1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
29 #include "gdb_obstack.h"
32 #include "expression.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
42 #include "gdb-demangle.h"
44 #include "target-float.h"
46 #include "cp-support.h"
50 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #include "stabsread.h" /* Our own declarations */
58 struct nextfield *next;
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
68 struct next_fnfieldlist
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
87 read_one_struct_field (struct field_info *, const char **, const char *,
88 struct type *, struct objfile *);
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
92 static long read_huge_number (const char **, int, int *, int);
94 static struct type *error_type (const char **, struct objfile *);
97 patch_block_stabs (struct pending *, struct pending_stabs *,
100 static void fix_common_block (struct symbol *, CORE_ADDR);
102 static int read_type_number (const char **, int *);
104 static struct type *read_type (const char **, struct objfile *);
106 static struct type *read_range_type (const char **, int[2],
107 int, struct objfile *);
109 static struct type *read_sun_builtin_type (const char **,
110 int[2], struct objfile *);
112 static struct type *read_sun_floating_type (const char **, int[2],
115 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
117 static struct type *rs6000_builtin_type (int, struct objfile *);
120 read_member_functions (struct field_info *, const char **, struct type *,
124 read_struct_fields (struct field_info *, const char **, struct type *,
128 read_baseclasses (struct field_info *, const char **, struct type *,
132 read_tilde_fields (struct field_info *, const char **, struct type *,
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137 static int attach_fields_to_type (struct field_info *, struct type *,
140 static struct type *read_struct_type (const char **, struct type *,
144 static struct type *read_array_type (const char **, struct type *,
147 static struct field *read_args (const char **, int, struct objfile *,
150 static void add_undefined_type (struct type *, int[2]);
153 read_cpp_abbrev (struct field_info *, const char **, struct type *,
156 static const char *find_name_end (const char *name);
158 static int process_reference (const char **string);
160 void stabsread_clear_cache (void);
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
166 invalid_cpp_abbrev_complaint (const char *arg1)
168 complaint (_("invalid C++ abbreviation `%s'"), arg1);
172 reg_value_complaint (int regnum, int num_regs, const char *sym)
174 complaint (_("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
179 stabs_general_complaint (const char *arg1)
181 complaint ("%s", arg1);
184 /* Make a list of forward references which haven't been defined. */
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
212 /* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
218 static struct type **type_vector;
220 /* Number of elements allocated for type_vector currently. */
222 static int type_vector_length;
224 /* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
227 #define INITIAL_TYPE_VECTOR_LENGTH 160
230 /* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
237 static struct type **
238 dbx_lookup_type (int typenums[2], struct objfile *objfile)
240 int filenum = typenums[0];
241 int index = typenums[1];
244 struct header_file *f;
247 if (filenum == -1) /* -1,-1 is for temporary types. */
250 if (filenum < 0 || filenum >= n_this_object_header_files)
252 complaint (_("Invalid symbol data: type number "
253 "(%d,%d) out of range at symtab pos %d."),
254 filenum, index, symnum);
262 /* Caller wants address of address of type. We think
263 that negative (rs6k builtin) types will never appear as
264 "lvalues", (nor should they), so we stuff the real type
265 pointer into a temp, and return its address. If referenced,
266 this will do the right thing. */
267 static struct type *temp_type;
269 temp_type = rs6000_builtin_type (index, objfile);
273 /* Type is defined outside of header files.
274 Find it in this object file's type vector. */
275 if (index >= type_vector_length)
277 old_len = type_vector_length;
280 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
281 type_vector = XNEWVEC (struct type *, type_vector_length);
283 while (index >= type_vector_length)
285 type_vector_length *= 2;
287 type_vector = (struct type **)
288 xrealloc ((char *) type_vector,
289 (type_vector_length * sizeof (struct type *)));
290 memset (&type_vector[old_len], 0,
291 (type_vector_length - old_len) * sizeof (struct type *));
293 return (&type_vector[index]);
297 real_filenum = this_object_header_files[filenum];
299 if (real_filenum >= N_HEADER_FILES (objfile))
301 static struct type *temp_type;
303 warning (_("GDB internal error: bad real_filenum"));
306 temp_type = objfile_type (objfile)->builtin_error;
310 f = HEADER_FILES (objfile) + real_filenum;
312 f_orig_length = f->length;
313 if (index >= f_orig_length)
315 while (index >= f->length)
319 f->vector = (struct type **)
320 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
321 memset (&f->vector[f_orig_length], 0,
322 (f->length - f_orig_length) * sizeof (struct type *));
324 return (&f->vector[index]);
328 /* Make sure there is a type allocated for type numbers TYPENUMS
329 and return the type object.
330 This can create an empty (zeroed) type object.
331 TYPENUMS may be (-1, -1) to return a new type object that is not
332 put into the type vector, and so may not be referred to by number. */
335 dbx_alloc_type (int typenums[2], struct objfile *objfile)
337 struct type **type_addr;
339 if (typenums[0] == -1)
341 return (alloc_type (objfile));
344 type_addr = dbx_lookup_type (typenums, objfile);
346 /* If we are referring to a type not known at all yet,
347 allocate an empty type for it.
