1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
29 #include "gdb_obstack.h"
32 #include "expression.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
42 #include "gdb-demangle.h"
44 #include "target-float.h"
46 #include "cp-support.h"
50 #include "stabsread.h"
52 /* See stabsread.h for these globals. */
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
66 struct nextfield *next;
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
76 struct next_fnfieldlist
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
90 struct nextfield *list;
91 struct next_fnfieldlist *fnlist;
95 read_one_struct_field (struct field_info *, const char **, const char *,
96 struct type *, struct objfile *);
98 static struct type *dbx_alloc_type (int[2], struct objfile *);
100 static long read_huge_number (const char **, int, int *, int);
102 static struct type *error_type (const char **, struct objfile *);
105 patch_block_stabs (struct pending *, struct pending_stabs *,
108 static void fix_common_block (struct symbol *, CORE_ADDR);
110 static int read_type_number (const char **, int *);
112 static struct type *read_type (const char **, struct objfile *);
114 static struct type *read_range_type (const char **, int[2],
115 int, struct objfile *);
117 static struct type *read_sun_builtin_type (const char **,
118 int[2], struct objfile *);
120 static struct type *read_sun_floating_type (const char **, int[2],
123 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
125 static struct type *rs6000_builtin_type (int, struct objfile *);
128 read_member_functions (struct field_info *, const char **, struct type *,
132 read_struct_fields (struct field_info *, const char **, struct type *,
136 read_baseclasses (struct field_info *, const char **, struct type *,
140 read_tilde_fields (struct field_info *, const char **, struct type *,
143 static int attach_fn_fields_to_type (struct field_info *, struct type *);
145 static int attach_fields_to_type (struct field_info *, struct type *,
148 static struct type *read_struct_type (const char **, struct type *,
152 static struct type *read_array_type (const char **, struct type *,
155 static struct field *read_args (const char **, int, struct objfile *,
158 static void add_undefined_type (struct type *, int[2]);
161 read_cpp_abbrev (struct field_info *, const char **, struct type *,
164 static const char *find_name_end (const char *name);
166 static int process_reference (const char **string);
168 void stabsread_clear_cache (void);
170 static const char vptr_name[] = "_vptr$";
171 static const char vb_name[] = "_vb$";
174 invalid_cpp_abbrev_complaint (const char *arg1)
176 complaint (_("invalid C++ abbreviation `%s'"), arg1);
180 reg_value_complaint (int regnum, int num_regs, const char *sym)
182 complaint (_("bad register number %d (max %d) in symbol %s"),
183 regnum, num_regs - 1, sym);
187 stabs_general_complaint (const char *arg1)
189 complaint ("%s", arg1);
192 /* Make a list of forward references which haven't been defined. */
194 static struct type **undef_types;
195 static int undef_types_allocated;
196 static int undef_types_length;
197 static struct symbol *current_symbol = NULL;
199 /* Make a list of nameless types that are undefined.
200 This happens when another type is referenced by its number
201 before this type is actually defined. For instance "t(0,1)=k(0,2)"
202 and type (0,2) is defined only later. */
209 static struct nat *noname_undefs;
210 static int noname_undefs_allocated;
211 static int noname_undefs_length;
213 /* Check for and handle cretinous stabs symbol name continuation! */
214 #define STABS_CONTINUE(pp,objfile) \
216 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
217 *(pp) = next_symbol_text (objfile); \
220 /* Vector of types defined so far, indexed by their type numbers.
221 (In newer sun systems, dbx uses a pair of numbers in parens,
222 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
223 Then these numbers must be translated through the type_translations
224 hash table to get the index into the type vector.) */
226 static struct type **type_vector;
228 /* Number of elements allocated for type_vector currently. */
230 static int type_vector_length;
232 /* Initial size of type vector. Is realloc'd larger if needed, and
233 realloc'd down to the size actually used, when completed. */
235 #define INITIAL_TYPE_VECTOR_LENGTH 160
238 /* Look up a dbx type-number pair. Return the address of the slot
239 where the type for that number-pair is stored.
240 The number-pair is in TYPENUMS.
242 This can be used for finding the type associated with that pair
243 or for associating a new type with the pair. */
245 static struct type **
246 dbx_lookup_type (int typenums[2], struct objfile *objfile)
248 int filenum = typenums[0];
249 int index = typenums[1];
252 struct header_file *f;
255 if (filenum == -1) /* -1,-1 is for temporary types. */
258 if (filenum < 0 || filenum >= n_this_object_header_files)
260 complaint (_("Invalid symbol data: type number "
261 "(%d,%d) out of range at symtab pos %d."),
262 filenum, index, symnum);
270 /* Caller wants address of address of type. We think
271 that negative (rs6k builtin) types will never appear as
272 "lvalues", (nor should they), so we stuff the real type
273 pointer into a temp, and return its address. If referenced,
274 this will do the right thing. */
275 static struct type *temp_type;
277 temp_type = rs6000_builtin_type (index, objfile);
281 /* Type is defined outside of header files.
282 Find it in this object file's type vector. */
283 if (index >= type_vector_length)
285 old_len = type_vector_length;
288 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
289 type_vector = XNEWVEC (struct type *, type_vector_length);
291 while (index >= type_vector_length)
293 type_vector_length *= 2;
295 type_vector = (struct type **)
296 xrealloc ((char *) type_vector,
297 (type_vector_length * sizeof (struct type *)));
298 memset (&type_vector[old_len], 0,
299 (type_vector_length - old_len) * sizeof (struct type *));
301 return (&type_vector[index]);
305 real_filenum = this_object_header_files[filenum];
307 if (real_filenum >= N_HEADER_FILES (objfile))
309 static struct type *temp_type;
311 warning (_("GDB internal error: bad real_filenum"));
314 temp_type = objfile_type (objfile)->builtin_error;
318 f = HEADER_FILES (objfile) + real_filenum;
320 f_orig_length = f->length;
321 if (index >= f_orig_length)
323 while (index >= f->length)
327 f->vector = (struct type **)
328 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
329 memset (&f->vector[f_orig_length], 0,
330 (f->length - f_orig_length) * sizeof (struct type *));
332 return (&f->vector[index]);
336 /* Make sure there is a type allocated for type numbers TYPENUMS
337 and return the type object.
338 This can create an empty (zeroed) type object.
339 TYPENUMS may be (-1, -1) to return a new type object that is not
340 put into the type vector, and so may not be referred to by number. */
343 dbx_alloc_type (int typenums[2], struct objfile *objfile)
345 struct type **type_addr;
347 if (typenums[0] == -1)
349 return (alloc_type (objfile));
352 type_addr = dbx_lookup_type (typenums, objfile);
354 /* If we are referring to a type not known at all yet,
355 allocate an empty type for it.
356 We will fill it in later if we find out how. */
359 *type_addr = alloc_type (objfile);
365 /* Allocate a floating-point type of size BITS. */
368 dbx_init_float_type (struct objfile *objfile, int bits)
370 struct gdbarch *gdbarch = get_objfile_arch (objfile);
371 const struct floatformat **format;
374 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
376 type = init_float_type (objfile, bits, NULL, format);
378 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
383 /* for all the stabs in a given stab vector, build appropriate types
384 and fix their symbols in given symbol vector. */
387 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
388 struct objfile *objfile)
397 /* for all the stab entries, find their corresponding symbols and
398 patch their types! */
400 for (ii = 0; ii < stabs->count; ++ii)
402 name = stabs->stab[ii];
403 pp = (char *) strchr (name, ':');
404 gdb_assert (pp); /* Must find a ':' or game's over. */
408 pp = (char *) strchr (pp, ':');
410 sym = find_symbol_in_list (symbols, name, pp - name);
413 /* FIXME-maybe: it would be nice if we noticed whether
414 the variable was defined *anywhere*, not just whether
415 it is defined in this compilation unit. But neither
416 xlc or GCC seem to need such a definition, and until
417 we do psymtabs (so that the minimal symbols from all
418 compilation units are available now), I'm not sure
419 how to get the information. */
421 /* On xcoff, if a global is defined and never referenced,
422 ld will remove it from the executable. There is then
423 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
424 sym = allocate_symbol (objfile);
425 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
426 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
427 SYMBOL_SET_LINKAGE_NAME
428 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
431 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
433 /* I don't think the linker does this with functions,
434 so as far as I know this is never executed.
435 But it doesn't hurt to check. */
437 lookup_function_type (read_type (&pp, objfile));
441 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 add_symbol_to_list (sym, get_global_symbols ());
448 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
451 lookup_function_type (read_type (&pp, objfile));
455 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
463 /* Read a number by which a type is referred to in dbx data,
464 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
465 Just a single number N is equivalent to (0,N).
466 Return the two numbers by storing them in the vector TYPENUMS.
467 TYPENUMS will then be used as an argument to dbx_lookup_type.
469 Returns 0 for success, -1 for error. */
472 read_type_number (const char **pp, int *typenums)
479 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
482 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
489 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
497 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
498 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
499 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
500 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
502 /* Structure for storing pointers to reference definitions for fast lookup
503 during "process_later". */
512 #define MAX_CHUNK_REFS 100
513 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
514 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516 static struct ref_map *ref_map;
518 /* Ptr to free cell in chunk's linked list. */
519 static int ref_count = 0;
521 /* Number of chunks malloced. */
522 static int ref_chunk = 0;
524 /* This file maintains a cache of stabs aliases found in the symbol
525 table. If the symbol table changes, this cache must be cleared
526 or we are left holding onto data in invalid obstacks. */
528 stabsread_clear_cache (void)
534 /* Create array of pointers mapping refids to symbols and stab strings.
535 Add pointers to reference definition symbols and/or their values as we
536 find them, using their reference numbers as our index.
537 These will be used later when we resolve references. */
539 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
543 if (refnum >= ref_count)
544 ref_count = refnum + 1;
545 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
548 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
550 ref_map = (struct ref_map *)
551 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
552 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
553 new_chunks * REF_CHUNK_SIZE);
554 ref_chunk += new_chunks;
556 ref_map[refnum].stabs = stabs;
557 ref_map[refnum].sym = sym;
558 ref_map[refnum].value = value;
561 /* Return defined sym for the reference REFNUM. */
563 ref_search (int refnum)
565 if (refnum < 0 || refnum > ref_count)
567 return ref_map[refnum].sym;
570 /* Parse a reference id in STRING and return the resulting
571 reference number. Move STRING beyond the reference id. */
574 process_reference (const char **string)
582 /* Advance beyond the initial '#'. */
585 /* Read number as reference id. */
586 while (*p && isdigit (*p))
588 refnum = refnum * 10 + *p - '0';
595 /* If STRING defines a reference, store away a pointer to the reference
596 definition for later use. Return the reference number. */
599 symbol_reference_defined (const char **string)
601 const char *p = *string;
604 refnum = process_reference (&p);
606 /* Defining symbols end in '='. */
609 /* Symbol is being defined here. */
615 /* Must be a reference. Either the symbol has already been defined,
616 or this is a forward reference to it. */
623 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
627 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
629 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
630 SYMBOL_PRINT_NAME (sym));
632 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
638 static const struct symbol_register_ops stab_register_funcs = {
642 /* The "aclass" indices for computed symbols. */
644 static int stab_register_index;
645 static int stab_regparm_index;
648 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
649 struct objfile *objfile)
651 struct gdbarch *gdbarch = get_objfile_arch (objfile);
653 const char *p = find_name_end (string);
658 /* We would like to eliminate nameless symbols, but keep their types.
659 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
660 to type 2, but, should not create a symbol to address that type. Since
661 the symbol will be nameless, there is no way any user can refer to it. */
665 /* Ignore syms with empty names. */
669 /* Ignore old-style symbols from cc -go. */
680 _("Bad stabs string '%s'"), string);
685 /* If a nameless stab entry, all we need is the type, not the symbol.
