 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1159 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1161 /* gcc-2.6 or later (when using -fvtable-thunks)
1162 emits a unique named type for a vtable entry.
1163 Some gdb code depends on that specific name. */
1164 extern const char vtbl_ptr_name[];
1166 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1167 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1168 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1170 /* If we are giving a name to a type such as "pointer to
1171 foo" or "function returning foo", we better not set
1172 the TYPE_NAME. If the program contains "typedef char
1173 *caddr_t;", we don't want all variables of type char
1174 * to print as caddr_t. This is not just a
1175 consequence of GDB's type management; PCC and GCC (at
1176 least through version 2.4) both output variables of
1177 either type char * or caddr_t with the type number
1178 defined in the 't' symbol for caddr_t. If a future
1179 compiler cleans this up it GDB is not ready for it
1180 yet, but if it becomes ready we somehow need to
1181 disable this check (without breaking the PCC/GCC2.4
1186 Fortunately, this check seems not to be necessary
1187 for anything except pointers or functions. */
1188 /* ezannoni: 2000-10-26. This seems to apply for
1189 versions of gcc older than 2.8. This was the original
1190 problem: with the following code gdb would tell that
1191 the type for name1 is caddr_t, and func is char()
1192 typedef char *caddr_t;
1204 /* Pascal accepts names for pointer types. */
1205 if (current_subfile->language == language_pascal)
1207 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1211 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1214 add_symbol_to_list (sym, &file_symbols);
1218 /* Create the STRUCT_DOMAIN clone. */
1219 struct symbol *struct_sym = (struct symbol *)
1220 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1223 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1224 SYMBOL_VALUE (struct_sym) = valu;
1225 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1226 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1227 TYPE_NAME (SYMBOL_TYPE (sym))
1228 = obconcat (&objfile->objfile_obstack, "", "",
1229 DEPRECATED_SYMBOL_NAME (sym));
1230 add_symbol_to_list (struct_sym, &file_symbols);
1236 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1237 by 't' which means we are typedef'ing it as well. */
1238 synonym = *p == 't';
1243 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1245 /* For a nameless type, we don't want a create a symbol, thus we
1246 did not use `sym'. Return without further processing. */
1250 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1251 SYMBOL_VALUE (sym) = valu;
1252 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1253 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1254 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1255 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1256 add_symbol_to_list (sym, &file_symbols);
1260 /* Clone the sym and then modify it. */
1261 struct symbol *typedef_sym = (struct symbol *)
1262 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1263 *typedef_sym = *sym;
1264 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1265 SYMBOL_VALUE (typedef_sym) = valu;
1266 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1267 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1268 TYPE_NAME (SYMBOL_TYPE (sym))
1269 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1270 add_symbol_to_list (typedef_sym, &file_symbols);
1275 /* Static symbol of local scope */
1276 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1277 SYMBOL_CLASS (sym) = LOC_STATIC;
1278 SYMBOL_VALUE_ADDRESS (sym) = valu;
1279 #ifdef STATIC_TRANSFORM_NAME
1280 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1282 struct minimal_symbol *msym;
1283 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1286 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1287 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1291 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1292 add_symbol_to_list (sym, &local_symbols);
1296 /* Reference parameter */
1297 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1298 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1299 SYMBOL_VALUE (sym) = valu;
1300 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1301 add_symbol_to_list (sym, &local_symbols);
1305 /* Reference parameter which is in a register. */
1306 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1307 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1308 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1309 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1310 + gdbarch_num_pseudo_regs (current_gdbarch))
1312 reg_value_complaint (SYMBOL_VALUE (sym),
1313 gdbarch_num_regs (current_gdbarch)
1314 + gdbarch_num_pseudo_regs (current_gdbarch),
1315 SYMBOL_PRINT_NAME (sym));
1316 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1317 /* Known safe, though useless */
1319 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1320 add_symbol_to_list (sym, &local_symbols);
1324 /* This is used by Sun FORTRAN for "function result value".
1325 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1326 that Pascal uses it too, but when I tried it Pascal used
1327 "x:3" (local symbol) instead. */
1328 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1329 SYMBOL_CLASS (sym) = LOC_LOCAL;
1330 SYMBOL_VALUE (sym) = valu;
1331 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1332 add_symbol_to_list (sym, &local_symbols);
1336 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1337 SYMBOL_CLASS (sym) = LOC_CONST;
1338 SYMBOL_VALUE (sym) = 0;
1339 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1340 add_symbol_to_list (sym, &file_symbols);
1344 /* Some systems pass variables of certain types by reference instead
1345 of by value, i.e. they will pass the address of a structure (in a
1346 register or on the stack) instead of the structure itself. */
1348 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1349 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1351 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1352 variables passed in a register). */
1353 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1354 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1355 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1356 and subsequent arguments on SPARC, for example). */
1357 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1358 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1364 /* Skip rest of this symbol and return an error type.
1366 General notes on error recovery: error_type always skips to the
1367 end of the symbol (modulo cretinous dbx symbol name continuation).
1368 Thus code like this:
1370 if (*(*pp)++ != ';')
1371 return error_type (pp, objfile);
1373 is wrong because if *pp starts out pointing at '\0' (typically as the
1374 result of an earlier error), it will be incremented to point to the
1375 start of the next symbol, which might produce strange results, at least
1376 if you run off the end of the string table. Instead use
1379 return error_type (pp, objfile);
1385 foo = error_type (pp, objfile);
1389 And in case it isn't obvious, the point of all this hair is so the compiler
1390 can define new types and new syntaxes, and old versions of the
1391 debugger will be able to read the new symbol tables. */
1393 static struct type *
1394 error_type (char **pp, struct objfile *objfile)
1396 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1399 /* Skip to end of symbol. */
1400 while (**pp != '\0')
1405 /* Check for and handle cretinous dbx symbol name continuation! */
1406 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1408 *pp = next_symbol_text (objfile);
1415 return (builtin_type_error);
1419 /* Read type information or a type definition; return the type. Even
1420 though this routine accepts either type information or a type
1421 definition, the distinction is relevant--some parts of stabsread.c
1422 assume that type information starts with a digit, '-', or '(' in
1423 deciding whether to call read_type. */
1425 static struct type *
1426 read_type (char **pp, struct objfile *objfile)
1428 struct type *type = 0;
1431 char type_descriptor;
1433 /* Size in bits of type if specified by a type attribute, or -1 if
1434 there is no size attribute. */
1437 /* Used to distinguish string and bitstring from char-array and set. */
1440 /* Used to distinguish vector from array. */
1443 /* Read type number if present. The type number may be omitted.
1444 for instance in a two-dimensional array declared with type
1445 "ar1;1;10;ar1;1;10;4". */
1446 if ((**pp >= '0' && **pp <= '9')
1450 if (read_type_number (pp, typenums) != 0)
1451 return error_type (pp, objfile);
1455 /* Type is not being defined here. Either it already
1456 exists, or this is a forward reference to it.
1457 dbx_alloc_type handles both cases. */
1458 type = dbx_alloc_type (typenums, objfile);
1460 /* If this is a forward reference, arrange to complain if it
1461 doesn't get patched up by the time we're done
1463 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1464 add_undefined_type (type, typenums);
1469 /* Type is being defined here. */
1471 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1476 /* 'typenums=' not present, type is anonymous. Read and return
1477 the definition, but don't put it in the type vector. */
1478 typenums[0] = typenums[1] = -1;
1483 type_descriptor = (*pp)[-1];
1484 switch (type_descriptor)
1488 enum type_code code;
1490 /* Used to index through file_symbols. */
1491 struct pending *ppt;
1494 /* Name including "struct", etc. */
1498 char *from, *to, *p, *q1, *q2;
1500 /* Set the type code according to the following letter. */
1504 code = TYPE_CODE_STRUCT;
1507 code = TYPE_CODE_UNION;
1510 code = TYPE_CODE_ENUM;
1514 /* Complain and keep going, so compilers can invent new
1515 cross-reference types. */
1516 complaint (&symfile_complaints,
1517 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1518 code = TYPE_CODE_STRUCT;
1523 q1 = strchr (*pp, '<');
1524 p = strchr (*pp, ':');
1526 return error_type (pp, objfile);
1527 if (q1 && p > q1 && p[1] == ':')
1529 int nesting_level = 0;
1530 for (q2 = q1; *q2; q2++)
1534 else if (*q2 == '>')
1536 else if (*q2 == ':' && nesting_level == 0)
1541 return error_type (pp, objfile);
1544 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1546 /* Copy the name. */
1552 /* Set the pointer ahead of the name which we just read, and
1557 /* If this type has already been declared, then reuse the same
1558 type, rather than allocating a new one. This saves some
1561 for (ppt = file_symbols; ppt; ppt = ppt->next)
1562 for (i = 0; i < ppt->nsyms; i++)
1564 struct symbol *sym = ppt->symbol[i];
1566 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1567 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1568 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1569 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1571 obstack_free (&objfile->objfile_obstack, type_name);
1572 type = SYMBOL_TYPE (sym);
1573 if (typenums[0] != -1)
1574 *dbx_lookup_type (typenums) = type;
1579 /* Didn't find the type to which this refers, so we must
1580 be dealing with a forward reference. Allocate a type
1581 structure for it, and keep track of it so we can
1582 fill in the rest of the fields when we get the full
1584 type = dbx_alloc_type (typenums, objfile);
1585 TYPE_CODE (type) = code;
1586 TYPE_TAG_NAME (type) = type_name;
1587 INIT_CPLUS_SPECIFIC (type);
1588 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1590 add_undefined_type (type, typenums);
1594 case '-': /* RS/6000 built-in type */
1608 /* We deal with something like t(1,2)=(3,4)=... which
1609 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1611 /* Allocate and enter the typedef type first.
