1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
28 #include "gdb_obstack.h"
31 #include "expression.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
39 #include "complaints.h"
41 #include "gdb-demangle.h"
45 #include "cp-support.h"
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
51 #include "stabsread.h" /* Our own declarations */
54 extern void _initialize_stabsread (void);
58 struct nextfield *next;
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
68 struct next_fnfieldlist
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
92 static long read_huge_number (char **, int, int *, int);
94 static struct type *error_type (char **, struct objfile *);
97 patch_block_stabs (struct pending *, struct pending_stabs *,
100 static void fix_common_block (struct symbol *, CORE_ADDR);
102 static int read_type_number (char **, int *);
104 static struct type *read_type (char **, struct objfile *);
106 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110 static struct type *read_sun_floating_type (char **, int[2],
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115 static struct type *rs6000_builtin_type (int, struct objfile *);
118 read_member_functions (struct field_info *, char **, struct type *,
122 read_struct_fields (struct field_info *, char **, struct type *,
126 read_baseclasses (struct field_info *, char **, struct type *,
130 read_tilde_fields (struct field_info *, char **, struct type *,
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135 static int attach_fields_to_type (struct field_info *, struct type *,
138 static struct type *read_struct_type (char **, struct type *,
142 static struct type *read_array_type (char **, struct type *,
145 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147 static void add_undefined_type (struct type *, int[2]);
150 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 static char *find_name_end (char *name);
155 static int process_reference (char **string);
157 void stabsread_clear_cache (void);
159 static const char vptr_name[] = "_vptr$";
160 static const char vb_name[] = "_vb$";
163 invalid_cpp_abbrev_complaint (const char *arg1)
165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
169 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 complaint (&symfile_complaints,
172 _("bad register number %d (max %d) in symbol %s"),
173 regnum, num_regs - 1, sym);
177 stabs_general_complaint (const char *arg1)
179 complaint (&symfile_complaints, "%s", arg1);
182 /* Make a list of forward references which haven't been defined. */
184 static struct type **undef_types;
185 static int undef_types_allocated;
186 static int undef_types_length;
187 static struct symbol *current_symbol = NULL;
189 /* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
192 and type (0,2) is defined only later. */
199 static struct nat *noname_undefs;
200 static int noname_undefs_allocated;
201 static int noname_undefs_length;
203 /* Check for and handle cretinous stabs symbol name continuation! */
204 #define STABS_CONTINUE(pp,objfile) \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
210 /* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
216 static struct type **type_vector;
218 /* Number of elements allocated for type_vector currently. */
220 static int type_vector_length;
222 /* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
225 #define INITIAL_TYPE_VECTOR_LENGTH 160
228 /* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
235 static struct type **
236 dbx_lookup_type (int typenums[2], struct objfile *objfile)
238 int filenum = typenums[0];
239 int index = typenums[1];
242 struct header_file *f;
245 if (filenum == -1) /* -1,-1 is for temporary types. */
248 if (filenum < 0 || filenum >= n_this_object_header_files)
250 complaint (&symfile_complaints,
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
253 filenum, index, symnum);
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
268 temp_type = rs6000_builtin_type (index, objfile);
272 /* Type is defined outside of header files.
273 Find it in this object file's type vector. */
274 if (index >= type_vector_length)
276 old_len = type_vector_length;
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = XNEWVEC (struct type *, type_vector_length);
282 while (index >= type_vector_length)
284 type_vector_length *= 2;
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
292 return (&type_vector[index]);
296 real_filenum = this_object_header_files[filenum];
298 if (real_filenum >= N_HEADER_FILES (objfile))
300 static struct type *temp_type;
302 warning (_("GDB internal error: bad real_filenum"));
305 temp_type = objfile_type (objfile)->builtin_error;
309 f = HEADER_FILES (objfile) + real_filenum;
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
314 while (index >= f->length)
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
323 return (&f->vector[index]);
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
334 dbx_alloc_type (int typenums[2], struct objfile *objfile)
336 struct type **type_addr;
338 if (typenums[0] == -1)
340 return (alloc_type (objfile));
343 type_addr = dbx_lookup_type (typenums, objfile);
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
350 *type_addr = alloc_type (objfile);
356 /* for all the stabs in a given stab vector, build appropriate types
357 and fix their symbols in given symbol vector. */
360 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
361 struct objfile *objfile)
370 /* for all the stab entries, find their corresponding symbols and
371 patch their types! */
373 for (ii = 0; ii < stabs->count; ++ii)
375 name = stabs->stab[ii];
376 pp = (char *) strchr (name, ':');
377 gdb_assert (pp); /* Must find a ':' or game's over. */
381 pp = (char *) strchr (pp, ':');
383 sym = find_symbol_in_list (symbols, name, pp - name);
386 /* FIXME-maybe: it would be nice if we noticed whether
387 the variable was defined *anywhere*, not just whether
388 it is defined in this compilation unit. But neither
389 xlc or GCC seem to need such a definition, and until
390 we do psymtabs (so that the minimal symbols from all
391 compilation units are available now), I'm not sure
392 how to get the information. */
394 /* On xcoff, if a global is defined and never referenced,
395 ld will remove it from the executable. There is then
396 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
397 sym = allocate_symbol (objfile);
398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
399 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
400 SYMBOL_SET_LINKAGE_NAME
401 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
404 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
406 /* I don't think the linker does this with functions,
407 so as far as I know this is never executed.
408 But it doesn't hurt to check. */
410 lookup_function_type (read_type (&pp, objfile));
414 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 add_symbol_to_list (sym, &global_symbols);
421 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
424 lookup_function_type (read_type (&pp, objfile));
428 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
436 /* Read a number by which a type is referred to in dbx data,
437 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
438 Just a single number N is equivalent to (0,N).
439 Return the two numbers by storing them in the vector TYPENUMS.
440 TYPENUMS will then be used as an argument to dbx_lookup_type.
442 Returns 0 for success, -1 for error. */
445 read_type_number (char **pp, int *typenums)
452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
470 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
475 /* Structure for storing pointers to reference definitions for fast lookup
476 during "process_later". */
485 #define MAX_CHUNK_REFS 100
486 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
489 static struct ref_map *ref_map;
491 /* Ptr to free cell in chunk's linked list. */
492 static int ref_count = 0;
494 /* Number of chunks malloced. */
495 static int ref_chunk = 0;
497 /* This file maintains a cache of stabs aliases found in the symbol
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
501 stabsread_clear_cache (void)
507 /* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
512 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
523 ref_map = (struct ref_map *)
524 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
525 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
526 new_chunks * REF_CHUNK_SIZE);
527 ref_chunk += new_chunks;
529 ref_map[refnum].stabs = stabs;
530 ref_map[refnum].sym = sym;
531 ref_map[refnum].value = value;
534 /* Return defined sym for the reference REFNUM. */
536 ref_search (int refnum)
538 if (refnum < 0 || refnum > ref_count)
540 return ref_map[refnum].sym;
543 /* Parse a reference id in STRING and return the resulting
544 reference number. Move STRING beyond the reference id. */
547 process_reference (char **string)
555 /* Advance beyond the initial '#'. */
558 /* Read number as reference id. */
559 while (*p && isdigit (*p))
561 refnum = refnum * 10 + *p - '0';
568 /* If STRING defines a reference, store away a pointer to the reference
569 definition for later use. Return the reference number. */
572 symbol_reference_defined (char **string)
577 refnum = process_reference (&p);
579 /* Defining symbols end in '='. */
582 /* Symbol is being defined here. */
588 /* Must be a reference. Either the symbol has already been defined,
589 or this is a forward reference to it. */
596 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
598 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
601 || regno >= (gdbarch_num_regs (gdbarch)
602 + gdbarch_num_pseudo_regs (gdbarch)))
604 reg_value_complaint (regno,
605 gdbarch_num_regs (gdbarch)
606 + gdbarch_num_pseudo_regs (gdbarch),
607 SYMBOL_PRINT_NAME (sym));
609 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
615 static const struct symbol_register_ops stab_register_funcs = {
619 /* The "aclass" indices for computed symbols. */
621 static int stab_register_index;
622 static int stab_regparm_index;
625 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
626 struct objfile *objfile)
628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
630 char *p = (char *) find_name_end (string);
634 char *new_name = NULL;
636 /* We would like to eliminate nameless symbols, but keep their types.
637 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
638 to type 2, but, should not create a symbol to address that type. Since
639 the symbol will be nameless, there is no way any user can refer to it. */
643 /* Ignore syms with empty names. */
647 /* Ignore old-style symbols from cc -go. */
657 complaint (&symfile_complaints,
658 _("Bad stabs string '%s'"), string);
663 /* If a nameless stab entry, all we need is the type, not the symbol.
664 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
665 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
667 current_symbol = sym = allocate_symbol (objfile);
669 if (processing_gcc_compilation)
671 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
672 number of bytes occupied by a type or object, which we ignore. */
673 SYMBOL_LINE (sym) = desc;
677 SYMBOL_LINE (sym) = 0; /* unknown */
680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
681 &objfile->objfile_obstack);
683 if (is_cplus_marker (string[0]))
685 /* Special GNU C++ names. */
689 SYMBOL_SET_LINKAGE_NAME (sym, "this");
692 case 'v': /* $vtbl_ptr_type */
696 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
700 /* This was an anonymous type that was never fixed up. */
704 /* SunPRO (3.0 at least) static variable encoding. */
705 if (gdbarch_static_transform_name_p (gdbarch))
707 /* ... fall through ... */
710 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
712 goto normal; /* Do *something* with it. */
718 if (SYMBOL_LANGUAGE (sym) == language_cplus)
720 char *name = (char *) alloca (p - string + 1);
722 memcpy (name, string, p - string);
723 name[p - string] = '\0';
724 new_name = cp_canonicalize_string (name);
726 if (new_name != NULL)
728 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
732 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
735 cp_scan_for_anonymous_namespaces (sym, objfile);
740 /* Determine the type of name being defined. */
742 /* Getting GDB to correctly skip the symbol on an undefined symbol
743 descriptor and not ever dump core is a very dodgy proposition if
744 we do things this way. I say the acorn RISC machine can just
745 fix their compiler. */
746 /* The Acorn RISC machine's compiler can put out locals that don't
747 start with "234=" or "(3,4)=", so assume anything other than the
748 deftypes we know how to handle is a local. */
749 if (!strchr ("cfFGpPrStTvVXCR", *p))
751 if (isdigit (*p) || *p == '(' || *p == '-')
760 /* c is a special case, not followed by a type-number.
761 SYMBOL:c=iVALUE for an integer constant symbol.
762 SYMBOL:c=rVALUE for a floating constant symbol.
763 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
764 e.g. "b:c=e6,0" for "const b = blob1"
765 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
768 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
769 SYMBOL_TYPE (sym) = error_type (&p, objfile);
770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
771 add_symbol_to_list (sym, &file_symbols);
781 struct type *dbl_type;
783 /* FIXME-if-picky-about-floating-accuracy: Should be using
784 target arithmetic to get the value. real.c in GCC
785 probably has the necessary code. */
787 dbl_type = objfile_type (objfile)->builtin_double;
789 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
790 TYPE_LENGTH (dbl_type));
791 store_typed_floating (dbl_valu, dbl_type, d);
793 SYMBOL_TYPE (sym) = dbl_type;
794 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
800 /* Defining integer constants this way is kind of silly,
801 since 'e' constants allows the compiler to give not
802 only the value, but the type as well. C has at least
803 int, long, unsigned int, and long long as constant
804 types; other languages probably should have at least
805 unsigned as well as signed constants. */
807 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
808 SYMBOL_VALUE (sym) = atoi (p);
809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
815 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
816 SYMBOL_VALUE (sym) = atoi (p);
817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
823 struct type *range_type;
826 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
827 gdb_byte *string_value;
829 if (quote != '\'' && quote != '"')
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 SYMBOL_TYPE (sym) = error_type (&p, objfile);
833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
834 add_symbol_to_list (sym, &file_symbols);
838 /* Find matching quote, rejecting escaped quotes. */
839 while (*p && *p != quote)
841 if (*p == '\\' && p[1] == quote)
843 string_local[ind] = (gdb_byte) quote;
849 string_local[ind] = (gdb_byte) (*p);
856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, &file_symbols);
863 /* NULL terminate the string. */
864 string_local[ind] = 0;
866 = create_static_range_type (NULL,
867 objfile_type (objfile)->builtin_int,
869 SYMBOL_TYPE (sym) = create_array_type (NULL,
870 objfile_type (objfile)->builtin_char,
873 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
874 memcpy (string_value, string_local, ind + 1);
877 SYMBOL_VALUE_BYTES (sym) = string_value;
878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
883 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
884 can be represented as integral.
