1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
29 #include "gdb_obstack.h"
32 #include "expression.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
40 #include "complaints.h"
42 #include "gdb-demangle.h"
44 #include "target-float.h"
46 #include "cp-support.h"
49 /* Ask stabsread.h to define the vars it normally declares `extern'. */
52 #include "stabsread.h" /* Our own declarations */
57 struct nextfield *next;
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
67 struct next_fnfieldlist
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
73 /* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
77 expected to eventually go away... (FIXME) */
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
86 read_one_struct_field (struct field_info *, const char **, const char *,
87 struct type *, struct objfile *);
89 static struct type *dbx_alloc_type (int[2], struct objfile *);
91 static long read_huge_number (const char **, int, int *, int);
93 static struct type *error_type (const char **, struct objfile *);
96 patch_block_stabs (struct pending *, struct pending_stabs *,
99 static void fix_common_block (struct symbol *, CORE_ADDR);
101 static int read_type_number (const char **, int *);
103 static struct type *read_type (const char **, struct objfile *);
105 static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
108 static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
111 static struct type *read_sun_floating_type (const char **, int[2],
114 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
116 static struct type *rs6000_builtin_type (int, struct objfile *);
119 read_member_functions (struct field_info *, const char **, struct type *,
123 read_struct_fields (struct field_info *, const char **, struct type *,
127 read_baseclasses (struct field_info *, const char **, struct type *,
131 read_tilde_fields (struct field_info *, const char **, struct type *,
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136 static int attach_fields_to_type (struct field_info *, struct type *,
139 static struct type *read_struct_type (const char **, struct type *,
143 static struct type *read_array_type (const char **, struct type *,
146 static struct field *read_args (const char **, int, struct objfile *,
149 static void add_undefined_type (struct type *, int[2]);
152 read_cpp_abbrev (struct field_info *, const char **, struct type *,
155 static const char *find_name_end (const char *name);
157 static int process_reference (const char **string);
159 void stabsread_clear_cache (void);
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
165 invalid_cpp_abbrev_complaint (const char *arg1)
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
173 complaint (&symfile_complaints,
174 _("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
179 stabs_general_complaint (const char *arg1)
181 complaint (&symfile_complaints, "%s", arg1);
184 /* Make a list of forward references which haven't been defined. */
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
212 /* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
218 static struct type **type_vector;
220 /* Number of elements allocated for type_vector currently. */
222 static int type_vector_length;
224 /* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
227 #define INITIAL_TYPE_VECTOR_LENGTH 160
230 /* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
237 static struct type **
238 dbx_lookup_type (int typenums[2], struct objfile *objfile)
240 int filenum = typenums[0];
241 int index = typenums[1];
244 struct header_file *f;
247 if (filenum == -1) /* -1,-1 is for temporary types. */
250 if (filenum < 0 || filenum >= n_this_object_header_files)
252 complaint (&symfile_complaints,
253 _("Invalid symbol data: type number "
254 "(%d,%d) out of range at symtab pos %d."),
255 filenum, index, symnum);
263 /* Caller wants address of address of type. We think
264 that negative (rs6k builtin) types will never appear as
265 "lvalues", (nor should they), so we stuff the real type
266 pointer into a temp, and return its address. If referenced,
267 this will do the right thing. */
268 static struct type *temp_type;
270 temp_type = rs6000_builtin_type (index, objfile);
274 /* Type is defined outside of header files.
275 Find it in this object file's type vector. */
276 if (index >= type_vector_length)
278 old_len = type_vector_length;
281 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
282 type_vector = XNEWVEC (struct type *, type_vector_length);
284 while (index >= type_vector_length)
286 type_vector_length *= 2;
288 type_vector = (struct type **)
289 xrealloc ((char *) type_vector,
290 (type_vector_length * sizeof (struct type *)));
291 memset (&type_vector[old_len], 0,
292 (type_vector_length - old_len) * sizeof (struct type *));
294 return (&type_vector[index]);
298 real_filenum = this_object_header_files[filenum];
300 if (real_filenum >= N_HEADER_FILES (objfile))
302 static struct type *temp_type;
304 warning (_("GDB internal error: bad real_filenum"));
307 temp_type = objfile_type (objfile)->builtin_error;
311 f = HEADER_FILES (objfile) + real_filenum;
313 f_orig_length = f->length;
314 if (index >= f_orig_length)
316 while (index >= f->length)
320 f->vector = (struct type **)
321 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
322 memset (&f->vector[f_orig_length], 0,
323 (f->length - f_orig_length) * sizeof (struct type *));
325 return (&f->vector[index]);
329 /* Make sure there is a type allocated for type numbers TYPENUMS
330 and return the type object.
331 This can create an empty (zeroed) type object.
332 TYPENUMS may be (-1, -1) to return a new type object that is not
333 put into the type vector, and so may not be referred to by number. */
336 dbx_alloc_type (int typenums[2], struct objfile *objfile)
338 struct type **type_addr;
340 if (typenums[0] == -1)
342 return (alloc_type (objfile));
345 type_addr = dbx_lookup_type (typenums, objfile);
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
352 *type_addr = alloc_type (objfile);
358 /* Allocate a floating-point type of size BITS. */
361 dbx_init_float_type (struct objfile *objfile, int bits)
363 struct gdbarch *gdbarch = get_objfile_arch (objfile);
364 const struct floatformat **format;
367 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
369 type = init_float_type (objfile, bits, NULL, format);
371 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
376 /* for all the stabs in a given stab vector, build appropriate types
377 and fix their symbols in given symbol vector. */
380 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
381 struct objfile *objfile)
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
393 for (ii = 0; ii < stabs->count; ++ii)
395 name = stabs->stab[ii];
396 pp = (char *) strchr (name, ':');
397 gdb_assert (pp); /* Must find a ':' or game's over. */
401 pp = (char *) strchr (pp, ':');
403 sym = find_symbol_in_list (symbols, name, pp - name);
406 /* FIXME-maybe: it would be nice if we noticed whether
407 the variable was defined *anywhere*, not just whether
408 it is defined in this compilation unit. But neither
409 xlc or GCC seem to need such a definition, and until
410 we do psymtabs (so that the minimal symbols from all
411 compilation units are available now), I'm not sure
412 how to get the information. */
414 /* On xcoff, if a global is defined and never referenced,
415 ld will remove it from the executable. There is then
416 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
417 sym = allocate_symbol (objfile);
418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
419 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
420 SYMBOL_SET_LINKAGE_NAME
421 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
424 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
426 /* I don't think the linker does this with functions,
427 so as far as I know this is never executed.
428 But it doesn't hurt to check. */
430 lookup_function_type (read_type (&pp, objfile));
434 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
436 add_symbol_to_list (sym, &global_symbols);
441 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
444 lookup_function_type (read_type (&pp, objfile));
448 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
456 /* Read a number by which a type is referred to in dbx data,
457 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
458 Just a single number N is equivalent to (0,N).
459 Return the two numbers by storing them in the vector TYPENUMS.
460 TYPENUMS will then be used as an argument to dbx_lookup_type.
462 Returns 0 for success, -1 for error. */
465 read_type_number (const char **pp, int *typenums)
472 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
475 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
482 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
490 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
491 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
492 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
493 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
495 /* Structure for storing pointers to reference definitions for fast lookup
496 during "process_later". */
505 #define MAX_CHUNK_REFS 100
506 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
507 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
509 static struct ref_map *ref_map;
511 /* Ptr to free cell in chunk's linked list. */
512 static int ref_count = 0;
514 /* Number of chunks malloced. */
515 static int ref_chunk = 0;
517 /* This file maintains a cache of stabs aliases found in the symbol
518 table. If the symbol table changes, this cache must be cleared
519 or we are left holding onto data in invalid obstacks. */
521 stabsread_clear_cache (void)
527 /* Create array of pointers mapping refids to symbols and stab strings.
528 Add pointers to reference definition symbols and/or their values as we
529 find them, using their reference numbers as our index.
530 These will be used later when we resolve references. */
532 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
536 if (refnum >= ref_count)
537 ref_count = refnum + 1;
538 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
540 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
541 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
543 ref_map = (struct ref_map *)
544 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
545 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
546 new_chunks * REF_CHUNK_SIZE);
547 ref_chunk += new_chunks;
549 ref_map[refnum].stabs = stabs;
550 ref_map[refnum].sym = sym;
551 ref_map[refnum].value = value;
554 /* Return defined sym for the reference REFNUM. */
556 ref_search (int refnum)
558 if (refnum < 0 || refnum > ref_count)
560 return ref_map[refnum].sym;
563 /* Parse a reference id in STRING and return the resulting
564 reference number. Move STRING beyond the reference id. */
567 process_reference (const char **string)
575 /* Advance beyond the initial '#'. */
578 /* Read number as reference id. */
579 while (*p && isdigit (*p))
581 refnum = refnum * 10 + *p - '0';
588 /* If STRING defines a reference, store away a pointer to the reference
589 definition for later use. Return the reference number. */
592 symbol_reference_defined (const char **string)
594 const char *p = *string;
597 refnum = process_reference (&p);
599 /* Defining symbols end in '='. */
602 /* Symbol is being defined here. */
608 /* Must be a reference. Either the symbol has already been defined,
609 or this is a forward reference to it. */
616 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
618 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
621 || regno >= (gdbarch_num_regs (gdbarch)
622 + gdbarch_num_pseudo_regs (gdbarch)))
624 reg_value_complaint (regno,
625 gdbarch_num_regs (gdbarch)
626 + gdbarch_num_pseudo_regs (gdbarch),
627 SYMBOL_PRINT_NAME (sym));
629 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
635 static const struct symbol_register_ops stab_register_funcs = {
639 /* The "aclass" indices for computed symbols. */
641 static int stab_register_index;
642 static int stab_regparm_index;
645 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
646 struct objfile *objfile)
648 struct gdbarch *gdbarch = get_objfile_arch (objfile);
650 const char *p = find_name_end (string);
655 /* We would like to eliminate nameless symbols, but keep their types.
656 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
657 to type 2, but, should not create a symbol to address that type. Since
658 the symbol will be nameless, there is no way any user can refer to it. */
662 /* Ignore syms with empty names. */
666 /* Ignore old-style symbols from cc -go. */
676 complaint (&symfile_complaints,
677 _("Bad stabs string '%s'"), string);
682 /* If a nameless stab entry, all we need is the type, not the symbol.
683 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
684 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
686 current_symbol = sym = allocate_symbol (objfile);
688 if (processing_gcc_compilation)
690 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
691 number of bytes occupied by a type or object, which we ignore. */
692 SYMBOL_LINE (sym) = desc;
696 SYMBOL_LINE (sym) = 0; /* unknown */
699 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
700 &objfile->objfile_obstack);
702 if (is_cplus_marker (string[0]))
704 /* Special GNU C++ names. */
708 SYMBOL_SET_LINKAGE_NAME (sym, "this");
711 case 'v': /* $vtbl_ptr_type */
715 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
719 /* This was an anonymous type that was never fixed up. */
723 /* SunPRO (3.0 at least) static variable encoding. */
724 if (gdbarch_static_transform_name_p (gdbarch))
729 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
731 goto normal; /* Do *something* with it. */
737 std::string new_name;
739 if (SYMBOL_LANGUAGE (sym) == language_cplus)
741 char *name = (char *) alloca (p - string + 1);
743 memcpy (name, string, p - string);
744 name[p - string] = '\0';
745 new_name = cp_canonicalize_string (name);
747 if (!new_name.empty ())
749 SYMBOL_SET_NAMES (sym,
750 new_name.c_str (), new_name.length (),
754 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
756 if (SYMBOL_LANGUAGE (sym) == language_cplus)
757 cp_scan_for_anonymous_namespaces (sym, objfile);
762 /* Determine the type of name being defined. */
764 /* Getting GDB to correctly skip the symbol on an undefined symbol
765 descriptor and not ever dump core is a very dodgy proposition if
766 we do things this way. I say the acorn RISC machine can just
767 fix their compiler. */
768 /* The Acorn RISC machine's compiler can put out locals that don't
769 start with "234=" or "(3,4)=", so assume anything other than the
770 deftypes we know how to handle is a local. */
771 if (!strchr ("cfFGpPrStTvVXCR", *p))
773 if (isdigit (*p) || *p == '(' || *p == '-')
782 /* c is a special case, not followed by a type-number.