1612 This handles recursive types. */
1613 type = dbx_alloc_type (typenums, objfile);
1614 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1616 struct type *xtype = read_type (pp, objfile);
1619 /* It's being defined as itself. That means it is "void". */
1620 TYPE_CODE (type) = TYPE_CODE_VOID;
1621 TYPE_LENGTH (type) = 1;
1623 else if (type_size >= 0 || is_string)
1625 /* This is the absolute wrong way to construct types. Every
1626 other debug format has found a way around this problem and
1627 the related problems with unnecessarily stubbed types;
1628 someone motivated should attempt to clean up the issue
1629 here as well. Once a type pointed to has been created it
1630 should not be modified.
1632 Well, it's not *absolutely* wrong. Constructing recursive
1633 types (trees, linked lists) necessarily entails modifying
1634 types after creating them. Constructing any loop structure
1635 entails side effects. The Dwarf 2 reader does handle this
1636 more gracefully (it never constructs more than once
1637 instance of a type object, so it doesn't have to copy type
1638 objects wholesale), but it still mutates type objects after
1639 other folks have references to them.
1641 Keep in mind that this circularity/mutation issue shows up
1642 at the source language level, too: C's "incomplete types",
1643 for example. So the proper cleanup, I think, would be to
1644 limit GDB's type smashing to match exactly those required
1645 by the source language. So GDB could have a
1646 "complete_this_type" function, but never create unnecessary
1647 copies of a type otherwise. */
1648 replace_type (type, xtype);
1649 TYPE_NAME (type) = NULL;
1650 TYPE_TAG_NAME (type) = NULL;
1654 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1655 TYPE_TARGET_TYPE (type) = xtype;
1660 /* In the following types, we must be sure to overwrite any existing
1661 type that the typenums refer to, rather than allocating a new one
1662 and making the typenums point to the new one. This is because there
1663 may already be pointers to the existing type (if it had been
1664 forward-referenced), and we must change it to a pointer, function,
1665 reference, or whatever, *in-place*. */
1667 case '*': /* Pointer to another type */
1668 type1 = read_type (pp, objfile);
1669 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1672 case '&': /* Reference to another type */
1673 type1 = read_type (pp, objfile);
1674 type = make_reference_type (type1, dbx_lookup_type (typenums));
1677 case 'f': /* Function returning another type */
1678 type1 = read_type (pp, objfile);
1679 type = make_function_type (type1, dbx_lookup_type (typenums));
1682 case 'g': /* Prototyped function. (Sun) */
1684 /* Unresolved questions:
1686 - According to Sun's ``STABS Interface Manual'', for 'f'
1687 and 'F' symbol descriptors, a `0' in the argument type list
1688 indicates a varargs function. But it doesn't say how 'g'
1689 type descriptors represent that info. Someone with access
1690 to Sun's toolchain should try it out.
1692 - According to the comment in define_symbol (search for
1693 `process_prototype_types:'), Sun emits integer arguments as
1694 types which ref themselves --- like `void' types. Do we
1695 have to deal with that here, too? Again, someone with
1696 access to Sun's toolchain should try it out and let us
1699 const char *type_start = (*pp) - 1;
1700 struct type *return_type = read_type (pp, objfile);
1701 struct type *func_type
1702 = make_function_type (return_type, dbx_lookup_type (typenums));
1705 struct type_list *next;
1709 while (**pp && **pp != '#')
1711 struct type *arg_type = read_type (pp, objfile);
1712 struct type_list *new = alloca (sizeof (*new));
1713 new->type = arg_type;
1714 new->next = arg_types;
1722 complaint (&symfile_complaints,
1723 _("Prototyped function type didn't end arguments with `#':\n%s"),
1727 /* If there is just one argument whose type is `void', then
1728 that's just an empty argument list. */
1730 && ! arg_types->next
1731 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1734 TYPE_FIELDS (func_type)
1735 = (struct field *) TYPE_ALLOC (func_type,
1736 num_args * sizeof (struct field));
1737 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1740 struct type_list *t;
1742 /* We stuck each argument type onto the front of the list
1743 when we read it, so the list is reversed. Build the
1744 fields array right-to-left. */
1745 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1746 TYPE_FIELD_TYPE (func_type, i) = t->type;
1748 TYPE_NFIELDS (func_type) = num_args;
1749 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1755 case 'k': /* Const qualifier on some type (Sun) */
1756 type = read_type (pp, objfile);
1757 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1758 dbx_lookup_type (typenums));
1761 case 'B': /* Volatile qual on some type (Sun) */
1762 type = read_type (pp, objfile);
1763 type = make_cv_type (TYPE_CONST (type), 1, type,
1764 dbx_lookup_type (typenums));
1768 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1769 { /* Member (class & variable) type */
1770 /* FIXME -- we should be doing smash_to_XXX types here. */
1772 struct type *domain = read_type (pp, objfile);
1773 struct type *memtype;
1776 /* Invalid member type data format. */
1777 return error_type (pp, objfile);
1780 memtype = read_type (pp, objfile);
1781 type = dbx_alloc_type (typenums, objfile);
1782 smash_to_memberptr_type (type, domain, memtype);
1785 /* type attribute */
1788 /* Skip to the semicolon. */
1789 while (**pp != ';' && **pp != '\0')
1792 return error_type (pp, objfile);
1794 ++ * pp; /* Skip the semicolon. */
1798 case 's': /* Size attribute */
1799 type_size = atoi (attr + 1);
1804 case 'S': /* String attribute */
1805 /* FIXME: check to see if following type is array? */
1809 case 'V': /* Vector attribute */
1810 /* FIXME: check to see if following type is array? */
1815 /* Ignore unrecognized type attributes, so future compilers
1816 can invent new ones. */
1824 case '#': /* Method (class & fn) type */
1825 if ((*pp)[0] == '#')
1827 /* We'll get the parameter types from the name. */
1828 struct type *return_type;
1831 return_type = read_type (pp, objfile);
1832 if (*(*pp)++ != ';')
1833 complaint (&symfile_complaints,
1834 _("invalid (minimal) member type data format at symtab pos %d."),
1836 type = allocate_stub_method (return_type);
1837 if (typenums[0] != -1)
1838 *dbx_lookup_type (typenums) = type;
1842 struct type *domain = read_type (pp, objfile);
1843 struct type *return_type;
1848 /* Invalid member type data format. */
1849 return error_type (pp, objfile);
1853 return_type = read_type (pp, objfile);
1854 args = read_args (pp, ';', objfile, &nargs, &varargs);
1856 return error_type (pp, objfile);
1857 type = dbx_alloc_type (typenums, objfile);
1858 smash_to_method_type (type, domain, return_type, args,
1863 case 'r': /* Range type */
1864 type = read_range_type (pp, typenums, type_size, objfile);
1865 if (typenums[0] != -1)
1866 *dbx_lookup_type (typenums) = type;
1871 /* Sun ACC builtin int type */
1872 type = read_sun_builtin_type (pp, typenums, objfile);
1873 if (typenums[0] != -1)
1874 *dbx_lookup_type (typenums) = type;
1878 case 'R': /* Sun ACC builtin float type */
1879 type = read_sun_floating_type (pp, typenums, objfile);
1880 if (typenums[0] != -1)
1881 *dbx_lookup_type (typenums) = type;
1884 case 'e': /* Enumeration type */
1885 type = dbx_alloc_type (typenums, objfile);
1886 type = read_enum_type (pp, type, objfile);
1887 if (typenums[0] != -1)
1888 *dbx_lookup_type (typenums) = type;
1891 case 's': /* Struct type */
1892 case 'u': /* Union type */
1894 enum type_code type_code = TYPE_CODE_UNDEF;
1895 type = dbx_alloc_type (typenums, objfile);
1896 switch (type_descriptor)
1899 type_code = TYPE_CODE_STRUCT;
1902 type_code = TYPE_CODE_UNION;
1905 type = read_struct_type (pp, type, type_code, objfile);
1909 case 'a': /* Array type */
1911 return error_type (pp, objfile);
1914 type = dbx_alloc_type (typenums, objfile);
1915 type = read_array_type (pp, type, objfile);
1917 TYPE_CODE (type) = TYPE_CODE_STRING;
1919 make_vector_type (type);
1922 case 'S': /* Set or bitstring type */
1923 type1 = read_type (pp, objfile);
1924 type = create_set_type ((struct type *) NULL, type1);
1926 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1927 if (typenums[0] != -1)
1928 *dbx_lookup_type (typenums) = type;
1932 --*pp; /* Go back to the symbol in error */
1933 /* Particularly important if it was \0! */
1934 return error_type (pp, objfile);
1939 warning (_("GDB internal error, type is NULL in stabsread.c."));
1940 return error_type (pp, objfile);
1943 /* Size specified in a type attribute overrides any other size. */
1944 if (type_size != -1)
1945 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1950 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1951 Return the proper type node for a given builtin type number. */
1953 static struct type *
1954 rs6000_builtin_type (int typenum)
1956 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1957 #define NUMBER_RECOGNIZED 34
1958 /* This includes an empty slot for type number -0. */
1959 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1960 struct type *rettype = NULL;
1962 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1964 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1965 return builtin_type_error;
1967 if (negative_types[-typenum] != NULL)
1968 return negative_types[-typenum];
1970 #if TARGET_CHAR_BIT != 8
1971 #error This code wrong for TARGET_CHAR_BIT not 8
1972 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1973 that if that ever becomes not true, the correct fix will be to
1974 make the size in the struct type to be in bits, not in units of
1981 /* The size of this and all the other types are fixed, defined
1982 by the debugging format. If there is a type called "int" which
1983 is other than 32 bits, then it should use a new negative type
1984 number (or avoid negative type numbers for that case).