686 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
687 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689 current_symbol = sym = allocate_symbol (objfile);
691 if (processing_gcc_compilation)
693 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
694 number of bytes occupied by a type or object, which we ignore. */
695 SYMBOL_LINE (sym) = desc;
699 SYMBOL_LINE (sym) = 0; /* unknown */
702 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
703 &objfile->objfile_obstack);
705 if (is_cplus_marker (string[0]))
707 /* Special GNU C++ names. */
711 SYMBOL_SET_LINKAGE_NAME (sym, "this");
714 case 'v': /* $vtbl_ptr_type */
718 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
722 /* This was an anonymous type that was never fixed up. */
726 /* SunPRO (3.0 at least) static variable encoding. */
727 if (gdbarch_static_transform_name_p (gdbarch))
732 complaint (_("Unknown C++ symbol name `%s'"),
734 goto normal; /* Do *something* with it. */
740 std::string new_name;
742 if (SYMBOL_LANGUAGE (sym) == language_cplus)
744 char *name = (char *) alloca (p - string + 1);
746 memcpy (name, string, p - string);
747 name[p - string] = '\0';
748 new_name = cp_canonicalize_string (name);
750 if (!new_name.empty ())
752 SYMBOL_SET_NAMES (sym,
753 new_name.c_str (), new_name.length (),
757 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
759 if (SYMBOL_LANGUAGE (sym) == language_cplus)
760 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
766 /* Determine the type of name being defined. */
768 /* Getting GDB to correctly skip the symbol on an undefined symbol
769 descriptor and not ever dump core is a very dodgy proposition if
770 we do things this way. I say the acorn RISC machine can just
771 fix their compiler. */
772 /* The Acorn RISC machine's compiler can put out locals that don't
773 start with "234=" or "(3,4)=", so assume anything other than the
774 deftypes we know how to handle is a local. */
775 if (!strchr ("cfFGpPrStTvVXCR", *p))
777 if (isdigit (*p) || *p == '(' || *p == '-')
786 /* c is a special case, not followed by a type-number.
787 SYMBOL:c=iVALUE for an integer constant symbol.
788 SYMBOL:c=rVALUE for a floating constant symbol.
789 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
790 e.g. "b:c=e6,0" for "const b = blob1"
791 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
794 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
795 SYMBOL_TYPE (sym) = error_type (&p, objfile);
796 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
797 add_symbol_to_list (sym, get_file_symbols ());
806 struct type *dbl_type;
808 dbl_type = objfile_type (objfile)->builtin_double;
810 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
811 TYPE_LENGTH (dbl_type));
813 target_float_from_string (dbl_valu, dbl_type, std::string (p));
815 SYMBOL_TYPE (sym) = dbl_type;
816 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
822 /* Defining integer constants this way is kind of silly,
823 since 'e' constants allows the compiler to give not
824 only the value, but the type as well. C has at least
825 int, long, unsigned int, and long long as constant
826 types; other languages probably should have at least
827 unsigned as well as signed constants. */
829 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
830 SYMBOL_VALUE (sym) = atoi (p);
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
837 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
838 SYMBOL_VALUE (sym) = atoi (p);
839 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
845 struct type *range_type;
848 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
849 gdb_byte *string_value;
851 if (quote != '\'' && quote != '"')
853 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
854 SYMBOL_TYPE (sym) = error_type (&p, objfile);
855 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
856 add_symbol_to_list (sym, get_file_symbols ());
860 /* Find matching quote, rejecting escaped quotes. */
861 while (*p && *p != quote)
863 if (*p == '\\' && p[1] == quote)
865 string_local[ind] = (gdb_byte) quote;
871 string_local[ind] = (gdb_byte) (*p);
878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
879 SYMBOL_TYPE (sym) = error_type (&p, objfile);
880 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
881 add_symbol_to_list (sym, get_file_symbols ());
885 /* NULL terminate the string. */
886 string_local[ind] = 0;
888 = create_static_range_type (NULL,
889 objfile_type (objfile)->builtin_int,
891 SYMBOL_TYPE (sym) = create_array_type (NULL,
892 objfile_type (objfile)->builtin_char,
895 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
896 memcpy (string_value, string_local, ind + 1);
899 SYMBOL_VALUE_BYTES (sym) = string_value;
900 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
905 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
906 can be represented as integral.
907 e.g. "b:c=e6,0" for "const b = blob1"
908 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
910 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
911 SYMBOL_TYPE (sym) = read_type (&p, objfile);
915 SYMBOL_TYPE (sym) = error_type (&p, objfile);
920 /* If the value is too big to fit in an int (perhaps because
921 it is unsigned), or something like that, we silently get
922 a bogus value. The type and everything else about it is
923 correct. Ideally, we should be using whatever we have
924 available for parsing unsigned and long long values,
926 SYMBOL_VALUE (sym) = atoi (p);
931 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
932 SYMBOL_TYPE (sym) = error_type (&p, objfile);
935 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
936 add_symbol_to_list (sym, get_file_symbols ());
940 /* The name of a caught exception. */
941 SYMBOL_TYPE (sym) = read_type (&p, objfile);
942 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
943 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
944 SYMBOL_VALUE_ADDRESS (sym) = valu;
945 add_symbol_to_list (sym, get_local_symbols ());
949 /* A static function definition. */
950 SYMBOL_TYPE (sym) = read_type (&p, objfile);
951 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
952 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
953 add_symbol_to_list (sym, get_file_symbols ());
954 /* fall into process_function_types. */
956 process_function_types:
957 /* Function result types are described as the result type in stabs.
958 We need to convert this to the function-returning-type-X type
959 in GDB. E.g. "int" is converted to "function returning int". */
960 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
961 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
963 /* All functions in C++ have prototypes. Stabs does not offer an
964 explicit way to identify prototyped or unprototyped functions,
965 but both GCC and Sun CC emit stabs for the "call-as" type rather
966 than the "declared-as" type for unprototyped functions, so
967 we treat all functions as if they were prototyped. This is used
968 primarily for promotion when calling the function from GDB. */
969 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
971 /* fall into process_prototype_types. */
973 process_prototype_types:
974 /* Sun acc puts declared types of arguments here. */
977 struct type *ftype = SYMBOL_TYPE (sym);
982 /* Obtain a worst case guess for the number of arguments
983 by counting the semicolons. */
990 /* Allocate parameter information fields and fill them in. */
991 TYPE_FIELDS (ftype) = (struct field *)
992 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
997 /* A type number of zero indicates the start of varargs.
998 FIXME: GDB currently ignores vararg functions. */
999 if (p[0] == '0' && p[1] == '\0')
1001 ptype = read_type (&p, objfile);
1003 /* The Sun compilers mark integer arguments, which should
1004 be promoted to the width of the calling conventions, with
1005 a type which references itself. This type is turned into
1006 a TYPE_CODE_VOID type by read_type, and we have to turn
1007 it back into builtin_int here.
1008 FIXME: Do we need a new builtin_promoted_int_arg ? */
1009 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1010 ptype = objfile_type (objfile)->builtin_int;
1011 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1012 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1014 TYPE_NFIELDS (ftype) = nparams;
1015 TYPE_PROTOTYPED (ftype) = 1;
1020 /* A global function definition. */
1021 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1022 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1023 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1024 add_symbol_to_list (sym, get_global_symbols ());
1025 goto process_function_types;
1028 /* For a class G (global) symbol, it appears that the
1029 value is not correct. It is necessary to search for the
1030 corresponding linker definition to find the value.
1031 These definitions appear at the end of the namelist. */
1032 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1033 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1035 /* Don't add symbol references to global_sym_chain.
1036 Symbol references don't have valid names and wont't match up with
1037 minimal symbols when the global_sym_chain is relocated.
1038 We'll fixup symbol references when we fixup the defining symbol. */
1039 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1041 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1042 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1043 global_sym_chain[i] = sym;
1045 add_symbol_to_list (sym, get_global_symbols ());
1048 /* This case is faked by a conditional above,
1049 when there is no code letter in the dbx data.
1050 Dbx data never actually contains 'l'. */
1053 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1054 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1055 SYMBOL_VALUE (sym) = valu;
1056 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1057 add_symbol_to_list (sym, get_local_symbols ());
1062 /* pF is a two-letter code that means a function parameter in Fortran.
1063 The type-number specifies the type of the return value.
1064 Translate it into a pointer-to-function type. */
1068 = lookup_pointer_type
1069 (lookup_function_type (read_type (&p, objfile)));
1072 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1074 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1075 SYMBOL_VALUE (sym) = valu;
1076 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1077 SYMBOL_IS_ARGUMENT (sym) = 1;
1078 add_symbol_to_list (sym, get_local_symbols ());
1080 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1082 /* On little-endian machines, this crud is never necessary,
1083 and, if the extra bytes contain garbage, is harmful. */
1087 /* If it's gcc-compiled, if it says `short', believe it. */
1088 if (processing_gcc_compilation
1089 || gdbarch_believe_pcc_promotion (gdbarch))
1092 if (!gdbarch_believe_pcc_promotion (gdbarch))
1094 /* If PCC says a parameter is a short or a char, it is
1096 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1097 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1098 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1101 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1102 ? objfile_type (objfile)->builtin_unsigned_int
1103 : objfile_type (objfile)->builtin_int;
1110 /* acc seems to use P to declare the prototypes of functions that
1111 are referenced by this file. gdb is not prepared to deal
1112 with this extra information. FIXME, it ought to. */
1115 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1116 goto process_prototype_types;
1121 /* Parameter which is in a register. */
1122 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1123 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1124 SYMBOL_IS_ARGUMENT (sym) = 1;
1125 SYMBOL_VALUE (sym) = valu;
1126 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1127 add_symbol_to_list (sym, get_local_symbols ());
1131 /* Register variable (either global or local). */
1132 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1133 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1134 SYMBOL_VALUE (sym) = valu;
1135 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1136 if (within_function)
1138 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1139 the same name to represent an argument passed in a
1140 register. GCC uses 'P' for the same case. So if we find
1141 such a symbol pair we combine it into one 'P' symbol.
1142 For Sun cc we need to do this regardless of
1143 stabs_argument_has_addr, because the compiler puts out
1144 the 'p' symbol even if it never saves the argument onto
1147 On most machines, we want to preserve both symbols, so
1148 that we can still get information about what is going on
1149 with the stack (VAX for computing args_printed, using
1150 stack slots instead of saved registers in backtraces,
1153 Note that this code illegally combines
1154 main(argc) struct foo argc; { register struct foo argc; }
1155 but this case is considered pathological and causes a warning
1156 from a decent compiler. */
1158 struct pending *local_symbols = *get_local_symbols ();
1160 && local_symbols->nsyms > 0
1161 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1163 struct symbol *prev_sym;
1165 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1166 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1167 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1168 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1169 SYMBOL_LINKAGE_NAME (sym)) == 0)
1171 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1172 /* Use the type from the LOC_REGISTER; that is the type
1173 that is actually in that register. */
1174 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1175 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1180 add_symbol_to_list (sym, get_local_symbols ());
1183 add_symbol_to_list (sym, get_file_symbols ());
1187 /* Static symbol at top level of file. */
1188 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1189 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1190 SYMBOL_VALUE_ADDRESS (sym) = valu;
1191 if (gdbarch_static_transform_name_p (gdbarch)
1192 && gdbarch_static_transform_name (gdbarch,
1193 SYMBOL_LINKAGE_NAME (sym))
1194 != SYMBOL_LINKAGE_NAME (sym))
1196 struct bound_minimal_symbol msym;
1198 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1200 if (msym.minsym != NULL)
1202 const char *new_name = gdbarch_static_transform_name
1203 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1205 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1206 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1209 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1210 add_symbol_to_list (sym, get_file_symbols ());
1214 /* In Ada, there is no distinction between typedef and non-typedef;
1215 any type declaration implicitly has the equivalent of a typedef,
1216 and thus 't' is in fact equivalent to 'Tt'.
1218 Therefore, for Ada units, we check the character immediately
1219 before the 't', and if we do not find a 'T', then make sure to
1220 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1221 will be stored in the VAR_DOMAIN). If the symbol was indeed
1222 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1223 elsewhere, so we don't need to take care of that.
1225 This is important to do, because of forward references:
1226 The cleanup of undefined types stored in undef_types only uses
1227 STRUCT_DOMAIN symbols to perform the replacement. */
1228 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1231 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1233 /* For a nameless type, we don't want a create a symbol, thus we
1234 did not use `sym'. Return without further processing. */
1238 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1239 SYMBOL_VALUE (sym) = valu;
1240 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1241 /* C++ vagaries: we may have a type which is derived from
1242 a base type which did not have its name defined when the
1243 derived class was output. We fill in the derived class's
1244 base part member's name here in that case. */
1245 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1246 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1247 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1248 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1252 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1253 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1254 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1255 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1258 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1260 /* gcc-2.6 or later (when using -fvtable-thunks)
1261 emits a unique named type for a vtable entry.
1262 Some gdb code depends on that specific name. */
1263 extern const char vtbl_ptr_name[];
1265 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1266 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1267 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1269 /* If we are giving a name to a type such as "pointer to
1270 foo" or "function returning foo", we better not set
1271 the TYPE_NAME. If the program contains "typedef char
1272 *caddr_t;", we don't want all variables of type char
1273 * to print as caddr_t. This is not just a
1274 consequence of GDB's type management; PCC and GCC (at
1275 least through version 2.4) both output variables of
1276 either type char * or caddr_t with the type number
1277 defined in the 't' symbol for caddr_t. If a future
1278 compiler cleans this up it GDB is not ready for it
1279 yet, but if it becomes ready we somehow need to
1280 disable this check (without breaking the PCC/GCC2.4
1285 Fortunately, this check seems not to be necessary
1286 for anything except pointers or functions. */
1287 /* ezannoni: 2000-10-26. This seems to apply for
1288 versions of gcc older than 2.8. This was the original
1289 problem: with the following code gdb would tell that
1290 the type for name1 is caddr_t, and func is char().