783 SYMBOL:c=iVALUE for an integer constant symbol.
784 SYMBOL:c=rVALUE for a floating constant symbol.
785 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
786 e.g. "b:c=e6,0" for "const b = blob1"
787 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
790 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
791 SYMBOL_TYPE (sym) = error_type (&p, objfile);
792 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
793 add_symbol_to_list (sym, &file_symbols);
802 struct type *dbl_type;
804 dbl_type = objfile_type (objfile)->builtin_double;
806 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
807 TYPE_LENGTH (dbl_type));
809 target_float_from_string (dbl_valu, dbl_type, std::string (p));
811 SYMBOL_TYPE (sym) = dbl_type;
812 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
813 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
818 /* Defining integer constants this way is kind of silly,
819 since 'e' constants allows the compiler to give not
820 only the value, but the type as well. C has at least
821 int, long, unsigned int, and long long as constant
822 types; other languages probably should have at least
823 unsigned as well as signed constants. */
825 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
826 SYMBOL_VALUE (sym) = atoi (p);
827 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
833 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
834 SYMBOL_VALUE (sym) = atoi (p);
835 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
841 struct type *range_type;
844 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
845 gdb_byte *string_value;
847 if (quote != '\'' && quote != '"')
849 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
850 SYMBOL_TYPE (sym) = error_type (&p, objfile);
851 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
852 add_symbol_to_list (sym, &file_symbols);
856 /* Find matching quote, rejecting escaped quotes. */
857 while (*p && *p != quote)
859 if (*p == '\\' && p[1] == quote)
861 string_local[ind] = (gdb_byte) quote;
867 string_local[ind] = (gdb_byte) (*p);
874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
876 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
877 add_symbol_to_list (sym, &file_symbols);
881 /* NULL terminate the string. */
882 string_local[ind] = 0;
884 = create_static_range_type (NULL,
885 objfile_type (objfile)->builtin_int,
887 SYMBOL_TYPE (sym) = create_array_type (NULL,
888 objfile_type (objfile)->builtin_char,
891 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
892 memcpy (string_value, string_local, ind + 1);
895 SYMBOL_VALUE_BYTES (sym) = string_value;
896 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
901 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
902 can be represented as integral.
903 e.g. "b:c=e6,0" for "const b = blob1"
904 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
911 SYMBOL_TYPE (sym) = error_type (&p, objfile);
916 /* If the value is too big to fit in an int (perhaps because
917 it is unsigned), or something like that, we silently get
918 a bogus value. The type and everything else about it is
919 correct. Ideally, we should be using whatever we have
920 available for parsing unsigned and long long values,
922 SYMBOL_VALUE (sym) = atoi (p);
927 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
928 SYMBOL_TYPE (sym) = error_type (&p, objfile);
931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
932 add_symbol_to_list (sym, &file_symbols);
936 /* The name of a caught exception. */
937 SYMBOL_TYPE (sym) = read_type (&p, objfile);
938 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
939 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
940 SYMBOL_VALUE_ADDRESS (sym) = valu;
941 add_symbol_to_list (sym, &local_symbols);
945 /* A static function definition. */
946 SYMBOL_TYPE (sym) = read_type (&p, objfile);
947 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
949 add_symbol_to_list (sym, &file_symbols);
950 /* fall into process_function_types. */
952 process_function_types:
953 /* Function result types are described as the result type in stabs.
954 We need to convert this to the function-returning-type-X type
955 in GDB. E.g. "int" is converted to "function returning int". */
956 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
957 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
959 /* All functions in C++ have prototypes. Stabs does not offer an
960 explicit way to identify prototyped or unprototyped functions,
961 but both GCC and Sun CC emit stabs for the "call-as" type rather
962 than the "declared-as" type for unprototyped functions, so
963 we treat all functions as if they were prototyped. This is used
964 primarily for promotion when calling the function from GDB. */
965 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
967 /* fall into process_prototype_types. */
969 process_prototype_types:
970 /* Sun acc puts declared types of arguments here. */
973 struct type *ftype = SYMBOL_TYPE (sym);
978 /* Obtain a worst case guess for the number of arguments
979 by counting the semicolons. */
986 /* Allocate parameter information fields and fill them in. */
987 TYPE_FIELDS (ftype) = (struct field *)
988 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
993 /* A type number of zero indicates the start of varargs.
994 FIXME: GDB currently ignores vararg functions. */
995 if (p[0] == '0' && p[1] == '\0')
997 ptype = read_type (&p, objfile);
999 /* The Sun compilers mark integer arguments, which should
1000 be promoted to the width of the calling conventions, with
1001 a type which references itself. This type is turned into
1002 a TYPE_CODE_VOID type by read_type, and we have to turn
1003 it back into builtin_int here.
1004 FIXME: Do we need a new builtin_promoted_int_arg ? */
1005 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1006 ptype = objfile_type (objfile)->builtin_int;
1007 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1008 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1010 TYPE_NFIELDS (ftype) = nparams;
1011 TYPE_PROTOTYPED (ftype) = 1;
1016 /* A global function definition. */
1017 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1018 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1019 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1020 add_symbol_to_list (sym, &global_symbols);
1021 goto process_function_types;
1024 /* For a class G (global) symbol, it appears that the
1025 value is not correct. It is necessary to search for the
1026 corresponding linker definition to find the value.
1027 These definitions appear at the end of the namelist. */
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1030 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1031 /* Don't add symbol references to global_sym_chain.
1032 Symbol references don't have valid names and wont't match up with
1033 minimal symbols when the global_sym_chain is relocated.
1034 We'll fixup symbol references when we fixup the defining symbol. */
1035 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1037 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1038 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1039 global_sym_chain[i] = sym;
1041 add_symbol_to_list (sym, &global_symbols);
1044 /* This case is faked by a conditional above,
1045 when there is no code letter in the dbx data.
1046 Dbx data never actually contains 'l'. */
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1051 SYMBOL_VALUE (sym) = valu;
1052 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1053 add_symbol_to_list (sym, &local_symbols);
1058 /* pF is a two-letter code that means a function parameter in Fortran.
1059 The type-number specifies the type of the return value.
1060 Translate it into a pointer-to-function type. */
1064 = lookup_pointer_type
1065 (lookup_function_type (read_type (&p, objfile)));
1068 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1070 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1071 SYMBOL_VALUE (sym) = valu;
1072 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1073 SYMBOL_IS_ARGUMENT (sym) = 1;
1074 add_symbol_to_list (sym, &local_symbols);
1076 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1078 /* On little-endian machines, this crud is never necessary,
1079 and, if the extra bytes contain garbage, is harmful. */
1083 /* If it's gcc-compiled, if it says `short', believe it. */
1084 if (processing_gcc_compilation
1085 || gdbarch_believe_pcc_promotion (gdbarch))
1088 if (!gdbarch_believe_pcc_promotion (gdbarch))
1090 /* If PCC says a parameter is a short or a char, it is
1092 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1093 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1094 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1097 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1098 ? objfile_type (objfile)->builtin_unsigned_int
1099 : objfile_type (objfile)->builtin_int;
1106 /* acc seems to use P to declare the prototypes of functions that
1107 are referenced by this file. gdb is not prepared to deal
1108 with this extra information. FIXME, it ought to. */
1111 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1112 goto process_prototype_types;
1117 /* Parameter which is in a register. */
1118 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1119 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1120 SYMBOL_IS_ARGUMENT (sym) = 1;
1121 SYMBOL_VALUE (sym) = valu;
1122 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1123 add_symbol_to_list (sym, &local_symbols);
1127 /* Register variable (either global or local). */
1128 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1129 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1130 SYMBOL_VALUE (sym) = valu;
1131 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1132 if (within_function)
1134 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1135 the same name to represent an argument passed in a
1136 register. GCC uses 'P' for the same case. So if we find
1137 such a symbol pair we combine it into one 'P' symbol.
1138 For Sun cc we need to do this regardless of
1139 stabs_argument_has_addr, because the compiler puts out
1140 the 'p' symbol even if it never saves the argument onto
1143 On most machines, we want to preserve both symbols, so
1144 that we can still get information about what is going on
1145 with the stack (VAX for computing args_printed, using
1146 stack slots instead of saved registers in backtraces,
1149 Note that this code illegally combines
1150 main(argc) struct foo argc; { register struct foo argc; }
1151 but this case is considered pathological and causes a warning
1152 from a decent compiler. */
1155 && local_symbols->nsyms > 0
1156 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1158 struct symbol *prev_sym;
1160 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1161 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1162 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1163 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1164 SYMBOL_LINKAGE_NAME (sym)) == 0)
1166 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1167 /* Use the type from the LOC_REGISTER; that is the type
1168 that is actually in that register. */
1169 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1170 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1175 add_symbol_to_list (sym, &local_symbols);
1178 add_symbol_to_list (sym, &file_symbols);
1182 /* Static symbol at top level of file. */
1183 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1184 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1185 SYMBOL_VALUE_ADDRESS (sym) = valu;
1186 if (gdbarch_static_transform_name_p (gdbarch)
1187 && gdbarch_static_transform_name (gdbarch,
1188 SYMBOL_LINKAGE_NAME (sym))
1189 != SYMBOL_LINKAGE_NAME (sym))
1191 struct bound_minimal_symbol msym;
1193 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1195 if (msym.minsym != NULL)
1197 const char *new_name = gdbarch_static_transform_name
1198 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1200 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1201 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1204 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1205 add_symbol_to_list (sym, &file_symbols);
1209 /* In Ada, there is no distinction between typedef and non-typedef;
1210 any type declaration implicitly has the equivalent of a typedef,
1211 and thus 't' is in fact equivalent to 'Tt'.
1213 Therefore, for Ada units, we check the character immediately
1214 before the 't', and if we do not find a 'T', then make sure to
1215 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1216 will be stored in the VAR_DOMAIN). If the symbol was indeed
1217 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1218 elsewhere, so we don't need to take care of that.
1220 This is important to do, because of forward references:
1221 The cleanup of undefined types stored in undef_types only uses
1222 STRUCT_DOMAIN symbols to perform the replacement. */
1223 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1226 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1228 /* For a nameless type, we don't want a create a symbol, thus we
1229 did not use `sym'. Return without further processing. */
1233 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1234 SYMBOL_VALUE (sym) = valu;
1235 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1236 /* C++ vagaries: we may have a type which is derived from
1237 a base type which did not have its name defined when the
1238 derived class was output. We fill in the derived class's
1239 base part member's name here in that case. */
1240 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1242 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1243 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1247 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1248 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1249 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1250 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1253 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1255 /* gcc-2.6 or later (when using -fvtable-thunks)
1256 emits a unique named type for a vtable entry.
1257 Some gdb code depends on that specific name. */
1258 extern const char vtbl_ptr_name[];
1260 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1261 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1262 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1264 /* If we are giving a name to a type such as "pointer to
1265 foo" or "function returning foo", we better not set
1266 the TYPE_NAME. If the program contains "typedef char
1267 *caddr_t;", we don't want all variables of type char
1268 * to print as caddr_t. This is not just a
1269 consequence of GDB's type management; PCC and GCC (at
1270 least through version 2.4) both output variables of
1271 either type char * or caddr_t with the type number
1272 defined in the 't' symbol for caddr_t. If a future
1273 compiler cleans this up it GDB is not ready for it
1274 yet, but if it becomes ready we somehow need to
1275 disable this check (without breaking the PCC/GCC2.4
1280 Fortunately, this check seems not to be necessary
1281 for anything except pointers or functions. */
1282 /* ezannoni: 2000-10-26. This seems to apply for
1283 versions of gcc older than 2.8. This was the original
1284 problem: with the following code gdb would tell that
1285 the type for name1 is caddr_t, and func is char().