885 e.g. "b:c=e6,0" for "const b = blob1"
886 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
888 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
889 SYMBOL_TYPE (sym) = read_type (&p, objfile);
893 SYMBOL_TYPE (sym) = error_type (&p, objfile);
898 /* If the value is too big to fit in an int (perhaps because
899 it is unsigned), or something like that, we silently get
900 a bogus value. The type and everything else about it is
901 correct. Ideally, we should be using whatever we have
902 available for parsing unsigned and long long values,
904 SYMBOL_VALUE (sym) = atoi (p);
909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
910 SYMBOL_TYPE (sym) = error_type (&p, objfile);
913 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
914 add_symbol_to_list (sym, &file_symbols);
918 /* The name of a caught exception. */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
922 SYMBOL_VALUE_ADDRESS (sym) = valu;
923 add_symbol_to_list (sym, &local_symbols);
927 /* A static function definition. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931 add_symbol_to_list (sym, &file_symbols);
932 /* fall into process_function_types. */
934 process_function_types:
935 /* Function result types are described as the result type in stabs.
936 We need to convert this to the function-returning-type-X type
937 in GDB. E.g. "int" is converted to "function returning int". */
938 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
939 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
941 /* All functions in C++ have prototypes. Stabs does not offer an
942 explicit way to identify prototyped or unprototyped functions,
943 but both GCC and Sun CC emit stabs for the "call-as" type rather
944 than the "declared-as" type for unprototyped functions, so
945 we treat all functions as if they were prototyped. This is used
946 primarily for promotion when calling the function from GDB. */
947 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
949 /* fall into process_prototype_types. */
951 process_prototype_types:
952 /* Sun acc puts declared types of arguments here. */
955 struct type *ftype = SYMBOL_TYPE (sym);
960 /* Obtain a worst case guess for the number of arguments
961 by counting the semicolons. */
968 /* Allocate parameter information fields and fill them in. */
969 TYPE_FIELDS (ftype) = (struct field *)
970 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
975 /* A type number of zero indicates the start of varargs.
976 FIXME: GDB currently ignores vararg functions. */
977 if (p[0] == '0' && p[1] == '\0')
979 ptype = read_type (&p, objfile);
981 /* The Sun compilers mark integer arguments, which should
982 be promoted to the width of the calling conventions, with
983 a type which references itself. This type is turned into
984 a TYPE_CODE_VOID type by read_type, and we have to turn
985 it back into builtin_int here.
986 FIXME: Do we need a new builtin_promoted_int_arg ? */
987 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
988 ptype = objfile_type (objfile)->builtin_int;
989 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
990 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
992 TYPE_NFIELDS (ftype) = nparams;
993 TYPE_PROTOTYPED (ftype) = 1;
998 /* A global function definition. */
999 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1000 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1001 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1002 add_symbol_to_list (sym, &global_symbols);
1003 goto process_function_types;
1006 /* For a class G (global) symbol, it appears that the
1007 value is not correct. It is necessary to search for the
1008 corresponding linker definition to find the value.
1009 These definitions appear at the end of the namelist. */
1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1011 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1012 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1013 /* Don't add symbol references to global_sym_chain.
1014 Symbol references don't have valid names and wont't match up with
1015 minimal symbols when the global_sym_chain is relocated.
1016 We'll fixup symbol references when we fixup the defining symbol. */
1017 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1019 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1020 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1021 global_sym_chain[i] = sym;
1023 add_symbol_to_list (sym, &global_symbols);
1026 /* This case is faked by a conditional above,
1027 when there is no code letter in the dbx data.
1028 Dbx data never actually contains 'l'. */
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1032 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1033 SYMBOL_VALUE (sym) = valu;
1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1035 add_symbol_to_list (sym, &local_symbols);
1040 /* pF is a two-letter code that means a function parameter in Fortran.
1041 The type-number specifies the type of the return value.
1042 Translate it into a pointer-to-function type. */
1046 = lookup_pointer_type
1047 (lookup_function_type (read_type (&p, objfile)));
1050 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1053 SYMBOL_VALUE (sym) = valu;
1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1055 SYMBOL_IS_ARGUMENT (sym) = 1;
1056 add_symbol_to_list (sym, &local_symbols);
1058 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1060 /* On little-endian machines, this crud is never necessary,
1061 and, if the extra bytes contain garbage, is harmful. */
1065 /* If it's gcc-compiled, if it says `short', believe it. */
1066 if (processing_gcc_compilation
1067 || gdbarch_believe_pcc_promotion (gdbarch))
1070 if (!gdbarch_believe_pcc_promotion (gdbarch))
1072 /* If PCC says a parameter is a short or a char, it is
1074 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1075 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1076 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1079 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1080 ? objfile_type (objfile)->builtin_unsigned_int
1081 : objfile_type (objfile)->builtin_int;
1087 /* acc seems to use P to declare the prototypes of functions that
1088 are referenced by this file. gdb is not prepared to deal
1089 with this extra information. FIXME, it ought to. */
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 goto process_prototype_types;
1098 /* Parameter which is in a register. */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1100 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1101 SYMBOL_IS_ARGUMENT (sym) = 1;
1102 SYMBOL_VALUE (sym) = valu;
1103 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1104 add_symbol_to_list (sym, &local_symbols);
1108 /* Register variable (either global or local). */
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1110 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1111 SYMBOL_VALUE (sym) = valu;
1112 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1113 if (within_function)
1115 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1116 the same name to represent an argument passed in a
1117 register. GCC uses 'P' for the same case. So if we find
1118 such a symbol pair we combine it into one 'P' symbol.
1119 For Sun cc we need to do this regardless of
1120 stabs_argument_has_addr, because the compiler puts out
1121 the 'p' symbol even if it never saves the argument onto
1124 On most machines, we want to preserve both symbols, so
1125 that we can still get information about what is going on
1126 with the stack (VAX for computing args_printed, using
1127 stack slots instead of saved registers in backtraces,
1130 Note that this code illegally combines
1131 main(argc) struct foo argc; { register struct foo argc; }
1132 but this case is considered pathological and causes a warning
1133 from a decent compiler. */
1136 && local_symbols->nsyms > 0
1137 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1139 struct symbol *prev_sym;
1141 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1142 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1143 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1144 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1145 SYMBOL_LINKAGE_NAME (sym)) == 0)
1147 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1148 /* Use the type from the LOC_REGISTER; that is the type
1149 that is actually in that register. */
1150 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1151 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1156 add_symbol_to_list (sym, &local_symbols);
1159 add_symbol_to_list (sym, &file_symbols);
1163 /* Static symbol at top level of file. */
1164 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1165 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1166 SYMBOL_VALUE_ADDRESS (sym) = valu;
1167 if (gdbarch_static_transform_name_p (gdbarch)
1168 && gdbarch_static_transform_name (gdbarch,
1169 SYMBOL_LINKAGE_NAME (sym))
1170 != SYMBOL_LINKAGE_NAME (sym))
1172 struct bound_minimal_symbol msym;
1174 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1176 if (msym.minsym != NULL)
1178 const char *new_name = gdbarch_static_transform_name
1179 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1181 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1182 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1185 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1186 add_symbol_to_list (sym, &file_symbols);
1190 /* In Ada, there is no distinction between typedef and non-typedef;
1191 any type declaration implicitly has the equivalent of a typedef,
1192 and thus 't' is in fact equivalent to 'Tt'.
1194 Therefore, for Ada units, we check the character immediately
1195 before the 't', and if we do not find a 'T', then make sure to
1196 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1197 will be stored in the VAR_DOMAIN). If the symbol was indeed
1198 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1199 elsewhere, so we don't need to take care of that.
1201 This is important to do, because of forward references:
1202 The cleanup of undefined types stored in undef_types only uses
1203 STRUCT_DOMAIN symbols to perform the replacement. */
1204 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1207 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1209 /* For a nameless type, we don't want a create a symbol, thus we
1210 did not use `sym'. Return without further processing. */
1214 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1215 SYMBOL_VALUE (sym) = valu;
1216 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1217 /* C++ vagaries: we may have a type which is derived from
1218 a base type which did not have its name defined when the
1219 derived class was output. We fill in the derived class's
1220 base part member's name here in that case. */
1221 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1222 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1223 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1224 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1228 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1229 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1230 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1231 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1234 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1236 /* gcc-2.6 or later (when using -fvtable-thunks)
1237 emits a unique named type for a vtable entry.
1238 Some gdb code depends on that specific name. */
1239 extern const char vtbl_ptr_name[];
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1242 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1243 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1245 /* If we are giving a name to a type such as "pointer to
1246 foo" or "function returning foo", we better not set
1247 the TYPE_NAME. If the program contains "typedef char
1248 *caddr_t;", we don't want all variables of type char
1249 * to print as caddr_t. This is not just a
1250 consequence of GDB's type management; PCC and GCC (at
1251 least through version 2.4) both output variables of
1252 either type char * or caddr_t with the type number
1253 defined in the 't' symbol for caddr_t. If a future
1254 compiler cleans this up it GDB is not ready for it
1255 yet, but if it becomes ready we somehow need to
1256 disable this check (without breaking the PCC/GCC2.4
1261 Fortunately, this check seems not to be necessary
1262 for anything except pointers or functions. */
1263 /* ezannoni: 2000-10-26. This seems to apply for
1264 versions of gcc older than 2.8. This was the original
1265 problem: with the following code gdb would tell that
1266 the type for name1 is caddr_t, and func is char().
1268 typedef char *caddr_t;
1280 /* Pascal accepts names for pointer types. */
1281 if (current_subfile->language == language_pascal)
1283 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1287 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1290 add_symbol_to_list (sym, &file_symbols);
1294 /* Create the STRUCT_DOMAIN clone. */
1295 struct symbol *struct_sym = allocate_symbol (objfile);
1298 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1299 SYMBOL_VALUE (struct_sym) = valu;
1300 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1301 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1302 TYPE_NAME (SYMBOL_TYPE (sym))
1303 = obconcat (&objfile->objfile_obstack,
1304 SYMBOL_LINKAGE_NAME (sym),
1306 add_symbol_to_list (struct_sym, &file_symbols);
1312 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1313 by 't' which means we are typedef'ing it as well. */
1314 synonym = *p == 't';
1319 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1321 /* For a nameless type, we don't want a create a symbol, thus we
1322 did not use `sym'. Return without further processing. */
1326 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1327 SYMBOL_VALUE (sym) = valu;
1328 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1329 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1330 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1331 = obconcat (&objfile->objfile_obstack,
1332 SYMBOL_LINKAGE_NAME (sym),
1334 add_symbol_to_list (sym, &file_symbols);
1338 /* Clone the sym and then modify it. */
1339 struct symbol *typedef_sym = allocate_symbol (objfile);
1341 *typedef_sym = *sym;
1342 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1343 SYMBOL_VALUE (typedef_sym) = valu;
1344 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1350 add_symbol_to_list (typedef_sym, &file_symbols);
1355 /* Static symbol of local scope. */
1356 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1357 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1358 SYMBOL_VALUE_ADDRESS (sym) = valu;
1359 if (gdbarch_static_transform_name_p (gdbarch)
1360 && gdbarch_static_transform_name (gdbarch,
1361 SYMBOL_LINKAGE_NAME (sym))
1362 != SYMBOL_LINKAGE_NAME (sym))
1364 struct bound_minimal_symbol msym;
1366 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1368 if (msym.minsym != NULL)
1370 const char *new_name = gdbarch_static_transform_name
1371 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1373 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1374 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1377 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1378 add_symbol_to_list (sym, &local_symbols);
1382 /* Reference parameter */
1383 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1384 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1385 SYMBOL_IS_ARGUMENT (sym) = 1;
1386 SYMBOL_VALUE (sym) = valu;
1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388 add_symbol_to_list (sym, &local_symbols);
1392 /* Reference parameter which is in a register. */
1393 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1394 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1395 SYMBOL_IS_ARGUMENT (sym) = 1;
1396 SYMBOL_VALUE (sym) = valu;
1397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1398 add_symbol_to_list (sym, &local_symbols);
1402 /* This is used by Sun FORTRAN for "function result value".