1292 typedef char *caddr_t;
1304 /* Pascal accepts names for pointer types. */
1305 if (get_current_subfile ()->language == language_pascal)
1307 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1311 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1314 add_symbol_to_list (sym, get_file_symbols ());
1318 /* Create the STRUCT_DOMAIN clone. */
1319 struct symbol *struct_sym = allocate_symbol (objfile);
1322 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1323 SYMBOL_VALUE (struct_sym) = valu;
1324 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1325 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1326 TYPE_NAME (SYMBOL_TYPE (sym))
1327 = obconcat (&objfile->objfile_obstack,
1328 SYMBOL_LINKAGE_NAME (sym),
1330 add_symbol_to_list (struct_sym, get_file_symbols ());
1336 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1337 by 't' which means we are typedef'ing it as well. */
1338 synonym = *p == 't';
1343 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1345 /* For a nameless type, we don't want a create a symbol, thus we
1346 did not use `sym'. Return without further processing. */
1350 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1351 SYMBOL_VALUE (sym) = valu;
1352 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1353 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1354 TYPE_NAME (SYMBOL_TYPE (sym))
1355 = obconcat (&objfile->objfile_obstack,
1356 SYMBOL_LINKAGE_NAME (sym),
1358 add_symbol_to_list (sym, get_file_symbols ());
1362 /* Clone the sym and then modify it. */
1363 struct symbol *typedef_sym = allocate_symbol (objfile);
1365 *typedef_sym = *sym;
1366 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1367 SYMBOL_VALUE (typedef_sym) = valu;
1368 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1369 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1370 TYPE_NAME (SYMBOL_TYPE (sym))
1371 = obconcat (&objfile->objfile_obstack,
1372 SYMBOL_LINKAGE_NAME (sym),
1374 add_symbol_to_list (typedef_sym, get_file_symbols ());
1379 /* Static symbol of local scope. */
1380 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1381 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1382 SYMBOL_VALUE_ADDRESS (sym) = valu;
1383 if (gdbarch_static_transform_name_p (gdbarch)
1384 && gdbarch_static_transform_name (gdbarch,
1385 SYMBOL_LINKAGE_NAME (sym))
1386 != SYMBOL_LINKAGE_NAME (sym))
1388 struct bound_minimal_symbol msym;
1390 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1392 if (msym.minsym != NULL)
1394 const char *new_name = gdbarch_static_transform_name
1395 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1397 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1398 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1401 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1402 add_symbol_to_list (sym, get_local_symbols ());
1406 /* Reference parameter */
1407 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1408 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1409 SYMBOL_IS_ARGUMENT (sym) = 1;
1410 SYMBOL_VALUE (sym) = valu;
1411 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1412 add_symbol_to_list (sym, get_local_symbols ());
1416 /* Reference parameter which is in a register. */
1417 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1418 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1419 SYMBOL_IS_ARGUMENT (sym) = 1;
1420 SYMBOL_VALUE (sym) = valu;
1421 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1422 add_symbol_to_list (sym, get_local_symbols ());
1426 /* This is used by Sun FORTRAN for "function result value".
1427 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1428 that Pascal uses it too, but when I tried it Pascal used
1429 "x:3" (local symbol) instead. */
1430 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1431 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1432 SYMBOL_VALUE (sym) = valu;
1433 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1434 add_symbol_to_list (sym, get_local_symbols ());
1438 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1439 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1440 SYMBOL_VALUE (sym) = 0;
1441 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1442 add_symbol_to_list (sym, get_file_symbols ());
1446 /* Some systems pass variables of certain types by reference instead
1447 of by value, i.e. they will pass the address of a structure (in a
1448 register or on the stack) instead of the structure itself. */
1450 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1451 && SYMBOL_IS_ARGUMENT (sym))
1453 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1454 variables passed in a register). */
1455 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1456 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1457 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1458 and subsequent arguments on SPARC, for example). */
1459 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1460 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1466 /* Skip rest of this symbol and return an error type.
1468 General notes on error recovery: error_type always skips to the
1469 end of the symbol (modulo cretinous dbx symbol name continuation).
1470 Thus code like this:
1472 if (*(*pp)++ != ';')
1473 return error_type (pp, objfile);
1475 is wrong because if *pp starts out pointing at '\0' (typically as the
1476 result of an earlier error), it will be incremented to point to the
1477 start of the next symbol, which might produce strange results, at least
1478 if you run off the end of the string table. Instead use
1481 return error_type (pp, objfile);
1487 foo = error_type (pp, objfile);
1491 And in case it isn't obvious, the point of all this hair is so the compiler
1492 can define new types and new syntaxes, and old versions of the
1493 debugger will be able to read the new symbol tables. */
1495 static struct type *
1496 error_type (const char **pp, struct objfile *objfile)
1498 complaint (_("couldn't parse type; debugger out of date?"));
1501 /* Skip to end of symbol. */
1502 while (**pp != '\0')
1507 /* Check for and handle cretinous dbx symbol name continuation! */
1508 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1510 *pp = next_symbol_text (objfile);
1517 return objfile_type (objfile)->builtin_error;
1521 /* Read type information or a type definition; return the type. Even
1522 though this routine accepts either type information or a type
1523 definition, the distinction is relevant--some parts of stabsread.c
1524 assume that type information starts with a digit, '-', or '(' in
1525 deciding whether to call read_type. */
1527 static struct type *
1528 read_type (const char **pp, struct objfile *objfile)
1530 struct type *type = 0;
1533 char type_descriptor;
1535 /* Size in bits of type if specified by a type attribute, or -1 if
1536 there is no size attribute. */
1539 /* Used to distinguish string and bitstring from char-array and set. */
1542 /* Used to distinguish vector from array. */
1545 /* Read type number if present. The type number may be omitted.
1546 for instance in a two-dimensional array declared with type
1547 "ar1;1;10;ar1;1;10;4". */
1548 if ((**pp >= '0' && **pp <= '9')
1552 if (read_type_number (pp, typenums) != 0)
1553 return error_type (pp, objfile);
1557 /* Type is not being defined here. Either it already
1558 exists, or this is a forward reference to it.
1559 dbx_alloc_type handles both cases. */
1560 type = dbx_alloc_type (typenums, objfile);
1562 /* If this is a forward reference, arrange to complain if it
1563 doesn't get patched up by the time we're done
1565 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1566 add_undefined_type (type, typenums);
1571 /* Type is being defined here. */
1573 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1578 /* 'typenums=' not present, type is anonymous. Read and return
1579 the definition, but don't put it in the type vector. */
1580 typenums[0] = typenums[1] = -1;
1585 type_descriptor = (*pp)[-1];
1586 switch (type_descriptor)
1590 enum type_code code;
1592 /* Used to index through file_symbols. */
1593 struct pending *ppt;
1596 /* Name including "struct", etc. */
1600 const char *from, *p, *q1, *q2;
1602 /* Set the type code according to the following letter. */
1606 code = TYPE_CODE_STRUCT;
1609 code = TYPE_CODE_UNION;
1612 code = TYPE_CODE_ENUM;
1616 /* Complain and keep going, so compilers can invent new
1617 cross-reference types. */
1618 complaint (_("Unrecognized cross-reference type `%c'"),
1620 code = TYPE_CODE_STRUCT;
1625 q1 = strchr (*pp, '<');
1626 p = strchr (*pp, ':');
1628 return error_type (pp, objfile);
1629 if (q1 && p > q1 && p[1] == ':')
1631 int nesting_level = 0;
1633 for (q2 = q1; *q2; q2++)
1637 else if (*q2 == '>')
1639 else if (*q2 == ':' && nesting_level == 0)
1644 return error_type (pp, objfile);
1647 if (get_current_subfile ()->language == language_cplus)
1649 char *name = (char *) alloca (p - *pp + 1);
1651 memcpy (name, *pp, p - *pp);
1652 name[p - *pp] = '\0';
1654 std::string new_name = cp_canonicalize_string (name);
1655 if (!new_name.empty ())
1658 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1660 new_name.length ());
1663 if (type_name == NULL)
1665 char *to = type_name = (char *)
1666 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1668 /* Copy the name. */
1675 /* Set the pointer ahead of the name which we just read, and
1680 /* If this type has already been declared, then reuse the same
1681 type, rather than allocating a new one. This saves some
1684 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1685 for (i = 0; i < ppt->nsyms; i++)
1687 struct symbol *sym = ppt->symbol[i];
1689 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1690 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1691 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1692 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1694 obstack_free (&objfile->objfile_obstack, type_name);
1695 type = SYMBOL_TYPE (sym);
1696 if (typenums[0] != -1)
1697 *dbx_lookup_type (typenums, objfile) = type;
1702 /* Didn't find the type to which this refers, so we must
1703 be dealing with a forward reference. Allocate a type
1704 structure for it, and keep track of it so we can
1705 fill in the rest of the fields when we get the full
1707 type = dbx_alloc_type (typenums, objfile);
1708 TYPE_CODE (type) = code;
1709 TYPE_NAME (type) = type_name;
1710 INIT_CPLUS_SPECIFIC (type);
1711 TYPE_STUB (type) = 1;
1713 add_undefined_type (type, typenums);
1717 case '-': /* RS/6000 built-in type */
1731 /* We deal with something like t(1,2)=(3,4)=... which
1732 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1734 /* Allocate and enter the typedef type first.
1735 This handles recursive types. */
1736 type = dbx_alloc_type (typenums, objfile);
1737 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1739 struct type *xtype = read_type (pp, objfile);
1743 /* It's being defined as itself. That means it is "void". */
1744 TYPE_CODE (type) = TYPE_CODE_VOID;
1745 TYPE_LENGTH (type) = 1;
1747 else if (type_size >= 0 || is_string)
1749 /* This is the absolute wrong way to construct types. Every
1750 other debug format has found a way around this problem and
1751 the related problems with unnecessarily stubbed types;
1752 someone motivated should attempt to clean up the issue
1753 here as well. Once a type pointed to has been created it
1754 should not be modified.
1756 Well, it's not *absolutely* wrong. Constructing recursive
1757 types (trees, linked lists) necessarily entails modifying
1758 types after creating them. Constructing any loop structure
1759 entails side effects. The Dwarf 2 reader does handle this
1760 more gracefully (it never constructs more than once
1761 instance of a type object, so it doesn't have to copy type
1762 objects wholesale), but it still mutates type objects after
1763 other folks have references to them.
1765 Keep in mind that this circularity/mutation issue shows up
1766 at the source language level, too: C's "incomplete types",
1767 for example. So the proper cleanup, I think, would be to
1768 limit GDB's type smashing to match exactly those required
1769 by the source language. So GDB could have a
1770 "complete_this_type" function, but never create unnecessary
1771 copies of a type otherwise. */
1772 replace_type (type, xtype);
1773 TYPE_NAME (type) = NULL;
1777 TYPE_TARGET_STUB (type) = 1;
1778 TYPE_TARGET_TYPE (type) = xtype;
1783 /* In the following types, we must be sure to overwrite any existing
1784 type that the typenums refer to, rather than allocating a new one
1785 and making the typenums point to the new one. This is because there
1786 may already be pointers to the existing type (if it had been
1787 forward-referenced), and we must change it to a pointer, function,
1788 reference, or whatever, *in-place*. */
1790 case '*': /* Pointer to another type */
1791 type1 = read_type (pp, objfile);
1792 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1795 case '&': /* Reference to another type */
1796 type1 = read_type (pp, objfile);
1797 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1801 case 'f': /* Function returning another type */
1802 type1 = read_type (pp, objfile);
1803 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1806 case 'g': /* Prototyped function. (Sun) */
1808 /* Unresolved questions:
1810 - According to Sun's ``STABS Interface Manual'', for 'f'
1811 and 'F' symbol descriptors, a `0' in the argument type list
1812 indicates a varargs function. But it doesn't say how 'g'
1813 type descriptors represent that info. Someone with access
1814 to Sun's toolchain should try it out.