1287 typedef char *caddr_t;
1299 /* Pascal accepts names for pointer types. */
1300 if (current_subfile->language == language_pascal)
1302 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1306 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1309 add_symbol_to_list (sym, &file_symbols);
1313 /* Create the STRUCT_DOMAIN clone. */
1314 struct symbol *struct_sym = allocate_symbol (objfile);
1317 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1318 SYMBOL_VALUE (struct_sym) = valu;
1319 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1320 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1321 TYPE_NAME (SYMBOL_TYPE (sym))
1322 = obconcat (&objfile->objfile_obstack,
1323 SYMBOL_LINKAGE_NAME (sym),
1325 add_symbol_to_list (struct_sym, &file_symbols);
1331 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1332 by 't' which means we are typedef'ing it as well. */
1333 synonym = *p == 't';
1338 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1340 /* For a nameless type, we don't want a create a symbol, thus we
1341 did not use `sym'. Return without further processing. */
1345 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1346 SYMBOL_VALUE (sym) = valu;
1347 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1348 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1349 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1350 = obconcat (&objfile->objfile_obstack,
1351 SYMBOL_LINKAGE_NAME (sym),
1353 add_symbol_to_list (sym, &file_symbols);
1357 /* Clone the sym and then modify it. */
1358 struct symbol *typedef_sym = allocate_symbol (objfile);
1360 *typedef_sym = *sym;
1361 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1362 SYMBOL_VALUE (typedef_sym) = valu;
1363 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1364 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1365 TYPE_NAME (SYMBOL_TYPE (sym))
1366 = obconcat (&objfile->objfile_obstack,
1367 SYMBOL_LINKAGE_NAME (sym),
1369 add_symbol_to_list (typedef_sym, &file_symbols);
1374 /* Static symbol of local scope. */
1375 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1376 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1377 SYMBOL_VALUE_ADDRESS (sym) = valu;
1378 if (gdbarch_static_transform_name_p (gdbarch)
1379 && gdbarch_static_transform_name (gdbarch,
1380 SYMBOL_LINKAGE_NAME (sym))
1381 != SYMBOL_LINKAGE_NAME (sym))
1383 struct bound_minimal_symbol msym;
1385 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1387 if (msym.minsym != NULL)
1389 const char *new_name = gdbarch_static_transform_name
1390 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1392 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1393 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1396 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1397 add_symbol_to_list (sym, &local_symbols);
1401 /* Reference parameter */
1402 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1403 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1404 SYMBOL_IS_ARGUMENT (sym) = 1;
1405 SYMBOL_VALUE (sym) = valu;
1406 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1407 add_symbol_to_list (sym, &local_symbols);
1411 /* Reference parameter which is in a register. */
1412 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1413 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1414 SYMBOL_IS_ARGUMENT (sym) = 1;
1415 SYMBOL_VALUE (sym) = valu;
1416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1417 add_symbol_to_list (sym, &local_symbols);
1421 /* This is used by Sun FORTRAN for "function result value".
1422 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1423 that Pascal uses it too, but when I tried it Pascal used
1424 "x:3" (local symbol) instead. */
1425 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1426 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1427 SYMBOL_VALUE (sym) = valu;
1428 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1429 add_symbol_to_list (sym, &local_symbols);
1433 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1434 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1435 SYMBOL_VALUE (sym) = 0;
1436 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1437 add_symbol_to_list (sym, &file_symbols);
1441 /* Some systems pass variables of certain types by reference instead
1442 of by value, i.e. they will pass the address of a structure (in a
1443 register or on the stack) instead of the structure itself. */
1445 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1446 && SYMBOL_IS_ARGUMENT (sym))
1448 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1449 variables passed in a register). */
1450 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1451 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1452 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1453 and subsequent arguments on SPARC, for example). */
1454 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1455 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1461 /* Skip rest of this symbol and return an error type.
1463 General notes on error recovery: error_type always skips to the
1464 end of the symbol (modulo cretinous dbx symbol name continuation).
1465 Thus code like this:
1467 if (*(*pp)++ != ';')
1468 return error_type (pp, objfile);
1470 is wrong because if *pp starts out pointing at '\0' (typically as the
1471 result of an earlier error), it will be incremented to point to the
1472 start of the next symbol, which might produce strange results, at least
1473 if you run off the end of the string table. Instead use
1476 return error_type (pp, objfile);
1482 foo = error_type (pp, objfile);
1486 And in case it isn't obvious, the point of all this hair is so the compiler
1487 can define new types and new syntaxes, and old versions of the
1488 debugger will be able to read the new symbol tables. */
1490 static struct type *
1491 error_type (const char **pp, struct objfile *objfile)
1493 complaint (&symfile_complaints,
1494 _("couldn't parse type; debugger out of date?"));
1497 /* Skip to end of symbol. */
1498 while (**pp != '\0')
1503 /* Check for and handle cretinous dbx symbol name continuation! */
1504 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1506 *pp = next_symbol_text (objfile);
1513 return objfile_type (objfile)->builtin_error;
1517 /* Read type information or a type definition; return the type. Even
1518 though this routine accepts either type information or a type
1519 definition, the distinction is relevant--some parts of stabsread.c
1520 assume that type information starts with a digit, '-', or '(' in
1521 deciding whether to call read_type. */
1523 static struct type *
1524 read_type (const char **pp, struct objfile *objfile)
1526 struct type *type = 0;
1529 char type_descriptor;
1531 /* Size in bits of type if specified by a type attribute, or -1 if
1532 there is no size attribute. */
1535 /* Used to distinguish string and bitstring from char-array and set. */
1538 /* Used to distinguish vector from array. */
1541 /* Read type number if present. The type number may be omitted.
1542 for instance in a two-dimensional array declared with type
1543 "ar1;1;10;ar1;1;10;4". */
1544 if ((**pp >= '0' && **pp <= '9')
1548 if (read_type_number (pp, typenums) != 0)
1549 return error_type (pp, objfile);
1553 /* Type is not being defined here. Either it already
1554 exists, or this is a forward reference to it.
1555 dbx_alloc_type handles both cases. */
1556 type = dbx_alloc_type (typenums, objfile);
1558 /* If this is a forward reference, arrange to complain if it
1559 doesn't get patched up by the time we're done
1561 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1562 add_undefined_type (type, typenums);
1567 /* Type is being defined here. */
1569 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1574 /* 'typenums=' not present, type is anonymous. Read and return
1575 the definition, but don't put it in the type vector. */
1576 typenums[0] = typenums[1] = -1;
1581 type_descriptor = (*pp)[-1];
1582 switch (type_descriptor)
1586 enum type_code code;
1588 /* Used to index through file_symbols. */
1589 struct pending *ppt;
1592 /* Name including "struct", etc. */
1596 const char *from, *p, *q1, *q2;
1598 /* Set the type code according to the following letter. */
1602 code = TYPE_CODE_STRUCT;
1605 code = TYPE_CODE_UNION;
1608 code = TYPE_CODE_ENUM;
1612 /* Complain and keep going, so compilers can invent new
1613 cross-reference types. */
1614 complaint (&symfile_complaints,
1615 _("Unrecognized cross-reference type `%c'"),
1617 code = TYPE_CODE_STRUCT;
1622 q1 = strchr (*pp, '<');
1623 p = strchr (*pp, ':');
1625 return error_type (pp, objfile);
1626 if (q1 && p > q1 && p[1] == ':')
1628 int nesting_level = 0;
1630 for (q2 = q1; *q2; q2++)
1634 else if (*q2 == '>')
1636 else if (*q2 == ':' && nesting_level == 0)
1641 return error_type (pp, objfile);
1644 if (current_subfile->language == language_cplus)
1646 char *name = (char *) alloca (p - *pp + 1);
1648 memcpy (name, *pp, p - *pp);
1649 name[p - *pp] = '\0';
1651 std::string new_name = cp_canonicalize_string (name);
1652 if (!new_name.empty ())
1655 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1657 new_name.length ());
1660 if (type_name == NULL)
1662 char *to = type_name = (char *)
1663 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1665 /* Copy the name. */
1672 /* Set the pointer ahead of the name which we just read, and
1677 /* If this type has already been declared, then reuse the same
1678 type, rather than allocating a new one. This saves some
1681 for (ppt = file_symbols; ppt; ppt = ppt->next)
1682 for (i = 0; i < ppt->nsyms; i++)
1684 struct symbol *sym = ppt->symbol[i];
1686 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1687 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1688 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1689 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1691 obstack_free (&objfile->objfile_obstack, type_name);
1692 type = SYMBOL_TYPE (sym);
1693 if (typenums[0] != -1)
1694 *dbx_lookup_type (typenums, objfile) = type;
1699 /* Didn't find the type to which this refers, so we must
1700 be dealing with a forward reference. Allocate a type
1701 structure for it, and keep track of it so we can
1702 fill in the rest of the fields when we get the full
1704 type = dbx_alloc_type (typenums, objfile);
1705 TYPE_CODE (type) = code;
1706 TYPE_TAG_NAME (type) = type_name;
1707 INIT_CPLUS_SPECIFIC (type);
1708 TYPE_STUB (type) = 1;
1710 add_undefined_type (type, typenums);
1714 case '-': /* RS/6000 built-in type */
1728 /* We deal with something like t(1,2)=(3,4)=... which
1729 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1731 /* Allocate and enter the typedef type first.
1732 This handles recursive types. */
1733 type = dbx_alloc_type (typenums, objfile);
1734 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1736 struct type *xtype = read_type (pp, objfile);
1740 /* It's being defined as itself. That means it is "void". */
1741 TYPE_CODE (type) = TYPE_CODE_VOID;
1742 TYPE_LENGTH (type) = 1;
1744 else if (type_size >= 0 || is_string)
1746 /* This is the absolute wrong way to construct types. Every
1747 other debug format has found a way around this problem and
1748 the related problems with unnecessarily stubbed types;
1749 someone motivated should attempt to clean up the issue
1750 here as well. Once a type pointed to has been created it
1751 should not be modified.
1753 Well, it's not *absolutely* wrong. Constructing recursive
1754 types (trees, linked lists) necessarily entails modifying
1755 types after creating them. Constructing any loop structure
1756 entails side effects. The Dwarf 2 reader does handle this
1757 more gracefully (it never constructs more than once
1758 instance of a type object, so it doesn't have to copy type
1759 objects wholesale), but it still mutates type objects after
1760 other folks have references to them.
1762 Keep in mind that this circularity/mutation issue shows up
1763 at the source language level, too: C's "incomplete types",
1764 for example. So the proper cleanup, I think, would be to
1765 limit GDB's type smashing to match exactly those required
1766 by the source language. So GDB could have a
1767 "complete_this_type" function, but never create unnecessary
1768 copies of a type otherwise. */
1769 replace_type (type, xtype);
1770 TYPE_NAME (type) = NULL;
1771 TYPE_TAG_NAME (type) = NULL;
1775 TYPE_TARGET_STUB (type) = 1;
1776 TYPE_TARGET_TYPE (type) = xtype;
1781 /* In the following types, we must be sure to overwrite any existing
1782 type that the typenums refer to, rather than allocating a new one
1783 and making the typenums point to the new one. This is because there
1784 may already be pointers to the existing type (if it had been
1785 forward-referenced), and we must change it to a pointer, function,
1786 reference, or whatever, *in-place*. */
1788 case '*': /* Pointer to another type */
1789 type1 = read_type (pp, objfile);
1790 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1793 case '&': /* Reference to another type */
1794 type1 = read_type (pp, objfile);
1795 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1799 case 'f': /* Function returning another type */
1800 type1 = read_type (pp, objfile);
1801 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1804 case 'g': /* Prototyped function. (Sun) */
1806 /* Unresolved questions:
1808 - According to Sun's ``STABS Interface Manual'', for 'f'
1809 and 'F' symbol descriptors, a `0' in the argument type list
1810 indicates a varargs function. But it doesn't say how 'g'
1811 type descriptors represent that info. Someone with access
1812 to Sun's toolchain should try it out.