1403 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1404 that Pascal uses it too, but when I tried it Pascal used
1405 "x:3" (local symbol) instead. */
1406 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1407 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1408 SYMBOL_VALUE (sym) = valu;
1409 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1410 add_symbol_to_list (sym, &local_symbols);
1414 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1415 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1416 SYMBOL_VALUE (sym) = 0;
1417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1418 add_symbol_to_list (sym, &file_symbols);
1422 /* Some systems pass variables of certain types by reference instead
1423 of by value, i.e. they will pass the address of a structure (in a
1424 register or on the stack) instead of the structure itself. */
1426 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1427 && SYMBOL_IS_ARGUMENT (sym))
1429 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1430 variables passed in a register). */
1431 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1433 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1434 and subsequent arguments on SPARC, for example). */
1435 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1436 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1442 /* Skip rest of this symbol and return an error type.
1444 General notes on error recovery: error_type always skips to the
1445 end of the symbol (modulo cretinous dbx symbol name continuation).
1446 Thus code like this:
1448 if (*(*pp)++ != ';')
1449 return error_type (pp, objfile);
1451 is wrong because if *pp starts out pointing at '\0' (typically as the
1452 result of an earlier error), it will be incremented to point to the
1453 start of the next symbol, which might produce strange results, at least
1454 if you run off the end of the string table. Instead use
1457 return error_type (pp, objfile);
1463 foo = error_type (pp, objfile);
1467 And in case it isn't obvious, the point of all this hair is so the compiler
1468 can define new types and new syntaxes, and old versions of the
1469 debugger will be able to read the new symbol tables. */
1471 static struct type *
1472 error_type (char **pp, struct objfile *objfile)
1474 complaint (&symfile_complaints,
1475 _("couldn't parse type; debugger out of date?"));
1478 /* Skip to end of symbol. */
1479 while (**pp != '\0')
1484 /* Check for and handle cretinous dbx symbol name continuation! */
1485 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1487 *pp = next_symbol_text (objfile);
1494 return objfile_type (objfile)->builtin_error;
1498 /* Read type information or a type definition; return the type. Even
1499 though this routine accepts either type information or a type
1500 definition, the distinction is relevant--some parts of stabsread.c
1501 assume that type information starts with a digit, '-', or '(' in
1502 deciding whether to call read_type. */
1504 static struct type *
1505 read_type (char **pp, struct objfile *objfile)
1507 struct type *type = 0;
1510 char type_descriptor;
1512 /* Size in bits of type if specified by a type attribute, or -1 if
1513 there is no size attribute. */
1516 /* Used to distinguish string and bitstring from char-array and set. */
1519 /* Used to distinguish vector from array. */
1522 /* Read type number if present. The type number may be omitted.
1523 for instance in a two-dimensional array declared with type
1524 "ar1;1;10;ar1;1;10;4". */
1525 if ((**pp >= '0' && **pp <= '9')
1529 if (read_type_number (pp, typenums) != 0)
1530 return error_type (pp, objfile);
1534 /* Type is not being defined here. Either it already
1535 exists, or this is a forward reference to it.
1536 dbx_alloc_type handles both cases. */
1537 type = dbx_alloc_type (typenums, objfile);
1539 /* If this is a forward reference, arrange to complain if it
1540 doesn't get patched up by the time we're done
1542 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1543 add_undefined_type (type, typenums);
1548 /* Type is being defined here. */
1550 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1555 /* 'typenums=' not present, type is anonymous. Read and return
1556 the definition, but don't put it in the type vector. */
1557 typenums[0] = typenums[1] = -1;
1562 type_descriptor = (*pp)[-1];
1563 switch (type_descriptor)
1567 enum type_code code;
1569 /* Used to index through file_symbols. */
1570 struct pending *ppt;
1573 /* Name including "struct", etc. */
1577 char *from, *to, *p, *q1, *q2;
1579 /* Set the type code according to the following letter. */
1583 code = TYPE_CODE_STRUCT;
1586 code = TYPE_CODE_UNION;
1589 code = TYPE_CODE_ENUM;
1593 /* Complain and keep going, so compilers can invent new
1594 cross-reference types. */
1595 complaint (&symfile_complaints,
1596 _("Unrecognized cross-reference type `%c'"),
1598 code = TYPE_CODE_STRUCT;
1603 q1 = strchr (*pp, '<');
1604 p = strchr (*pp, ':');
1606 return error_type (pp, objfile);
1607 if (q1 && p > q1 && p[1] == ':')
1609 int nesting_level = 0;
1611 for (q2 = q1; *q2; q2++)
1615 else if (*q2 == '>')
1617 else if (*q2 == ':' && nesting_level == 0)
1622 return error_type (pp, objfile);
1625 if (current_subfile->language == language_cplus)
1627 char *new_name, *name = (char *) alloca (p - *pp + 1);
1629 memcpy (name, *pp, p - *pp);
1630 name[p - *pp] = '\0';
1631 new_name = cp_canonicalize_string (name);
1632 if (new_name != NULL)
1635 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1636 new_name, strlen (new_name));
1640 if (type_name == NULL)
1642 to = type_name = (char *)
1643 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1645 /* Copy the name. */
1652 /* Set the pointer ahead of the name which we just read, and
1657 /* If this type has already been declared, then reuse the same
1658 type, rather than allocating a new one. This saves some
1661 for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 for (i = 0; i < ppt->nsyms; i++)
1664 struct symbol *sym = ppt->symbol[i];
1666 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1667 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1668 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1669 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1671 obstack_free (&objfile->objfile_obstack, type_name);
1672 type = SYMBOL_TYPE (sym);
1673 if (typenums[0] != -1)
1674 *dbx_lookup_type (typenums, objfile) = type;
1679 /* Didn't find the type to which this refers, so we must
1680 be dealing with a forward reference. Allocate a type
1681 structure for it, and keep track of it so we can
1682 fill in the rest of the fields when we get the full
1684 type = dbx_alloc_type (typenums, objfile);
1685 TYPE_CODE (type) = code;
1686 TYPE_TAG_NAME (type) = type_name;
1687 INIT_CPLUS_SPECIFIC (type);
1688 TYPE_STUB (type) = 1;
1690 add_undefined_type (type, typenums);
1694 case '-': /* RS/6000 built-in type */
1708 /* We deal with something like t(1,2)=(3,4)=... which
1709 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1711 /* Allocate and enter the typedef type first.
1712 This handles recursive types. */
1713 type = dbx_alloc_type (typenums, objfile);
1714 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1716 struct type *xtype = read_type (pp, objfile);
1720 /* It's being defined as itself. That means it is "void". */
1721 TYPE_CODE (type) = TYPE_CODE_VOID;
1722 TYPE_LENGTH (type) = 1;
1724 else if (type_size >= 0 || is_string)
1726 /* This is the absolute wrong way to construct types. Every
1727 other debug format has found a way around this problem and
1728 the related problems with unnecessarily stubbed types;
1729 someone motivated should attempt to clean up the issue
1730 here as well. Once a type pointed to has been created it
1731 should not be modified.
1733 Well, it's not *absolutely* wrong. Constructing recursive
1734 types (trees, linked lists) necessarily entails modifying
1735 types after creating them. Constructing any loop structure
1736 entails side effects. The Dwarf 2 reader does handle this
1737 more gracefully (it never constructs more than once
1738 instance of a type object, so it doesn't have to copy type
1739 objects wholesale), but it still mutates type objects after
1740 other folks have references to them.
1742 Keep in mind that this circularity/mutation issue shows up
1743 at the source language level, too: C's "incomplete types",
1744 for example. So the proper cleanup, I think, would be to
1745 limit GDB's type smashing to match exactly those required
1746 by the source language. So GDB could have a
1747 "complete_this_type" function, but never create unnecessary
1748 copies of a type otherwise. */
1749 replace_type (type, xtype);
1750 TYPE_NAME (type) = NULL;
1751 TYPE_TAG_NAME (type) = NULL;
1755 TYPE_TARGET_STUB (type) = 1;
1756 TYPE_TARGET_TYPE (type) = xtype;
1761 /* In the following types, we must be sure to overwrite any existing
1762 type that the typenums refer to, rather than allocating a new one
1763 and making the typenums point to the new one. This is because there
1764 may already be pointers to the existing type (if it had been
1765 forward-referenced), and we must change it to a pointer, function,
1766 reference, or whatever, *in-place*. */
1768 case '*': /* Pointer to another type */
1769 type1 = read_type (pp, objfile);
1770 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1773 case '&': /* Reference to another type */
1774 type1 = read_type (pp, objfile);
1775 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1778 case 'f': /* Function returning another type */
1779 type1 = read_type (pp, objfile);
1780 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1783 case 'g': /* Prototyped function. (Sun) */
1785 /* Unresolved questions:
1787 - According to Sun's ``STABS Interface Manual'', for 'f'
1788 and 'F' symbol descriptors, a `0' in the argument type list
1789 indicates a varargs function. But it doesn't say how 'g'
1790 type descriptors represent that info. Someone with access
1791 to Sun's toolchain should try it out.