1985 See stabs.texinfo. */
1986 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1989 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1992 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1995 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1998 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1999 "unsigned char", NULL);
2002 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2005 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2006 "unsigned short", NULL);
2009 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2010 "unsigned int", NULL);
2013 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2016 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2017 "unsigned long", NULL);
2020 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2023 /* IEEE single precision (32 bit). */
2024 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2027 /* IEEE double precision (64 bit). */
2028 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2031 /* This is an IEEE double on the RS/6000, and different machines with
2032 different sizes for "long double" should use different negative
2033 type numbers. See stabs.texinfo. */
2034 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2037 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2040 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2044 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2047 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2050 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2053 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2057 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2061 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2065 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2069 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2073 /* Complex type consisting of two IEEE single precision values. */
2074 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2075 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2079 /* Complex type consisting of two IEEE double precision values. */
2080 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2081 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2085 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2088 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2091 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2094 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2097 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2100 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2101 "unsigned long long", NULL);
2104 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2108 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2111 negative_types[-typenum] = rettype;
2115 /* This page contains subroutines of read_type. */
2117 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2120 update_method_name_from_physname (char **old_name, char *physname)
2124 method_name = method_name_from_physname (physname);
2126 if (method_name == NULL)
2128 complaint (&symfile_complaints,
2129 _("Method has bad physname %s\n"), physname);
2133 if (strcmp (*old_name, method_name) != 0)
2136 *old_name = method_name;
2139 xfree (method_name);
2142 /* Read member function stabs info for C++ classes. The form of each member
2145 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2147 An example with two member functions is:
2149 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2151 For the case of overloaded operators, the format is op$::*.funcs, where
2152 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2153 name (such as `+=') and `.' marks the end of the operator name.
2155 Returns 1 for success, 0 for failure. */
2158 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2159 struct objfile *objfile)
2163 /* Total number of member functions defined in this class. If the class
2164 defines two `f' functions, and one `g' function, then this will have
2166 int total_length = 0;
2170 struct next_fnfield *next;
2171 struct fn_field fn_field;
2174 struct type *look_ahead_type;
2175 struct next_fnfieldlist *new_fnlist;
2176 struct next_fnfield *new_sublist;
2180 /* Process each list until we find something that is not a member function
2181 or find the end of the functions. */
2185 /* We should be positioned at the start of the function name.
2186 Scan forward to find the first ':' and if it is not the
2187 first of a "::" delimiter, then this is not a member function. */
2199 look_ahead_type = NULL;
2202 new_fnlist = (struct next_fnfieldlist *)
2203 xmalloc (sizeof (struct next_fnfieldlist));
2204 make_cleanup (xfree, new_fnlist);
2205 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2207 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2209 /* This is a completely wierd case. In order to stuff in the
2210 names that might contain colons (the usual name delimiter),
2211 Mike Tiemann defined a different name format which is
2212 signalled if the identifier is "op$". In that case, the
2213 format is "op$::XXXX." where XXXX is the name. This is
2214 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2215 /* This lets the user type "break operator+".
2216 We could just put in "+" as the name, but that wouldn't
2218 static char opname[32] = "op$";
2219 char *o = opname + 3;
2221 /* Skip past '::'. */
2224 STABS_CONTINUE (pp, objfile);
2230 main_fn_name = savestring (opname, o - opname);
2236 main_fn_name = savestring (*pp, p - *pp);
2237 /* Skip past '::'. */
2240 new_fnlist->fn_fieldlist.name = main_fn_name;
2245 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2246 make_cleanup (xfree, new_sublist);
2247 memset (new_sublist, 0, sizeof (struct next_fnfield));
2249 /* Check for and handle cretinous dbx symbol name continuation! */
2250 if (look_ahead_type == NULL)
2253 STABS_CONTINUE (pp, objfile);
2255 new_sublist->fn_field.type = read_type (pp, objfile);
2258 /* Invalid symtab info for member function. */
2264 /* g++ version 1 kludge */
2265 new_sublist->fn_field.type = look_ahead_type;
2266 look_ahead_type = NULL;
2276 /* If this is just a stub, then we don't have the real name here. */
2278 if (TYPE_STUB (new_sublist->fn_field.type))
2280 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2281 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2282 new_sublist->fn_field.is_stub = 1;
2284 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2287 /* Set this member function's visibility fields. */
2290 case VISIBILITY_PRIVATE:
2291 new_sublist->fn_field.is_private = 1;
2293 case VISIBILITY_PROTECTED:
2294 new_sublist->fn_field.is_protected = 1;
2298 STABS_CONTINUE (pp, objfile);
2301 case 'A': /* Normal functions. */
2302 new_sublist->fn_field.is_const = 0;
2303 new_sublist->fn_field.is_volatile = 0;
2306 case 'B': /* `const' member functions. */
2307 new_sublist->fn_field.is_const = 1;
2308 new_sublist->fn_field.is_volatile = 0;
2311 case 'C': /* `volatile' member function. */
2312 new_sublist->fn_field.is_const = 0;
2313 new_sublist->fn_field.is_volatile = 1;
2316 case 'D': /* `const volatile' member function. */
2317 new_sublist->fn_field.is_const = 1;
2318 new_sublist->fn_field.is_volatile = 1;
2321 case '*': /* File compiled with g++ version 1 -- no info */
2326 complaint (&symfile_complaints,
2327 _("const/volatile indicator missing, got '%c'"), **pp);
2336 /* virtual member function, followed by index.
2337 The sign bit is set to distinguish pointers-to-methods
2338 from virtual function indicies. Since the array is
2339 in words, the quantity must be shifted left by 1
2340 on 16 bit machine, and by 2 on 32 bit machine, forcing
2341 the sign bit out, and usable as a valid index into
2342 the array. Remove the sign bit here. */
2343 new_sublist->fn_field.voffset =
2344 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2348 STABS_CONTINUE (pp, objfile);
2349 if (**pp == ';' || **pp == '\0')
2351 /* Must be g++ version 1. */
2352 new_sublist->fn_field.fcontext = 0;
2356 /* Figure out from whence this virtual function came.
2357 It may belong to virtual function table of
2358 one of its baseclasses. */
2359 look_ahead_type = read_type (pp, objfile);
2362 /* g++ version 1 overloaded methods. */
2366 new_sublist->fn_field.fcontext = look_ahead_type;
2375 look_ahead_type = NULL;
2381 /* static member function. */
2383 int slen = strlen (main_fn_name);
2385 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2387 /* For static member functions, we can't tell if they
2388 are stubbed, as they are put out as functions, and not as
2390 GCC v2 emits the fully mangled name if
2391 dbxout.c:flag_minimal_debug is not set, so we have to
2392 detect a fully mangled physname here and set is_stub
2393 accordingly. Fully mangled physnames in v2 start with
2394 the member function name, followed by two underscores.
2395 GCC v3 currently always emits stubbed member functions,
2396 but with fully mangled physnames, which start with _Z. */
2397 if (!(strncmp (new_sublist->fn_field.physname,
2398 main_fn_name, slen) == 0
2399 && new_sublist->fn_field.physname[slen] == '_'
2400 && new_sublist->fn_field.physname[slen + 1] == '_'))
2402 new_sublist->fn_field.is_stub = 1;
2409 complaint (&symfile_complaints,
2410 _("member function type missing, got '%c'"), (*pp)[-1]);
2411 /* Fall through into normal member function. */
2414 /* normal member function. */
2415 new_sublist->fn_field.voffset = 0;
2416 new_sublist->fn_field.fcontext = 0;
2420 new_sublist->next = sublist;
2421 sublist = new_sublist;
2423 STABS_CONTINUE (pp, objfile);
2425 while (**pp != ';' && **pp != '\0');
2428 STABS_CONTINUE (pp, objfile);
2430 /* Skip GCC 3.X member functions which are duplicates of the callable
2431 constructor/destructor. */
2432 if (strcmp (main_fn_name, "__base_ctor") == 0
2433 || strcmp (main_fn_name, "__base_dtor") == 0
2434 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2436 xfree (main_fn_name);
2441 int has_destructor = 0, has_other = 0;
2443 struct next_fnfield *tmp_sublist;
2445 /* Various versions of GCC emit various mostly-useless
2446 strings in the name field for special member functions.