1814 - According to the comment in define_symbol (search for
1815 `process_prototype_types:'), Sun emits integer arguments as
1816 types which ref themselves --- like `void' types. Do we
1817 have to deal with that here, too? Again, someone with
1818 access to Sun's toolchain should try it out and let us
1821 const char *type_start = (*pp) - 1;
1822 struct type *return_type = read_type (pp, objfile);
1823 struct type *func_type
1824 = make_function_type (return_type,
1825 dbx_lookup_type (typenums, objfile));
1828 struct type_list *next;
1832 while (**pp && **pp != '#')
1834 struct type *arg_type = read_type (pp, objfile);
1835 struct type_list *newobj = XALLOCA (struct type_list);
1836 newobj->type = arg_type;
1837 newobj->next = arg_types;
1845 complaint (&symfile_complaints,
1846 _("Prototyped function type didn't "
1847 "end arguments with `#':\n%s"),
1851 /* If there is just one argument whose type is `void', then
1852 that's just an empty argument list. */
1854 && ! arg_types->next
1855 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1858 TYPE_FIELDS (func_type)
1859 = (struct field *) TYPE_ALLOC (func_type,
1860 num_args * sizeof (struct field));
1861 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1864 struct type_list *t;
1866 /* We stuck each argument type onto the front of the list
1867 when we read it, so the list is reversed. Build the
1868 fields array right-to-left. */
1869 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1870 TYPE_FIELD_TYPE (func_type, i) = t->type;
1872 TYPE_NFIELDS (func_type) = num_args;
1873 TYPE_PROTOTYPED (func_type) = 1;
1879 case 'k': /* Const qualifier on some type (Sun) */
1880 type = read_type (pp, objfile);
1881 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1882 dbx_lookup_type (typenums, objfile));
1885 case 'B': /* Volatile qual on some type (Sun) */
1886 type = read_type (pp, objfile);
1887 type = make_cv_type (TYPE_CONST (type), 1, type,
1888 dbx_lookup_type (typenums, objfile));
1892 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1893 { /* Member (class & variable) type */
1894 /* FIXME -- we should be doing smash_to_XXX types here. */
1896 struct type *domain = read_type (pp, objfile);
1897 struct type *memtype;
1900 /* Invalid member type data format. */
1901 return error_type (pp, objfile);
1904 memtype = read_type (pp, objfile);
1905 type = dbx_alloc_type (typenums, objfile);
1906 smash_to_memberptr_type (type, domain, memtype);
1909 /* type attribute */
1911 const char *attr = *pp;
1913 /* Skip to the semicolon. */
1914 while (**pp != ';' && **pp != '\0')
1917 return error_type (pp, objfile);
1919 ++ * pp; /* Skip the semicolon. */
1923 case 's': /* Size attribute */
1924 type_size = atoi (attr + 1);
1929 case 'S': /* String attribute */
1930 /* FIXME: check to see if following type is array? */
1934 case 'V': /* Vector attribute */
1935 /* FIXME: check to see if following type is array? */
1940 /* Ignore unrecognized type attributes, so future compilers
1941 can invent new ones. */
1949 case '#': /* Method (class & fn) type */
1950 if ((*pp)[0] == '#')
1952 /* We'll get the parameter types from the name. */
1953 struct type *return_type;
1956 return_type = read_type (pp, objfile);
1957 if (*(*pp)++ != ';')
1958 complaint (&symfile_complaints,
1959 _("invalid (minimal) member type "
1960 "data format at symtab pos %d."),
1962 type = allocate_stub_method (return_type);
1963 if (typenums[0] != -1)
1964 *dbx_lookup_type (typenums, objfile) = type;
1968 struct type *domain = read_type (pp, objfile);
1969 struct type *return_type;
1974 /* Invalid member type data format. */
1975 return error_type (pp, objfile);
1979 return_type = read_type (pp, objfile);
1980 args = read_args (pp, ';', objfile, &nargs, &varargs);
1982 return error_type (pp, objfile);
1983 type = dbx_alloc_type (typenums, objfile);
1984 smash_to_method_type (type, domain, return_type, args,
1989 case 'r': /* Range type */
1990 type = read_range_type (pp, typenums, type_size, objfile);
1991 if (typenums[0] != -1)
1992 *dbx_lookup_type (typenums, objfile) = type;
1997 /* Sun ACC builtin int type */
1998 type = read_sun_builtin_type (pp, typenums, objfile);
1999 if (typenums[0] != -1)
2000 *dbx_lookup_type (typenums, objfile) = type;
2004 case 'R': /* Sun ACC builtin float type */
2005 type = read_sun_floating_type (pp, typenums, objfile);
2006 if (typenums[0] != -1)
2007 *dbx_lookup_type (typenums, objfile) = type;
2010 case 'e': /* Enumeration type */
2011 type = dbx_alloc_type (typenums, objfile);
2012 type = read_enum_type (pp, type, objfile);
2013 if (typenums[0] != -1)
2014 *dbx_lookup_type (typenums, objfile) = type;
2017 case 's': /* Struct type */
2018 case 'u': /* Union type */
2020 enum type_code type_code = TYPE_CODE_UNDEF;
2021 type = dbx_alloc_type (typenums, objfile);
2022 switch (type_descriptor)
2025 type_code = TYPE_CODE_STRUCT;
2028 type_code = TYPE_CODE_UNION;
2031 type = read_struct_type (pp, type, type_code, objfile);
2035 case 'a': /* Array type */
2037 return error_type (pp, objfile);
2040 type = dbx_alloc_type (typenums, objfile);
2041 type = read_array_type (pp, type, objfile);
2043 TYPE_CODE (type) = TYPE_CODE_STRING;
2045 make_vector_type (type);
2048 case 'S': /* Set type */
2049 type1 = read_type (pp, objfile);
2050 type = create_set_type ((struct type *) NULL, type1);
2051 if (typenums[0] != -1)
2052 *dbx_lookup_type (typenums, objfile) = type;
2056 --*pp; /* Go back to the symbol in error. */
2057 /* Particularly important if it was \0! */
2058 return error_type (pp, objfile);
2063 warning (_("GDB internal error, type is NULL in stabsread.c."));
2064 return error_type (pp, objfile);
2067 /* Size specified in a type attribute overrides any other size. */
2068 if (type_size != -1)
2069 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2074 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2075 Return the proper type node for a given builtin type number. */
2077 static const struct objfile_data *rs6000_builtin_type_data;
2079 static struct type *
2080 rs6000_builtin_type (int typenum, struct objfile *objfile)
2082 struct type **negative_types
2083 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2085 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2086 #define NUMBER_RECOGNIZED 34
2087 struct type *rettype = NULL;
2089 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2091 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2092 return objfile_type (objfile)->builtin_error;
2095 if (!negative_types)
2097 /* This includes an empty slot for type number -0. */
2098 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2099 NUMBER_RECOGNIZED + 1, struct type *);
2100 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2103 if (negative_types[-typenum] != NULL)
2104 return negative_types[-typenum];
2106 #if TARGET_CHAR_BIT != 8
2107 #error This code wrong for TARGET_CHAR_BIT not 8
2108 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2109 that if that ever becomes not true, the correct fix will be to
2110 make the size in the struct type to be in bits, not in units of
2117 /* The size of this and all the other types are fixed, defined
2118 by the debugging format. If there is a type called "int" which
2119 is other than 32 bits, then it should use a new negative type
2120 number (or avoid negative type numbers for that case).
2121 See stabs.texinfo. */
2122 rettype = init_integer_type (objfile, 32, 0, "int");
2125 rettype = init_integer_type (objfile, 8, 0, "char");
2126 TYPE_NOSIGN (rettype) = 1;
2129 rettype = init_integer_type (objfile, 16, 0, "short");
2132 rettype = init_integer_type (objfile, 32, 0, "long");
2135 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2138 rettype = init_integer_type (objfile, 8, 0, "signed char");
2141 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2144 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2147 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2150 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2153 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2156 /* IEEE single precision (32 bit). */
2157 rettype = init_float_type (objfile, 32, "float",
2158 floatformats_ieee_single);
2161 /* IEEE double precision (64 bit). */
2162 rettype = init_float_type (objfile, 64, "double",
2163 floatformats_ieee_double);
2166 /* This is an IEEE double on the RS/6000, and different machines with
2167 different sizes for "long double" should use different negative
2168 type numbers. See stabs.texinfo. */
2169 rettype = init_float_type (objfile, 64, "long double",
2170 floatformats_ieee_double);
2173 rettype = init_integer_type (objfile, 32, 0, "integer");
2176 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2179 rettype = init_float_type (objfile, 32, "short real",
2180 floatformats_ieee_single);
2183 rettype = init_float_type (objfile, 64, "real",
2184 floatformats_ieee_double);
2187 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2190 rettype = init_character_type (objfile, 8, 1, "character");
2193 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2196 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2199 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2202 rettype = init_boolean_type (objfile, 32, 1, "logical");
2205 /* Complex type consisting of two IEEE single precision values. */
2206 rettype = init_complex_type (objfile, "complex",
2207 rs6000_builtin_type (12, objfile));
2210 /* Complex type consisting of two IEEE double precision values. */
2211 rettype = init_complex_type (objfile, "double complex",
2212 rs6000_builtin_type (13, objfile));
2215 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2218 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2221 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2224 rettype = init_character_type (objfile, 16, 0, "wchar");
2227 rettype = init_integer_type (objfile, 64, 0, "long long");
2230 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2233 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2236 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2239 negative_types[-typenum] = rettype;
2243 /* This page contains subroutines of read_type. */
2245 /* Wrapper around method_name_from_physname to flag a complaint
2246 if there is an error. */
2249 stabs_method_name_from_physname (const char *physname)
2253 method_name = method_name_from_physname (physname);
2255 if (method_name == NULL)
2257 complaint (&symfile_complaints,
2258 _("Method has bad physname %s\n"), physname);
2265 /* Read member function stabs info for C++ classes. The form of each member
2268 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2270 An example with two member functions is:
2272 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2274 For the case of overloaded operators, the format is op$::*.funcs, where
2275 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2276 name (such as `+=') and `.' marks the end of the operator name.
2278 Returns 1 for success, 0 for failure. */
2281 read_member_functions (struct field_info *fip, const char **pp,
2282 struct type *type, struct objfile *objfile)
2289 struct next_fnfield *next;
2290 struct fn_field fn_field;
2293 struct type *look_ahead_type;
2294 struct next_fnfieldlist *new_fnlist;
2295 struct next_fnfield *new_sublist;
2299 /* Process each list until we find something that is not a member function
2300 or find the end of the functions. */
2304 /* We should be positioned at the start of the function name.
2305 Scan forward to find the first ':' and if it is not the
2306 first of a "::" delimiter, then this is not a member function. */
2318 look_ahead_type = NULL;
2321 new_fnlist = XCNEW (struct next_fnfieldlist);
2322 make_cleanup (xfree, new_fnlist);
2324 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2326 /* This is a completely wierd case. In order to stuff in the
2327 names that might contain colons (the usual name delimiter),
2328 Mike Tiemann defined a different name format which is
2329 signalled if the identifier is "op$". In that case, the
2330 format is "op$::XXXX." where XXXX is the name. This is
2331 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2332 /* This lets the user type "break operator+".
2333 We could just put in "+" as the name, but that wouldn't
2335 static char opname[32] = "op$";
2336 char *o = opname + 3;
2338 /* Skip past '::'. */
2341 STABS_CONTINUE (pp, objfile);
2347 main_fn_name = savestring (opname, o - opname);
2353 main_fn_name = savestring (*pp, p - *pp);
2354 /* Skip past '::'. */
2357 new_fnlist->fn_fieldlist.name = main_fn_name;
2361 new_sublist = XCNEW (struct next_fnfield);
2362 make_cleanup (xfree, new_sublist);
2364 /* Check for and handle cretinous dbx symbol name continuation! */
2365 if (look_ahead_type == NULL)
2368 STABS_CONTINUE (pp, objfile);
2370 new_sublist->fn_field.type = read_type (pp, objfile);
2373 /* Invalid symtab info for member function. */
2379 /* g++ version 1 kludge */
2380 new_sublist->fn_field.type = look_ahead_type;
2381 look_ahead_type = NULL;
2391 /* These are methods, not functions. */
2392 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2393 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2395 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2396 == TYPE_CODE_METHOD);
2398 /* If this is just a stub, then we don't have the real name here. */
2399 if (TYPE_STUB (new_sublist->fn_field.type))
2401 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2402 set_type_self_type (new_sublist->fn_field.type, type);
2403 new_sublist->fn_field.is_stub = 1;
2406 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2409 /* Set this member function's visibility fields. */
2412 case VISIBILITY_PRIVATE:
2413 new_sublist->fn_field.is_private = 1;
2415 case VISIBILITY_PROTECTED:
2416 new_sublist->fn_field.is_protected = 1;
2420 STABS_CONTINUE (pp, objfile);
2423 case 'A': /* Normal functions. */
2424 new_sublist->fn_field.is_const = 0;
2425 new_sublist->fn_field.is_volatile = 0;
2428 case 'B': /* `const' member functions. */
2429 new_sublist->fn_field.is_const = 1;
2430 new_sublist->fn_field.is_volatile = 0;
2433 case 'C': /* `volatile' member function. */
2434 new_sublist->fn_field.is_const = 0;
2435 new_sublist->fn_field.is_volatile = 1;
2438 case 'D': /* `const volatile' member function. */
2439 new_sublist->fn_field.is_const = 1;
2440 new_sublist->fn_field.is_volatile = 1;
2443 case '*': /* File compiled with g++ version 1 --
2449 complaint (&symfile_complaints,
2450 _("const/volatile indicator missing, got '%c'"),
2460 /* virtual member function, followed by index.
2461 The sign bit is set to distinguish pointers-to-methods
2462 from virtual function indicies. Since the array is
2463 in words, the quantity must be shifted left by 1
2464 on 16 bit machine, and by 2 on 32 bit machine, forcing
2465 the sign bit out, and usable as a valid index into
2466 the array. Remove the sign bit here. */
2467 new_sublist->fn_field.voffset =
2468 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2472 STABS_CONTINUE (pp, objfile);
2473 if (**pp == ';' || **pp == '\0')
2475 /* Must be g++ version 1. */
2476 new_sublist->fn_field.fcontext = 0;
2480 /* Figure out from whence this virtual function came.