1793 - According to the comment in define_symbol (search for
1794 `process_prototype_types:'), Sun emits integer arguments as
1795 types which ref themselves --- like `void' types. Do we
1796 have to deal with that here, too? Again, someone with
1797 access to Sun's toolchain should try it out and let us
1800 const char *type_start = (*pp) - 1;
1801 struct type *return_type = read_type (pp, objfile);
1802 struct type *func_type
1803 = make_function_type (return_type,
1804 dbx_lookup_type (typenums, objfile));
1807 struct type_list *next;
1811 while (**pp && **pp != '#')
1813 struct type *arg_type = read_type (pp, objfile);
1814 struct type_list *newobj = XALLOCA (struct type_list);
1815 newobj->type = arg_type;
1816 newobj->next = arg_types;
1824 complaint (&symfile_complaints,
1825 _("Prototyped function type didn't "
1826 "end arguments with `#':\n%s"),
1830 /* If there is just one argument whose type is `void', then
1831 that's just an empty argument list. */
1833 && ! arg_types->next
1834 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1837 TYPE_FIELDS (func_type)
1838 = (struct field *) TYPE_ALLOC (func_type,
1839 num_args * sizeof (struct field));
1840 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1843 struct type_list *t;
1845 /* We stuck each argument type onto the front of the list
1846 when we read it, so the list is reversed. Build the
1847 fields array right-to-left. */
1848 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849 TYPE_FIELD_TYPE (func_type, i) = t->type;
1851 TYPE_NFIELDS (func_type) = num_args;
1852 TYPE_PROTOTYPED (func_type) = 1;
1858 case 'k': /* Const qualifier on some type (Sun) */
1859 type = read_type (pp, objfile);
1860 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1861 dbx_lookup_type (typenums, objfile));
1864 case 'B': /* Volatile qual on some type (Sun) */
1865 type = read_type (pp, objfile);
1866 type = make_cv_type (TYPE_CONST (type), 1, type,
1867 dbx_lookup_type (typenums, objfile));
1871 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 { /* Member (class & variable) type */
1873 /* FIXME -- we should be doing smash_to_XXX types here. */
1875 struct type *domain = read_type (pp, objfile);
1876 struct type *memtype;
1879 /* Invalid member type data format. */
1880 return error_type (pp, objfile);
1883 memtype = read_type (pp, objfile);
1884 type = dbx_alloc_type (typenums, objfile);
1885 smash_to_memberptr_type (type, domain, memtype);
1888 /* type attribute */
1892 /* Skip to the semicolon. */
1893 while (**pp != ';' && **pp != '\0')
1896 return error_type (pp, objfile);
1898 ++ * pp; /* Skip the semicolon. */
1902 case 's': /* Size attribute */
1903 type_size = atoi (attr + 1);
1908 case 'S': /* String attribute */
1909 /* FIXME: check to see if following type is array? */
1913 case 'V': /* Vector attribute */
1914 /* FIXME: check to see if following type is array? */
1919 /* Ignore unrecognized type attributes, so future compilers
1920 can invent new ones. */
1928 case '#': /* Method (class & fn) type */
1929 if ((*pp)[0] == '#')
1931 /* We'll get the parameter types from the name. */
1932 struct type *return_type;
1935 return_type = read_type (pp, objfile);
1936 if (*(*pp)++ != ';')
1937 complaint (&symfile_complaints,
1938 _("invalid (minimal) member type "
1939 "data format at symtab pos %d."),
1941 type = allocate_stub_method (return_type);
1942 if (typenums[0] != -1)
1943 *dbx_lookup_type (typenums, objfile) = type;
1947 struct type *domain = read_type (pp, objfile);
1948 struct type *return_type;
1953 /* Invalid member type data format. */
1954 return error_type (pp, objfile);
1958 return_type = read_type (pp, objfile);
1959 args = read_args (pp, ';', objfile, &nargs, &varargs);
1961 return error_type (pp, objfile);
1962 type = dbx_alloc_type (typenums, objfile);
1963 smash_to_method_type (type, domain, return_type, args,
1968 case 'r': /* Range type */
1969 type = read_range_type (pp, typenums, type_size, objfile);
1970 if (typenums[0] != -1)
1971 *dbx_lookup_type (typenums, objfile) = type;
1976 /* Sun ACC builtin int type */
1977 type = read_sun_builtin_type (pp, typenums, objfile);
1978 if (typenums[0] != -1)
1979 *dbx_lookup_type (typenums, objfile) = type;
1983 case 'R': /* Sun ACC builtin float type */
1984 type = read_sun_floating_type (pp, typenums, objfile);
1985 if (typenums[0] != -1)
1986 *dbx_lookup_type (typenums, objfile) = type;
1989 case 'e': /* Enumeration type */
1990 type = dbx_alloc_type (typenums, objfile);
1991 type = read_enum_type (pp, type, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1996 case 's': /* Struct type */
1997 case 'u': /* Union type */
1999 enum type_code type_code = TYPE_CODE_UNDEF;
2000 type = dbx_alloc_type (typenums, objfile);
2001 switch (type_descriptor)
2004 type_code = TYPE_CODE_STRUCT;
2007 type_code = TYPE_CODE_UNION;
2010 type = read_struct_type (pp, type, type_code, objfile);
2014 case 'a': /* Array type */
2016 return error_type (pp, objfile);
2019 type = dbx_alloc_type (typenums, objfile);
2020 type = read_array_type (pp, type, objfile);
2022 TYPE_CODE (type) = TYPE_CODE_STRING;
2024 make_vector_type (type);
2027 case 'S': /* Set type */
2028 type1 = read_type (pp, objfile);
2029 type = create_set_type ((struct type *) NULL, type1);
2030 if (typenums[0] != -1)
2031 *dbx_lookup_type (typenums, objfile) = type;
2035 --*pp; /* Go back to the symbol in error. */
2036 /* Particularly important if it was \0! */
2037 return error_type (pp, objfile);
2042 warning (_("GDB internal error, type is NULL in stabsread.c."));
2043 return error_type (pp, objfile);
2046 /* Size specified in a type attribute overrides any other size. */
2047 if (type_size != -1)
2048 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2053 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2054 Return the proper type node for a given builtin type number. */
2056 static const struct objfile_data *rs6000_builtin_type_data;
2058 static struct type *
2059 rs6000_builtin_type (int typenum, struct objfile *objfile)
2061 struct type **negative_types
2062 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2064 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2065 #define NUMBER_RECOGNIZED 34
2066 struct type *rettype = NULL;
2068 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2070 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2071 return objfile_type (objfile)->builtin_error;
2074 if (!negative_types)
2076 /* This includes an empty slot for type number -0. */
2077 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2078 NUMBER_RECOGNIZED + 1, struct type *);
2079 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2082 if (negative_types[-typenum] != NULL)
2083 return negative_types[-typenum];
2085 #if TARGET_CHAR_BIT != 8
2086 #error This code wrong for TARGET_CHAR_BIT not 8
2087 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2088 that if that ever becomes not true, the correct fix will be to
2089 make the size in the struct type to be in bits, not in units of
2096 /* The size of this and all the other types are fixed, defined
2097 by the debugging format. If there is a type called "int" which
2098 is other than 32 bits, then it should use a new negative type
2099 number (or avoid negative type numbers for that case).
2100 See stabs.texinfo. */
2101 rettype = init_integer_type (objfile, 32, 0, "int");
2104 rettype = init_integer_type (objfile, 8, 0, "char");
2107 rettype = init_integer_type (objfile, 16, 0, "short");
2110 rettype = init_integer_type (objfile, 32, 0, "long");
2113 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2116 rettype = init_integer_type (objfile, 8, 0, "signed char");
2119 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2122 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2125 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2128 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2131 rettype = init_type (objfile, TYPE_CODE_VOID, 1, "void");
2134 /* IEEE single precision (32 bit). */
2135 rettype = init_float_type (objfile, 32, "float", NULL);
2138 /* IEEE double precision (64 bit). */
2139 rettype = init_float_type (objfile, 64, "double", NULL);
2142 /* This is an IEEE double on the RS/6000, and different machines with
2143 different sizes for "long double" should use different negative
2144 type numbers. See stabs.texinfo. */
2145 rettype = init_float_type (objfile, 64, "long double", NULL);
2148 rettype = init_integer_type (objfile, 32, 0, "integer");
2151 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2154 rettype = init_float_type (objfile, 32, "short real", NULL);
2157 rettype = init_float_type (objfile, 64, "real", NULL);
2160 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2163 rettype = init_character_type (objfile, 8, 1, "character");
2166 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2169 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2172 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2175 rettype = init_boolean_type (objfile, 32, 1, "logical");
2178 /* Complex type consisting of two IEEE single precision values. */
2179 rettype = init_complex_type (objfile, "complex",
2180 rs6000_builtin_type (12, objfile));
2183 /* Complex type consisting of two IEEE double precision values. */
2184 rettype = init_complex_type (objfile, "double complex",
2185 rs6000_builtin_type (13, objfile));
2188 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2191 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2194 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2197 rettype = init_character_type (objfile, 16, 0, "wchar");
2200 rettype = init_integer_type (objfile, 64, 0, "long long");
2203 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2206 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2209 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2212 negative_types[-typenum] = rettype;
2216 /* This page contains subroutines of read_type. */
2218 /* Wrapper around method_name_from_physname to flag a complaint
2219 if there is an error. */
2222 stabs_method_name_from_physname (const char *physname)
2226 method_name = method_name_from_physname (physname);
2228 if (method_name == NULL)
2230 complaint (&symfile_complaints,
2231 _("Method has bad physname %s\n"), physname);
2238 /* Read member function stabs info for C++ classes. The form of each member
2241 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2243 An example with two member functions is:
2245 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2247 For the case of overloaded operators, the format is op$::*.funcs, where
2248 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2249 name (such as `+=') and `.' marks the end of the operator name.
2251 Returns 1 for success, 0 for failure. */
2254 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2255 struct objfile *objfile)
2262 struct next_fnfield *next;
2263 struct fn_field fn_field;
2266 struct type *look_ahead_type;
2267 struct next_fnfieldlist *new_fnlist;
2268 struct next_fnfield *new_sublist;
2272 /* Process each list until we find something that is not a member function
2273 or find the end of the functions. */
2277 /* We should be positioned at the start of the function name.
2278 Scan forward to find the first ':' and if it is not the
2279 first of a "::" delimiter, then this is not a member function. */
2291 look_ahead_type = NULL;
2294 new_fnlist = XCNEW (struct next_fnfieldlist);
2295 make_cleanup (xfree, new_fnlist);
2297 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2299 /* This is a completely wierd case. In order to stuff in the
2300 names that might contain colons (the usual name delimiter),
2301 Mike Tiemann defined a different name format which is
2302 signalled if the identifier is "op$". In that case, the
2303 format is "op$::XXXX." where XXXX is the name. This is
2304 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2305 /* This lets the user type "break operator+".
2306 We could just put in "+" as the name, but that wouldn't
2308 static char opname[32] = "op$";
2309 char *o = opname + 3;
2311 /* Skip past '::'. */
2314 STABS_CONTINUE (pp, objfile);
2320 main_fn_name = savestring (opname, o - opname);
2326 main_fn_name = savestring (*pp, p - *pp);
2327 /* Skip past '::'. */
2330 new_fnlist->fn_fieldlist.name = main_fn_name;
2334 new_sublist = XCNEW (struct next_fnfield);
2335 make_cleanup (xfree, new_sublist);
2337 /* Check for and handle cretinous dbx symbol name continuation! */
2338 if (look_ahead_type == NULL)
2341 STABS_CONTINUE (pp, objfile);
2343 new_sublist->fn_field.type = read_type (pp, objfile);
2346 /* Invalid symtab info for member function. */
2352 /* g++ version 1 kludge */
2353 new_sublist->fn_field.type = look_ahead_type;
2354 look_ahead_type = NULL;
2364 /* These are methods, not functions. */
2365 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2366 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2368 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2369 == TYPE_CODE_METHOD);
2371 /* If this is just a stub, then we don't have the real name here. */
2372 if (TYPE_STUB (new_sublist->fn_field.type))
2374 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2375 set_type_self_type (new_sublist->fn_field.type, type);
2376 new_sublist->fn_field.is_stub = 1;
2379 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2382 /* Set this member function's visibility fields. */
2385 case VISIBILITY_PRIVATE:
2386 new_sublist->fn_field.is_private = 1;
2388 case VISIBILITY_PROTECTED:
2389 new_sublist->fn_field.is_protected = 1;
2393 STABS_CONTINUE (pp, objfile);
2396 case 'A': /* Normal functions. */
2397 new_sublist->fn_field.is_const = 0;
2398 new_sublist->fn_field.is_volatile = 0;
2401 case 'B': /* `const' member functions. */
2402 new_sublist->fn_field.is_const = 1;
2403 new_sublist->fn_field.is_volatile = 0;
2406 case 'C': /* `volatile' member function. */
2407 new_sublist->fn_field.is_const = 0;
2408 new_sublist->fn_field.is_volatile = 1;
2411 case 'D': /* `const volatile' member function. */
2412 new_sublist->fn_field.is_const = 1;
2413 new_sublist->fn_field.is_volatile = 1;
2416 case '*': /* File compiled with g++ version 1 --
2422 complaint (&symfile_complaints,
2423 _("const/volatile indicator missing, got '%c'"),
2433 /* virtual member function, followed by index.
2434 The sign bit is set to distinguish pointers-to-methods
2435 from virtual function indicies. Since the array is
2436 in words, the quantity must be shifted left by 1
2437 on 16 bit machine, and by 2 on 32 bit machine, forcing
2438 the sign bit out, and usable as a valid index into
2439 the array. Remove the sign bit here. */
2440 new_sublist->fn_field.voffset =
2441 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2445 STABS_CONTINUE (pp, objfile);
2446 if (**pp == ';' || **pp == '\0')
2448 /* Must be g++ version 1. */
2449 new_sublist->fn_field.fcontext = 0;
2453 /* Figure out from whence this virtual function came.
2454 It may belong to virtual function table of
2455 one of its baseclasses. */
2456 look_ahead_type = read_type (pp, objfile);
2459 /* g++ version 1 overloaded methods. */
2463 new_sublist->fn_field.fcontext = look_ahead_type;
2472 look_ahead_type = NULL;
2478 /* static member function. */
2480 int slen = strlen (main_fn_name);
2482 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2484 /* For static member functions, we can't tell if they
2485 are stubbed, as they are put out as functions, and not as
2487 GCC v2 emits the fully mangled name if
2488 dbxout.c:flag_minimal_debug is not set, so we have to
2489 detect a fully mangled physname here and set is_stub
2490 accordingly. Fully mangled physnames in v2 start with
2491 the member function name, followed by two underscores.
2492 GCC v3 currently always emits stubbed member functions,
2493 but with fully mangled physnames, which start with _Z. */
2494 if (!(strncmp (new_sublist->fn_field.physname,
2495 main_fn_name, slen) == 0
2496 && new_sublist->fn_field.physname[slen] == '_'
2497 && new_sublist->fn_field.physname[slen + 1] == '_'))
2499 new_sublist->fn_field.is_stub = 1;
2506 complaint (&symfile_complaints,
2507 _("member function type missing, got '%c'"),
2509 /* Fall through into normal member function. */
2512 /* normal member function. */
2513 new_sublist->fn_field.voffset = 0;
2514 new_sublist->fn_field.fcontext = 0;
2518 new_sublist->next = sublist;
2519 sublist = new_sublist;
2521 STABS_CONTINUE (pp, objfile);
2523 while (**pp != ';' && **pp != '\0');
2526 STABS_CONTINUE (pp, objfile);
2528 /* Skip GCC 3.X member functions which are duplicates of the callable
2529 constructor/destructor. */
2530 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2531 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2532 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2534 xfree (main_fn_name);
2539 int has_destructor = 0, has_other = 0;
2541 struct next_fnfield *tmp_sublist;
2543 /* Various versions of GCC emit various mostly-useless
2544 strings in the name field for special member functions.