2448 For stub methods, we need to defer correcting the name
2449 until we are ready to unstub the method, because the current
2450 name string is used by gdb_mangle_name. The only stub methods
2451 of concern here are GNU v2 operators; other methods have their
2452 names correct (see caveat below).
2454 For non-stub methods, in GNU v3, we have a complete physname.
2455 Therefore we can safely correct the name now. This primarily
2456 affects constructors and destructors, whose name will be
2457 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2458 operators will also have incorrect names; for instance,
2459 "operator int" will be named "operator i" (i.e. the type is
2462 For non-stub methods in GNU v2, we have no easy way to
2463 know if we have a complete physname or not. For most
2464 methods the result depends on the platform (if CPLUS_MARKER
2465 can be `$' or `.', it will use minimal debug information, or
2466 otherwise the full physname will be included).
2468 Rather than dealing with this, we take a different approach.
2469 For v3 mangled names, we can use the full physname; for v2,
2470 we use cplus_demangle_opname (which is actually v2 specific),
2471 because the only interesting names are all operators - once again
2472 barring the caveat below. Skip this process if any method in the
2473 group is a stub, to prevent our fouling up the workings of
2476 The caveat: GCC 2.95.x (and earlier?) put constructors and
2477 destructors in the same method group. We need to split this
2478 into two groups, because they should have different names.
2479 So for each method group we check whether it contains both
2480 routines whose physname appears to be a destructor (the physnames
2481 for and destructors are always provided, due to quirks in v2
2482 mangling) and routines whose physname does not appear to be a
2483 destructor. If so then we break up the list into two halves.
2484 Even if the constructors and destructors aren't in the same group
2485 the destructor will still lack the leading tilde, so that also
2488 So, to summarize what we expect and handle here:
2490 Given Given Real Real Action
2491 method name physname physname method name
2493 __opi [none] __opi__3Foo operator int opname
2495 Foo _._3Foo _._3Foo ~Foo separate and
2497 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2498 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2501 tmp_sublist = sublist;
2502 while (tmp_sublist != NULL)
2504 if (tmp_sublist->fn_field.is_stub)
2506 if (tmp_sublist->fn_field.physname[0] == '_'
2507 && tmp_sublist->fn_field.physname[1] == 'Z')
2510 if (is_destructor_name (tmp_sublist->fn_field.physname))
2515 tmp_sublist = tmp_sublist->next;
2518 if (has_destructor && has_other)
2520 struct next_fnfieldlist *destr_fnlist;
2521 struct next_fnfield *last_sublist;
2523 /* Create a new fn_fieldlist for the destructors. */
2525 destr_fnlist = (struct next_fnfieldlist *)
2526 xmalloc (sizeof (struct next_fnfieldlist));
2527 make_cleanup (xfree, destr_fnlist);
2528 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2529 destr_fnlist->fn_fieldlist.name
2530 = obconcat (&objfile->objfile_obstack, "", "~",
2531 new_fnlist->fn_fieldlist.name);
2533 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2534 obstack_alloc (&objfile->objfile_obstack,
2535 sizeof (struct fn_field) * has_destructor);
2536 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2537 sizeof (struct fn_field) * has_destructor);
2538 tmp_sublist = sublist;
2539 last_sublist = NULL;
2541 while (tmp_sublist != NULL)
2543 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2545 tmp_sublist = tmp_sublist->next;
2549 destr_fnlist->fn_fieldlist.fn_fields[i++]
2550 = tmp_sublist->fn_field;
2552 last_sublist->next = tmp_sublist->next;
2554 sublist = tmp_sublist->next;
2555 last_sublist = tmp_sublist;
2556 tmp_sublist = tmp_sublist->next;
2559 destr_fnlist->fn_fieldlist.length = has_destructor;
2560 destr_fnlist->next = fip->fnlist;
2561 fip->fnlist = destr_fnlist;
2563 total_length += has_destructor;
2564 length -= has_destructor;
2568 /* v3 mangling prevents the use of abbreviated physnames,
2569 so we can do this here. There are stubbed methods in v3
2571 - in -gstabs instead of -gstabs+
2572 - or for static methods, which are output as a function type
2573 instead of a method type. */
2575 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2576 sublist->fn_field.physname);
2578 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2580 new_fnlist->fn_fieldlist.name =
2581 concat ("~", main_fn_name, (char *)NULL);
2582 xfree (main_fn_name);
2586 char dem_opname[256];
2588 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2589 dem_opname, DMGL_ANSI);
2591 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2594 new_fnlist->fn_fieldlist.name
2595 = obsavestring (dem_opname, strlen (dem_opname),
2596 &objfile->objfile_obstack);
2599 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2600 obstack_alloc (&objfile->objfile_obstack,
2601 sizeof (struct fn_field) * length);
2602 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2603 sizeof (struct fn_field) * length);
2604 for (i = length; (i--, sublist); sublist = sublist->next)
2606 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2609 new_fnlist->fn_fieldlist.length = length;
2610 new_fnlist->next = fip->fnlist;
2611 fip->fnlist = new_fnlist;
2613 total_length += length;
2619 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2620 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2621 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2622 memset (TYPE_FN_FIELDLISTS (type), 0,
2623 sizeof (struct fn_fieldlist) * nfn_fields);
2624 TYPE_NFN_FIELDS (type) = nfn_fields;
2625 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2631 /* Special GNU C++ name.
2633 Returns 1 for success, 0 for failure. "failure" means that we can't
2634 keep parsing and it's time for error_type(). */
2637 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2638 struct objfile *objfile)
2643 struct type *context;
2653 /* At this point, *pp points to something like "22:23=*22...",
2654 where the type number before the ':' is the "context" and
2655 everything after is a regular type definition. Lookup the
2656 type, find it's name, and construct the field name. */
2658 context = read_type (pp, objfile);
2662 case 'f': /* $vf -- a virtual function table pointer */
2663 name = type_name_no_tag (context);
2668 fip->list->field.name =
2669 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2672 case 'b': /* $vb -- a virtual bsomethingorother */
2673 name = type_name_no_tag (context);
2676 complaint (&symfile_complaints,
2677 _("C++ abbreviated type name unknown at symtab pos %d"),
2681 fip->list->field.name =
2682 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2686 invalid_cpp_abbrev_complaint (*pp);
2687 fip->list->field.name =
2688 obconcat (&objfile->objfile_obstack,
2689 "INVALID_CPLUSPLUS_ABBREV", "", "");
2693 /* At this point, *pp points to the ':'. Skip it and read the
2699 invalid_cpp_abbrev_complaint (*pp);
2702 fip->list->field.type = read_type (pp, objfile);
2704 (*pp)++; /* Skip the comma. */
2710 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2715 /* This field is unpacked. */
2716 FIELD_BITSIZE (fip->list->field) = 0;
2717 fip->list->visibility = VISIBILITY_PRIVATE;
2721 invalid_cpp_abbrev_complaint (*pp);
2722 /* We have no idea what syntax an unrecognized abbrev would have, so
2723 better return 0. If we returned 1, we would need to at least advance
2724 *pp to avoid an infinite loop. */
2731 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2732 struct type *type, struct objfile *objfile)
2734 fip->list->field.name =
2735 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2738 /* This means we have a visibility for a field coming. */
2742 fip->list->visibility = *(*pp)++;
2746 /* normal dbx-style format, no explicit visibility */
2747 fip->list->visibility = VISIBILITY_PUBLIC;
2750 fip->list->field.type = read_type (pp, objfile);
2755 /* Possible future hook for nested types. */
2758 fip->list->field.bitpos = (long) -2; /* nested type */
2768 /* Static class member. */
2769 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2773 else if (**pp != ',')
2775 /* Bad structure-type format. */
2776 stabs_general_complaint ("bad structure-type format");
2780 (*pp)++; /* Skip the comma. */
2784 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2787 stabs_general_complaint ("bad structure-type format");
2790 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2793 stabs_general_complaint ("bad structure-type format");
2798 if (FIELD_BITPOS (fip->list->field) == 0
2799 && FIELD_BITSIZE (fip->list->field) == 0)
2801 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2802 it is a field which has been optimized out. The correct stab for
2803 this case is to use VISIBILITY_IGNORE, but that is a recent
2804 invention. (2) It is a 0-size array. For example
2805 union { int num; char str[0]; } foo. Printing _("<no value>" for
2806 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2807 will continue to work, and a 0-size array as a whole doesn't
2808 have any contents to print.
2810 I suspect this probably could also happen with gcc -gstabs (not
2811 -gstabs+) for static fields, and perhaps other C++ extensions.
2812 Hopefully few people use -gstabs with gdb, since it is intended
2813 for dbx compatibility. */
2815 /* Ignore this field. */
2816 fip->list->visibility = VISIBILITY_IGNORE;
2820 /* Detect an unpacked field and mark it as such.
2821 dbx gives a bit size for all fields.
2822 Note that forward refs cannot be packed,
2823 and treat enums as if they had the width of ints. */
2825 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2827 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2828 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2829 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2830 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2832 FIELD_BITSIZE (fip->list->field) = 0;
2834 if ((FIELD_BITSIZE (fip->list->field)
2835 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2836 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2837 && FIELD_BITSIZE (fip->list->field)
2838 == gdbarch_int_bit (current_gdbarch))
2841 FIELD_BITPOS (fip->list->field) % 8 == 0)
2843 FIELD_BITSIZE (fip->list->field) = 0;
2849 /* Read struct or class data fields. They have the form:
2851 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2853 At the end, we see a semicolon instead of a field.