2481 It may belong to virtual function table of
2482 one of its baseclasses. */
2483 look_ahead_type = read_type (pp, objfile);
2486 /* g++ version 1 overloaded methods. */
2490 new_sublist->fn_field.fcontext = look_ahead_type;
2499 look_ahead_type = NULL;
2505 /* static member function. */
2507 int slen = strlen (main_fn_name);
2509 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2511 /* For static member functions, we can't tell if they
2512 are stubbed, as they are put out as functions, and not as
2514 GCC v2 emits the fully mangled name if
2515 dbxout.c:flag_minimal_debug is not set, so we have to
2516 detect a fully mangled physname here and set is_stub
2517 accordingly. Fully mangled physnames in v2 start with
2518 the member function name, followed by two underscores.
2519 GCC v3 currently always emits stubbed member functions,
2520 but with fully mangled physnames, which start with _Z. */
2521 if (!(strncmp (new_sublist->fn_field.physname,
2522 main_fn_name, slen) == 0
2523 && new_sublist->fn_field.physname[slen] == '_'
2524 && new_sublist->fn_field.physname[slen + 1] == '_'))
2526 new_sublist->fn_field.is_stub = 1;
2533 complaint (&symfile_complaints,
2534 _("member function type missing, got '%c'"),
2536 /* Normal member function. */
2540 /* normal member function. */
2541 new_sublist->fn_field.voffset = 0;
2542 new_sublist->fn_field.fcontext = 0;
2546 new_sublist->next = sublist;
2547 sublist = new_sublist;
2549 STABS_CONTINUE (pp, objfile);
2551 while (**pp != ';' && **pp != '\0');
2554 STABS_CONTINUE (pp, objfile);
2556 /* Skip GCC 3.X member functions which are duplicates of the callable
2557 constructor/destructor. */
2558 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2559 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2560 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2562 xfree (main_fn_name);
2567 int has_destructor = 0, has_other = 0;
2569 struct next_fnfield *tmp_sublist;
2571 /* Various versions of GCC emit various mostly-useless
2572 strings in the name field for special member functions.
2574 For stub methods, we need to defer correcting the name
2575 until we are ready to unstub the method, because the current
2576 name string is used by gdb_mangle_name. The only stub methods
2577 of concern here are GNU v2 operators; other methods have their
2578 names correct (see caveat below).
2580 For non-stub methods, in GNU v3, we have a complete physname.
2581 Therefore we can safely correct the name now. This primarily
2582 affects constructors and destructors, whose name will be
2583 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2584 operators will also have incorrect names; for instance,
2585 "operator int" will be named "operator i" (i.e. the type is
2588 For non-stub methods in GNU v2, we have no easy way to
2589 know if we have a complete physname or not. For most
2590 methods the result depends on the platform (if CPLUS_MARKER
2591 can be `$' or `.', it will use minimal debug information, or
2592 otherwise the full physname will be included).
2594 Rather than dealing with this, we take a different approach.
2595 For v3 mangled names, we can use the full physname; for v2,
2596 we use cplus_demangle_opname (which is actually v2 specific),
2597 because the only interesting names are all operators - once again
2598 barring the caveat below. Skip this process if any method in the
2599 group is a stub, to prevent our fouling up the workings of
2602 The caveat: GCC 2.95.x (and earlier?) put constructors and
2603 destructors in the same method group. We need to split this
2604 into two groups, because they should have different names.
2605 So for each method group we check whether it contains both
2606 routines whose physname appears to be a destructor (the physnames
2607 for and destructors are always provided, due to quirks in v2
2608 mangling) and routines whose physname does not appear to be a
2609 destructor. If so then we break up the list into two halves.
2610 Even if the constructors and destructors aren't in the same group
2611 the destructor will still lack the leading tilde, so that also
2614 So, to summarize what we expect and handle here:
2616 Given Given Real Real Action
2617 method name physname physname method name
2619 __opi [none] __opi__3Foo operator int opname
2621 Foo _._3Foo _._3Foo ~Foo separate and
2623 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2624 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2627 tmp_sublist = sublist;
2628 while (tmp_sublist != NULL)
2630 if (tmp_sublist->fn_field.is_stub)
2632 if (tmp_sublist->fn_field.physname[0] == '_'
2633 && tmp_sublist->fn_field.physname[1] == 'Z')
2636 if (is_destructor_name (tmp_sublist->fn_field.physname))
2641 tmp_sublist = tmp_sublist->next;
2644 if (has_destructor && has_other)
2646 struct next_fnfieldlist *destr_fnlist;
2647 struct next_fnfield *last_sublist;
2649 /* Create a new fn_fieldlist for the destructors. */
2651 destr_fnlist = XCNEW (struct next_fnfieldlist);
2652 make_cleanup (xfree, destr_fnlist);
2654 destr_fnlist->fn_fieldlist.name
2655 = obconcat (&objfile->objfile_obstack, "~",
2656 new_fnlist->fn_fieldlist.name, (char *) NULL);
2658 destr_fnlist->fn_fieldlist.fn_fields =
2659 XOBNEWVEC (&objfile->objfile_obstack,
2660 struct fn_field, has_destructor);
2661 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2662 sizeof (struct fn_field) * has_destructor);
2663 tmp_sublist = sublist;
2664 last_sublist = NULL;
2666 while (tmp_sublist != NULL)
2668 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2670 tmp_sublist = tmp_sublist->next;
2674 destr_fnlist->fn_fieldlist.fn_fields[i++]
2675 = tmp_sublist->fn_field;
2677 last_sublist->next = tmp_sublist->next;
2679 sublist = tmp_sublist->next;
2680 last_sublist = tmp_sublist;
2681 tmp_sublist = tmp_sublist->next;
2684 destr_fnlist->fn_fieldlist.length = has_destructor;
2685 destr_fnlist->next = fip->fnlist;
2686 fip->fnlist = destr_fnlist;
2688 length -= has_destructor;
2692 /* v3 mangling prevents the use of abbreviated physnames,
2693 so we can do this here. There are stubbed methods in v3
2695 - in -gstabs instead of -gstabs+
2696 - or for static methods, which are output as a function type
2697 instead of a method type. */
2698 char *new_method_name =
2699 stabs_method_name_from_physname (sublist->fn_field.physname);
2701 if (new_method_name != NULL
2702 && strcmp (new_method_name,
2703 new_fnlist->fn_fieldlist.name) != 0)
2705 new_fnlist->fn_fieldlist.name = new_method_name;
2706 xfree (main_fn_name);
2709 xfree (new_method_name);
2711 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2713 new_fnlist->fn_fieldlist.name =
2714 obconcat (&objfile->objfile_obstack,
2715 "~", main_fn_name, (char *)NULL);
2716 xfree (main_fn_name);
2720 char dem_opname[256];
2723 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2724 dem_opname, DMGL_ANSI);
2726 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2729 new_fnlist->fn_fieldlist.name
2731 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2732 strlen (dem_opname)));
2733 xfree (main_fn_name);
2736 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2737 obstack_alloc (&objfile->objfile_obstack,
2738 sizeof (struct fn_field) * length);
2739 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2740 sizeof (struct fn_field) * length);
2741 for (i = length; (i--, sublist); sublist = sublist->next)
2743 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2746 new_fnlist->fn_fieldlist.length = length;
2747 new_fnlist->next = fip->fnlist;
2748 fip->fnlist = new_fnlist;
2755 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2756 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2757 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2758 memset (TYPE_FN_FIELDLISTS (type), 0,
2759 sizeof (struct fn_fieldlist) * nfn_fields);
2760 TYPE_NFN_FIELDS (type) = nfn_fields;
2766 /* Special GNU C++ name.
2768 Returns 1 for success, 0 for failure. "failure" means that we can't
2769 keep parsing and it's time for error_type(). */
2772 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2773 struct objfile *objfile)
2778 struct type *context;
2788 /* At this point, *pp points to something like "22:23=*22...",
2789 where the type number before the ':' is the "context" and
2790 everything after is a regular type definition. Lookup the
2791 type, find it's name, and construct the field name. */
2793 context = read_type (pp, objfile);
2797 case 'f': /* $vf -- a virtual function table pointer */
2798 name = type_name_no_tag (context);
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2804 vptr_name, name, (char *) NULL);
2807 case 'b': /* $vb -- a virtual bsomethingorother */
2808 name = type_name_no_tag (context);
2811 complaint (&symfile_complaints,
2812 _("C++ abbreviated type name "
2813 "unknown at symtab pos %d"),
2817 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2818 name, (char *) NULL);
2822 invalid_cpp_abbrev_complaint (*pp);
2823 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2824 "INVALID_CPLUSPLUS_ABBREV",
2829 /* At this point, *pp points to the ':'. Skip it and read the
2835 invalid_cpp_abbrev_complaint (*pp);
2838 fip->list->field.type = read_type (pp, objfile);
2840 (*pp)++; /* Skip the comma. */
2847 SET_FIELD_BITPOS (fip->list->field,
2848 read_huge_number (pp, ';', &nbits, 0));
2852 /* This field is unpacked. */
2853 FIELD_BITSIZE (fip->list->field) = 0;
2854 fip->list->visibility = VISIBILITY_PRIVATE;
2858 invalid_cpp_abbrev_complaint (*pp);
2859 /* We have no idea what syntax an unrecognized abbrev would have, so
2860 better return 0. If we returned 1, we would need to at least advance
2861 *pp to avoid an infinite loop. */
2868 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2869 struct type *type, struct objfile *objfile)
2871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2873 fip->list->field.name
2874 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2877 /* This means we have a visibility for a field coming. */
2881 fip->list->visibility = *(*pp)++;
2885 /* normal dbx-style format, no explicit visibility */
2886 fip->list->visibility = VISIBILITY_PUBLIC;
2889 fip->list->field.type = read_type (pp, objfile);
2894 /* Possible future hook for nested types. */
2897 fip->list->field.bitpos = (long) -2; /* nested type */
2907 /* Static class member. */
2908 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2912 else if (**pp != ',')
2914 /* Bad structure-type format. */
2915 stabs_general_complaint ("bad structure-type format");
2919 (*pp)++; /* Skip the comma. */
2924 SET_FIELD_BITPOS (fip->list->field,
2925 read_huge_number (pp, ',', &nbits, 0));
2928 stabs_general_complaint ("bad structure-type format");
2931 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2934 stabs_general_complaint ("bad structure-type format");
2939 if (FIELD_BITPOS (fip->list->field) == 0
2940 && FIELD_BITSIZE (fip->list->field) == 0)
2942 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2943 it is a field which has been optimized out. The correct stab for
2944 this case is to use VISIBILITY_IGNORE, but that is a recent
2945 invention. (2) It is a 0-size array. For example
2946 union { int num; char str[0]; } foo. Printing _("<no value>" for
2947 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2948 will continue to work, and a 0-size array as a whole doesn't
2949 have any contents to print.
2951 I suspect this probably could also happen with gcc -gstabs (not
2952 -gstabs+) for static fields, and perhaps other C++ extensions.
2953 Hopefully few people use -gstabs with gdb, since it is intended
2954 for dbx compatibility. */
2956 /* Ignore this field. */
2957 fip->list->visibility = VISIBILITY_IGNORE;
2961 /* Detect an unpacked field and mark it as such.
2962 dbx gives a bit size for all fields.
2963 Note that forward refs cannot be packed,
2964 and treat enums as if they had the width of ints. */
2966 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2968 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2969 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2970 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2971 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2973 FIELD_BITSIZE (fip->list->field) = 0;
2975 if ((FIELD_BITSIZE (fip->list->field)
2976 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2977 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2978 && FIELD_BITSIZE (fip->list->field)
2979 == gdbarch_int_bit (gdbarch))
2982 FIELD_BITPOS (fip->list->field) % 8 == 0)
2984 FIELD_BITSIZE (fip->list->field) = 0;
2990 /* Read struct or class data fields. They have the form:
2992 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2994 At the end, we see a semicolon instead of a field.
2996 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2999 The optional VISIBILITY is one of:
3001 '/0' (VISIBILITY_PRIVATE)
3002 '/1' (VISIBILITY_PROTECTED)
3003 '/2' (VISIBILITY_PUBLIC)
3004 '/9' (VISIBILITY_IGNORE)
3006 or nothing, for C style fields with public visibility.