1816 - According to the comment in define_symbol (search for
1817 `process_prototype_types:'), Sun emits integer arguments as
1818 types which ref themselves --- like `void' types. Do we
1819 have to deal with that here, too? Again, someone with
1820 access to Sun's toolchain should try it out and let us
1823 const char *type_start = (*pp) - 1;
1824 struct type *return_type = read_type (pp, objfile);
1825 struct type *func_type
1826 = make_function_type (return_type,
1827 dbx_lookup_type (typenums, objfile));
1830 struct type_list *next;
1834 while (**pp && **pp != '#')
1836 struct type *arg_type = read_type (pp, objfile);
1837 struct type_list *newobj = XALLOCA (struct type_list);
1838 newobj->type = arg_type;
1839 newobj->next = arg_types;
1847 complaint (_("Prototyped function type didn't "
1848 "end arguments with `#':\n%s"),
1852 /* If there is just one argument whose type is `void', then
1853 that's just an empty argument list. */
1855 && ! arg_types->next
1856 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1859 TYPE_FIELDS (func_type)
1860 = (struct field *) TYPE_ALLOC (func_type,
1861 num_args * sizeof (struct field));
1862 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1865 struct type_list *t;
1867 /* We stuck each argument type onto the front of the list
1868 when we read it, so the list is reversed. Build the
1869 fields array right-to-left. */
1870 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1871 TYPE_FIELD_TYPE (func_type, i) = t->type;
1873 TYPE_NFIELDS (func_type) = num_args;
1874 TYPE_PROTOTYPED (func_type) = 1;
1880 case 'k': /* Const qualifier on some type (Sun) */
1881 type = read_type (pp, objfile);
1882 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1883 dbx_lookup_type (typenums, objfile));
1886 case 'B': /* Volatile qual on some type (Sun) */
1887 type = read_type (pp, objfile);
1888 type = make_cv_type (TYPE_CONST (type), 1, type,
1889 dbx_lookup_type (typenums, objfile));
1893 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1894 { /* Member (class & variable) type */
1895 /* FIXME -- we should be doing smash_to_XXX types here. */
1897 struct type *domain = read_type (pp, objfile);
1898 struct type *memtype;
1901 /* Invalid member type data format. */
1902 return error_type (pp, objfile);
1905 memtype = read_type (pp, objfile);
1906 type = dbx_alloc_type (typenums, objfile);
1907 smash_to_memberptr_type (type, domain, memtype);
1910 /* type attribute */
1912 const char *attr = *pp;
1914 /* Skip to the semicolon. */
1915 while (**pp != ';' && **pp != '\0')
1918 return error_type (pp, objfile);
1920 ++ * pp; /* Skip the semicolon. */
1924 case 's': /* Size attribute */
1925 type_size = atoi (attr + 1);
1930 case 'S': /* String attribute */
1931 /* FIXME: check to see if following type is array? */
1935 case 'V': /* Vector attribute */
1936 /* FIXME: check to see if following type is array? */
1941 /* Ignore unrecognized type attributes, so future compilers
1942 can invent new ones. */
1950 case '#': /* Method (class & fn) type */
1951 if ((*pp)[0] == '#')
1953 /* We'll get the parameter types from the name. */
1954 struct type *return_type;
1957 return_type = read_type (pp, objfile);
1958 if (*(*pp)++ != ';')
1959 complaint (_("invalid (minimal) member type "
1960 "data format at symtab pos %d."),
1962 type = allocate_stub_method (return_type);
1963 if (typenums[0] != -1)
1964 *dbx_lookup_type (typenums, objfile) = type;
1968 struct type *domain = read_type (pp, objfile);
1969 struct type *return_type;
1974 /* Invalid member type data format. */
1975 return error_type (pp, objfile);
1979 return_type = read_type (pp, objfile);
1980 args = read_args (pp, ';', objfile, &nargs, &varargs);
1982 return error_type (pp, objfile);
1983 type = dbx_alloc_type (typenums, objfile);
1984 smash_to_method_type (type, domain, return_type, args,
1989 case 'r': /* Range type */
1990 type = read_range_type (pp, typenums, type_size, objfile);
1991 if (typenums[0] != -1)
1992 *dbx_lookup_type (typenums, objfile) = type;
1997 /* Sun ACC builtin int type */
1998 type = read_sun_builtin_type (pp, typenums, objfile);
1999 if (typenums[0] != -1)
2000 *dbx_lookup_type (typenums, objfile) = type;
2004 case 'R': /* Sun ACC builtin float type */
2005 type = read_sun_floating_type (pp, typenums, objfile);
2006 if (typenums[0] != -1)
2007 *dbx_lookup_type (typenums, objfile) = type;
2010 case 'e': /* Enumeration type */
2011 type = dbx_alloc_type (typenums, objfile);
2012 type = read_enum_type (pp, type, objfile);
2013 if (typenums[0] != -1)
2014 *dbx_lookup_type (typenums, objfile) = type;
2017 case 's': /* Struct type */
2018 case 'u': /* Union type */
2020 enum type_code type_code = TYPE_CODE_UNDEF;
2021 type = dbx_alloc_type (typenums, objfile);
2022 switch (type_descriptor)
2025 type_code = TYPE_CODE_STRUCT;
2028 type_code = TYPE_CODE_UNION;
2031 type = read_struct_type (pp, type, type_code, objfile);
2035 case 'a': /* Array type */
2037 return error_type (pp, objfile);
2040 type = dbx_alloc_type (typenums, objfile);
2041 type = read_array_type (pp, type, objfile);
2043 TYPE_CODE (type) = TYPE_CODE_STRING;
2045 make_vector_type (type);
2048 case 'S': /* Set type */
2049 type1 = read_type (pp, objfile);
2050 type = create_set_type ((struct type *) NULL, type1);
2051 if (typenums[0] != -1)
2052 *dbx_lookup_type (typenums, objfile) = type;
2056 --*pp; /* Go back to the symbol in error. */
2057 /* Particularly important if it was \0! */
2058 return error_type (pp, objfile);
2063 warning (_("GDB internal error, type is NULL in stabsread.c."));
2064 return error_type (pp, objfile);
2067 /* Size specified in a type attribute overrides any other size. */
2068 if (type_size != -1)
2069 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2074 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2075 Return the proper type node for a given builtin type number. */
2077 static const struct objfile_data *rs6000_builtin_type_data;
2079 static struct type *
2080 rs6000_builtin_type (int typenum, struct objfile *objfile)
2082 struct type **negative_types
2083 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2085 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2086 #define NUMBER_RECOGNIZED 34
2087 struct type *rettype = NULL;
2089 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2091 complaint (_("Unknown builtin type %d"), typenum);
2092 return objfile_type (objfile)->builtin_error;
2095 if (!negative_types)
2097 /* This includes an empty slot for type number -0. */
2098 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2099 NUMBER_RECOGNIZED + 1, struct type *);
2100 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2103 if (negative_types[-typenum] != NULL)
2104 return negative_types[-typenum];
2106 #if TARGET_CHAR_BIT != 8
2107 #error This code wrong for TARGET_CHAR_BIT not 8
2108 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2109 that if that ever becomes not true, the correct fix will be to
2110 make the size in the struct type to be in bits, not in units of
2117 /* The size of this and all the other types are fixed, defined
2118 by the debugging format. If there is a type called "int" which
2119 is other than 32 bits, then it should use a new negative type
2120 number (or avoid negative type numbers for that case).
2121 See stabs.texinfo. */
2122 rettype = init_integer_type (objfile, 32, 0, "int");
2125 rettype = init_integer_type (objfile, 8, 0, "char");
2126 TYPE_NOSIGN (rettype) = 1;
2129 rettype = init_integer_type (objfile, 16, 0, "short");
2132 rettype = init_integer_type (objfile, 32, 0, "long");
2135 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2138 rettype = init_integer_type (objfile, 8, 0, "signed char");
2141 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2144 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2147 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2150 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2153 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2156 /* IEEE single precision (32 bit). */
2157 rettype = init_float_type (objfile, 32, "float",
2158 floatformats_ieee_single);
2161 /* IEEE double precision (64 bit). */
2162 rettype = init_float_type (objfile, 64, "double",
2163 floatformats_ieee_double);
2166 /* This is an IEEE double on the RS/6000, and different machines with
2167 different sizes for "long double" should use different negative
2168 type numbers. See stabs.texinfo. */
2169 rettype = init_float_type (objfile, 64, "long double",
2170 floatformats_ieee_double);
2173 rettype = init_integer_type (objfile, 32, 0, "integer");
2176 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2179 rettype = init_float_type (objfile, 32, "short real",
2180 floatformats_ieee_single);
2183 rettype = init_float_type (objfile, 64, "real",
2184 floatformats_ieee_double);
2187 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2190 rettype = init_character_type (objfile, 8, 1, "character");
2193 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2196 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2199 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2202 rettype = init_boolean_type (objfile, 32, 1, "logical");
2205 /* Complex type consisting of two IEEE single precision values. */
2206 rettype = init_complex_type (objfile, "complex",
2207 rs6000_builtin_type (12, objfile));
2210 /* Complex type consisting of two IEEE double precision values. */
2211 rettype = init_complex_type (objfile, "double complex",
2212 rs6000_builtin_type (13, objfile));
2215 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2218 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2221 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2224 rettype = init_character_type (objfile, 16, 0, "wchar");
2227 rettype = init_integer_type (objfile, 64, 0, "long long");
2230 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2233 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2236 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2239 negative_types[-typenum] = rettype;
2243 /* This page contains subroutines of read_type. */
2245 /* Wrapper around method_name_from_physname to flag a complaint
2246 if there is an error. */
2249 stabs_method_name_from_physname (const char *physname)
2253 method_name = method_name_from_physname (physname);
2255 if (method_name == NULL)
2257 complaint (_("Method has bad physname %s\n"), physname);
2264 /* Read member function stabs info for C++ classes. The form of each member
2267 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2269 An example with two member functions is:
2271 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2273 For the case of overloaded operators, the format is op$::*.funcs, where
2274 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2275 name (such as `+=') and `.' marks the end of the operator name.
2277 Returns 1 for success, 0 for failure. */
2280 read_member_functions (struct field_info *fip, const char **pp,
2281 struct type *type, struct objfile *objfile)
2288 struct next_fnfield *next;
2289 struct fn_field fn_field;
2292 struct type *look_ahead_type;
2293 struct next_fnfieldlist *new_fnlist;
2294 struct next_fnfield *new_sublist;
2298 /* Process each list until we find something that is not a member function
2299 or find the end of the functions. */
2303 /* We should be positioned at the start of the function name.
2304 Scan forward to find the first ':' and if it is not the
2305 first of a "::" delimiter, then this is not a member function. */
2317 look_ahead_type = NULL;
2320 new_fnlist = XCNEW (struct next_fnfieldlist);
2321 make_cleanup (xfree, new_fnlist);
2323 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2325 /* This is a completely wierd case. In order to stuff in the
2326 names that might contain colons (the usual name delimiter),
2327 Mike Tiemann defined a different name format which is
2328 signalled if the identifier is "op$". In that case, the
2329 format is "op$::XXXX." where XXXX is the name. This is
2330 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2331 /* This lets the user type "break operator+".
2332 We could just put in "+" as the name, but that wouldn't
2334 static char opname[32] = "op$";
2335 char *o = opname + 3;
2337 /* Skip past '::'. */
2340 STABS_CONTINUE (pp, objfile);
2346 main_fn_name = savestring (opname, o - opname);
2352 main_fn_name = savestring (*pp, p - *pp);
2353 /* Skip past '::'. */
2356 new_fnlist->fn_fieldlist.name = main_fn_name;
2360 new_sublist = XCNEW (struct next_fnfield);
2361 make_cleanup (xfree, new_sublist);
2363 /* Check for and handle cretinous dbx symbol name continuation! */
2364 if (look_ahead_type == NULL)
2367 STABS_CONTINUE (pp, objfile);
2369 new_sublist->fn_field.type = read_type (pp, objfile);
2372 /* Invalid symtab info for member function. */
2378 /* g++ version 1 kludge */
2379 new_sublist->fn_field.type = look_ahead_type;
2380 look_ahead_type = NULL;
2390 /* These are methods, not functions. */
2391 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2392 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2394 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2395 == TYPE_CODE_METHOD);
2397 /* If this is just a stub, then we don't have the real name here. */
2398 if (TYPE_STUB (new_sublist->fn_field.type))
2400 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2401 set_type_self_type (new_sublist->fn_field.type, type);
2402 new_sublist->fn_field.is_stub = 1;
2405 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2408 /* Set this member function's visibility fields. */
2411 case VISIBILITY_PRIVATE:
2412 new_sublist->fn_field.is_private = 1;
2414 case VISIBILITY_PROTECTED:
2415 new_sublist->fn_field.is_protected = 1;
2419 STABS_CONTINUE (pp, objfile);
2422 case 'A': /* Normal functions. */
2423 new_sublist->fn_field.is_const = 0;
2424 new_sublist->fn_field.is_volatile = 0;
2427 case 'B': /* `const' member functions. */
2428 new_sublist->fn_field.is_const = 1;
2429 new_sublist->fn_field.is_volatile = 0;
2432 case 'C': /* `volatile' member function. */
2433 new_sublist->fn_field.is_const = 0;
2434 new_sublist->fn_field.is_volatile = 1;
2437 case 'D': /* `const volatile' member function. */
2438 new_sublist->fn_field.is_const = 1;
2439 new_sublist->fn_field.is_volatile = 1;
2442 case '*': /* File compiled with g++ version 1 --
2448 complaint (_("const/volatile indicator missing, got '%c'"),
2458 /* virtual member function, followed by index.