2855 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2858 The optional VISIBILITY is one of:
2860 '/0' (VISIBILITY_PRIVATE)
2861 '/1' (VISIBILITY_PROTECTED)
2862 '/2' (VISIBILITY_PUBLIC)
2863 '/9' (VISIBILITY_IGNORE)
2865 or nothing, for C style fields with public visibility.
2867 Returns 1 for success, 0 for failure. */
2870 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2871 struct objfile *objfile)
2874 struct nextfield *new;
2876 /* We better set p right now, in case there are no fields at all... */
2880 /* Read each data member type until we find the terminating ';' at the end of
2881 the data member list, or break for some other reason such as finding the
2882 start of the member function list. */
2883 /* Stab string for structure/union does not end with two ';' in
2884 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2886 while (**pp != ';' && **pp != '\0')
2888 STABS_CONTINUE (pp, objfile);
2889 /* Get space to record the next field's data. */
2890 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2891 make_cleanup (xfree, new);
2892 memset (new, 0, sizeof (struct nextfield));
2893 new->next = fip->list;
2896 /* Get the field name. */
2899 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2900 unless the CPLUS_MARKER is followed by an underscore, in
2901 which case it is just the name of an anonymous type, which we
2902 should handle like any other type name. */
2904 if (is_cplus_marker (p[0]) && p[1] != '_')
2906 if (!read_cpp_abbrev (fip, pp, type, objfile))
2911 /* Look for the ':' that separates the field name from the field
2912 values. Data members are delimited by a single ':', while member
2913 functions are delimited by a pair of ':'s. When we hit the member
2914 functions (if any), terminate scan loop and return. */
2916 while (*p != ':' && *p != '\0')
2923 /* Check to see if we have hit the member functions yet. */
2928 read_one_struct_field (fip, pp, p, type, objfile);
2930 if (p[0] == ':' && p[1] == ':')
2932 /* (the deleted) chill the list of fields: the last entry (at
2933 the head) is a partially constructed entry which we now
2935 fip->list = fip->list->next;
2940 /* The stabs for C++ derived classes contain baseclass information which
2941 is marked by a '!' character after the total size. This function is
2942 called when we encounter the baseclass marker, and slurps up all the
2943 baseclass information.
2945 Immediately following the '!' marker is the number of base classes that
2946 the class is derived from, followed by information for each base class.
2947 For each base class, there are two visibility specifiers, a bit offset
2948 to the base class information within the derived class, a reference to
2949 the type for the base class, and a terminating semicolon.
2951 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2953 Baseclass information marker __________________|| | | | | | |
2954 Number of baseclasses __________________________| | | | | | |
2955 Visibility specifiers (2) ________________________| | | | | |
2956 Offset in bits from start of class _________________| | | | |
2957 Type number for base class ___________________________| | | |
2958 Visibility specifiers (2) _______________________________| | |
2959 Offset in bits from start of class ________________________| |
2960 Type number of base class ____________________________________|
2962 Return 1 for success, 0 for (error-type-inducing) failure. */
2968 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2969 struct objfile *objfile)
2972 struct nextfield *new;
2980 /* Skip the '!' baseclass information marker. */
2984 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2987 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2993 /* Some stupid compilers have trouble with the following, so break
2994 it up into simpler expressions. */
2995 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2996 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2999 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3002 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3003 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3007 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3009 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3011 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3012 make_cleanup (xfree, new);
3013 memset (new, 0, sizeof (struct nextfield));
3014 new->next = fip->list;
3016 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3018 STABS_CONTINUE (pp, objfile);
3022 /* Nothing to do. */
3025 SET_TYPE_FIELD_VIRTUAL (type, i);
3028 /* Unknown character. Complain and treat it as non-virtual. */
3030 complaint (&symfile_complaints,
3031 _("Unknown virtual character `%c' for baseclass"), **pp);
3036 new->visibility = *(*pp)++;
3037 switch (new->visibility)
3039 case VISIBILITY_PRIVATE:
3040 case VISIBILITY_PROTECTED:
3041 case VISIBILITY_PUBLIC:
3044 /* Bad visibility format. Complain and treat it as
3047 complaint (&symfile_complaints,
3048 _("Unknown visibility `%c' for baseclass"),
3050 new->visibility = VISIBILITY_PUBLIC;
3057 /* The remaining value is the bit offset of the portion of the object
3058 corresponding to this baseclass. Always zero in the absence of
3059 multiple inheritance. */
3061 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3066 /* The last piece of baseclass information is the type of the
3067 base class. Read it, and remember it's type name as this
3070 new->field.type = read_type (pp, objfile);
3071 new->field.name = type_name_no_tag (new->field.type);
3073 /* skip trailing ';' and bump count of number of fields seen */
3082 /* The tail end of stabs for C++ classes that contain a virtual function
3083 pointer contains a tilde, a %, and a type number.
3084 The type number refers to the base class (possibly this class itself) which
3085 contains the vtable pointer for the current class.
3087 This function is called when we have parsed all the method declarations,
3088 so we can look for the vptr base class info. */
3091 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3092 struct objfile *objfile)
3096 STABS_CONTINUE (pp, objfile);
3098 /* If we are positioned at a ';', then skip it. */
3108 if (**pp == '=' || **pp == '+' || **pp == '-')
3110 /* Obsolete flags that used to indicate the presence
3111 of constructors and/or destructors. */
3115 /* Read either a '%' or the final ';'. */
3116 if (*(*pp)++ == '%')
3118 /* The next number is the type number of the base class
3119 (possibly our own class) which supplies the vtable for
3120 this class. Parse it out, and search that class to find
3121 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3122 and TYPE_VPTR_FIELDNO. */
3127 t = read_type (pp, objfile);
3129 while (*p != '\0' && *p != ';')
3135 /* Premature end of symbol. */
3139 TYPE_VPTR_BASETYPE (type) = t;
3140 if (type == t) /* Our own class provides vtbl ptr */
3142 for (i = TYPE_NFIELDS (t) - 1;
3143 i >= TYPE_N_BASECLASSES (t);
3146 char *name = TYPE_FIELD_NAME (t, i);
3147 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3148 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3150 TYPE_VPTR_FIELDNO (type) = i;
3154 /* Virtual function table field not found. */
3155 complaint (&symfile_complaints,
3156 _("virtual function table pointer not found when defining class `%s'"),
3162 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3173 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3177 for (n = TYPE_NFN_FIELDS (type);
3178 fip->fnlist != NULL;
3179 fip->fnlist = fip->fnlist->next)
3181 --n; /* Circumvent Sun3 compiler bug */
3182 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3187 /* Create the vector of fields, and record how big it is.
3188 We need this info to record proper virtual function table information
3189 for this class's virtual functions. */
3192 attach_fields_to_type (struct field_info *fip, struct type *type,
3193 struct objfile *objfile)
3196 int non_public_fields = 0;
3197 struct nextfield *scan;
3199 /* Count up the number of fields that we have, as well as taking note of
3200 whether or not there are any non-public fields, which requires us to
3201 allocate and build the private_field_bits and protected_field_bits
3204 for (scan = fip->list; scan != NULL; scan = scan->next)
3207 if (scan->visibility != VISIBILITY_PUBLIC)
3209 non_public_fields++;
3213 /* Now we know how many fields there are, and whether or not there are any
3214 non-public fields. Record the field count, allocate space for the
3215 array of fields, and create blank visibility bitfields if necessary. */
3217 TYPE_NFIELDS (type) = nfields;
3218 TYPE_FIELDS (type) = (struct field *)
3219 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3220 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3222 if (non_public_fields)
3224 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3226 TYPE_FIELD_PRIVATE_BITS (type) =
3227 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3228 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3230 TYPE_FIELD_PROTECTED_BITS (type) =
3231 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3232 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3234 TYPE_FIELD_IGNORE_BITS (type) =
3235 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3236 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3239 /* Copy the saved-up fields into the field vector. Start from the head
3240 of the list, adding to the tail of the field array, so that they end
3241 up in the same order in the array in which they were added to the list. */
3243 while (nfields-- > 0)
3245 TYPE_FIELD (type, nfields) = fip->list->field;
3246 switch (fip->list->visibility)
3248 case VISIBILITY_PRIVATE:
3249 SET_TYPE_FIELD_PRIVATE (type, nfields);
3252 case VISIBILITY_PROTECTED:
3253 SET_TYPE_FIELD_PROTECTED (type, nfields);
3256 case VISIBILITY_IGNORE:
3257 SET_TYPE_FIELD_IGNORE (type, nfields);
3260 case VISIBILITY_PUBLIC:
3264 /* Unknown visibility. Complain and treat it as public. */
3266 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3267 fip->list->visibility);
3271 fip->list = fip->list->next;
3277 /* Complain that the compiler has emitted more than one definition for the
3278 structure type TYPE. */
3280 complain_about_struct_wipeout (struct type *type)
3285 if (TYPE_TAG_NAME (type))
3287 name = TYPE_TAG_NAME (type);
3288 switch (TYPE_CODE (type))
3290 case TYPE_CODE_STRUCT: kind = "struct "; break;
3291 case TYPE_CODE_UNION: kind = "union "; break;
3292 case TYPE_CODE_ENUM: kind = "enum "; break;
3296 else if (TYPE_NAME (type))
3298 name = TYPE_NAME (type);
3307 complaint (&symfile_complaints,
3308 _("struct/union type gets multiply defined: %s%s"), kind, name);
3312 /* Read the description of a structure (or union type) and return an object
3313 describing the type.