3008 Returns 1 for success, 0 for failure. */
3011 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
3012 struct objfile *objfile)
3015 struct nextfield *newobj;
3017 /* We better set p right now, in case there are no fields at all... */
3021 /* Read each data member type until we find the terminating ';' at the end of
3022 the data member list, or break for some other reason such as finding the
3023 start of the member function list. */
3024 /* Stab string for structure/union does not end with two ';' in
3025 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3027 while (**pp != ';' && **pp != '\0')
3029 STABS_CONTINUE (pp, objfile);
3030 /* Get space to record the next field's data. */
3031 newobj = XCNEW (struct nextfield);
3032 make_cleanup (xfree, newobj);
3034 newobj->next = fip->list;
3037 /* Get the field name. */
3040 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3041 unless the CPLUS_MARKER is followed by an underscore, in
3042 which case it is just the name of an anonymous type, which we
3043 should handle like any other type name. */
3045 if (is_cplus_marker (p[0]) && p[1] != '_')
3047 if (!read_cpp_abbrev (fip, pp, type, objfile))
3052 /* Look for the ':' that separates the field name from the field
3053 values. Data members are delimited by a single ':', while member
3054 functions are delimited by a pair of ':'s. When we hit the member
3055 functions (if any), terminate scan loop and return. */
3057 while (*p != ':' && *p != '\0')
3064 /* Check to see if we have hit the member functions yet. */
3069 read_one_struct_field (fip, pp, p, type, objfile);
3071 if (p[0] == ':' && p[1] == ':')
3073 /* (the deleted) chill the list of fields: the last entry (at
3074 the head) is a partially constructed entry which we now
3076 fip->list = fip->list->next;
3081 /* The stabs for C++ derived classes contain baseclass information which
3082 is marked by a '!' character after the total size. This function is
3083 called when we encounter the baseclass marker, and slurps up all the
3084 baseclass information.
3086 Immediately following the '!' marker is the number of base classes that
3087 the class is derived from, followed by information for each base class.
3088 For each base class, there are two visibility specifiers, a bit offset
3089 to the base class information within the derived class, a reference to
3090 the type for the base class, and a terminating semicolon.
3092 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3094 Baseclass information marker __________________|| | | | | | |
3095 Number of baseclasses __________________________| | | | | | |
3096 Visibility specifiers (2) ________________________| | | | | |
3097 Offset in bits from start of class _________________| | | | |
3098 Type number for base class ___________________________| | | |
3099 Visibility specifiers (2) _______________________________| | |
3100 Offset in bits from start of class ________________________| |
3101 Type number of base class ____________________________________|
3103 Return 1 for success, 0 for (error-type-inducing) failure. */
3109 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3110 struct objfile *objfile)
3113 struct nextfield *newobj;
3121 /* Skip the '!' baseclass information marker. */
3125 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3129 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3135 /* Some stupid compilers have trouble with the following, so break
3136 it up into simpler expressions. */
3137 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3138 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3141 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3144 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3145 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3149 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3151 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3153 newobj = XCNEW (struct nextfield);
3154 make_cleanup (xfree, newobj);
3156 newobj->next = fip->list;
3158 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3161 STABS_CONTINUE (pp, objfile);
3165 /* Nothing to do. */
3168 SET_TYPE_FIELD_VIRTUAL (type, i);
3171 /* Unknown character. Complain and treat it as non-virtual. */
3173 complaint (&symfile_complaints,
3174 _("Unknown virtual character `%c' for baseclass"),
3180 newobj->visibility = *(*pp)++;
3181 switch (newobj->visibility)
3183 case VISIBILITY_PRIVATE:
3184 case VISIBILITY_PROTECTED:
3185 case VISIBILITY_PUBLIC:
3188 /* Bad visibility format. Complain and treat it as
3191 complaint (&symfile_complaints,
3192 _("Unknown visibility `%c' for baseclass"),
3193 newobj->visibility);
3194 newobj->visibility = VISIBILITY_PUBLIC;
3201 /* The remaining value is the bit offset of the portion of the object
3202 corresponding to this baseclass. Always zero in the absence of
3203 multiple inheritance. */
3205 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3210 /* The last piece of baseclass information is the type of the
3211 base class. Read it, and remember it's type name as this
3214 newobj->field.type = read_type (pp, objfile);
3215 newobj->field.name = type_name_no_tag (newobj->field.type);
3217 /* Skip trailing ';' and bump count of number of fields seen. */
3226 /* The tail end of stabs for C++ classes that contain a virtual function
3227 pointer contains a tilde, a %, and a type number.
3228 The type number refers to the base class (possibly this class itself) which
3229 contains the vtable pointer for the current class.
3231 This function is called when we have parsed all the method declarations,
3232 so we can look for the vptr base class info. */
3235 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3236 struct objfile *objfile)
3240 STABS_CONTINUE (pp, objfile);
3242 /* If we are positioned at a ';', then skip it. */
3252 if (**pp == '=' || **pp == '+' || **pp == '-')
3254 /* Obsolete flags that used to indicate the presence
3255 of constructors and/or destructors. */
3259 /* Read either a '%' or the final ';'. */
3260 if (*(*pp)++ == '%')
3262 /* The next number is the type number of the base class
3263 (possibly our own class) which supplies the vtable for
3264 this class. Parse it out, and search that class to find
3265 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3266 and TYPE_VPTR_FIELDNO. */
3271 t = read_type (pp, objfile);
3273 while (*p != '\0' && *p != ';')
3279 /* Premature end of symbol. */
3283 set_type_vptr_basetype (type, t);
3284 if (type == t) /* Our own class provides vtbl ptr. */
3286 for (i = TYPE_NFIELDS (t) - 1;
3287 i >= TYPE_N_BASECLASSES (t);
3290 const char *name = TYPE_FIELD_NAME (t, i);
3292 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3293 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3295 set_type_vptr_fieldno (type, i);
3299 /* Virtual function table field not found. */
3300 complaint (&symfile_complaints,
3301 _("virtual function table pointer "
3302 "not found when defining class `%s'"),
3308 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3319 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3323 for (n = TYPE_NFN_FIELDS (type);
3324 fip->fnlist != NULL;
3325 fip->fnlist = fip->fnlist->next)
3327 --n; /* Circumvent Sun3 compiler bug. */
3328 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3333 /* Create the vector of fields, and record how big it is.
3334 We need this info to record proper virtual function table information
3335 for this class's virtual functions. */
3338 attach_fields_to_type (struct field_info *fip, struct type *type,
3339 struct objfile *objfile)
3342 int non_public_fields = 0;
3343 struct nextfield *scan;
3345 /* Count up the number of fields that we have, as well as taking note of
3346 whether or not there are any non-public fields, which requires us to
3347 allocate and build the private_field_bits and protected_field_bits
3350 for (scan = fip->list; scan != NULL; scan = scan->next)
3353 if (scan->visibility != VISIBILITY_PUBLIC)
3355 non_public_fields++;
3359 /* Now we know how many fields there are, and whether or not there are any
3360 non-public fields. Record the field count, allocate space for the
3361 array of fields, and create blank visibility bitfields if necessary. */
3363 TYPE_NFIELDS (type) = nfields;
3364 TYPE_FIELDS (type) = (struct field *)
3365 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3366 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3368 if (non_public_fields)
3370 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3372 TYPE_FIELD_PRIVATE_BITS (type) =
3373 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3374 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3376 TYPE_FIELD_PROTECTED_BITS (type) =
3377 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3378 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3380 TYPE_FIELD_IGNORE_BITS (type) =
3381 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3382 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3385 /* Copy the saved-up fields into the field vector. Start from the
3386 head of the list, adding to the tail of the field array, so that
3387 they end up in the same order in the array in which they were
3388 added to the list. */
3390 while (nfields-- > 0)
3392 TYPE_FIELD (type, nfields) = fip->list->field;
3393 switch (fip->list->visibility)
3395 case VISIBILITY_PRIVATE:
3396 SET_TYPE_FIELD_PRIVATE (type, nfields);
3399 case VISIBILITY_PROTECTED:
3400 SET_TYPE_FIELD_PROTECTED (type, nfields);
3403 case VISIBILITY_IGNORE:
3404 SET_TYPE_FIELD_IGNORE (type, nfields);
3407 case VISIBILITY_PUBLIC:
3411 /* Unknown visibility. Complain and treat it as public. */
3413 complaint (&symfile_complaints,
3414 _("Unknown visibility `%c' for field"),
3415 fip->list->visibility);
3419 fip->list = fip->list->next;
3425 /* Complain that the compiler has emitted more than one definition for the
3426 structure type TYPE. */
3428 complain_about_struct_wipeout (struct type *type)
3430 const char *name = "";
3431 const char *kind = "";
3433 if (TYPE_TAG_NAME (type))
3435 name = TYPE_TAG_NAME (type);
3436 switch (TYPE_CODE (type))
3438 case TYPE_CODE_STRUCT: kind = "struct "; break;
3439 case TYPE_CODE_UNION: kind = "union "; break;
3440 case TYPE_CODE_ENUM: kind = "enum "; break;
3444 else if (TYPE_NAME (type))
3446 name = TYPE_NAME (type);
3455 complaint (&symfile_complaints,
3456 _("struct/union type gets multiply defined: %s%s"), kind, name);
3459 /* Set the length for all variants of a same main_type, which are
3460 connected in the closed chain.
3462 This is something that needs to be done when a type is defined *after*
3463 some cross references to this type have already been read. Consider
3464 for instance the following scenario where we have the following two
3467 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3468 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3470 A stubbed version of type dummy is created while processing the first
3471 stabs entry. The length of that type is initially set to zero, since
3472 it is unknown at this point. Also, a "constant" variation of type
3473 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3476 The second stabs entry allows us to replace the stubbed definition
3477 with the real definition. However, we still need to adjust the length
3478 of the "constant" variation of that type, as its length was left
3479 untouched during the main type replacement... */
3482 set_length_in_type_chain (struct type *type)
3484 struct type *ntype = TYPE_CHAIN (type);
3486 while (ntype != type)
3488 if (TYPE_LENGTH(ntype) == 0)
3489 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3491 complain_about_struct_wipeout (ntype);
3492 ntype = TYPE_CHAIN (ntype);
3496 /* Read the description of a structure (or union type) and return an object
3497 describing the type.
3499 PP points to a character pointer that points to the next unconsumed token
3500 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3501 *PP will point to "4a:1,0,32;;".
3503 TYPE points to an incomplete type that needs to be filled in.
3505 OBJFILE points to the current objfile from which the stabs information is
3506 being read. (Note that it is redundant in that TYPE also contains a pointer
3507 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3510 static struct type *
3511 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3512 struct objfile *objfile)
3514 struct cleanup *back_to;
3515 struct field_info fi;
3520 /* When describing struct/union/class types in stabs, G++ always drops
3521 all qualifications from the name. So if you've got:
3522 struct A { ... struct B { ... }; ... };
3523 then G++ will emit stabs for `struct A::B' that call it simply
3524 `struct B'. Obviously, if you've got a real top-level definition for
3525 `struct B', or other nested definitions, this is going to cause
3528 Obviously, GDB can't fix this by itself, but it can at least avoid
3529 scribbling on existing structure type objects when new definitions
3531 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3532 || TYPE_STUB (type)))
3534 complain_about_struct_wipeout (type);
3536 /* It's probably best to return the type unchanged. */
3540 back_to = make_cleanup (null_cleanup, 0);
3542 INIT_CPLUS_SPECIFIC (type);
3543 TYPE_CODE (type) = type_code;
3544 TYPE_STUB (type) = 0;
3546 /* First comes the total size in bytes. */
3551 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3554 do_cleanups (back_to);
3555 return error_type (pp, objfile);
3557 set_length_in_type_chain (type);
3560 /* Now read the baseclasses, if any, read the regular C struct or C++
3561 class member fields, attach the fields to the type, read the C++
3562 member functions, attach them to the type, and then read any tilde
3563 field (baseclass specifier for the class holding the main vtable). */
3565 if (!read_baseclasses (&fi, pp, type, objfile)
3566 || !read_struct_fields (&fi, pp, type, objfile)
3567 || !attach_fields_to_type (&fi, type, objfile)
3568 || !read_member_functions (&fi, pp, type, objfile)
3569 || !attach_fn_fields_to_type (&fi, type)
3570 || !read_tilde_fields (&fi, pp, type, objfile))
3572 type = error_type (pp, objfile);
3575 do_cleanups (back_to);
3579 /* Read a definition of an array type,
3580 and create and return a suitable type object.
3581 Also creates a range type which represents the bounds of that
3584 static struct type *
3585 read_array_type (const char **pp, struct type *type,
3586 struct objfile *objfile)
3588 struct type *index_type, *element_type, *range_type;
3593 /* Format of an array type:
3594 "ar<index type>;lower;upper;<array_contents_type>".
3595 OS9000: "arlower,upper;<array_contents_type>".
3597 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3598 for these, produce a type like float[][]. */
3601 index_type = read_type (pp, objfile);
3603 /* Improper format of array type decl. */
3604 return error_type (pp, objfile);
3608 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3613 lower = read_huge_number (pp, ';', &nbits, 0);
3616 return error_type (pp, objfile);
3618 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3623 upper = read_huge_number (pp, ';', &nbits, 0);
3625 return error_type (pp, objfile);
3627 element_type = read_type (pp, objfile);
3636 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3637 type = create_array_type (type, element_type, range_type);
3643 /* Read a definition of an enumeration type,
3644 and create and return a suitable type object.