2546 For stub methods, we need to defer correcting the name
2547 until we are ready to unstub the method, because the current
2548 name string is used by gdb_mangle_name. The only stub methods
2549 of concern here are GNU v2 operators; other methods have their
2550 names correct (see caveat below).
2552 For non-stub methods, in GNU v3, we have a complete physname.
2553 Therefore we can safely correct the name now. This primarily
2554 affects constructors and destructors, whose name will be
2555 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2556 operators will also have incorrect names; for instance,
2557 "operator int" will be named "operator i" (i.e. the type is
2560 For non-stub methods in GNU v2, we have no easy way to
2561 know if we have a complete physname or not. For most
2562 methods the result depends on the platform (if CPLUS_MARKER
2563 can be `$' or `.', it will use minimal debug information, or
2564 otherwise the full physname will be included).
2566 Rather than dealing with this, we take a different approach.
2567 For v3 mangled names, we can use the full physname; for v2,
2568 we use cplus_demangle_opname (which is actually v2 specific),
2569 because the only interesting names are all operators - once again
2570 barring the caveat below. Skip this process if any method in the
2571 group is a stub, to prevent our fouling up the workings of
2574 The caveat: GCC 2.95.x (and earlier?) put constructors and
2575 destructors in the same method group. We need to split this
2576 into two groups, because they should have different names.
2577 So for each method group we check whether it contains both
2578 routines whose physname appears to be a destructor (the physnames
2579 for and destructors are always provided, due to quirks in v2
2580 mangling) and routines whose physname does not appear to be a
2581 destructor. If so then we break up the list into two halves.
2582 Even if the constructors and destructors aren't in the same group
2583 the destructor will still lack the leading tilde, so that also
2586 So, to summarize what we expect and handle here:
2588 Given Given Real Real Action
2589 method name physname physname method name
2591 __opi [none] __opi__3Foo operator int opname
2593 Foo _._3Foo _._3Foo ~Foo separate and
2595 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2596 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2599 tmp_sublist = sublist;
2600 while (tmp_sublist != NULL)
2602 if (tmp_sublist->fn_field.is_stub)
2604 if (tmp_sublist->fn_field.physname[0] == '_'
2605 && tmp_sublist->fn_field.physname[1] == 'Z')
2608 if (is_destructor_name (tmp_sublist->fn_field.physname))
2613 tmp_sublist = tmp_sublist->next;
2616 if (has_destructor && has_other)
2618 struct next_fnfieldlist *destr_fnlist;
2619 struct next_fnfield *last_sublist;
2621 /* Create a new fn_fieldlist for the destructors. */
2623 destr_fnlist = XCNEW (struct next_fnfieldlist);
2624 make_cleanup (xfree, destr_fnlist);
2626 destr_fnlist->fn_fieldlist.name
2627 = obconcat (&objfile->objfile_obstack, "~",
2628 new_fnlist->fn_fieldlist.name, (char *) NULL);
2630 destr_fnlist->fn_fieldlist.fn_fields =
2631 XOBNEWVEC (&objfile->objfile_obstack,
2632 struct fn_field, has_destructor);
2633 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2634 sizeof (struct fn_field) * has_destructor);
2635 tmp_sublist = sublist;
2636 last_sublist = NULL;
2638 while (tmp_sublist != NULL)
2640 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2642 tmp_sublist = tmp_sublist->next;
2646 destr_fnlist->fn_fieldlist.fn_fields[i++]
2647 = tmp_sublist->fn_field;
2649 last_sublist->next = tmp_sublist->next;
2651 sublist = tmp_sublist->next;
2652 last_sublist = tmp_sublist;
2653 tmp_sublist = tmp_sublist->next;
2656 destr_fnlist->fn_fieldlist.length = has_destructor;
2657 destr_fnlist->next = fip->fnlist;
2658 fip->fnlist = destr_fnlist;
2660 length -= has_destructor;
2664 /* v3 mangling prevents the use of abbreviated physnames,
2665 so we can do this here. There are stubbed methods in v3
2667 - in -gstabs instead of -gstabs+
2668 - or for static methods, which are output as a function type
2669 instead of a method type. */
2670 char *new_method_name =
2671 stabs_method_name_from_physname (sublist->fn_field.physname);
2673 if (new_method_name != NULL
2674 && strcmp (new_method_name,
2675 new_fnlist->fn_fieldlist.name) != 0)
2677 new_fnlist->fn_fieldlist.name = new_method_name;
2678 xfree (main_fn_name);
2681 xfree (new_method_name);
2683 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2685 new_fnlist->fn_fieldlist.name =
2686 obconcat (&objfile->objfile_obstack,
2687 "~", main_fn_name, (char *)NULL);
2688 xfree (main_fn_name);
2692 char dem_opname[256];
2695 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2696 dem_opname, DMGL_ANSI);
2698 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2701 new_fnlist->fn_fieldlist.name
2703 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2704 strlen (dem_opname)));
2705 xfree (main_fn_name);
2708 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2709 obstack_alloc (&objfile->objfile_obstack,
2710 sizeof (struct fn_field) * length);
2711 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2712 sizeof (struct fn_field) * length);
2713 for (i = length; (i--, sublist); sublist = sublist->next)
2715 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2718 new_fnlist->fn_fieldlist.length = length;
2719 new_fnlist->next = fip->fnlist;
2720 fip->fnlist = new_fnlist;
2727 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2728 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2729 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2730 memset (TYPE_FN_FIELDLISTS (type), 0,
2731 sizeof (struct fn_fieldlist) * nfn_fields);
2732 TYPE_NFN_FIELDS (type) = nfn_fields;
2738 /* Special GNU C++ name.
2740 Returns 1 for success, 0 for failure. "failure" means that we can't
2741 keep parsing and it's time for error_type(). */
2744 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2745 struct objfile *objfile)
2750 struct type *context;
2760 /* At this point, *pp points to something like "22:23=*22...",
2761 where the type number before the ':' is the "context" and
2762 everything after is a regular type definition. Lookup the
2763 type, find it's name, and construct the field name. */
2765 context = read_type (pp, objfile);
2769 case 'f': /* $vf -- a virtual function table pointer */
2770 name = type_name_no_tag (context);
2775 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2776 vptr_name, name, (char *) NULL);
2779 case 'b': /* $vb -- a virtual bsomethingorother */
2780 name = type_name_no_tag (context);
2783 complaint (&symfile_complaints,
2784 _("C++ abbreviated type name "
2785 "unknown at symtab pos %d"),
2789 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2790 name, (char *) NULL);
2794 invalid_cpp_abbrev_complaint (*pp);
2795 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2796 "INVALID_CPLUSPLUS_ABBREV",
2801 /* At this point, *pp points to the ':'. Skip it and read the
2807 invalid_cpp_abbrev_complaint (*pp);
2810 fip->list->field.type = read_type (pp, objfile);
2812 (*pp)++; /* Skip the comma. */
2819 SET_FIELD_BITPOS (fip->list->field,
2820 read_huge_number (pp, ';', &nbits, 0));
2824 /* This field is unpacked. */
2825 FIELD_BITSIZE (fip->list->field) = 0;
2826 fip->list->visibility = VISIBILITY_PRIVATE;
2830 invalid_cpp_abbrev_complaint (*pp);
2831 /* We have no idea what syntax an unrecognized abbrev would have, so
2832 better return 0. If we returned 1, we would need to at least advance
2833 *pp to avoid an infinite loop. */
2840 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2841 struct type *type, struct objfile *objfile)
2843 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2845 fip->list->field.name
2846 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2849 /* This means we have a visibility for a field coming. */
2853 fip->list->visibility = *(*pp)++;
2857 /* normal dbx-style format, no explicit visibility */
2858 fip->list->visibility = VISIBILITY_PUBLIC;
2861 fip->list->field.type = read_type (pp, objfile);
2866 /* Possible future hook for nested types. */
2869 fip->list->field.bitpos = (long) -2; /* nested type */
2879 /* Static class member. */
2880 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2884 else if (**pp != ',')
2886 /* Bad structure-type format. */
2887 stabs_general_complaint ("bad structure-type format");
2891 (*pp)++; /* Skip the comma. */
2896 SET_FIELD_BITPOS (fip->list->field,
2897 read_huge_number (pp, ',', &nbits, 0));
2900 stabs_general_complaint ("bad structure-type format");
2903 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2906 stabs_general_complaint ("bad structure-type format");
2911 if (FIELD_BITPOS (fip->list->field) == 0
2912 && FIELD_BITSIZE (fip->list->field) == 0)
2914 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2915 it is a field which has been optimized out. The correct stab for
2916 this case is to use VISIBILITY_IGNORE, but that is a recent
2917 invention. (2) It is a 0-size array. For example
2918 union { int num; char str[0]; } foo. Printing _("<no value>" for
2919 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2920 will continue to work, and a 0-size array as a whole doesn't
2921 have any contents to print.
2923 I suspect this probably could also happen with gcc -gstabs (not
2924 -gstabs+) for static fields, and perhaps other C++ extensions.
2925 Hopefully few people use -gstabs with gdb, since it is intended
2926 for dbx compatibility. */
2928 /* Ignore this field. */
2929 fip->list->visibility = VISIBILITY_IGNORE;
2933 /* Detect an unpacked field and mark it as such.
2934 dbx gives a bit size for all fields.
2935 Note that forward refs cannot be packed,
2936 and treat enums as if they had the width of ints. */
2938 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2940 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2941 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2942 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2943 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2945 FIELD_BITSIZE (fip->list->field) = 0;
2947 if ((FIELD_BITSIZE (fip->list->field)
2948 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2949 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2950 && FIELD_BITSIZE (fip->list->field)
2951 == gdbarch_int_bit (gdbarch))
2954 FIELD_BITPOS (fip->list->field) % 8 == 0)
2956 FIELD_BITSIZE (fip->list->field) = 0;
2962 /* Read struct or class data fields. They have the form:
2964 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2966 At the end, we see a semicolon instead of a field.
2968 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2971 The optional VISIBILITY is one of:
2973 '/0' (VISIBILITY_PRIVATE)
2974 '/1' (VISIBILITY_PROTECTED)
2975 '/2' (VISIBILITY_PUBLIC)
2976 '/9' (VISIBILITY_IGNORE)
2978 or nothing, for C style fields with public visibility.
2980 Returns 1 for success, 0 for failure. */
2983 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2984 struct objfile *objfile)
2987 struct nextfield *newobj;
2989 /* We better set p right now, in case there are no fields at all... */
2993 /* Read each data member type until we find the terminating ';' at the end of
2994 the data member list, or break for some other reason such as finding the
2995 start of the member function list. */
2996 /* Stab string for structure/union does not end with two ';' in
2997 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2999 while (**pp != ';' && **pp != '\0')
3001 STABS_CONTINUE (pp, objfile);
3002 /* Get space to record the next field's data. */
3003 newobj = XCNEW (struct nextfield);
3004 make_cleanup (xfree, newobj);
3006 newobj->next = fip->list;
3009 /* Get the field name. */
3012 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3013 unless the CPLUS_MARKER is followed by an underscore, in
3014 which case it is just the name of an anonymous type, which we
3015 should handle like any other type name. */
3017 if (is_cplus_marker (p[0]) && p[1] != '_')
3019 if (!read_cpp_abbrev (fip, pp, type, objfile))
3024 /* Look for the ':' that separates the field name from the field
3025 values. Data members are delimited by a single ':', while member
3026 functions are delimited by a pair of ':'s. When we hit the member
3027 functions (if any), terminate scan loop and return. */
3029 while (*p != ':' && *p != '\0')
3036 /* Check to see if we have hit the member functions yet. */
3041 read_one_struct_field (fip, pp, p, type, objfile);
3043 if (p[0] == ':' && p[1] == ':')
3045 /* (the deleted) chill the list of fields: the last entry (at
3046 the head) is a partially constructed entry which we now
3048 fip->list = fip->list->next;
3053 /* The stabs for C++ derived classes contain baseclass information which
3054 is marked by a '!' character after the total size. This function is
3055 called when we encounter the baseclass marker, and slurps up all the
3056 baseclass information.