2459 The sign bit is set to distinguish pointers-to-methods
2460 from virtual function indicies. Since the array is
2461 in words, the quantity must be shifted left by 1
2462 on 16 bit machine, and by 2 on 32 bit machine, forcing
2463 the sign bit out, and usable as a valid index into
2464 the array. Remove the sign bit here. */
2465 new_sublist->fn_field.voffset =
2466 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2470 STABS_CONTINUE (pp, objfile);
2471 if (**pp == ';' || **pp == '\0')
2473 /* Must be g++ version 1. */
2474 new_sublist->fn_field.fcontext = 0;
2478 /* Figure out from whence this virtual function came.
2479 It may belong to virtual function table of
2480 one of its baseclasses. */
2481 look_ahead_type = read_type (pp, objfile);
2484 /* g++ version 1 overloaded methods. */
2488 new_sublist->fn_field.fcontext = look_ahead_type;
2497 look_ahead_type = NULL;
2503 /* static member function. */
2505 int slen = strlen (main_fn_name);
2507 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2509 /* For static member functions, we can't tell if they
2510 are stubbed, as they are put out as functions, and not as
2512 GCC v2 emits the fully mangled name if
2513 dbxout.c:flag_minimal_debug is not set, so we have to
2514 detect a fully mangled physname here and set is_stub
2515 accordingly. Fully mangled physnames in v2 start with
2516 the member function name, followed by two underscores.
2517 GCC v3 currently always emits stubbed member functions,
2518 but with fully mangled physnames, which start with _Z. */
2519 if (!(strncmp (new_sublist->fn_field.physname,
2520 main_fn_name, slen) == 0
2521 && new_sublist->fn_field.physname[slen] == '_'
2522 && new_sublist->fn_field.physname[slen + 1] == '_'))
2524 new_sublist->fn_field.is_stub = 1;
2531 complaint (_("member function type missing, got '%c'"),
2533 /* Normal member function. */
2537 /* normal member function. */
2538 new_sublist->fn_field.voffset = 0;
2539 new_sublist->fn_field.fcontext = 0;
2543 new_sublist->next = sublist;
2544 sublist = new_sublist;
2546 STABS_CONTINUE (pp, objfile);
2548 while (**pp != ';' && **pp != '\0');
2551 STABS_CONTINUE (pp, objfile);
2553 /* Skip GCC 3.X member functions which are duplicates of the callable
2554 constructor/destructor. */
2555 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2556 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2557 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2559 xfree (main_fn_name);
2563 int has_destructor = 0, has_other = 0;
2565 struct next_fnfield *tmp_sublist;
2567 /* Various versions of GCC emit various mostly-useless
2568 strings in the name field for special member functions.
2570 For stub methods, we need to defer correcting the name
2571 until we are ready to unstub the method, because the current
2572 name string is used by gdb_mangle_name. The only stub methods
2573 of concern here are GNU v2 operators; other methods have their
2574 names correct (see caveat below).
2576 For non-stub methods, in GNU v3, we have a complete physname.
2577 Therefore we can safely correct the name now. This primarily
2578 affects constructors and destructors, whose name will be
2579 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2580 operators will also have incorrect names; for instance,
2581 "operator int" will be named "operator i" (i.e. the type is
2584 For non-stub methods in GNU v2, we have no easy way to
2585 know if we have a complete physname or not. For most
2586 methods the result depends on the platform (if CPLUS_MARKER
2587 can be `$' or `.', it will use minimal debug information, or
2588 otherwise the full physname will be included).
2590 Rather than dealing with this, we take a different approach.
2591 For v3 mangled names, we can use the full physname; for v2,
2592 we use cplus_demangle_opname (which is actually v2 specific),
2593 because the only interesting names are all operators - once again
2594 barring the caveat below. Skip this process if any method in the
2595 group is a stub, to prevent our fouling up the workings of
2598 The caveat: GCC 2.95.x (and earlier?) put constructors and
2599 destructors in the same method group. We need to split this
2600 into two groups, because they should have different names.
2601 So for each method group we check whether it contains both
2602 routines whose physname appears to be a destructor (the physnames
2603 for and destructors are always provided, due to quirks in v2
2604 mangling) and routines whose physname does not appear to be a
2605 destructor. If so then we break up the list into two halves.
2606 Even if the constructors and destructors aren't in the same group
2607 the destructor will still lack the leading tilde, so that also
2610 So, to summarize what we expect and handle here:
2612 Given Given Real Real Action
2613 method name physname physname method name
2615 __opi [none] __opi__3Foo operator int opname
2617 Foo _._3Foo _._3Foo ~Foo separate and
2619 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2620 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2623 tmp_sublist = sublist;
2624 while (tmp_sublist != NULL)
2626 if (tmp_sublist->fn_field.physname[0] == '_'
2627 && tmp_sublist->fn_field.physname[1] == 'Z')
2630 if (is_destructor_name (tmp_sublist->fn_field.physname))
2635 tmp_sublist = tmp_sublist->next;
2638 if (has_destructor && has_other)
2640 struct next_fnfieldlist *destr_fnlist;
2641 struct next_fnfield *last_sublist;
2643 /* Create a new fn_fieldlist for the destructors. */
2645 destr_fnlist = XCNEW (struct next_fnfieldlist);
2646 make_cleanup (xfree, destr_fnlist);
2648 destr_fnlist->fn_fieldlist.name
2649 = obconcat (&objfile->objfile_obstack, "~",
2650 new_fnlist->fn_fieldlist.name, (char *) NULL);
2652 destr_fnlist->fn_fieldlist.fn_fields =
2653 XOBNEWVEC (&objfile->objfile_obstack,
2654 struct fn_field, has_destructor);
2655 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2656 sizeof (struct fn_field) * has_destructor);
2657 tmp_sublist = sublist;
2658 last_sublist = NULL;
2660 while (tmp_sublist != NULL)
2662 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2664 tmp_sublist = tmp_sublist->next;
2668 destr_fnlist->fn_fieldlist.fn_fields[i++]
2669 = tmp_sublist->fn_field;
2671 last_sublist->next = tmp_sublist->next;
2673 sublist = tmp_sublist->next;
2674 last_sublist = tmp_sublist;
2675 tmp_sublist = tmp_sublist->next;
2678 destr_fnlist->fn_fieldlist.length = has_destructor;
2679 destr_fnlist->next = fip->fnlist;
2680 fip->fnlist = destr_fnlist;
2682 length -= has_destructor;
2686 /* v3 mangling prevents the use of abbreviated physnames,
2687 so we can do this here. There are stubbed methods in v3
2689 - in -gstabs instead of -gstabs+
2690 - or for static methods, which are output as a function type
2691 instead of a method type. */
2692 char *new_method_name =
2693 stabs_method_name_from_physname (sublist->fn_field.physname);
2695 if (new_method_name != NULL
2696 && strcmp (new_method_name,
2697 new_fnlist->fn_fieldlist.name) != 0)
2699 new_fnlist->fn_fieldlist.name = new_method_name;
2700 xfree (main_fn_name);
2703 xfree (new_method_name);
2705 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2707 new_fnlist->fn_fieldlist.name =
2708 obconcat (&objfile->objfile_obstack,
2709 "~", main_fn_name, (char *)NULL);
2710 xfree (main_fn_name);
2713 new_fnlist->fn_fieldlist.fn_fields
2714 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2715 for (i = length; (i--, sublist); sublist = sublist->next)
2717 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2720 new_fnlist->fn_fieldlist.length = length;
2721 new_fnlist->next = fip->fnlist;
2722 fip->fnlist = new_fnlist;
2729 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2730 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2731 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2732 memset (TYPE_FN_FIELDLISTS (type), 0,
2733 sizeof (struct fn_fieldlist) * nfn_fields);
2734 TYPE_NFN_FIELDS (type) = nfn_fields;
2740 /* Special GNU C++ name.
2742 Returns 1 for success, 0 for failure. "failure" means that we can't
2743 keep parsing and it's time for error_type(). */
2746 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2747 struct objfile *objfile)
2752 struct type *context;
2762 /* At this point, *pp points to something like "22:23=*22...",
2763 where the type number before the ':' is the "context" and
2764 everything after is a regular type definition. Lookup the
2765 type, find it's name, and construct the field name. */
2767 context = read_type (pp, objfile);
2771 case 'f': /* $vf -- a virtual function table pointer */
2772 name = TYPE_NAME (context);
2777 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2778 vptr_name, name, (char *) NULL);
2781 case 'b': /* $vb -- a virtual bsomethingorother */
2782 name = TYPE_NAME (context);
2785 complaint (_("C++ abbreviated type name "
2786 "unknown at symtab pos %d"),
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2791 name, (char *) NULL);
2795 invalid_cpp_abbrev_complaint (*pp);
2796 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2797 "INVALID_CPLUSPLUS_ABBREV",
2802 /* At this point, *pp points to the ':'. Skip it and read the
2808 invalid_cpp_abbrev_complaint (*pp);
2811 fip->list->field.type = read_type (pp, objfile);
2813 (*pp)++; /* Skip the comma. */
2820 SET_FIELD_BITPOS (fip->list->field,
2821 read_huge_number (pp, ';', &nbits, 0));
2825 /* This field is unpacked. */
2826 FIELD_BITSIZE (fip->list->field) = 0;
2827 fip->list->visibility = VISIBILITY_PRIVATE;
2831 invalid_cpp_abbrev_complaint (*pp);
2832 /* We have no idea what syntax an unrecognized abbrev would have, so
2833 better return 0. If we returned 1, we would need to at least advance
2834 *pp to avoid an infinite loop. */
2841 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2842 struct type *type, struct objfile *objfile)
2844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2846 fip->list->field.name
2847 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2850 /* This means we have a visibility for a field coming. */
2854 fip->list->visibility = *(*pp)++;
2858 /* normal dbx-style format, no explicit visibility */
2859 fip->list->visibility = VISIBILITY_PUBLIC;
2862 fip->list->field.type = read_type (pp, objfile);
2867 /* Possible future hook for nested types. */
2870 fip->list->field.bitpos = (long) -2; /* nested type */
2880 /* Static class member. */
2881 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2885 else if (**pp != ',')
2887 /* Bad structure-type format. */
2888 stabs_general_complaint ("bad structure-type format");
2892 (*pp)++; /* Skip the comma. */
2897 SET_FIELD_BITPOS (fip->list->field,
2898 read_huge_number (pp, ',', &nbits, 0));
2901 stabs_general_complaint ("bad structure-type format");
2904 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2907 stabs_general_complaint ("bad structure-type format");
2912 if (FIELD_BITPOS (fip->list->field) == 0
2913 && FIELD_BITSIZE (fip->list->field) == 0)
2915 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2916 it is a field which has been optimized out. The correct stab for
2917 this case is to use VISIBILITY_IGNORE, but that is a recent
2918 invention. (2) It is a 0-size array. For example
2919 union { int num; char str[0]; } foo. Printing _("<no value>" for
2920 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2921 will continue to work, and a 0-size array as a whole doesn't
2922 have any contents to print.
2924 I suspect this probably could also happen with gcc -gstabs (not
2925 -gstabs+) for static fields, and perhaps other C++ extensions.
2926 Hopefully few people use -gstabs with gdb, since it is intended
2927 for dbx compatibility. */
2929 /* Ignore this field. */
2930 fip->list->visibility = VISIBILITY_IGNORE;
2934 /* Detect an unpacked field and mark it as such.
2935 dbx gives a bit size for all fields.
2936 Note that forward refs cannot be packed,
2937 and treat enums as if they had the width of ints. */
2939 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2941 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2942 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2943 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2944 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2946 FIELD_BITSIZE (fip->list->field) = 0;
2948 if ((FIELD_BITSIZE (fip->list->field)
2949 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2950 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2951 && FIELD_BITSIZE (fip->list->field)
2952 == gdbarch_int_bit (gdbarch))
2955 FIELD_BITPOS (fip->list->field) % 8 == 0)
2957 FIELD_BITSIZE (fip->list->field) = 0;
2963 /* Read struct or class data fields. They have the form:
2965 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2967 At the end, we see a semicolon instead of a field.
2969 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2972 The optional VISIBILITY is one of:
2974 '/0' (VISIBILITY_PRIVATE)
2975 '/1' (VISIBILITY_PROTECTED)
2976 '/2' (VISIBILITY_PUBLIC)
2977 '/9' (VISIBILITY_IGNORE)
2979 or nothing, for C style fields with public visibility.