3645 Also defines the symbols that represent the values of the type. */
3647 static struct type *
3648 read_enum_type (const char **pp, struct type *type,
3649 struct objfile *objfile)
3651 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3657 struct pending **symlist;
3658 struct pending *osyms, *syms;
3661 int unsigned_enum = 1;
3664 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3665 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3666 to do? For now, force all enum values to file scope. */
3667 if (within_function)
3668 symlist = &local_symbols;
3671 symlist = &file_symbols;
3673 o_nsyms = osyms ? osyms->nsyms : 0;
3675 /* The aix4 compiler emits an extra field before the enum members;
3676 my guess is it's a type of some sort. Just ignore it. */
3679 /* Skip over the type. */
3683 /* Skip over the colon. */
3687 /* Read the value-names and their values.
3688 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3689 A semicolon or comma instead of a NAME means the end. */
3690 while (**pp && **pp != ';' && **pp != ',')
3692 STABS_CONTINUE (pp, objfile);
3696 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3698 n = read_huge_number (pp, ',', &nbits, 0);
3700 return error_type (pp, objfile);
3702 sym = allocate_symbol (objfile);
3703 SYMBOL_SET_LINKAGE_NAME (sym, name);
3704 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3705 &objfile->objfile_obstack);
3706 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3707 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3708 SYMBOL_VALUE (sym) = n;
3711 add_symbol_to_list (sym, symlist);
3716 (*pp)++; /* Skip the semicolon. */
3718 /* Now fill in the fields of the type-structure. */
3720 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3721 set_length_in_type_chain (type);
3722 TYPE_CODE (type) = TYPE_CODE_ENUM;
3723 TYPE_STUB (type) = 0;
3725 TYPE_UNSIGNED (type) = 1;
3726 TYPE_NFIELDS (type) = nsyms;
3727 TYPE_FIELDS (type) = (struct field *)
3728 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3729 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3731 /* Find the symbols for the values and put them into the type.
3732 The symbols can be found in the symlist that we put them on
3733 to cause them to be defined. osyms contains the old value
3734 of that symlist; everything up to there was defined by us. */
3735 /* Note that we preserve the order of the enum constants, so
3736 that in something like "enum {FOO, LAST_THING=FOO}" we print
3737 FOO, not LAST_THING. */
3739 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3741 int last = syms == osyms ? o_nsyms : 0;
3742 int j = syms->nsyms;
3744 for (; --j >= last; --n)
3746 struct symbol *xsym = syms->symbol[j];
3748 SYMBOL_TYPE (xsym) = type;
3749 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3750 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3751 TYPE_FIELD_BITSIZE (type, n) = 0;
3760 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3761 typedefs in every file (for int, long, etc):
3763 type = b <signed> <width> <format type>; <offset>; <nbits>
3765 optional format type = c or b for char or boolean.
3766 offset = offset from high order bit to start bit of type.
3767 width is # bytes in object of this type, nbits is # bits in type.
3769 The width/offset stuff appears to be for small objects stored in
3770 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3773 static struct type *
3774 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3779 int boolean_type = 0;
3790 return error_type (pp, objfile);
3794 /* For some odd reason, all forms of char put a c here. This is strange
3795 because no other type has this honor. We can safely ignore this because
3796 we actually determine 'char'acterness by the number of bits specified in
3798 Boolean forms, e.g Fortran logical*X, put a b here. */
3802 else if (**pp == 'b')
3808 /* The first number appears to be the number of bytes occupied
3809 by this type, except that unsigned short is 4 instead of 2.
3810 Since this information is redundant with the third number,
3811 we will ignore it. */
3812 read_huge_number (pp, ';', &nbits, 0);
3814 return error_type (pp, objfile);
3816 /* The second number is always 0, so ignore it too. */
3817 read_huge_number (pp, ';', &nbits, 0);
3819 return error_type (pp, objfile);
3821 /* The third number is the number of bits for this type. */
3822 type_bits = read_huge_number (pp, 0, &nbits, 0);
3824 return error_type (pp, objfile);
3825 /* The type *should* end with a semicolon. If it are embedded
3826 in a larger type the semicolon may be the only way to know where
3827 the type ends. If this type is at the end of the stabstring we
3828 can deal with the omitted semicolon (but we don't have to like
3829 it). Don't bother to complain(), Sun's compiler omits the semicolon
3836 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3837 TARGET_CHAR_BIT, NULL);
3839 TYPE_UNSIGNED (type) = 1;
3844 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3846 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3849 static struct type *
3850 read_sun_floating_type (const char **pp, int typenums[2],
3851 struct objfile *objfile)
3856 struct type *rettype;
3858 /* The first number has more details about the type, for example
3860 details = read_huge_number (pp, ';', &nbits, 0);
3862 return error_type (pp, objfile);
3864 /* The second number is the number of bytes occupied by this type. */
3865 nbytes = read_huge_number (pp, ';', &nbits, 0);
3867 return error_type (pp, objfile);
3869 nbits = nbytes * TARGET_CHAR_BIT;
3871 if (details == NF_COMPLEX || details == NF_COMPLEX16
3872 || details == NF_COMPLEX32)
3874 rettype = dbx_init_float_type (objfile, nbits / 2);
3875 return init_complex_type (objfile, NULL, rettype);
3878 return dbx_init_float_type (objfile, nbits);
3881 /* Read a number from the string pointed to by *PP.
3882 The value of *PP is advanced over the number.
3883 If END is nonzero, the character that ends the
3884 number must match END, or an error happens;
3885 and that character is skipped if it does match.
3886 If END is zero, *PP is left pointing to that character.
3888 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3889 the number is represented in an octal representation, assume that
3890 it is represented in a 2's complement representation with a size of
3891 TWOS_COMPLEMENT_BITS.
3893 If the number fits in a long, set *BITS to 0 and return the value.
3894 If not, set *BITS to be the number of bits in the number and return 0.
3896 If encounter garbage, set *BITS to -1 and return 0. */
3899 read_huge_number (const char **pp, int end, int *bits,
3900 int twos_complement_bits)
3902 const char *p = *pp;
3911 int twos_complement_representation = 0;
3919 /* Leading zero means octal. GCC uses this to output values larger
3920 than an int (because that would be hard in decimal). */
3927 /* Skip extra zeros. */
3931 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3933 /* Octal, possibly signed. Check if we have enough chars for a
3939 while ((c = *p1) >= '0' && c < '8')
3943 if (len > twos_complement_bits / 3
3944 || (twos_complement_bits % 3 == 0
3945 && len == twos_complement_bits / 3))
3947 /* Ok, we have enough characters for a signed value, check
3948 for signness by testing if the sign bit is set. */
3949 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3951 if (c & (1 << sign_bit))
3953 /* Definitely signed. */
3954 twos_complement_representation = 1;
3960 upper_limit = LONG_MAX / radix;
3962 while ((c = *p++) >= '0' && c < ('0' + radix))
3964 if (n <= upper_limit)
3966 if (twos_complement_representation)
3968 /* Octal, signed, twos complement representation. In
3969 this case, n is the corresponding absolute value. */
3972 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3984 /* unsigned representation */
3986 n += c - '0'; /* FIXME this overflows anyway. */
3992 /* This depends on large values being output in octal, which is
3999 /* Ignore leading zeroes. */
4003 else if (c == '2' || c == '3')
4024 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4026 /* We were supposed to parse a number with maximum
4027 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4038 /* Large decimal constants are an error (because it is hard to
4039 count how many bits are in them). */
4045 /* -0x7f is the same as 0x80. So deal with it by adding one to
4046 the number of bits. Two's complement represention octals
4047 can't have a '-' in front. */
4048 if (sign == -1 && !twos_complement_representation)
4059 /* It's *BITS which has the interesting information. */
4063 static struct type *
4064 read_range_type (const char **pp, int typenums[2], int type_size,
4065 struct objfile *objfile)
4067 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4068 const char *orig_pp = *pp;
4073 struct type *result_type;
4074 struct type *index_type = NULL;
4076 /* First comes a type we are a subrange of.
4077 In C it is usually 0, 1 or the type being defined. */
4078 if (read_type_number (pp, rangenums) != 0)
4079 return error_type (pp, objfile);
4080 self_subrange = (rangenums[0] == typenums[0] &&
4081 rangenums[1] == typenums[1]);
4086 index_type = read_type (pp, objfile);
4089 /* A semicolon should now follow; skip it. */
4093 /* The remaining two operands are usually lower and upper bounds
4094 of the range. But in some special cases they mean something else. */
4095 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4096 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4098 if (n2bits == -1 || n3bits == -1)
4099 return error_type (pp, objfile);
4102 goto handle_true_range;
4104 /* If limits are huge, must be large integral type. */
4105 if (n2bits != 0 || n3bits != 0)
4107 char got_signed = 0;
4108 char got_unsigned = 0;
4109 /* Number of bits in the type. */
4112 /* If a type size attribute has been specified, the bounds of
4113 the range should fit in this size. If the lower bounds needs
4114 more bits than the upper bound, then the type is signed. */
4115 if (n2bits <= type_size && n3bits <= type_size)
4117 if (n2bits == type_size && n2bits > n3bits)
4123 /* Range from 0 to <large number> is an unsigned large integral type. */
4124 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4129 /* Range from <large number> to <large number>-1 is a large signed
4130 integral type. Take care of the case where <large number> doesn't
4131 fit in a long but <large number>-1 does. */
4132 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4133 || (n2bits != 0 && n3bits == 0
4134 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4141 if (got_signed || got_unsigned)
4142 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4144 return error_type (pp, objfile);
4147 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4148 if (self_subrange && n2 == 0 && n3 == 0)
4149 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4151 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4152 is the width in bytes.
4154 Fortran programs appear to use this for complex types also. To
4155 distinguish between floats and complex, g77 (and others?) seem
4156 to use self-subranges for the complexes, and subranges of int for
4159 Also note that for complexes, g77 sets n2 to the size of one of
4160 the member floats, not the whole complex beast. My guess is that
4161 this was to work well with pre-COMPLEX versions of gdb. */
4163 if (n3 == 0 && n2 > 0)
4165 struct type *float_type
4166 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4169 return init_complex_type (objfile, NULL, float_type);
4174 /* If the upper bound is -1, it must really be an unsigned integral. */
4176 else if (n2 == 0 && n3 == -1)
4178 int bits = type_size;
4182 /* We don't know its size. It is unsigned int or unsigned
4183 long. GCC 2.3.3 uses this for long long too, but that is
4184 just a GDB 3.5 compatibility hack. */
4185 bits = gdbarch_int_bit (gdbarch);
4188 return init_integer_type (objfile, bits, 1, NULL);
4191 /* Special case: char is defined (Who knows why) as a subrange of
4192 itself with range 0-127. */
4193 else if (self_subrange && n2 == 0 && n3 == 127)
4195 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4197 TYPE_NOSIGN (type) = 1;
4200 /* We used to do this only for subrange of self or subrange of int. */
4203 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4204 "unsigned long", and we already checked for that,
4205 so don't need to test for it here. */
4208 /* n3 actually gives the size. */
4209 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4211 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4212 unsigned n-byte integer. But do require n to be a power of
4213 two; we don't want 3- and 5-byte integers flying around. */
4219 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4222 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4223 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4226 /* I think this is for Convex "long long". Since I don't know whether
4227 Convex sets self_subrange, I also accept that particular size regardless
4228 of self_subrange. */
4229 else if (n3 == 0 && n2 < 0
4231 || n2 == -gdbarch_long_long_bit
4232 (gdbarch) / TARGET_CHAR_BIT))
4233 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4234 else if (n2 == -n3 - 1)
4237 return init_integer_type (objfile, 8, 0, NULL);
4239 return init_integer_type (objfile, 16, 0, NULL);
4240 if (n3 == 0x7fffffff)
4241 return init_integer_type (objfile, 32, 0, NULL);
4244 /* We have a real range type on our hands. Allocate space and
4245 return a real pointer. */
4249 index_type = objfile_type (objfile)->builtin_int;
4251 index_type = *dbx_lookup_type (rangenums, objfile);
4252 if (index_type == NULL)
4254 /* Does this actually ever happen? Is that why we are worrying
4255 about dealing with it rather than just calling error_type? */
4257 complaint (&symfile_complaints,
4258 _("base type %d of range type is not defined"), rangenums[1]);
4260 index_type = objfile_type (objfile)->builtin_int;
4264 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4265 return (result_type);
4268 /* Read in an argument list. This is a list of types, separated by commas
4269 and terminated with END. Return the list of types read in, or NULL
4270 if there is an error. */
4272 static struct field *
4273 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4276 /* FIXME! Remove this arbitrary limit! */
4277 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4284 /* Invalid argument list: no ','. */
4287 STABS_CONTINUE (pp, objfile);
4288 types[n++] = read_type (pp, objfile);
4290 (*pp)++; /* get past `end' (the ':' character). */
4294 /* We should read at least the THIS parameter here. Some broken stabs
4295 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4296 have been present ";-16,(0,43)" reference instead. This way the
4297 excessive ";" marker prematurely stops the parameters parsing. */
4299 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4302 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4310 rval = XCNEWVEC (struct field, n);
4311 for (i = 0; i < n; i++)
4312 rval[i].type = types[i];
4317 /* Common block handling. */
4319 /* List of symbols declared since the last BCOMM. This list is a tail
4320 of local_symbols. When ECOMM is seen, the symbols on the list
4321 are noted so their proper addresses can be filled in later,
4322 using the common block base address gotten from the assembler
4325 static struct pending *common_block;
4326 static int common_block_i;
4328 /* Name of the current common block. We get it from the BCOMM instead of the
4329 ECOMM to match IBM documentation (even though IBM puts the name both places
4330 like everyone else). */
4331 static char *common_block_name;
4333 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4334 to remain after this function returns. */
4337 common_block_start (const char *name, struct objfile *objfile)
4339 if (common_block_name != NULL)
4341 complaint (&symfile_complaints,
4342 _("Invalid symbol data: common block within common block"));
4344 common_block = local_symbols;
4345 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4346 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4350 /* Process a N_ECOMM symbol. */
4353 common_block_end (struct objfile *objfile)
4355 /* Symbols declared since the BCOMM are to have the common block
4356 start address added in when we know it. common_block and
4357 common_block_i point to the first symbol after the BCOMM in
4358 the local_symbols list; copy the list and hang it off the
4359 symbol for the common block name for later fixup. */
4362 struct pending *newobj = 0;
4363 struct pending *next;
4366 if (common_block_name == NULL)
4368 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4372 sym = allocate_symbol (objfile);
4373 /* Note: common_block_name already saved on objfile_obstack. */
4374 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4375 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4377 /* Now we copy all the symbols which have been defined since the BCOMM. */
4379 /* Copy all the struct pendings before common_block. */
4380 for (next = local_symbols;
4381 next != NULL && next != common_block;
4384 for (j = 0; j < next->nsyms; j++)
4385 add_symbol_to_list (next->symbol[j], &newobj);
4388 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4389 NULL, it means copy all the local symbols (which we already did
4392 if (common_block != NULL)
4393 for (j = common_block_i; j < common_block->nsyms; j++)
4394 add_symbol_to_list (common_block->symbol[j], &newobj);
4396 SYMBOL_TYPE (sym) = (struct type *) newobj;
4398 /* Should we be putting local_symbols back to what it was?