3315 PP points to a character pointer that points to the next unconsumed token
3316 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3317 *PP will point to "4a:1,0,32;;".
3319 TYPE points to an incomplete type that needs to be filled in.
3321 OBJFILE points to the current objfile from which the stabs information is
3322 being read. (Note that it is redundant in that TYPE also contains a pointer
3323 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3326 static struct type *
3327 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3328 struct objfile *objfile)
3330 struct cleanup *back_to;
3331 struct field_info fi;
3336 /* When describing struct/union/class types in stabs, G++ always drops
3337 all qualifications from the name. So if you've got:
3338 struct A { ... struct B { ... }; ... };
3339 then G++ will emit stabs for `struct A::B' that call it simply
3340 `struct B'. Obviously, if you've got a real top-level definition for
3341 `struct B', or other nested definitions, this is going to cause
3344 Obviously, GDB can't fix this by itself, but it can at least avoid
3345 scribbling on existing structure type objects when new definitions
3347 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3348 || TYPE_STUB (type)))
3350 complain_about_struct_wipeout (type);
3352 /* It's probably best to return the type unchanged. */
3356 back_to = make_cleanup (null_cleanup, 0);
3358 INIT_CPLUS_SPECIFIC (type);
3359 TYPE_CODE (type) = type_code;
3360 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3362 /* First comes the total size in bytes. */
3366 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3368 return error_type (pp, objfile);
3371 /* Now read the baseclasses, if any, read the regular C struct or C++
3372 class member fields, attach the fields to the type, read the C++
3373 member functions, attach them to the type, and then read any tilde
3374 field (baseclass specifier for the class holding the main vtable). */
3376 if (!read_baseclasses (&fi, pp, type, objfile)
3377 || !read_struct_fields (&fi, pp, type, objfile)
3378 || !attach_fields_to_type (&fi, type, objfile)
3379 || !read_member_functions (&fi, pp, type, objfile)
3380 || !attach_fn_fields_to_type (&fi, type)
3381 || !read_tilde_fields (&fi, pp, type, objfile))
3383 type = error_type (pp, objfile);
3386 do_cleanups (back_to);
3390 /* Read a definition of an array type,
3391 and create and return a suitable type object.
3392 Also creates a range type which represents the bounds of that
3395 static struct type *
3396 read_array_type (char **pp, struct type *type,
3397 struct objfile *objfile)
3399 struct type *index_type, *element_type, *range_type;
3404 /* Format of an array type:
3405 "ar<index type>;lower;upper;<array_contents_type>".
3406 OS9000: "arlower,upper;<array_contents_type>".
3408 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3409 for these, produce a type like float[][]. */
3412 index_type = read_type (pp, objfile);
3414 /* Improper format of array type decl. */
3415 return error_type (pp, objfile);
3419 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3424 lower = read_huge_number (pp, ';', &nbits, 0);
3427 return error_type (pp, objfile);
3429 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3434 upper = read_huge_number (pp, ';', &nbits, 0);
3436 return error_type (pp, objfile);
3438 element_type = read_type (pp, objfile);
3447 create_range_type ((struct type *) NULL, index_type, lower, upper);
3448 type = create_array_type (type, element_type, range_type);
3454 /* Read a definition of an enumeration type,
3455 and create and return a suitable type object.
3456 Also defines the symbols that represent the values of the type. */
3458 static struct type *
3459 read_enum_type (char **pp, struct type *type,
3460 struct objfile *objfile)
3467 struct pending **symlist;
3468 struct pending *osyms, *syms;
3471 int unsigned_enum = 1;
3474 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3475 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3476 to do? For now, force all enum values to file scope. */
3477 if (within_function)
3478 symlist = &local_symbols;
3481 symlist = &file_symbols;
3483 o_nsyms = osyms ? osyms->nsyms : 0;
3485 /* The aix4 compiler emits an extra field before the enum members;
3486 my guess is it's a type of some sort. Just ignore it. */
3489 /* Skip over the type. */
3493 /* Skip over the colon. */
3497 /* Read the value-names and their values.
3498 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3499 A semicolon or comma instead of a NAME means the end. */
3500 while (**pp && **pp != ';' && **pp != ',')
3502 STABS_CONTINUE (pp, objfile);
3506 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3508 n = read_huge_number (pp, ',', &nbits, 0);
3510 return error_type (pp, objfile);
3512 sym = (struct symbol *)
3513 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3514 memset (sym, 0, sizeof (struct symbol));
3515 DEPRECATED_SYMBOL_NAME (sym) = name;
3516 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3517 SYMBOL_CLASS (sym) = LOC_CONST;
3518 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3519 SYMBOL_VALUE (sym) = n;
3522 add_symbol_to_list (sym, symlist);
3527 (*pp)++; /* Skip the semicolon. */
3529 /* Now fill in the fields of the type-structure. */
3531 TYPE_LENGTH (type) = gdbarch_int_bit (current_gdbarch) / HOST_CHAR_BIT;
3532 TYPE_CODE (type) = TYPE_CODE_ENUM;
3533 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3535 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3536 TYPE_NFIELDS (type) = nsyms;
3537 TYPE_FIELDS (type) = (struct field *)
3538 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3539 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3541 /* Find the symbols for the values and put them into the type.
3542 The symbols can be found in the symlist that we put them on
3543 to cause them to be defined. osyms contains the old value
3544 of that symlist; everything up to there was defined by us. */
3545 /* Note that we preserve the order of the enum constants, so
3546 that in something like "enum {FOO, LAST_THING=FOO}" we print
3547 FOO, not LAST_THING. */
3549 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3551 int last = syms == osyms ? o_nsyms : 0;
3552 int j = syms->nsyms;
3553 for (; --j >= last; --n)
3555 struct symbol *xsym = syms->symbol[j];
3556 SYMBOL_TYPE (xsym) = type;
3557 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3558 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3559 TYPE_FIELD_BITSIZE (type, n) = 0;
3568 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3569 typedefs in every file (for int, long, etc):
3571 type = b <signed> <width> <format type>; <offset>; <nbits>
3573 optional format type = c or b for char or boolean.
3574 offset = offset from high order bit to start bit of type.
3575 width is # bytes in object of this type, nbits is # bits in type.
3577 The width/offset stuff appears to be for small objects stored in
3578 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3581 static struct type *
3582 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3587 enum type_code code = TYPE_CODE_INT;
3598 return error_type (pp, objfile);
3602 /* For some odd reason, all forms of char put a c here. This is strange
3603 because no other type has this honor. We can safely ignore this because
3604 we actually determine 'char'acterness by the number of bits specified in
3606 Boolean forms, e.g Fortran logical*X, put a b here. */
3610 else if (**pp == 'b')
3612 code = TYPE_CODE_BOOL;
3616 /* The first number appears to be the number of bytes occupied
3617 by this type, except that unsigned short is 4 instead of 2.
3618 Since this information is redundant with the third number,
3619 we will ignore it. */
3620 read_huge_number (pp, ';', &nbits, 0);
3622 return error_type (pp, objfile);
3624 /* The second number is always 0, so ignore it too. */
3625 read_huge_number (pp, ';', &nbits, 0);
3627 return error_type (pp, objfile);
3629 /* The third number is the number of bits for this type. */
3630 type_bits = read_huge_number (pp, 0, &nbits, 0);
3632 return error_type (pp, objfile);
3633 /* The type *should* end with a semicolon. If it are embedded
3634 in a larger type the semicolon may be the only way to know where
3635 the type ends. If this type is at the end of the stabstring we
3636 can deal with the omitted semicolon (but we don't have to like
3637 it). Don't bother to complain(), Sun's compiler omits the semicolon
3643 return init_type (TYPE_CODE_VOID, 1,
3644 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3647 return init_type (code,
3648 type_bits / TARGET_CHAR_BIT,
3649 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3653 static struct type *
3654 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3659 struct type *rettype;
3661 /* The first number has more details about the type, for example
3663 details = read_huge_number (pp, ';', &nbits, 0);
3665 return error_type (pp, objfile);
3667 /* The second number is the number of bytes occupied by this type */
3668 nbytes = read_huge_number (pp, ';', &nbits, 0);
3670 return error_type (pp, objfile);
3672 if (details == NF_COMPLEX || details == NF_COMPLEX16
3673 || details == NF_COMPLEX32)
3675 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3676 TYPE_TARGET_TYPE (rettype)
3677 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3681 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3684 /* Read a number from the string pointed to by *PP.
3685 The value of *PP is advanced over the number.
3686 If END is nonzero, the character that ends the
3687 number must match END, or an error happens;
3688 and that character is skipped if it does match.