3058 Immediately following the '!' marker is the number of base classes that
3059 the class is derived from, followed by information for each base class.
3060 For each base class, there are two visibility specifiers, a bit offset
3061 to the base class information within the derived class, a reference to
3062 the type for the base class, and a terminating semicolon.
3064 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3066 Baseclass information marker __________________|| | | | | | |
3067 Number of baseclasses __________________________| | | | | | |
3068 Visibility specifiers (2) ________________________| | | | | |
3069 Offset in bits from start of class _________________| | | | |
3070 Type number for base class ___________________________| | | |
3071 Visibility specifiers (2) _______________________________| | |
3072 Offset in bits from start of class ________________________| |
3073 Type number of base class ____________________________________|
3075 Return 1 for success, 0 for (error-type-inducing) failure. */
3081 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3082 struct objfile *objfile)
3085 struct nextfield *newobj;
3093 /* Skip the '!' baseclass information marker. */
3097 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3101 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3107 /* Some stupid compilers have trouble with the following, so break
3108 it up into simpler expressions. */
3109 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3110 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3113 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3116 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3117 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3121 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3123 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3125 newobj = XCNEW (struct nextfield);
3126 make_cleanup (xfree, newobj);
3128 newobj->next = fip->list;
3130 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3133 STABS_CONTINUE (pp, objfile);
3137 /* Nothing to do. */
3140 SET_TYPE_FIELD_VIRTUAL (type, i);
3143 /* Unknown character. Complain and treat it as non-virtual. */
3145 complaint (&symfile_complaints,
3146 _("Unknown virtual character `%c' for baseclass"),
3152 newobj->visibility = *(*pp)++;
3153 switch (newobj->visibility)
3155 case VISIBILITY_PRIVATE:
3156 case VISIBILITY_PROTECTED:
3157 case VISIBILITY_PUBLIC:
3160 /* Bad visibility format. Complain and treat it as
3163 complaint (&symfile_complaints,
3164 _("Unknown visibility `%c' for baseclass"),
3165 newobj->visibility);
3166 newobj->visibility = VISIBILITY_PUBLIC;
3173 /* The remaining value is the bit offset of the portion of the object
3174 corresponding to this baseclass. Always zero in the absence of
3175 multiple inheritance. */
3177 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3182 /* The last piece of baseclass information is the type of the
3183 base class. Read it, and remember it's type name as this
3186 newobj->field.type = read_type (pp, objfile);
3187 newobj->field.name = type_name_no_tag (newobj->field.type);
3189 /* Skip trailing ';' and bump count of number of fields seen. */
3198 /* The tail end of stabs for C++ classes that contain a virtual function
3199 pointer contains a tilde, a %, and a type number.
3200 The type number refers to the base class (possibly this class itself) which
3201 contains the vtable pointer for the current class.
3203 This function is called when we have parsed all the method declarations,
3204 so we can look for the vptr base class info. */
3207 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3208 struct objfile *objfile)
3212 STABS_CONTINUE (pp, objfile);
3214 /* If we are positioned at a ';', then skip it. */
3224 if (**pp == '=' || **pp == '+' || **pp == '-')
3226 /* Obsolete flags that used to indicate the presence
3227 of constructors and/or destructors. */
3231 /* Read either a '%' or the final ';'. */
3232 if (*(*pp)++ == '%')
3234 /* The next number is the type number of the base class
3235 (possibly our own class) which supplies the vtable for
3236 this class. Parse it out, and search that class to find
3237 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3238 and TYPE_VPTR_FIELDNO. */
3243 t = read_type (pp, objfile);
3245 while (*p != '\0' && *p != ';')
3251 /* Premature end of symbol. */
3255 set_type_vptr_basetype (type, t);
3256 if (type == t) /* Our own class provides vtbl ptr. */
3258 for (i = TYPE_NFIELDS (t) - 1;
3259 i >= TYPE_N_BASECLASSES (t);
3262 const char *name = TYPE_FIELD_NAME (t, i);
3264 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3265 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3267 set_type_vptr_fieldno (type, i);
3271 /* Virtual function table field not found. */
3272 complaint (&symfile_complaints,
3273 _("virtual function table pointer "
3274 "not found when defining class `%s'"),
3280 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3291 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3295 for (n = TYPE_NFN_FIELDS (type);
3296 fip->fnlist != NULL;
3297 fip->fnlist = fip->fnlist->next)
3299 --n; /* Circumvent Sun3 compiler bug. */
3300 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3305 /* Create the vector of fields, and record how big it is.
3306 We need this info to record proper virtual function table information
3307 for this class's virtual functions. */
3310 attach_fields_to_type (struct field_info *fip, struct type *type,
3311 struct objfile *objfile)
3314 int non_public_fields = 0;
3315 struct nextfield *scan;
3317 /* Count up the number of fields that we have, as well as taking note of
3318 whether or not there are any non-public fields, which requires us to
3319 allocate and build the private_field_bits and protected_field_bits
3322 for (scan = fip->list; scan != NULL; scan = scan->next)
3325 if (scan->visibility != VISIBILITY_PUBLIC)
3327 non_public_fields++;
3331 /* Now we know how many fields there are, and whether or not there are any
3332 non-public fields. Record the field count, allocate space for the
3333 array of fields, and create blank visibility bitfields if necessary. */
3335 TYPE_NFIELDS (type) = nfields;
3336 TYPE_FIELDS (type) = (struct field *)
3337 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3338 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3340 if (non_public_fields)
3342 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3344 TYPE_FIELD_PRIVATE_BITS (type) =
3345 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3346 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3348 TYPE_FIELD_PROTECTED_BITS (type) =
3349 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3350 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3352 TYPE_FIELD_IGNORE_BITS (type) =
3353 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3354 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3357 /* Copy the saved-up fields into the field vector. Start from the
3358 head of the list, adding to the tail of the field array, so that
3359 they end up in the same order in the array in which they were
3360 added to the list. */
3362 while (nfields-- > 0)
3364 TYPE_FIELD (type, nfields) = fip->list->field;
3365 switch (fip->list->visibility)
3367 case VISIBILITY_PRIVATE:
3368 SET_TYPE_FIELD_PRIVATE (type, nfields);
3371 case VISIBILITY_PROTECTED:
3372 SET_TYPE_FIELD_PROTECTED (type, nfields);
3375 case VISIBILITY_IGNORE:
3376 SET_TYPE_FIELD_IGNORE (type, nfields);
3379 case VISIBILITY_PUBLIC:
3383 /* Unknown visibility. Complain and treat it as public. */
3385 complaint (&symfile_complaints,
3386 _("Unknown visibility `%c' for field"),
3387 fip->list->visibility);
3391 fip->list = fip->list->next;
3397 /* Complain that the compiler has emitted more than one definition for the
3398 structure type TYPE. */
3400 complain_about_struct_wipeout (struct type *type)
3402 const char *name = "";
3403 const char *kind = "";
3405 if (TYPE_TAG_NAME (type))
3407 name = TYPE_TAG_NAME (type);
3408 switch (TYPE_CODE (type))
3410 case TYPE_CODE_STRUCT: kind = "struct "; break;
3411 case TYPE_CODE_UNION: kind = "union "; break;
3412 case TYPE_CODE_ENUM: kind = "enum "; break;
3416 else if (TYPE_NAME (type))
3418 name = TYPE_NAME (type);
3427 complaint (&symfile_complaints,
3428 _("struct/union type gets multiply defined: %s%s"), kind, name);
3431 /* Set the length for all variants of a same main_type, which are
3432 connected in the closed chain.
3434 This is something that needs to be done when a type is defined *after*
3435 some cross references to this type have already been read. Consider
3436 for instance the following scenario where we have the following two
3439 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3440 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3442 A stubbed version of type dummy is created while processing the first
3443 stabs entry. The length of that type is initially set to zero, since
3444 it is unknown at this point. Also, a "constant" variation of type
3445 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3448 The second stabs entry allows us to replace the stubbed definition
3449 with the real definition. However, we still need to adjust the length
3450 of the "constant" variation of that type, as its length was left
3451 untouched during the main type replacement... */
3454 set_length_in_type_chain (struct type *type)
3456 struct type *ntype = TYPE_CHAIN (type);
3458 while (ntype != type)
3460 if (TYPE_LENGTH(ntype) == 0)
3461 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3463 complain_about_struct_wipeout (ntype);
3464 ntype = TYPE_CHAIN (ntype);
3468 /* Read the description of a structure (or union type) and return an object
3469 describing the type.
3471 PP points to a character pointer that points to the next unconsumed token
3472 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3473 *PP will point to "4a:1,0,32;;".
3475 TYPE points to an incomplete type that needs to be filled in.
3477 OBJFILE points to the current objfile from which the stabs information is
3478 being read. (Note that it is redundant in that TYPE also contains a pointer
3479 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3482 static struct type *
3483 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3484 struct objfile *objfile)
3486 struct cleanup *back_to;
3487 struct field_info fi;
3492 /* When describing struct/union/class types in stabs, G++ always drops
3493 all qualifications from the name. So if you've got:
3494 struct A { ... struct B { ... }; ... };
3495 then G++ will emit stabs for `struct A::B' that call it simply
3496 `struct B'. Obviously, if you've got a real top-level definition for
3497 `struct B', or other nested definitions, this is going to cause
3500 Obviously, GDB can't fix this by itself, but it can at least avoid
3501 scribbling on existing structure type objects when new definitions
3503 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3504 || TYPE_STUB (type)))
3506 complain_about_struct_wipeout (type);
3508 /* It's probably best to return the type unchanged. */
3512 back_to = make_cleanup (null_cleanup, 0);
3514 INIT_CPLUS_SPECIFIC (type);
3515 TYPE_CODE (type) = type_code;
3516 TYPE_STUB (type) = 0;
3518 /* First comes the total size in bytes. */
3523 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3526 do_cleanups (back_to);
3527 return error_type (pp, objfile);
3529 set_length_in_type_chain (type);
3532 /* Now read the baseclasses, if any, read the regular C struct or C++
3533 class member fields, attach the fields to the type, read the C++
3534 member functions, attach them to the type, and then read any tilde
3535 field (baseclass specifier for the class holding the main vtable). */
3537 if (!read_baseclasses (&fi, pp, type, objfile)
3538 || !read_struct_fields (&fi, pp, type, objfile)
3539 || !attach_fields_to_type (&fi, type, objfile)
3540 || !read_member_functions (&fi, pp, type, objfile)
3541 || !attach_fn_fields_to_type (&fi, type)
3542 || !read_tilde_fields (&fi, pp, type, objfile))
3544 type = error_type (pp, objfile);
3547 do_cleanups (back_to);
3551 /* Read a definition of an array type,
3552 and create and return a suitable type object.
3553 Also creates a range type which represents the bounds of that
3556 static struct type *
3557 read_array_type (char **pp, struct type *type,
3558 struct objfile *objfile)
3560 struct type *index_type, *element_type, *range_type;
3565 /* Format of an array type:
3566 "ar<index type>;lower;upper;<array_contents_type>".
3567 OS9000: "arlower,upper;<array_contents_type>".
3569 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3570 for these, produce a type like float[][]. */
3573 index_type = read_type (pp, objfile);
3575 /* Improper format of array type decl. */
3576 return error_type (pp, objfile);
3580 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3585 lower = read_huge_number (pp, ';', &nbits, 0);
3588 return error_type (pp, objfile);
3590 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3595 upper = read_huge_number (pp, ';', &nbits, 0);
3597 return error_type (pp, objfile);
3599 element_type = read_type (pp, objfile);
3608 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3609 type = create_array_type (type, element_type, range_type);
3615 /* Read a definition of an enumeration type,
3616 and create and return a suitable type object.
3617 Also defines the symbols that represent the values of the type. */
3619 static struct type *
3620 read_enum_type (char **pp, struct type *type,
3621 struct objfile *objfile)
3623 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3629 struct pending **symlist;
3630 struct pending *osyms, *syms;
3633 int unsigned_enum = 1;
3636 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3637 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3638 to do? For now, force all enum values to file scope. */
3639 if (within_function)
3640 symlist = &local_symbols;
3643 symlist = &file_symbols;
3645 o_nsyms = osyms ? osyms->nsyms : 0;
3647 /* The aix4 compiler emits an extra field before the enum members;
3648 my guess is it's a type of some sort. Just ignore it. */
3651 /* Skip over the type. */
3655 /* Skip over the colon. */
3659 /* Read the value-names and their values.