2981 Returns 1 for success, 0 for failure. */
2984 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
2985 struct objfile *objfile)
2988 struct nextfield *newobj;
2990 /* We better set p right now, in case there are no fields at all... */
2994 /* Read each data member type until we find the terminating ';' at the end of
2995 the data member list, or break for some other reason such as finding the
2996 start of the member function list. */
2997 /* Stab string for structure/union does not end with two ';' in
2998 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3000 while (**pp != ';' && **pp != '\0')
3002 STABS_CONTINUE (pp, objfile);
3003 /* Get space to record the next field's data. */
3004 newobj = XCNEW (struct nextfield);
3005 make_cleanup (xfree, newobj);
3007 newobj->next = fip->list;
3010 /* Get the field name. */
3013 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3014 unless the CPLUS_MARKER is followed by an underscore, in
3015 which case it is just the name of an anonymous type, which we
3016 should handle like any other type name. */
3018 if (is_cplus_marker (p[0]) && p[1] != '_')
3020 if (!read_cpp_abbrev (fip, pp, type, objfile))
3025 /* Look for the ':' that separates the field name from the field
3026 values. Data members are delimited by a single ':', while member
3027 functions are delimited by a pair of ':'s. When we hit the member
3028 functions (if any), terminate scan loop and return. */
3030 while (*p != ':' && *p != '\0')
3037 /* Check to see if we have hit the member functions yet. */
3042 read_one_struct_field (fip, pp, p, type, objfile);
3044 if (p[0] == ':' && p[1] == ':')
3046 /* (the deleted) chill the list of fields: the last entry (at
3047 the head) is a partially constructed entry which we now
3049 fip->list = fip->list->next;
3054 /* The stabs for C++ derived classes contain baseclass information which
3055 is marked by a '!' character after the total size. This function is
3056 called when we encounter the baseclass marker, and slurps up all the
3057 baseclass information.
3059 Immediately following the '!' marker is the number of base classes that
3060 the class is derived from, followed by information for each base class.
3061 For each base class, there are two visibility specifiers, a bit offset
3062 to the base class information within the derived class, a reference to
3063 the type for the base class, and a terminating semicolon.
3065 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3067 Baseclass information marker __________________|| | | | | | |
3068 Number of baseclasses __________________________| | | | | | |
3069 Visibility specifiers (2) ________________________| | | | | |
3070 Offset in bits from start of class _________________| | | | |
3071 Type number for base class ___________________________| | | |
3072 Visibility specifiers (2) _______________________________| | |
3073 Offset in bits from start of class ________________________| |
3074 Type number of base class ____________________________________|
3076 Return 1 for success, 0 for (error-type-inducing) failure. */
3082 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3083 struct objfile *objfile)
3086 struct nextfield *newobj;
3094 /* Skip the '!' baseclass information marker. */
3098 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3102 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3108 /* Some stupid compilers have trouble with the following, so break
3109 it up into simpler expressions. */
3110 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3111 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3114 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3117 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3118 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3122 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3124 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3126 newobj = XCNEW (struct nextfield);
3127 make_cleanup (xfree, newobj);
3129 newobj->next = fip->list;
3131 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3134 STABS_CONTINUE (pp, objfile);
3138 /* Nothing to do. */
3141 SET_TYPE_FIELD_VIRTUAL (type, i);
3144 /* Unknown character. Complain and treat it as non-virtual. */
3146 complaint (_("Unknown virtual character `%c' for baseclass"),
3152 newobj->visibility = *(*pp)++;
3153 switch (newobj->visibility)
3155 case VISIBILITY_PRIVATE:
3156 case VISIBILITY_PROTECTED:
3157 case VISIBILITY_PUBLIC:
3160 /* Bad visibility format. Complain and treat it as
3163 complaint (_("Unknown visibility `%c' for baseclass"),
3164 newobj->visibility);
3165 newobj->visibility = VISIBILITY_PUBLIC;
3172 /* The remaining value is the bit offset of the portion of the object
3173 corresponding to this baseclass. Always zero in the absence of
3174 multiple inheritance. */
3176 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3181 /* The last piece of baseclass information is the type of the
3182 base class. Read it, and remember it's type name as this
3185 newobj->field.type = read_type (pp, objfile);
3186 newobj->field.name = TYPE_NAME (newobj->field.type);
3188 /* Skip trailing ';' and bump count of number of fields seen. */
3197 /* The tail end of stabs for C++ classes that contain a virtual function
3198 pointer contains a tilde, a %, and a type number.
3199 The type number refers to the base class (possibly this class itself) which
3200 contains the vtable pointer for the current class.
3202 This function is called when we have parsed all the method declarations,
3203 so we can look for the vptr base class info. */
3206 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3207 struct objfile *objfile)
3211 STABS_CONTINUE (pp, objfile);
3213 /* If we are positioned at a ';', then skip it. */
3223 if (**pp == '=' || **pp == '+' || **pp == '-')
3225 /* Obsolete flags that used to indicate the presence
3226 of constructors and/or destructors. */
3230 /* Read either a '%' or the final ';'. */
3231 if (*(*pp)++ == '%')
3233 /* The next number is the type number of the base class
3234 (possibly our own class) which supplies the vtable for
3235 this class. Parse it out, and search that class to find
3236 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3237 and TYPE_VPTR_FIELDNO. */
3242 t = read_type (pp, objfile);
3244 while (*p != '\0' && *p != ';')
3250 /* Premature end of symbol. */
3254 set_type_vptr_basetype (type, t);
3255 if (type == t) /* Our own class provides vtbl ptr. */
3257 for (i = TYPE_NFIELDS (t) - 1;
3258 i >= TYPE_N_BASECLASSES (t);
3261 const char *name = TYPE_FIELD_NAME (t, i);
3263 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3264 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3266 set_type_vptr_fieldno (type, i);
3270 /* Virtual function table field not found. */
3271 complaint (_("virtual function table pointer "
3272 "not found when defining class `%s'"),
3278 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3289 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3293 for (n = TYPE_NFN_FIELDS (type);
3294 fip->fnlist != NULL;
3295 fip->fnlist = fip->fnlist->next)
3297 --n; /* Circumvent Sun3 compiler bug. */
3298 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3303 /* Create the vector of fields, and record how big it is.
3304 We need this info to record proper virtual function table information
3305 for this class's virtual functions. */
3308 attach_fields_to_type (struct field_info *fip, struct type *type,
3309 struct objfile *objfile)
3312 int non_public_fields = 0;
3313 struct nextfield *scan;
3315 /* Count up the number of fields that we have, as well as taking note of
3316 whether or not there are any non-public fields, which requires us to
3317 allocate and build the private_field_bits and protected_field_bits
3320 for (scan = fip->list; scan != NULL; scan = scan->next)
3323 if (scan->visibility != VISIBILITY_PUBLIC)
3325 non_public_fields++;
3329 /* Now we know how many fields there are, and whether or not there are any
3330 non-public fields. Record the field count, allocate space for the
3331 array of fields, and create blank visibility bitfields if necessary. */
3333 TYPE_NFIELDS (type) = nfields;
3334 TYPE_FIELDS (type) = (struct field *)
3335 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3336 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3338 if (non_public_fields)
3340 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3342 TYPE_FIELD_PRIVATE_BITS (type) =
3343 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3344 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3346 TYPE_FIELD_PROTECTED_BITS (type) =
3347 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3348 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3350 TYPE_FIELD_IGNORE_BITS (type) =
3351 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3352 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3355 /* Copy the saved-up fields into the field vector. Start from the
3356 head of the list, adding to the tail of the field array, so that
3357 they end up in the same order in the array in which they were
3358 added to the list. */
3360 while (nfields-- > 0)
3362 TYPE_FIELD (type, nfields) = fip->list->field;
3363 switch (fip->list->visibility)
3365 case VISIBILITY_PRIVATE:
3366 SET_TYPE_FIELD_PRIVATE (type, nfields);
3369 case VISIBILITY_PROTECTED:
3370 SET_TYPE_FIELD_PROTECTED (type, nfields);
3373 case VISIBILITY_IGNORE:
3374 SET_TYPE_FIELD_IGNORE (type, nfields);
3377 case VISIBILITY_PUBLIC:
3381 /* Unknown visibility. Complain and treat it as public. */
3383 complaint (_("Unknown visibility `%c' for field"),
3384 fip->list->visibility);
3388 fip->list = fip->list->next;
3394 /* Complain that the compiler has emitted more than one definition for the
3395 structure type TYPE. */
3397 complain_about_struct_wipeout (struct type *type)
3399 const char *name = "";
3400 const char *kind = "";
3402 if (TYPE_NAME (type))
3404 name = TYPE_NAME (type);
3405 switch (TYPE_CODE (type))
3407 case TYPE_CODE_STRUCT: kind = "struct "; break;
3408 case TYPE_CODE_UNION: kind = "union "; break;
3409 case TYPE_CODE_ENUM: kind = "enum "; break;
3419 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3422 /* Set the length for all variants of a same main_type, which are
3423 connected in the closed chain.
3425 This is something that needs to be done when a type is defined *after*
3426 some cross references to this type have already been read. Consider
3427 for instance the following scenario where we have the following two
3430 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3431 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3433 A stubbed version of type dummy is created while processing the first
3434 stabs entry. The length of that type is initially set to zero, since
3435 it is unknown at this point. Also, a "constant" variation of type
3436 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3439 The second stabs entry allows us to replace the stubbed definition
3440 with the real definition. However, we still need to adjust the length
3441 of the "constant" variation of that type, as its length was left
3442 untouched during the main type replacement... */
3445 set_length_in_type_chain (struct type *type)
3447 struct type *ntype = TYPE_CHAIN (type);
3449 while (ntype != type)
3451 if (TYPE_LENGTH(ntype) == 0)
3452 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3454 complain_about_struct_wipeout (ntype);
3455 ntype = TYPE_CHAIN (ntype);
3459 /* Read the description of a structure (or union type) and return an object
3460 describing the type.
3462 PP points to a character pointer that points to the next unconsumed token
3463 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3464 *PP will point to "4a:1,0,32;;".
3466 TYPE points to an incomplete type that needs to be filled in.
3468 OBJFILE points to the current objfile from which the stabs information is
3469 being read. (Note that it is redundant in that TYPE also contains a pointer
3470 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3473 static struct type *
3474 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3475 struct objfile *objfile)
3477 struct cleanup *back_to;
3478 struct field_info fi;
3483 /* When describing struct/union/class types in stabs, G++ always drops
3484 all qualifications from the name. So if you've got:
3485 struct A { ... struct B { ... }; ... };
3486 then G++ will emit stabs for `struct A::B' that call it simply
3487 `struct B'. Obviously, if you've got a real top-level definition for
3488 `struct B', or other nested definitions, this is going to cause
3491 Obviously, GDB can't fix this by itself, but it can at least avoid
3492 scribbling on existing structure type objects when new definitions
3494 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3495 || TYPE_STUB (type)))
3497 complain_about_struct_wipeout (type);
3499 /* It's probably best to return the type unchanged. */
3503 back_to = make_cleanup (null_cleanup, 0);
3505 INIT_CPLUS_SPECIFIC (type);
3506 TYPE_CODE (type) = type_code;
3507 TYPE_STUB (type) = 0;
3509 /* First comes the total size in bytes. */
3514 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3517 do_cleanups (back_to);
3518 return error_type (pp, objfile);
3520 set_length_in_type_chain (type);
3523 /* Now read the baseclasses, if any, read the regular C struct or C++
3524 class member fields, attach the fields to the type, read the C++
3525 member functions, attach them to the type, and then read any tilde
3526 field (baseclass specifier for the class holding the main vtable). */
3528 if (!read_baseclasses (&fi, pp, type, objfile)
3529 || !read_struct_fields (&fi, pp, type, objfile)
3530 || !attach_fields_to_type (&fi, type, objfile)
3531 || !read_member_functions (&fi, pp, type, objfile)
3532 || !attach_fn_fields_to_type (&fi, type)
3533 || !read_tilde_fields (&fi, pp, type, objfile))
3535 type = error_type (pp, objfile);
3538 do_cleanups (back_to);
3542 /* Read a definition of an array type,
3543 and create and return a suitable type object.
3544 Also creates a range type which represents the bounds of that
3547 static struct type *
3548 read_array_type (const char **pp, struct type *type,
3549 struct objfile *objfile)
3551 struct type *index_type, *element_type, *range_type;
3556 /* Format of an array type:
3557 "ar<index type>;lower;upper;<array_contents_type>".