3689 If END is zero, *PP is left pointing to that character.
3691 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3692 the number is represented in an octal representation, assume that
3693 it is represented in a 2's complement representation with a size of
3694 TWOS_COMPLEMENT_BITS.
3696 If the number fits in a long, set *BITS to 0 and return the value.
3697 If not, set *BITS to be the number of bits in the number and return 0.
3699 If encounter garbage, set *BITS to -1 and return 0. */
3702 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3713 int twos_complement_representation = 0;
3721 /* Leading zero means octal. GCC uses this to output values larger
3722 than an int (because that would be hard in decimal). */
3729 /* Skip extra zeros. */
3733 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3735 /* Octal, possibly signed. Check if we have enough chars for a
3740 while ((c = *p1) >= '0' && c < '8')
3744 if (len > twos_complement_bits / 3
3745 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3747 /* Ok, we have enough characters for a signed value, check
3748 for signness by testing if the sign bit is set. */
3749 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3751 if (c & (1 << sign_bit))
3753 /* Definitely signed. */
3754 twos_complement_representation = 1;
3760 upper_limit = LONG_MAX / radix;
3762 while ((c = *p++) >= '0' && c < ('0' + radix))
3764 if (n <= upper_limit)
3766 if (twos_complement_representation)
3768 /* Octal, signed, twos complement representation. In
3769 this case, n is the corresponding absolute value. */
3772 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3783 /* unsigned representation */
3785 n += c - '0'; /* FIXME this overflows anyway */
3791 /* This depends on large values being output in octal, which is
3798 /* Ignore leading zeroes. */
3802 else if (c == '2' || c == '3')
3823 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3825 /* We were supposed to parse a number with maximum
3826 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3837 /* Large decimal constants are an error (because it is hard to
3838 count how many bits are in them). */
3844 /* -0x7f is the same as 0x80. So deal with it by adding one to
3845 the number of bits. Two's complement represention octals
3846 can't have a '-' in front. */
3847 if (sign == -1 && !twos_complement_representation)
3858 /* It's *BITS which has the interesting information. */
3862 static struct type *
3863 read_range_type (char **pp, int typenums[2], int type_size,
3864 struct objfile *objfile)
3866 char *orig_pp = *pp;
3871 struct type *result_type;
3872 struct type *index_type = NULL;
3874 /* First comes a type we are a subrange of.
3875 In C it is usually 0, 1 or the type being defined. */
3876 if (read_type_number (pp, rangenums) != 0)
3877 return error_type (pp, objfile);
3878 self_subrange = (rangenums[0] == typenums[0] &&
3879 rangenums[1] == typenums[1]);
3884 index_type = read_type (pp, objfile);
3887 /* A semicolon should now follow; skip it. */
3891 /* The remaining two operands are usually lower and upper bounds
3892 of the range. But in some special cases they mean something else. */
3893 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3894 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3896 if (n2bits == -1 || n3bits == -1)
3897 return error_type (pp, objfile);
3900 goto handle_true_range;
3902 /* If limits are huge, must be large integral type. */
3903 if (n2bits != 0 || n3bits != 0)
3905 char got_signed = 0;
3906 char got_unsigned = 0;
3907 /* Number of bits in the type. */
3910 /* If a type size attribute has been specified, the bounds of
3911 the range should fit in this size. If the lower bounds needs
3912 more bits than the upper bound, then the type is signed. */
3913 if (n2bits <= type_size && n3bits <= type_size)
3915 if (n2bits == type_size && n2bits > n3bits)
3921 /* Range from 0 to <large number> is an unsigned large integral type. */
3922 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3927 /* Range from <large number> to <large number>-1 is a large signed
3928 integral type. Take care of the case where <large number> doesn't
3929 fit in a long but <large number>-1 does. */
3930 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3931 || (n2bits != 0 && n3bits == 0
3932 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3939 if (got_signed || got_unsigned)
3941 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3942 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3946 return error_type (pp, objfile);
3949 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3950 if (self_subrange && n2 == 0 && n3 == 0)
3951 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3953 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3954 is the width in bytes.
3956 Fortran programs appear to use this for complex types also. To
3957 distinguish between floats and complex, g77 (and others?) seem
3958 to use self-subranges for the complexes, and subranges of int for
3961 Also note that for complexes, g77 sets n2 to the size of one of
3962 the member floats, not the whole complex beast. My guess is that
3963 this was to work well with pre-COMPLEX versions of gdb. */
3965 if (n3 == 0 && n2 > 0)
3967 struct type *float_type
3968 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3972 struct type *complex_type =
3973 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3974 TYPE_TARGET_TYPE (complex_type) = float_type;
3975 return complex_type;
3981 /* If the upper bound is -1, it must really be an unsigned integral. */
3983 else if (n2 == 0 && n3 == -1)
3985 int bits = type_size;
3988 /* We don't know its size. It is unsigned int or unsigned
3989 long. GCC 2.3.3 uses this for long long too, but that is
3990 just a GDB 3.5 compatibility hack. */
3991 bits = gdbarch_int_bit (current_gdbarch);
3994 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
3995 TYPE_FLAG_UNSIGNED, NULL, objfile);
3998 /* Special case: char is defined (Who knows why) as a subrange of
3999 itself with range 0-127. */
4000 else if (self_subrange && n2 == 0 && n3 == 127)
4001 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4003 /* We used to do this only for subrange of self or subrange of int. */
4006 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4007 "unsigned long", and we already checked for that,
4008 so don't need to test for it here. */
4011 /* n3 actually gives the size. */
4012 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4015 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4016 unsigned n-byte integer. But do require n to be a power of
4017 two; we don't want 3- and 5-byte integers flying around. */
4023 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4026 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4027 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4031 /* I think this is for Convex "long long". Since I don't know whether
4032 Convex sets self_subrange, I also accept that particular size regardless
4033 of self_subrange. */
4034 else if (n3 == 0 && n2 < 0
4036 || n2 == -gdbarch_long_long_bit
4037 (current_gdbarch) / TARGET_CHAR_BIT))
4038 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4039 else if (n2 == -n3 - 1)
4042 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4044 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4045 if (n3 == 0x7fffffff)
4046 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4049 /* We have a real range type on our hands. Allocate space and
4050 return a real pointer. */
4054 index_type = builtin_type_int;
4056 index_type = *dbx_lookup_type (rangenums);
4057 if (index_type == NULL)
4059 /* Does this actually ever happen? Is that why we are worrying
4060 about dealing with it rather than just calling error_type? */
4062 static struct type *range_type_index;
4064 complaint (&symfile_complaints,
4065 _("base type %d of range type is not defined"), rangenums[1]);
4066 if (range_type_index == NULL)
4068 init_type (TYPE_CODE_INT,
4069 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
4070 0, "range type index type", NULL);
4071 index_type = range_type_index;
4074 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4075 return (result_type);
4078 /* Read in an argument list. This is a list of types, separated by commas
4079 and terminated with END. Return the list of types read in, or NULL
4080 if there is an error. */
4082 static struct field *
4083 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4086 /* FIXME! Remove this arbitrary limit! */
4087 struct type *types[1024]; /* allow for fns of 1023 parameters */
4094 /* Invalid argument list: no ','. */
4097 STABS_CONTINUE (pp, objfile);
4098 types[n++] = read_type (pp, objfile);
4100 (*pp)++; /* get past `end' (the ':' character) */
4102 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4110 rval = (struct field *) xmalloc (n * sizeof (struct field));
4111 memset (rval, 0, n * sizeof (struct field));
4112 for (i = 0; i < n; i++)
4113 rval[i].type = types[i];
4118 /* Common block handling. */
4120 /* List of symbols declared since the last BCOMM. This list is a tail
4121 of local_symbols. When ECOMM is seen, the symbols on the list
4122 are noted so their proper addresses can be filled in later,
4123 using the common block base address gotten from the assembler
4126 static struct pending *common_block;
4127 static int common_block_i;
4129 /* Name of the current common block. We get it from the BCOMM instead of the
4130 ECOMM to match IBM documentation (even though IBM puts the name both places
4131 like everyone else). */
4132 static char *common_block_name;
4134 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4135 to remain after this function returns. */
4138 common_block_start (char *name, struct objfile *objfile)
4140 if (common_block_name != NULL)
4142 complaint (&symfile_complaints,
4143 _("Invalid symbol data: common block within common block"));
4145 common_block = local_symbols;
4146 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4147 common_block_name = obsavestring (name, strlen (name),
4148 &objfile->objfile_obstack);
4151 /* Process a N_ECOMM symbol. */
4154 common_block_end (struct objfile *objfile)
4156 /* Symbols declared since the BCOMM are to have the common block
4157 start address added in when we know it. common_block and
4158 common_block_i point to the first symbol after the BCOMM in
4159 the local_symbols list; copy the list and hang it off the
4160 symbol for the common block name for later fixup. */
4163 struct pending *new = 0;
4164 struct pending *next;
4167 if (common_block_name == NULL)
4169 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4173 sym = (struct symbol *)
4174 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4175 memset (sym, 0, sizeof (struct symbol));
4176 /* Note: common_block_name already saved on objfile_obstack */
4177 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4178 SYMBOL_CLASS (sym) = LOC_BLOCK;
4180 /* Now we copy all the symbols which have been defined since the BCOMM. */
4182 /* Copy all the struct pendings before common_block. */
4183 for (next = local_symbols;
4184 next != NULL && next != common_block;
4187 for (j = 0; j < next->nsyms; j++)
4188 add_symbol_to_list (next->symbol[j], &new);
4191 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4192 NULL, it means copy all the local symbols (which we already did
4195 if (common_block != NULL)
4196 for (j = common_block_i; j < common_block->nsyms; j++)
4197 add_symbol_to_list (common_block->symbol[j], &new);
4199 SYMBOL_TYPE (sym) = (struct type *) new;
4201 /* Should we be putting local_symbols back to what it was?