3660 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3661 A semicolon or comma instead of a NAME means the end. */
3662 while (**pp && **pp != ';' && **pp != ',')
3664 STABS_CONTINUE (pp, objfile);
3668 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3670 n = read_huge_number (pp, ',', &nbits, 0);
3672 return error_type (pp, objfile);
3674 sym = allocate_symbol (objfile);
3675 SYMBOL_SET_LINKAGE_NAME (sym, name);
3676 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3677 &objfile->objfile_obstack);
3678 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3679 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3680 SYMBOL_VALUE (sym) = n;
3683 add_symbol_to_list (sym, symlist);
3688 (*pp)++; /* Skip the semicolon. */
3690 /* Now fill in the fields of the type-structure. */
3692 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3693 set_length_in_type_chain (type);
3694 TYPE_CODE (type) = TYPE_CODE_ENUM;
3695 TYPE_STUB (type) = 0;
3697 TYPE_UNSIGNED (type) = 1;
3698 TYPE_NFIELDS (type) = nsyms;
3699 TYPE_FIELDS (type) = (struct field *)
3700 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3701 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3703 /* Find the symbols for the values and put them into the type.
3704 The symbols can be found in the symlist that we put them on
3705 to cause them to be defined. osyms contains the old value
3706 of that symlist; everything up to there was defined by us. */
3707 /* Note that we preserve the order of the enum constants, so
3708 that in something like "enum {FOO, LAST_THING=FOO}" we print
3709 FOO, not LAST_THING. */
3711 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3713 int last = syms == osyms ? o_nsyms : 0;
3714 int j = syms->nsyms;
3716 for (; --j >= last; --n)
3718 struct symbol *xsym = syms->symbol[j];
3720 SYMBOL_TYPE (xsym) = type;
3721 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3722 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3723 TYPE_FIELD_BITSIZE (type, n) = 0;
3732 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3733 typedefs in every file (for int, long, etc):
3735 type = b <signed> <width> <format type>; <offset>; <nbits>
3737 optional format type = c or b for char or boolean.
3738 offset = offset from high order bit to start bit of type.
3739 width is # bytes in object of this type, nbits is # bits in type.
3741 The width/offset stuff appears to be for small objects stored in
3742 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3745 static struct type *
3746 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3751 int boolean_type = 0;
3762 return error_type (pp, objfile);
3766 /* For some odd reason, all forms of char put a c here. This is strange
3767 because no other type has this honor. We can safely ignore this because
3768 we actually determine 'char'acterness by the number of bits specified in
3770 Boolean forms, e.g Fortran logical*X, put a b here. */
3774 else if (**pp == 'b')
3780 /* The first number appears to be the number of bytes occupied
3781 by this type, except that unsigned short is 4 instead of 2.
3782 Since this information is redundant with the third number,
3783 we will ignore it. */
3784 read_huge_number (pp, ';', &nbits, 0);
3786 return error_type (pp, objfile);
3788 /* The second number is always 0, so ignore it too. */
3789 read_huge_number (pp, ';', &nbits, 0);
3791 return error_type (pp, objfile);
3793 /* The third number is the number of bits for this type. */
3794 type_bits = read_huge_number (pp, 0, &nbits, 0);
3796 return error_type (pp, objfile);
3797 /* The type *should* end with a semicolon. If it are embedded
3798 in a larger type the semicolon may be the only way to know where
3799 the type ends. If this type is at the end of the stabstring we
3800 can deal with the omitted semicolon (but we don't have to like
3801 it). Don't bother to complain(), Sun's compiler omits the semicolon
3808 struct type *type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
3810 TYPE_UNSIGNED (type) = 1;
3815 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3817 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3820 static struct type *
3821 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3826 struct type *rettype;
3828 /* The first number has more details about the type, for example
3830 details = read_huge_number (pp, ';', &nbits, 0);
3832 return error_type (pp, objfile);
3834 /* The second number is the number of bytes occupied by this type. */
3835 nbytes = read_huge_number (pp, ';', &nbits, 0);
3837 return error_type (pp, objfile);
3839 nbits = nbytes * TARGET_CHAR_BIT;
3841 if (details == NF_COMPLEX || details == NF_COMPLEX16
3842 || details == NF_COMPLEX32)
3844 rettype = init_float_type (objfile, nbits / 2, NULL, NULL);
3845 return init_complex_type (objfile, NULL, rettype);
3848 return init_float_type (objfile, nbits, NULL, NULL);
3851 /* Read a number from the string pointed to by *PP.
3852 The value of *PP is advanced over the number.
3853 If END is nonzero, the character that ends the
3854 number must match END, or an error happens;
3855 and that character is skipped if it does match.
3856 If END is zero, *PP is left pointing to that character.
3858 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3859 the number is represented in an octal representation, assume that
3860 it is represented in a 2's complement representation with a size of
3861 TWOS_COMPLEMENT_BITS.
3863 If the number fits in a long, set *BITS to 0 and return the value.
3864 If not, set *BITS to be the number of bits in the number and return 0.
3866 If encounter garbage, set *BITS to -1 and return 0. */
3869 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3880 int twos_complement_representation = 0;
3888 /* Leading zero means octal. GCC uses this to output values larger
3889 than an int (because that would be hard in decimal). */
3896 /* Skip extra zeros. */
3900 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3902 /* Octal, possibly signed. Check if we have enough chars for a
3908 while ((c = *p1) >= '0' && c < '8')
3912 if (len > twos_complement_bits / 3
3913 || (twos_complement_bits % 3 == 0
3914 && len == twos_complement_bits / 3))
3916 /* Ok, we have enough characters for a signed value, check
3917 for signness by testing if the sign bit is set. */
3918 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3920 if (c & (1 << sign_bit))
3922 /* Definitely signed. */
3923 twos_complement_representation = 1;
3929 upper_limit = LONG_MAX / radix;
3931 while ((c = *p++) >= '0' && c < ('0' + radix))
3933 if (n <= upper_limit)
3935 if (twos_complement_representation)
3937 /* Octal, signed, twos complement representation. In
3938 this case, n is the corresponding absolute value. */
3941 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3953 /* unsigned representation */
3955 n += c - '0'; /* FIXME this overflows anyway. */
3961 /* This depends on large values being output in octal, which is
3968 /* Ignore leading zeroes. */
3972 else if (c == '2' || c == '3')
3993 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3995 /* We were supposed to parse a number with maximum
3996 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4007 /* Large decimal constants are an error (because it is hard to
4008 count how many bits are in them). */
4014 /* -0x7f is the same as 0x80. So deal with it by adding one to
4015 the number of bits. Two's complement represention octals
4016 can't have a '-' in front. */
4017 if (sign == -1 && !twos_complement_representation)
4028 /* It's *BITS which has the interesting information. */
4032 static struct type *
4033 read_range_type (char **pp, int typenums[2], int type_size,
4034 struct objfile *objfile)
4036 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4037 char *orig_pp = *pp;
4042 struct type *result_type;
4043 struct type *index_type = NULL;
4045 /* First comes a type we are a subrange of.
4046 In C it is usually 0, 1 or the type being defined. */
4047 if (read_type_number (pp, rangenums) != 0)
4048 return error_type (pp, objfile);
4049 self_subrange = (rangenums[0] == typenums[0] &&
4050 rangenums[1] == typenums[1]);
4055 index_type = read_type (pp, objfile);
4058 /* A semicolon should now follow; skip it. */
4062 /* The remaining two operands are usually lower and upper bounds
4063 of the range. But in some special cases they mean something else. */
4064 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4065 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4067 if (n2bits == -1 || n3bits == -1)
4068 return error_type (pp, objfile);
4071 goto handle_true_range;
4073 /* If limits are huge, must be large integral type. */
4074 if (n2bits != 0 || n3bits != 0)
4076 char got_signed = 0;
4077 char got_unsigned = 0;
4078 /* Number of bits in the type. */
4081 /* If a type size attribute has been specified, the bounds of
4082 the range should fit in this size. If the lower bounds needs
4083 more bits than the upper bound, then the type is signed. */
4084 if (n2bits <= type_size && n3bits <= type_size)
4086 if (n2bits == type_size && n2bits > n3bits)
4092 /* Range from 0 to <large number> is an unsigned large integral type. */
4093 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4098 /* Range from <large number> to <large number>-1 is a large signed
4099 integral type. Take care of the case where <large number> doesn't
4100 fit in a long but <large number>-1 does. */
4101 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4102 || (n2bits != 0 && n3bits == 0
4103 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4110 if (got_signed || got_unsigned)
4111 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4113 return error_type (pp, objfile);
4116 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4117 if (self_subrange && n2 == 0 && n3 == 0)
4118 return init_type (objfile, TYPE_CODE_VOID, 1, NULL);
4120 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4121 is the width in bytes.
4123 Fortran programs appear to use this for complex types also. To
4124 distinguish between floats and complex, g77 (and others?) seem
4125 to use self-subranges for the complexes, and subranges of int for
4128 Also note that for complexes, g77 sets n2 to the size of one of
4129 the member floats, not the whole complex beast. My guess is that
4130 this was to work well with pre-COMPLEX versions of gdb. */
4132 if (n3 == 0 && n2 > 0)
4134 struct type *float_type
4135 = init_float_type (objfile, n2 * TARGET_CHAR_BIT, NULL, NULL);
4138 return init_complex_type (objfile, NULL, float_type);
4143 /* If the upper bound is -1, it must really be an unsigned integral. */
4145 else if (n2 == 0 && n3 == -1)
4147 int bits = type_size;
4151 /* We don't know its size. It is unsigned int or unsigned
4152 long. GCC 2.3.3 uses this for long long too, but that is
4153 just a GDB 3.5 compatibility hack. */
4154 bits = gdbarch_int_bit (gdbarch);
4157 return init_integer_type (objfile, bits, 1, NULL);
4160 /* Special case: char is defined (Who knows why) as a subrange of
4161 itself with range 0-127. */
4162 else if (self_subrange && n2 == 0 && n3 == 127)
4164 struct type *type = init_integer_type (objfile, 1, 0, NULL);
4165 TYPE_NOSIGN (type) = 1;
4168 /* We used to do this only for subrange of self or subrange of int. */
4171 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4172 "unsigned long", and we already checked for that,
4173 so don't need to test for it here. */
4176 /* n3 actually gives the size. */
4177 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4179 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4180 unsigned n-byte integer. But do require n to be a power of
4181 two; we don't want 3- and 5-byte integers flying around. */
4187 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4190 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4191 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4194 /* I think this is for Convex "long long". Since I don't know whether
4195 Convex sets self_subrange, I also accept that particular size regardless
4196 of self_subrange. */
4197 else if (n3 == 0 && n2 < 0
4199 || n2 == -gdbarch_long_long_bit
4200 (gdbarch) / TARGET_CHAR_BIT))
4201 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4202 else if (n2 == -n3 - 1)
4205 return init_integer_type (objfile, 8, 0, NULL);
4207 return init_integer_type (objfile, 16, 0, NULL);
4208 if (n3 == 0x7fffffff)
4209 return init_integer_type (objfile, 32, 0, NULL);
4212 /* We have a real range type on our hands. Allocate space and
4213 return a real pointer. */
4217 index_type = objfile_type (objfile)->builtin_int;
4219 index_type = *dbx_lookup_type (rangenums, objfile);
4220 if (index_type == NULL)
4222 /* Does this actually ever happen? Is that why we are worrying
4223 about dealing with it rather than just calling error_type? */
4225 complaint (&symfile_complaints,
4226 _("base type %d of range type is not defined"), rangenums[1]);
4228 index_type = objfile_type (objfile)->builtin_int;
4232 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4233 return (result_type);
4236 /* Read in an argument list. This is a list of types, separated by commas
4237 and terminated with END. Return the list of types read in, or NULL
4238 if there is an error. */
4240 static struct field *
4241 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4244 /* FIXME! Remove this arbitrary limit! */
4245 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4252 /* Invalid argument list: no ','. */
4255 STABS_CONTINUE (pp, objfile);
4256 types[n++] = read_type (pp, objfile);
4258 (*pp)++; /* get past `end' (the ':' character). */
4262 /* We should read at least the THIS parameter here. Some broken stabs
4263 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4264 have been present ";-16,(0,43)" reference instead. This way the
4265 excessive ";" marker prematurely stops the parameters parsing. */
4267 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4270 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4278 rval = XCNEWVEC (struct field, n);
4279 for (i = 0; i < n; i++)
4280 rval[i].type = types[i];
4285 /* Common block handling. */
4287 /* List of symbols declared since the last BCOMM. This list is a tail
4288 of local_symbols. When ECOMM is seen, the symbols on the list
4289 are noted so their proper addresses can be filled in later,
4290 using the common block base address gotten from the assembler
4293 static struct pending *common_block;
4294 static int common_block_i;
4296 /* Name of the current common block. We get it from the BCOMM instead of the
4297 ECOMM to match IBM documentation (even though IBM puts the name both places
4298 like everyone else). */
4299 static char *common_block_name;
4301 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4302 to remain after this function returns. */
4305 common_block_start (char *name, struct objfile *objfile)
4307 if (common_block_name != NULL)
4309 complaint (&symfile_complaints,
4310 _("Invalid symbol data: common block within common block"));
4312 common_block = local_symbols;
4313 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4314 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4318 /* Process a N_ECOMM symbol. */
4321 common_block_end (struct objfile *objfile)
4323 /* Symbols declared since the BCOMM are to have the common block
4324 start address added in when we know it. common_block and
4325 common_block_i point to the first symbol after the BCOMM in
4326 the local_symbols list; copy the list and hang it off the
4327 symbol for the common block name for later fixup. */
4330 struct pending *newobj = 0;
4331 struct pending *next;
4334 if (common_block_name == NULL)
4336 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4340 sym = allocate_symbol (objfile);
4341 /* Note: common_block_name already saved on objfile_obstack. */
4342 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4343 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4345 /* Now we copy all the symbols which have been defined since the BCOMM. */
4347 /* Copy all the struct pendings before common_block. */
4348 for (next = local_symbols;
4349 next != NULL && next != common_block;
4352 for (j = 0; j < next->nsyms; j++)
4353 add_symbol_to_list (next->symbol[j], &newobj);
4356 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4357 NULL, it means copy all the local symbols (which we already did
4360 if (common_block != NULL)
4361 for (j = common_block_i; j < common_block->nsyms; j++)
4362 add_symbol_to_list (common_block->symbol[j], &newobj);
4364 SYMBOL_TYPE (sym) = (struct type *) newobj;
4366 /* Should we be putting local_symbols back to what it was?