4401 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4402 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4403 global_sym_chain[i] = sym;
4404 common_block_name = NULL;
4407 /* Add a common block's start address to the offset of each symbol
4408 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4409 the common block name). */
4412 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4414 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4416 for (; next; next = next->next)
4420 for (j = next->nsyms - 1; j >= 0; j--)
4421 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4427 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4428 See add_undefined_type for more details. */
4431 add_undefined_type_noname (struct type *type, int typenums[2])
4435 nat.typenums[0] = typenums [0];
4436 nat.typenums[1] = typenums [1];
4439 if (noname_undefs_length == noname_undefs_allocated)
4441 noname_undefs_allocated *= 2;
4442 noname_undefs = (struct nat *)
4443 xrealloc ((char *) noname_undefs,
4444 noname_undefs_allocated * sizeof (struct nat));
4446 noname_undefs[noname_undefs_length++] = nat;
4449 /* Add TYPE to the UNDEF_TYPES vector.
4450 See add_undefined_type for more details. */
4453 add_undefined_type_1 (struct type *type)
4455 if (undef_types_length == undef_types_allocated)
4457 undef_types_allocated *= 2;
4458 undef_types = (struct type **)
4459 xrealloc ((char *) undef_types,
4460 undef_types_allocated * sizeof (struct type *));
4462 undef_types[undef_types_length++] = type;
4465 /* What about types defined as forward references inside of a small lexical
4467 /* Add a type to the list of undefined types to be checked through
4468 once this file has been read in.
4470 In practice, we actually maintain two such lists: The first list
4471 (UNDEF_TYPES) is used for types whose name has been provided, and
4472 concerns forward references (eg 'xs' or 'xu' forward references);
4473 the second list (NONAME_UNDEFS) is used for types whose name is
4474 unknown at creation time, because they were referenced through
4475 their type number before the actual type was declared.
4476 This function actually adds the given type to the proper list. */
4479 add_undefined_type (struct type *type, int typenums[2])
4481 if (TYPE_TAG_NAME (type) == NULL)
4482 add_undefined_type_noname (type, typenums);
4484 add_undefined_type_1 (type);
4487 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4490 cleanup_undefined_types_noname (struct objfile *objfile)
4494 for (i = 0; i < noname_undefs_length; i++)
4496 struct nat nat = noname_undefs[i];
4499 type = dbx_lookup_type (nat.typenums, objfile);
4500 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4502 /* The instance flags of the undefined type are still unset,
4503 and needs to be copied over from the reference type.
4504 Since replace_type expects them to be identical, we need
4505 to set these flags manually before hand. */
4506 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4507 replace_type (nat.type, *type);
4511 noname_undefs_length = 0;
4514 /* Go through each undefined type, see if it's still undefined, and fix it
4515 up if possible. We have two kinds of undefined types:
4517 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4518 Fix: update array length using the element bounds
4519 and the target type's length.
4520 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4521 yet defined at the time a pointer to it was made.
4522 Fix: Do a full lookup on the struct/union tag. */
4525 cleanup_undefined_types_1 (void)
4529 /* Iterate over every undefined type, and look for a symbol whose type
4530 matches our undefined type. The symbol matches if:
4531 1. It is a typedef in the STRUCT domain;
4532 2. It has the same name, and same type code;
4533 3. The instance flags are identical.
4535 It is important to check the instance flags, because we have seen
4536 examples where the debug info contained definitions such as:
4538 "foo_t:t30=B31=xefoo_t:"
4540 In this case, we have created an undefined type named "foo_t" whose
4541 instance flags is null (when processing "xefoo_t"), and then created
4542 another type with the same name, but with different instance flags
4543 ('B' means volatile). I think that the definition above is wrong,
4544 since the same type cannot be volatile and non-volatile at the same
4545 time, but we need to be able to cope with it when it happens. The
4546 approach taken here is to treat these two types as different. */
4548 for (type = undef_types; type < undef_types + undef_types_length; type++)
4550 switch (TYPE_CODE (*type))
4553 case TYPE_CODE_STRUCT:
4554 case TYPE_CODE_UNION:
4555 case TYPE_CODE_ENUM:
4557 /* Check if it has been defined since. Need to do this here
4558 as well as in check_typedef to deal with the (legitimate in
4559 C though not C++) case of several types with the same name
4560 in different source files. */
4561 if (TYPE_STUB (*type))
4563 struct pending *ppt;
4565 /* Name of the type, without "struct" or "union". */
4566 const char *type_name = TYPE_TAG_NAME (*type);
4568 if (type_name == NULL)
4570 complaint (&symfile_complaints, _("need a type name"));
4573 for (ppt = file_symbols; ppt; ppt = ppt->next)
4575 for (i = 0; i < ppt->nsyms; i++)
4577 struct symbol *sym = ppt->symbol[i];
4579 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4580 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4581 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4583 && (TYPE_INSTANCE_FLAGS (*type) ==
4584 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4585 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4587 replace_type (*type, SYMBOL_TYPE (sym));
4596 complaint (&symfile_complaints,
4597 _("forward-referenced types left unresolved, "
4605 undef_types_length = 0;
4608 /* Try to fix all the undefined types we ecountered while processing
4612 cleanup_undefined_stabs_types (struct objfile *objfile)
4614 cleanup_undefined_types_1 ();
4615 cleanup_undefined_types_noname (objfile);
4618 /* Scan through all of the global symbols defined in the object file,
4619 assigning values to the debugging symbols that need to be assigned
4620 to. Get these symbols from the minimal symbol table. */
4623 scan_file_globals (struct objfile *objfile)
4626 struct minimal_symbol *msymbol;
4627 struct symbol *sym, *prev;
4628 struct objfile *resolve_objfile;
4630 /* SVR4 based linkers copy referenced global symbols from shared
4631 libraries to the main executable.
4632 If we are scanning the symbols for a shared library, try to resolve
4633 them from the minimal symbols of the main executable first. */
4635 if (symfile_objfile && objfile != symfile_objfile)
4636 resolve_objfile = symfile_objfile;
4638 resolve_objfile = objfile;
4642 /* Avoid expensive loop through all minimal symbols if there are
4643 no unresolved symbols. */
4644 for (hash = 0; hash < HASHSIZE; hash++)
4646 if (global_sym_chain[hash])
4649 if (hash >= HASHSIZE)
4652 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4656 /* Skip static symbols. */
4657 switch (MSYMBOL_TYPE (msymbol))
4669 /* Get the hash index and check all the symbols
4670 under that hash index. */
4672 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4674 for (sym = global_sym_chain[hash]; sym;)
4676 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4677 SYMBOL_LINKAGE_NAME (sym)) == 0)
4679 /* Splice this symbol out of the hash chain and
4680 assign the value we have to it. */
4683 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4687 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4690 /* Check to see whether we need to fix up a common block. */
4691 /* Note: this code might be executed several times for
4692 the same symbol if there are multiple references. */
4695 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4697 fix_common_block (sym,
4698 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4703 SYMBOL_VALUE_ADDRESS (sym)
4704 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4706 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4711 sym = SYMBOL_VALUE_CHAIN (prev);
4715 sym = global_sym_chain[hash];
4721 sym = SYMBOL_VALUE_CHAIN (sym);
4725 if (resolve_objfile == objfile)
4727 resolve_objfile = objfile;
4730 /* Change the storage class of any remaining unresolved globals to
4731 LOC_UNRESOLVED and remove them from the chain. */
4732 for (hash = 0; hash < HASHSIZE; hash++)
4734 sym = global_sym_chain[hash];
4738 sym = SYMBOL_VALUE_CHAIN (sym);
4740 /* Change the symbol address from the misleading chain value
4742 SYMBOL_VALUE_ADDRESS (prev) = 0;
4744 /* Complain about unresolved common block symbols. */
4745 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4746 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4748 complaint (&symfile_complaints,
4749 _("%s: common block `%s' from "
4750 "global_sym_chain unresolved"),
4751 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4754 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4757 /* Initialize anything that needs initializing when starting to read
4758 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4762 stabsread_init (void)
4766 /* Initialize anything that needs initializing when a completely new
4767 symbol file is specified (not just adding some symbols from another
4768 file, e.g. a shared library). */
4771 stabsread_new_init (void)
4773 /* Empty the hash table of global syms looking for values. */
4774 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4777 /* Initialize anything that needs initializing at the same time as
4778 start_symtab() is called. */
4783 global_stabs = NULL; /* AIX COFF */
4784 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4785 n_this_object_header_files = 1;
4786 type_vector_length = 0;
4787 type_vector = (struct type **) 0;
4789 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4790 common_block_name = NULL;
4793 /* Call after end_symtab(). */
4800 xfree (type_vector);
4803 type_vector_length = 0;
4804 previous_stab_code = 0;
4808 finish_global_stabs (struct objfile *objfile)
4812 patch_block_stabs (global_symbols, global_stabs, objfile);
4813 xfree (global_stabs);
4814 global_stabs = NULL;
4818 /* Find the end of the name, delimited by a ':', but don't match
4819 ObjC symbols which look like -[Foo bar::]:bla. */
4821 find_name_end (const char *name)
4823 const char *s = name;
4825 if (s[0] == '-' || *s == '+')
4827 /* Must be an ObjC method symbol. */
4830 error (_("invalid symbol name \"%s\""), name);
4832 s = strchr (s, ']');
4835 error (_("invalid symbol name \"%s\""), name);
4837 return strchr (s, ':');
4841 return strchr (s, ':');
4845 /* Initializer for this module. */
4848 _initialize_stabsread (void)
4850 rs6000_builtin_type_data = register_objfile_data ();
4852 undef_types_allocated = 20;
4853 undef_types_length = 0;
4854 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4856 noname_undefs_allocated = 20;
4857 noname_undefs_length = 0;
4858 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4860 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4861 &stab_register_funcs);
4862 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4863 &stab_register_funcs);