3558 OS9000: "arlower,upper;<array_contents_type>".
3560 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3561 for these, produce a type like float[][]. */
3564 index_type = read_type (pp, objfile);
3566 /* Improper format of array type decl. */
3567 return error_type (pp, objfile);
3571 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3576 lower = read_huge_number (pp, ';', &nbits, 0);
3579 return error_type (pp, objfile);
3581 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3586 upper = read_huge_number (pp, ';', &nbits, 0);
3588 return error_type (pp, objfile);
3590 element_type = read_type (pp, objfile);
3599 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3600 type = create_array_type (type, element_type, range_type);
3606 /* Read a definition of an enumeration type,
3607 and create and return a suitable type object.
3608 Also defines the symbols that represent the values of the type. */
3610 static struct type *
3611 read_enum_type (const char **pp, struct type *type,
3612 struct objfile *objfile)
3614 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3620 struct pending **symlist;
3621 struct pending *osyms, *syms;
3624 int unsigned_enum = 1;
3627 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3628 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3629 to do? For now, force all enum values to file scope. */
3630 if (within_function)
3631 symlist = get_local_symbols ();
3634 symlist = get_file_symbols ();
3636 o_nsyms = osyms ? osyms->nsyms : 0;
3638 /* The aix4 compiler emits an extra field before the enum members;
3639 my guess is it's a type of some sort. Just ignore it. */
3642 /* Skip over the type. */
3646 /* Skip over the colon. */
3650 /* Read the value-names and their values.
3651 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3652 A semicolon or comma instead of a NAME means the end. */
3653 while (**pp && **pp != ';' && **pp != ',')
3655 STABS_CONTINUE (pp, objfile);
3659 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3661 n = read_huge_number (pp, ',', &nbits, 0);
3663 return error_type (pp, objfile);
3665 sym = allocate_symbol (objfile);
3666 SYMBOL_SET_LINKAGE_NAME (sym, name);
3667 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3668 &objfile->objfile_obstack);
3669 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3670 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3671 SYMBOL_VALUE (sym) = n;
3674 add_symbol_to_list (sym, symlist);
3679 (*pp)++; /* Skip the semicolon. */
3681 /* Now fill in the fields of the type-structure. */
3683 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3684 set_length_in_type_chain (type);
3685 TYPE_CODE (type) = TYPE_CODE_ENUM;
3686 TYPE_STUB (type) = 0;
3688 TYPE_UNSIGNED (type) = 1;
3689 TYPE_NFIELDS (type) = nsyms;
3690 TYPE_FIELDS (type) = (struct field *)
3691 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3692 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3694 /* Find the symbols for the values and put them into the type.
3695 The symbols can be found in the symlist that we put them on
3696 to cause them to be defined. osyms contains the old value
3697 of that symlist; everything up to there was defined by us. */
3698 /* Note that we preserve the order of the enum constants, so
3699 that in something like "enum {FOO, LAST_THING=FOO}" we print
3700 FOO, not LAST_THING. */
3702 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3704 int last = syms == osyms ? o_nsyms : 0;
3705 int j = syms->nsyms;
3707 for (; --j >= last; --n)
3709 struct symbol *xsym = syms->symbol[j];
3711 SYMBOL_TYPE (xsym) = type;
3712 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3713 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3714 TYPE_FIELD_BITSIZE (type, n) = 0;
3723 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3724 typedefs in every file (for int, long, etc):
3726 type = b <signed> <width> <format type>; <offset>; <nbits>
3728 optional format type = c or b for char or boolean.
3729 offset = offset from high order bit to start bit of type.
3730 width is # bytes in object of this type, nbits is # bits in type.
3732 The width/offset stuff appears to be for small objects stored in
3733 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3736 static struct type *
3737 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3742 int boolean_type = 0;
3753 return error_type (pp, objfile);
3757 /* For some odd reason, all forms of char put a c here. This is strange
3758 because no other type has this honor. We can safely ignore this because
3759 we actually determine 'char'acterness by the number of bits specified in
3761 Boolean forms, e.g Fortran logical*X, put a b here. */
3765 else if (**pp == 'b')
3771 /* The first number appears to be the number of bytes occupied
3772 by this type, except that unsigned short is 4 instead of 2.
3773 Since this information is redundant with the third number,
3774 we will ignore it. */
3775 read_huge_number (pp, ';', &nbits, 0);
3777 return error_type (pp, objfile);
3779 /* The second number is always 0, so ignore it too. */
3780 read_huge_number (pp, ';', &nbits, 0);
3782 return error_type (pp, objfile);
3784 /* The third number is the number of bits for this type. */
3785 type_bits = read_huge_number (pp, 0, &nbits, 0);
3787 return error_type (pp, objfile);
3788 /* The type *should* end with a semicolon. If it are embedded
3789 in a larger type the semicolon may be the only way to know where
3790 the type ends. If this type is at the end of the stabstring we
3791 can deal with the omitted semicolon (but we don't have to like
3792 it). Don't bother to complain(), Sun's compiler omits the semicolon
3799 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3800 TARGET_CHAR_BIT, NULL);
3802 TYPE_UNSIGNED (type) = 1;
3807 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3809 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3812 static struct type *
3813 read_sun_floating_type (const char **pp, int typenums[2],
3814 struct objfile *objfile)
3819 struct type *rettype;
3821 /* The first number has more details about the type, for example
3823 details = read_huge_number (pp, ';', &nbits, 0);
3825 return error_type (pp, objfile);
3827 /* The second number is the number of bytes occupied by this type. */
3828 nbytes = read_huge_number (pp, ';', &nbits, 0);
3830 return error_type (pp, objfile);
3832 nbits = nbytes * TARGET_CHAR_BIT;
3834 if (details == NF_COMPLEX || details == NF_COMPLEX16
3835 || details == NF_COMPLEX32)
3837 rettype = dbx_init_float_type (objfile, nbits / 2);
3838 return init_complex_type (objfile, NULL, rettype);
3841 return dbx_init_float_type (objfile, nbits);
3844 /* Read a number from the string pointed to by *PP.
3845 The value of *PP is advanced over the number.
3846 If END is nonzero, the character that ends the
3847 number must match END, or an error happens;
3848 and that character is skipped if it does match.
3849 If END is zero, *PP is left pointing to that character.
3851 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3852 the number is represented in an octal representation, assume that
3853 it is represented in a 2's complement representation with a size of
3854 TWOS_COMPLEMENT_BITS.
3856 If the number fits in a long, set *BITS to 0 and return the value.
3857 If not, set *BITS to be the number of bits in the number and return 0.
3859 If encounter garbage, set *BITS to -1 and return 0. */
3862 read_huge_number (const char **pp, int end, int *bits,
3863 int twos_complement_bits)
3865 const char *p = *pp;
3874 int twos_complement_representation = 0;
3882 /* Leading zero means octal. GCC uses this to output values larger
3883 than an int (because that would be hard in decimal). */
3890 /* Skip extra zeros. */
3894 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3896 /* Octal, possibly signed. Check if we have enough chars for a
3902 while ((c = *p1) >= '0' && c < '8')
3906 if (len > twos_complement_bits / 3
3907 || (twos_complement_bits % 3 == 0
3908 && len == twos_complement_bits / 3))
3910 /* Ok, we have enough characters for a signed value, check
3911 for signness by testing if the sign bit is set. */
3912 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3914 if (c & (1 << sign_bit))
3916 /* Definitely signed. */
3917 twos_complement_representation = 1;
3923 upper_limit = LONG_MAX / radix;
3925 while ((c = *p++) >= '0' && c < ('0' + radix))
3927 if (n <= upper_limit)
3929 if (twos_complement_representation)
3931 /* Octal, signed, twos complement representation. In
3932 this case, n is the corresponding absolute value. */
3935 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3947 /* unsigned representation */
3949 n += c - '0'; /* FIXME this overflows anyway. */
3955 /* This depends on large values being output in octal, which is
3962 /* Ignore leading zeroes. */
3966 else if (c == '2' || c == '3')
3987 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3989 /* We were supposed to parse a number with maximum
3990 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4001 /* Large decimal constants are an error (because it is hard to
4002 count how many bits are in them). */
4008 /* -0x7f is the same as 0x80. So deal with it by adding one to
4009 the number of bits. Two's complement represention octals
4010 can't have a '-' in front. */
4011 if (sign == -1 && !twos_complement_representation)
4022 /* It's *BITS which has the interesting information. */
4026 static struct type *
4027 read_range_type (const char **pp, int typenums[2], int type_size,
4028 struct objfile *objfile)
4030 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4031 const char *orig_pp = *pp;
4036 struct type *result_type;
4037 struct type *index_type = NULL;
4039 /* First comes a type we are a subrange of.
4040 In C it is usually 0, 1 or the type being defined. */
4041 if (read_type_number (pp, rangenums) != 0)
4042 return error_type (pp, objfile);
4043 self_subrange = (rangenums[0] == typenums[0] &&
4044 rangenums[1] == typenums[1]);
4049 index_type = read_type (pp, objfile);
4052 /* A semicolon should now follow; skip it. */
4056 /* The remaining two operands are usually lower and upper bounds
4057 of the range. But in some special cases they mean something else. */
4058 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4059 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4061 if (n2bits == -1 || n3bits == -1)
4062 return error_type (pp, objfile);
4065 goto handle_true_range;
4067 /* If limits are huge, must be large integral type. */
4068 if (n2bits != 0 || n3bits != 0)
4070 char got_signed = 0;
4071 char got_unsigned = 0;
4072 /* Number of bits in the type. */
4075 /* If a type size attribute has been specified, the bounds of
4076 the range should fit in this size. If the lower bounds needs
4077 more bits than the upper bound, then the type is signed. */
4078 if (n2bits <= type_size && n3bits <= type_size)
4080 if (n2bits == type_size && n2bits > n3bits)
4086 /* Range from 0 to <large number> is an unsigned large integral type. */
4087 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4092 /* Range from <large number> to <large number>-1 is a large signed
4093 integral type. Take care of the case where <large number> doesn't
4094 fit in a long but <large number>-1 does. */
4095 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4096 || (n2bits != 0 && n3bits == 0
4097 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4104 if (got_signed || got_unsigned)
4105 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4107 return error_type (pp, objfile);
4110 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4111 if (self_subrange && n2 == 0 && n3 == 0)
4112 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4114 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4115 is the width in bytes.