4369 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4370 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4371 global_sym_chain[i] = sym;
4372 common_block_name = NULL;
4375 /* Add a common block's start address to the offset of each symbol
4376 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4377 the common block name). */
4380 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4382 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4384 for (; next; next = next->next)
4388 for (j = next->nsyms - 1; j >= 0; j--)
4389 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4395 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4396 See add_undefined_type for more details. */
4399 add_undefined_type_noname (struct type *type, int typenums[2])
4403 nat.typenums[0] = typenums [0];
4404 nat.typenums[1] = typenums [1];
4407 if (noname_undefs_length == noname_undefs_allocated)
4409 noname_undefs_allocated *= 2;
4410 noname_undefs = (struct nat *)
4411 xrealloc ((char *) noname_undefs,
4412 noname_undefs_allocated * sizeof (struct nat));
4414 noname_undefs[noname_undefs_length++] = nat;
4417 /* Add TYPE to the UNDEF_TYPES vector.
4418 See add_undefined_type for more details. */
4421 add_undefined_type_1 (struct type *type)
4423 if (undef_types_length == undef_types_allocated)
4425 undef_types_allocated *= 2;
4426 undef_types = (struct type **)
4427 xrealloc ((char *) undef_types,
4428 undef_types_allocated * sizeof (struct type *));
4430 undef_types[undef_types_length++] = type;
4433 /* What about types defined as forward references inside of a small lexical
4435 /* Add a type to the list of undefined types to be checked through
4436 once this file has been read in.
4438 In practice, we actually maintain two such lists: The first list
4439 (UNDEF_TYPES) is used for types whose name has been provided, and
4440 concerns forward references (eg 'xs' or 'xu' forward references);
4441 the second list (NONAME_UNDEFS) is used for types whose name is
4442 unknown at creation time, because they were referenced through
4443 their type number before the actual type was declared.
4444 This function actually adds the given type to the proper list. */
4447 add_undefined_type (struct type *type, int typenums[2])
4449 if (TYPE_TAG_NAME (type) == NULL)
4450 add_undefined_type_noname (type, typenums);
4452 add_undefined_type_1 (type);
4455 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4458 cleanup_undefined_types_noname (struct objfile *objfile)
4462 for (i = 0; i < noname_undefs_length; i++)
4464 struct nat nat = noname_undefs[i];
4467 type = dbx_lookup_type (nat.typenums, objfile);
4468 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4470 /* The instance flags of the undefined type are still unset,
4471 and needs to be copied over from the reference type.
4472 Since replace_type expects them to be identical, we need
4473 to set these flags manually before hand. */
4474 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4475 replace_type (nat.type, *type);
4479 noname_undefs_length = 0;
4482 /* Go through each undefined type, see if it's still undefined, and fix it
4483 up if possible. We have two kinds of undefined types:
4485 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4486 Fix: update array length using the element bounds
4487 and the target type's length.
4488 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4489 yet defined at the time a pointer to it was made.
4490 Fix: Do a full lookup on the struct/union tag. */
4493 cleanup_undefined_types_1 (void)
4497 /* Iterate over every undefined type, and look for a symbol whose type
4498 matches our undefined type. The symbol matches if:
4499 1. It is a typedef in the STRUCT domain;
4500 2. It has the same name, and same type code;
4501 3. The instance flags are identical.
4503 It is important to check the instance flags, because we have seen
4504 examples where the debug info contained definitions such as:
4506 "foo_t:t30=B31=xefoo_t:"
4508 In this case, we have created an undefined type named "foo_t" whose
4509 instance flags is null (when processing "xefoo_t"), and then created
4510 another type with the same name, but with different instance flags
4511 ('B' means volatile). I think that the definition above is wrong,
4512 since the same type cannot be volatile and non-volatile at the same
4513 time, but we need to be able to cope with it when it happens. The
4514 approach taken here is to treat these two types as different. */
4516 for (type = undef_types; type < undef_types + undef_types_length; type++)
4518 switch (TYPE_CODE (*type))
4521 case TYPE_CODE_STRUCT:
4522 case TYPE_CODE_UNION:
4523 case TYPE_CODE_ENUM:
4525 /* Check if it has been defined since. Need to do this here
4526 as well as in check_typedef to deal with the (legitimate in
4527 C though not C++) case of several types with the same name
4528 in different source files. */
4529 if (TYPE_STUB (*type))
4531 struct pending *ppt;
4533 /* Name of the type, without "struct" or "union". */
4534 const char *type_name = TYPE_TAG_NAME (*type);
4536 if (type_name == NULL)
4538 complaint (&symfile_complaints, _("need a type name"));
4541 for (ppt = file_symbols; ppt; ppt = ppt->next)
4543 for (i = 0; i < ppt->nsyms; i++)
4545 struct symbol *sym = ppt->symbol[i];
4547 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4548 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4549 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4551 && (TYPE_INSTANCE_FLAGS (*type) ==
4552 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4553 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4555 replace_type (*type, SYMBOL_TYPE (sym));
4564 complaint (&symfile_complaints,
4565 _("forward-referenced types left unresolved, "
4573 undef_types_length = 0;
4576 /* Try to fix all the undefined types we ecountered while processing
4580 cleanup_undefined_stabs_types (struct objfile *objfile)
4582 cleanup_undefined_types_1 ();
4583 cleanup_undefined_types_noname (objfile);
4586 /* Scan through all of the global symbols defined in the object file,
4587 assigning values to the debugging symbols that need to be assigned
4588 to. Get these symbols from the minimal symbol table. */
4591 scan_file_globals (struct objfile *objfile)
4594 struct minimal_symbol *msymbol;
4595 struct symbol *sym, *prev;
4596 struct objfile *resolve_objfile;
4598 /* SVR4 based linkers copy referenced global symbols from shared
4599 libraries to the main executable.
4600 If we are scanning the symbols for a shared library, try to resolve
4601 them from the minimal symbols of the main executable first. */
4603 if (symfile_objfile && objfile != symfile_objfile)
4604 resolve_objfile = symfile_objfile;
4606 resolve_objfile = objfile;
4610 /* Avoid expensive loop through all minimal symbols if there are
4611 no unresolved symbols. */
4612 for (hash = 0; hash < HASHSIZE; hash++)
4614 if (global_sym_chain[hash])
4617 if (hash >= HASHSIZE)
4620 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4624 /* Skip static symbols. */
4625 switch (MSYMBOL_TYPE (msymbol))
4637 /* Get the hash index and check all the symbols
4638 under that hash index. */
4640 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4642 for (sym = global_sym_chain[hash]; sym;)
4644 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4645 SYMBOL_LINKAGE_NAME (sym)) == 0)
4647 /* Splice this symbol out of the hash chain and
4648 assign the value we have to it. */
4651 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4655 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4658 /* Check to see whether we need to fix up a common block. */
4659 /* Note: this code might be executed several times for
4660 the same symbol if there are multiple references. */
4663 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4665 fix_common_block (sym,
4666 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4671 SYMBOL_VALUE_ADDRESS (sym)
4672 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4674 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4679 sym = SYMBOL_VALUE_CHAIN (prev);
4683 sym = global_sym_chain[hash];
4689 sym = SYMBOL_VALUE_CHAIN (sym);
4693 if (resolve_objfile == objfile)
4695 resolve_objfile = objfile;
4698 /* Change the storage class of any remaining unresolved globals to
4699 LOC_UNRESOLVED and remove them from the chain. */
4700 for (hash = 0; hash < HASHSIZE; hash++)
4702 sym = global_sym_chain[hash];
4706 sym = SYMBOL_VALUE_CHAIN (sym);
4708 /* Change the symbol address from the misleading chain value
4710 SYMBOL_VALUE_ADDRESS (prev) = 0;
4712 /* Complain about unresolved common block symbols. */
4713 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4714 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4716 complaint (&symfile_complaints,
4717 _("%s: common block `%s' from "
4718 "global_sym_chain unresolved"),
4719 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4722 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4725 /* Initialize anything that needs initializing when starting to read
4726 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4730 stabsread_init (void)
4734 /* Initialize anything that needs initializing when a completely new
4735 symbol file is specified (not just adding some symbols from another
4736 file, e.g. a shared library). */
4739 stabsread_new_init (void)
4741 /* Empty the hash table of global syms looking for values. */
4742 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4745 /* Initialize anything that needs initializing at the same time as
4746 start_symtab() is called. */
4751 global_stabs = NULL; /* AIX COFF */
4752 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4753 n_this_object_header_files = 1;
4754 type_vector_length = 0;
4755 type_vector = (struct type **) 0;
4757 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4758 common_block_name = NULL;
4761 /* Call after end_symtab(). */
4768 xfree (type_vector);
4771 type_vector_length = 0;
4772 previous_stab_code = 0;
4776 finish_global_stabs (struct objfile *objfile)
4780 patch_block_stabs (global_symbols, global_stabs, objfile);
4781 xfree (global_stabs);
4782 global_stabs = NULL;
4786 /* Find the end of the name, delimited by a ':', but don't match
4787 ObjC symbols which look like -[Foo bar::]:bla. */
4789 find_name_end (char *name)
4793 if (s[0] == '-' || *s == '+')
4795 /* Must be an ObjC method symbol. */
4798 error (_("invalid symbol name \"%s\""), name);
4800 s = strchr (s, ']');
4803 error (_("invalid symbol name \"%s\""), name);
4805 return strchr (s, ':');
4809 return strchr (s, ':');
4813 /* Initializer for this module. */
4816 _initialize_stabsread (void)
4818 rs6000_builtin_type_data = register_objfile_data ();
4820 undef_types_allocated = 20;
4821 undef_types_length = 0;
4822 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4824 noname_undefs_allocated = 20;
4825 noname_undefs_length = 0;
4826 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4828 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4829 &stab_register_funcs);
4830 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4831 &stab_register_funcs);