4204 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4205 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4206 global_sym_chain[i] = sym;
4207 common_block_name = NULL;
4210 /* Add a common block's start address to the offset of each symbol
4211 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4212 the common block name). */
4215 fix_common_block (struct symbol *sym, int valu)
4217 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4218 for (; next; next = next->next)
4221 for (j = next->nsyms - 1; j >= 0; j--)
4222 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4228 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4229 See add_undefined_type for more details. */
4232 add_undefined_type_noname (struct type *type, int typenums[2])
4236 nat.typenums[0] = typenums [0];
4237 nat.typenums[1] = typenums [1];
4240 if (noname_undefs_length == noname_undefs_allocated)
4242 noname_undefs_allocated *= 2;
4243 noname_undefs = (struct nat *)
4244 xrealloc ((char *) noname_undefs,
4245 noname_undefs_allocated * sizeof (struct nat));
4247 noname_undefs[noname_undefs_length++] = nat;
4250 /* Add TYPE to the UNDEF_TYPES vector.
4251 See add_undefined_type for more details. */
4254 add_undefined_type_1 (struct type *type)
4256 if (undef_types_length == undef_types_allocated)
4258 undef_types_allocated *= 2;
4259 undef_types = (struct type **)
4260 xrealloc ((char *) undef_types,
4261 undef_types_allocated * sizeof (struct type *));
4263 undef_types[undef_types_length++] = type;
4266 /* What about types defined as forward references inside of a small lexical
4268 /* Add a type to the list of undefined types to be checked through
4269 once this file has been read in.
4271 In practice, we actually maintain two such lists: The first list
4272 (UNDEF_TYPES) is used for types whose name has been provided, and
4273 concerns forward references (eg 'xs' or 'xu' forward references);
4274 the second list (NONAME_UNDEFS) is used for types whose name is
4275 unknown at creation time, because they were referenced through
4276 their type number before the actual type was declared.
4277 This function actually adds the given type to the proper list. */
4280 add_undefined_type (struct type *type, int typenums[2])
4282 if (TYPE_TAG_NAME (type) == NULL)
4283 add_undefined_type_noname (type, typenums);
4285 add_undefined_type_1 (type);
4288 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4291 cleanup_undefined_types_noname (void)
4295 for (i = 0; i < noname_undefs_length; i++)
4297 struct nat nat = noname_undefs[i];
4300 type = dbx_lookup_type (nat.typenums);
4301 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4302 replace_type (nat.type, *type);
4305 noname_undefs_length = 0;
4308 /* Go through each undefined type, see if it's still undefined, and fix it
4309 up if possible. We have two kinds of undefined types:
4311 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4312 Fix: update array length using the element bounds
4313 and the target type's length.
4314 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4315 yet defined at the time a pointer to it was made.
4316 Fix: Do a full lookup on the struct/union tag. */
4319 cleanup_undefined_types_1 (void)
4323 for (type = undef_types; type < undef_types + undef_types_length; type++)
4325 switch (TYPE_CODE (*type))
4328 case TYPE_CODE_STRUCT:
4329 case TYPE_CODE_UNION:
4330 case TYPE_CODE_ENUM:
4332 /* Check if it has been defined since. Need to do this here
4333 as well as in check_typedef to deal with the (legitimate in
4334 C though not C++) case of several types with the same name
4335 in different source files. */
4336 if (TYPE_STUB (*type))
4338 struct pending *ppt;
4340 /* Name of the type, without "struct" or "union" */
4341 char *typename = TYPE_TAG_NAME (*type);
4343 if (typename == NULL)
4345 complaint (&symfile_complaints, _("need a type name"));
4348 for (ppt = file_symbols; ppt; ppt = ppt->next)
4350 for (i = 0; i < ppt->nsyms; i++)
4352 struct symbol *sym = ppt->symbol[i];
4354 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4355 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4356 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4358 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4359 replace_type (*type, SYMBOL_TYPE (sym));
4368 complaint (&symfile_complaints,
4369 _("forward-referenced types left unresolved, "
4377 undef_types_length = 0;
4380 /* Try to fix all the undefined types we ecountered while processing
4384 cleanup_undefined_types (void)
4386 cleanup_undefined_types_1 ();
4387 cleanup_undefined_types_noname ();
4390 /* Scan through all of the global symbols defined in the object file,
4391 assigning values to the debugging symbols that need to be assigned
4392 to. Get these symbols from the minimal symbol table. */
4395 scan_file_globals (struct objfile *objfile)
4398 struct minimal_symbol *msymbol;
4399 struct symbol *sym, *prev;
4400 struct objfile *resolve_objfile;
4402 /* SVR4 based linkers copy referenced global symbols from shared
4403 libraries to the main executable.
4404 If we are scanning the symbols for a shared library, try to resolve
4405 them from the minimal symbols of the main executable first. */
4407 if (symfile_objfile && objfile != symfile_objfile)
4408 resolve_objfile = symfile_objfile;
4410 resolve_objfile = objfile;
4414 /* Avoid expensive loop through all minimal symbols if there are
4415 no unresolved symbols. */
4416 for (hash = 0; hash < HASHSIZE; hash++)
4418 if (global_sym_chain[hash])
4421 if (hash >= HASHSIZE)
4424 for (msymbol = resolve_objfile->msymbols;
4425 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4430 /* Skip static symbols. */
4431 switch (MSYMBOL_TYPE (msymbol))
4443 /* Get the hash index and check all the symbols
4444 under that hash index. */
4446 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4448 for (sym = global_sym_chain[hash]; sym;)
4450 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4451 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4453 /* Splice this symbol out of the hash chain and
4454 assign the value we have to it. */
4457 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4461 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4464 /* Check to see whether we need to fix up a common block. */
4465 /* Note: this code might be executed several times for
4466 the same symbol if there are multiple references. */
4469 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4471 fix_common_block (sym,
4472 SYMBOL_VALUE_ADDRESS (msymbol));
4476 SYMBOL_VALUE_ADDRESS (sym)
4477 = SYMBOL_VALUE_ADDRESS (msymbol);
4479 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4484 sym = SYMBOL_VALUE_CHAIN (prev);
4488 sym = global_sym_chain[hash];
4494 sym = SYMBOL_VALUE_CHAIN (sym);
4498 if (resolve_objfile == objfile)
4500 resolve_objfile = objfile;
4503 /* Change the storage class of any remaining unresolved globals to
4504 LOC_UNRESOLVED and remove them from the chain. */
4505 for (hash = 0; hash < HASHSIZE; hash++)
4507 sym = global_sym_chain[hash];
4511 sym = SYMBOL_VALUE_CHAIN (sym);
4513 /* Change the symbol address from the misleading chain value
4515 SYMBOL_VALUE_ADDRESS (prev) = 0;
4517 /* Complain about unresolved common block symbols. */
4518 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4519 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4521 complaint (&symfile_complaints,
4522 _("%s: common block `%s' from global_sym_chain unresolved"),
4523 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4526 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4529 /* Initialize anything that needs initializing when starting to read
4530 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4534 stabsread_init (void)
4538 /* Initialize anything that needs initializing when a completely new
4539 symbol file is specified (not just adding some symbols from another
4540 file, e.g. a shared library). */
4543 stabsread_new_init (void)
4545 /* Empty the hash table of global syms looking for values. */
4546 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4549 /* Initialize anything that needs initializing at the same time as
4550 start_symtab() is called. */
4555 global_stabs = NULL; /* AIX COFF */
4556 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4557 n_this_object_header_files = 1;
4558 type_vector_length = 0;
4559 type_vector = (struct type **) 0;
4561 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4562 common_block_name = NULL;
4565 /* Call after end_symtab() */
4572 xfree (type_vector);
4575 type_vector_length = 0;
4576 previous_stab_code = 0;
4580 finish_global_stabs (struct objfile *objfile)
4584 patch_block_stabs (global_symbols, global_stabs, objfile);
4585 xfree (global_stabs);
4586 global_stabs = NULL;
4590 /* Find the end of the name, delimited by a ':', but don't match
4591 ObjC symbols which look like -[Foo bar::]:bla. */
4593 find_name_end (char *name)
4596 if (s[0] == '-' || *s == '+')
4598 /* Must be an ObjC method symbol. */
4601 error (_("invalid symbol name \"%s\""), name);
4603 s = strchr (s, ']');
4606 error (_("invalid symbol name \"%s\""), name);
4608 return strchr (s, ':');
4612 return strchr (s, ':');
4616 /* Initializer for this module */
4619 _initialize_stabsread (void)
4621 undef_types_allocated = 20;
4622 undef_types_length = 0;
4623 undef_types = (struct type **)
4624 xmalloc (undef_types_allocated * sizeof (struct type *));
4626 noname_undefs_allocated = 20;
4627 noname_undefs_length = 0;
4628 noname_undefs = (struct nat *)
4629 xmalloc (noname_undefs_allocated * sizeof (struct nat));