4117 Fortran programs appear to use this for complex types also. To
4118 distinguish between floats and complex, g77 (and others?) seem
4119 to use self-subranges for the complexes, and subranges of int for
4122 Also note that for complexes, g77 sets n2 to the size of one of
4123 the member floats, not the whole complex beast. My guess is that
4124 this was to work well with pre-COMPLEX versions of gdb. */
4126 if (n3 == 0 && n2 > 0)
4128 struct type *float_type
4129 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4132 return init_complex_type (objfile, NULL, float_type);
4137 /* If the upper bound is -1, it must really be an unsigned integral. */
4139 else if (n2 == 0 && n3 == -1)
4141 int bits = type_size;
4145 /* We don't know its size. It is unsigned int or unsigned
4146 long. GCC 2.3.3 uses this for long long too, but that is
4147 just a GDB 3.5 compatibility hack. */
4148 bits = gdbarch_int_bit (gdbarch);
4151 return init_integer_type (objfile, bits, 1, NULL);
4154 /* Special case: char is defined (Who knows why) as a subrange of
4155 itself with range 0-127. */
4156 else if (self_subrange && n2 == 0 && n3 == 127)
4158 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4160 TYPE_NOSIGN (type) = 1;
4163 /* We used to do this only for subrange of self or subrange of int. */
4166 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4167 "unsigned long", and we already checked for that,
4168 so don't need to test for it here. */
4171 /* n3 actually gives the size. */
4172 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4174 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4175 unsigned n-byte integer. But do require n to be a power of
4176 two; we don't want 3- and 5-byte integers flying around. */
4182 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4185 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4186 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4189 /* I think this is for Convex "long long". Since I don't know whether
4190 Convex sets self_subrange, I also accept that particular size regardless
4191 of self_subrange. */
4192 else if (n3 == 0 && n2 < 0
4194 || n2 == -gdbarch_long_long_bit
4195 (gdbarch) / TARGET_CHAR_BIT))
4196 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4197 else if (n2 == -n3 - 1)
4200 return init_integer_type (objfile, 8, 0, NULL);
4202 return init_integer_type (objfile, 16, 0, NULL);
4203 if (n3 == 0x7fffffff)
4204 return init_integer_type (objfile, 32, 0, NULL);
4207 /* We have a real range type on our hands. Allocate space and
4208 return a real pointer. */
4212 index_type = objfile_type (objfile)->builtin_int;
4214 index_type = *dbx_lookup_type (rangenums, objfile);
4215 if (index_type == NULL)
4217 /* Does this actually ever happen? Is that why we are worrying
4218 about dealing with it rather than just calling error_type? */
4220 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4222 index_type = objfile_type (objfile)->builtin_int;
4226 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4227 return (result_type);
4230 /* Read in an argument list. This is a list of types, separated by commas
4231 and terminated with END. Return the list of types read in, or NULL
4232 if there is an error. */
4234 static struct field *
4235 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4238 /* FIXME! Remove this arbitrary limit! */
4239 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4246 /* Invalid argument list: no ','. */
4249 STABS_CONTINUE (pp, objfile);
4250 types[n++] = read_type (pp, objfile);
4252 (*pp)++; /* get past `end' (the ':' character). */
4256 /* We should read at least the THIS parameter here. Some broken stabs
4257 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4258 have been present ";-16,(0,43)" reference instead. This way the
4259 excessive ";" marker prematurely stops the parameters parsing. */
4261 complaint (_("Invalid (empty) method arguments"));
4264 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4272 rval = XCNEWVEC (struct field, n);
4273 for (i = 0; i < n; i++)
4274 rval[i].type = types[i];
4279 /* Common block handling. */
4281 /* List of symbols declared since the last BCOMM. This list is a tail
4282 of local_symbols. When ECOMM is seen, the symbols on the list
4283 are noted so their proper addresses can be filled in later,
4284 using the common block base address gotten from the assembler
4287 static struct pending *common_block;
4288 static int common_block_i;
4290 /* Name of the current common block. We get it from the BCOMM instead of the
4291 ECOMM to match IBM documentation (even though IBM puts the name both places
4292 like everyone else). */
4293 static char *common_block_name;
4295 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4296 to remain after this function returns. */
4299 common_block_start (const char *name, struct objfile *objfile)
4301 if (common_block_name != NULL)
4303 complaint (_("Invalid symbol data: common block within common block"));
4305 common_block = *get_local_symbols ();
4306 common_block_i = common_block ? common_block->nsyms : 0;
4307 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4311 /* Process a N_ECOMM symbol. */
4314 common_block_end (struct objfile *objfile)
4316 /* Symbols declared since the BCOMM are to have the common block
4317 start address added in when we know it. common_block and
4318 common_block_i point to the first symbol after the BCOMM in
4319 the local_symbols list; copy the list and hang it off the
4320 symbol for the common block name for later fixup. */
4323 struct pending *newobj = 0;
4324 struct pending *next;
4327 if (common_block_name == NULL)
4329 complaint (_("ECOMM symbol unmatched by BCOMM"));
4333 sym = allocate_symbol (objfile);
4334 /* Note: common_block_name already saved on objfile_obstack. */
4335 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4336 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4338 /* Now we copy all the symbols which have been defined since the BCOMM. */
4340 /* Copy all the struct pendings before common_block. */
4341 for (next = *get_local_symbols ();
4342 next != NULL && next != common_block;
4345 for (j = 0; j < next->nsyms; j++)
4346 add_symbol_to_list (next->symbol[j], &newobj);
4349 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4350 NULL, it means copy all the local symbols (which we already did
4353 if (common_block != NULL)
4354 for (j = common_block_i; j < common_block->nsyms; j++)
4355 add_symbol_to_list (common_block->symbol[j], &newobj);
4357 SYMBOL_TYPE (sym) = (struct type *) newobj;
4359 /* Should we be putting local_symbols back to what it was?
4362 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4363 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4364 global_sym_chain[i] = sym;
4365 common_block_name = NULL;
4368 /* Add a common block's start address to the offset of each symbol
4369 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4370 the common block name). */
4373 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4375 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4377 for (; next; next = next->next)
4381 for (j = next->nsyms - 1; j >= 0; j--)
4382 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4388 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4389 See add_undefined_type for more details. */
4392 add_undefined_type_noname (struct type *type, int typenums[2])
4396 nat.typenums[0] = typenums [0];
4397 nat.typenums[1] = typenums [1];
4400 if (noname_undefs_length == noname_undefs_allocated)
4402 noname_undefs_allocated *= 2;
4403 noname_undefs = (struct nat *)
4404 xrealloc ((char *) noname_undefs,
4405 noname_undefs_allocated * sizeof (struct nat));
4407 noname_undefs[noname_undefs_length++] = nat;
4410 /* Add TYPE to the UNDEF_TYPES vector.
4411 See add_undefined_type for more details. */
4414 add_undefined_type_1 (struct type *type)
4416 if (undef_types_length == undef_types_allocated)
4418 undef_types_allocated *= 2;
4419 undef_types = (struct type **)
4420 xrealloc ((char *) undef_types,
4421 undef_types_allocated * sizeof (struct type *));
4423 undef_types[undef_types_length++] = type;
4426 /* What about types defined as forward references inside of a small lexical
4428 /* Add a type to the list of undefined types to be checked through
4429 once this file has been read in.
4431 In practice, we actually maintain two such lists: The first list
4432 (UNDEF_TYPES) is used for types whose name has been provided, and
4433 concerns forward references (eg 'xs' or 'xu' forward references);
4434 the second list (NONAME_UNDEFS) is used for types whose name is
4435 unknown at creation time, because they were referenced through
4436 their type number before the actual type was declared.
4437 This function actually adds the given type to the proper list. */
4440 add_undefined_type (struct type *type, int typenums[2])
4442 if (TYPE_NAME (type) == NULL)
4443 add_undefined_type_noname (type, typenums);
4445 add_undefined_type_1 (type);
4448 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4451 cleanup_undefined_types_noname (struct objfile *objfile)
4455 for (i = 0; i < noname_undefs_length; i++)
4457 struct nat nat = noname_undefs[i];
4460 type = dbx_lookup_type (nat.typenums, objfile);
4461 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4463 /* The instance flags of the undefined type are still unset,
4464 and needs to be copied over from the reference type.
4465 Since replace_type expects them to be identical, we need
4466 to set these flags manually before hand. */
4467 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4468 replace_type (nat.type, *type);
4472 noname_undefs_length = 0;
4475 /* Go through each undefined type, see if it's still undefined, and fix it
4476 up if possible. We have two kinds of undefined types:
4478 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4479 Fix: update array length using the element bounds
4480 and the target type's length.
4481 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4482 yet defined at the time a pointer to it was made.
4483 Fix: Do a full lookup on the struct/union tag. */
4486 cleanup_undefined_types_1 (void)
4490 /* Iterate over every undefined type, and look for a symbol whose type
4491 matches our undefined type. The symbol matches if:
4492 1. It is a typedef in the STRUCT domain;
4493 2. It has the same name, and same type code;
4494 3. The instance flags are identical.
4496 It is important to check the instance flags, because we have seen
4497 examples where the debug info contained definitions such as:
4499 "foo_t:t30=B31=xefoo_t:"
4501 In this case, we have created an undefined type named "foo_t" whose
4502 instance flags is null (when processing "xefoo_t"), and then created
4503 another type with the same name, but with different instance flags
4504 ('B' means volatile). I think that the definition above is wrong,
4505 since the same type cannot be volatile and non-volatile at the same
4506 time, but we need to be able to cope with it when it happens. The
4507 approach taken here is to treat these two types as different. */
4509 for (type = undef_types; type < undef_types + undef_types_length; type++)
4511 switch (TYPE_CODE (*type))
4514 case TYPE_CODE_STRUCT:
4515 case TYPE_CODE_UNION:
4516 case TYPE_CODE_ENUM:
4518 /* Check if it has been defined since. Need to do this here
4519 as well as in check_typedef to deal with the (legitimate in
4520 C though not C++) case of several types with the same name
4521 in different source files. */
4522 if (TYPE_STUB (*type))
4524 struct pending *ppt;
4526 /* Name of the type, without "struct" or "union". */
4527 const char *type_name = TYPE_NAME (*type);
4529 if (type_name == NULL)
4531 complaint (_("need a type name"));
4534 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4536 for (i = 0; i < ppt->nsyms; i++)
4538 struct symbol *sym = ppt->symbol[i];
4540 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4541 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4542 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4544 && (TYPE_INSTANCE_FLAGS (*type) ==
4545 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4546 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4548 replace_type (*type, SYMBOL_TYPE (sym));
4557 complaint (_("forward-referenced types left unresolved, "
4565 undef_types_length = 0;
4568 /* Try to fix all the undefined types we ecountered while processing
4572 cleanup_undefined_stabs_types (struct objfile *objfile)
4574 cleanup_undefined_types_1 ();
4575 cleanup_undefined_types_noname (objfile);
4578 /* See stabsread.h. */
4581 scan_file_globals (struct objfile *objfile)
4584 struct symbol *sym, *prev;
4585 struct objfile *resolve_objfile;
4587 /* SVR4 based linkers copy referenced global symbols from shared
4588 libraries to the main executable.
4589 If we are scanning the symbols for a shared library, try to resolve
4590 them from the minimal symbols of the main executable first. */
4592 if (symfile_objfile && objfile != symfile_objfile)
4593 resolve_objfile = symfile_objfile;
4595 resolve_objfile = objfile;
4599 /* Avoid expensive loop through all minimal symbols if there are
4600 no unresolved symbols. */
4601 for (hash = 0; hash < HASHSIZE; hash++)
4603 if (global_sym_chain[hash])
4606 if (hash >= HASHSIZE)
4609 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4613 /* Skip static symbols. */
4614 switch (MSYMBOL_TYPE (msymbol))
4626 /* Get the hash index and check all the symbols
4627 under that hash index. */
4629 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4631 for (sym = global_sym_chain[hash]; sym;)
4633 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4634 SYMBOL_LINKAGE_NAME (sym)) == 0)
4636 /* Splice this symbol out of the hash chain and
4637 assign the value we have to it. */
4640 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4644 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4647 /* Check to see whether we need to fix up a common block. */
4648 /* Note: this code might be executed several times for
4649 the same symbol if there are multiple references. */
4652 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4654 fix_common_block (sym,
4655 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4660 SYMBOL_VALUE_ADDRESS (sym)
4661 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4663 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4668 sym = SYMBOL_VALUE_CHAIN (prev);
4672 sym = global_sym_chain[hash];
4678 sym = SYMBOL_VALUE_CHAIN (sym);
4682 if (resolve_objfile == objfile)
4684 resolve_objfile = objfile;
4687 /* Change the storage class of any remaining unresolved globals to
4688 LOC_UNRESOLVED and remove them from the chain. */
4689 for (hash = 0; hash < HASHSIZE; hash++)
4691 sym = global_sym_chain[hash];
4695 sym = SYMBOL_VALUE_CHAIN (sym);
4697 /* Change the symbol address from the misleading chain value
4699 SYMBOL_VALUE_ADDRESS (prev) = 0;
4701 /* Complain about unresolved common block symbols. */
4702 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4703 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4705 complaint (_("%s: common block `%s' from "
4706 "global_sym_chain unresolved"),
4707 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4710 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4713 /* Initialize anything that needs initializing when starting to read
4714 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4718 stabsread_init (void)
4722 /* Initialize anything that needs initializing when a completely new
4723 symbol file is specified (not just adding some symbols from another
4724 file, e.g. a shared library). */
4727 stabsread_new_init (void)
4729 /* Empty the hash table of global syms looking for values. */
4730 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4733 /* Initialize anything that needs initializing at the same time as
4734 start_symtab() is called. */
4739 global_stabs = NULL; /* AIX COFF */
4740 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4741 n_this_object_header_files = 1;
4742 type_vector_length = 0;
4743 type_vector = (struct type **) 0;
4744 within_function = 0;
4746 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4747 common_block_name = NULL;
4750 /* Call after end_symtab(). */
4757 xfree (type_vector);
4760 type_vector_length = 0;
4761 previous_stab_code = 0;
4765 finish_global_stabs (struct objfile *objfile)
4769 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4770 xfree (global_stabs);
4771 global_stabs = NULL;
4775 /* Find the end of the name, delimited by a ':', but don't match
4776 ObjC symbols which look like -[Foo bar::]:bla. */
4778 find_name_end (const char *name)
4780 const char *s = name;
4782 if (s[0] == '-' || *s == '+')
4784 /* Must be an ObjC method symbol. */
4787 error (_("invalid symbol name \"%s\""), name);
4789 s = strchr (s, ']');
4792 error (_("invalid symbol name \"%s\""), name);
4794 return strchr (s, ':');
4798 return strchr (s, ':');
4802 /* See stabsread.h. */
4805 hashname (const char *name)
4807 return hash (name, strlen (name)) % HASHSIZE;
4810 /* Initializer for this module. */
4813 _initialize_stabsread (void)
4815 rs6000_builtin_type_data = register_objfile_data ();
4817 undef_types_allocated = 20;
4818 undef_types_length = 0;
4819 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4821 noname_undefs_allocated = 20;
4822 noname_undefs_length = 0;
4823 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4825 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4826 &stab_register_funcs);
4827 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4828 &stab_register_funcs);