348 We will fill it in later if we find out how. */
351 *type_addr = alloc_type (objfile);
357 /* Allocate a floating-point type of size BITS. */
360 dbx_init_float_type (struct objfile *objfile, int bits)
362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
363 const struct floatformat **format;
366 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
368 type = init_float_type (objfile, bits, NULL, format);
370 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
375 /* for all the stabs in a given stab vector, build appropriate types
376 and fix their symbols in given symbol vector. */
379 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
380 struct objfile *objfile)
389 /* for all the stab entries, find their corresponding symbols and
390 patch their types! */
392 for (ii = 0; ii < stabs->count; ++ii)
394 name = stabs->stab[ii];
395 pp = (char *) strchr (name, ':');
396 gdb_assert (pp); /* Must find a ':' or game's over. */
400 pp = (char *) strchr (pp, ':');
402 sym = find_symbol_in_list (symbols, name, pp - name);
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = allocate_symbol (objfile);
417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
418 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
419 SYMBOL_SET_LINKAGE_NAME
420 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
423 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
425 /* I don't think the linker does this with functions,
426 so as far as I know this is never executed.
427 But it doesn't hurt to check. */
429 lookup_function_type (read_type (&pp, objfile));
433 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
435 add_symbol_to_list (sym, get_global_symbols ());
440 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
443 lookup_function_type (read_type (&pp, objfile));
447 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
455 /* Read a number by which a type is referred to in dbx data,
456 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
457 Just a single number N is equivalent to (0,N).
458 Return the two numbers by storing them in the vector TYPENUMS.
459 TYPENUMS will then be used as an argument to dbx_lookup_type.
461 Returns 0 for success, -1 for error. */
464 read_type_number (const char **pp, int *typenums)
471 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
474 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
481 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
489 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
490 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
491 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
492 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
494 /* Structure for storing pointers to reference definitions for fast lookup
495 during "process_later". */
504 #define MAX_CHUNK_REFS 100
505 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
506 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
508 static struct ref_map *ref_map;
510 /* Ptr to free cell in chunk's linked list. */
511 static int ref_count = 0;
513 /* Number of chunks malloced. */
514 static int ref_chunk = 0;
516 /* This file maintains a cache of stabs aliases found in the symbol
517 table. If the symbol table changes, this cache must be cleared
518 or we are left holding onto data in invalid obstacks. */
520 stabsread_clear_cache (void)
526 /* Create array of pointers mapping refids to symbols and stab strings.
527 Add pointers to reference definition symbols and/or their values as we
528 find them, using their reference numbers as our index.
529 These will be used later when we resolve references. */
531 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
535 if (refnum >= ref_count)
536 ref_count = refnum + 1;
537 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
539 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
540 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
542 ref_map = (struct ref_map *)
543 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
544 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
545 new_chunks * REF_CHUNK_SIZE);
546 ref_chunk += new_chunks;
548 ref_map[refnum].stabs = stabs;
549 ref_map[refnum].sym = sym;
550 ref_map[refnum].value = value;
553 /* Return defined sym for the reference REFNUM. */
555 ref_search (int refnum)
557 if (refnum < 0 || refnum > ref_count)
559 return ref_map[refnum].sym;
562 /* Parse a reference id in STRING and return the resulting
563 reference number. Move STRING beyond the reference id. */
566 process_reference (const char **string)
574 /* Advance beyond the initial '#'. */
577 /* Read number as reference id. */
578 while (*p && isdigit (*p))
580 refnum = refnum * 10 + *p - '0';
587 /* If STRING defines a reference, store away a pointer to the reference
588 definition for later use. Return the reference number. */
591 symbol_reference_defined (const char **string)
593 const char *p = *string;
596 refnum = process_reference (&p);
598 /* Defining symbols end in '='. */
601 /* Symbol is being defined here. */
607 /* Must be a reference. Either the symbol has already been defined,
608 or this is a forward reference to it. */
615 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
617 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
619 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
621 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
622 SYMBOL_PRINT_NAME (sym));
624 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
630 static const struct symbol_register_ops stab_register_funcs = {
634 /* The "aclass" indices for computed symbols. */
636 static int stab_register_index;
637 static int stab_regparm_index;
640 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
641 struct objfile *objfile)
643 struct gdbarch *gdbarch = get_objfile_arch (objfile);
645 const char *p = find_name_end (string);
650 /* We would like to eliminate nameless symbols, but keep their types.
651 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
652 to type 2, but, should not create a symbol to address that type. Since
653 the symbol will be nameless, there is no way any user can refer to it. */
657 /* Ignore syms with empty names. */
661 /* Ignore old-style symbols from cc -go. */
672 _("Bad stabs string '%s'"), string);
677 /* If a nameless stab entry, all we need is the type, not the symbol.
678 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
679 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
681 current_symbol = sym = allocate_symbol (objfile);
683 if (processing_gcc_compilation)
685 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
686 number of bytes occupied by a type or object, which we ignore. */
687 SYMBOL_LINE (sym) = desc;
691 SYMBOL_LINE (sym) = 0; /* unknown */
694 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
695 &objfile->objfile_obstack);
697 if (is_cplus_marker (string[0]))
699 /* Special GNU C++ names. */
703 SYMBOL_SET_LINKAGE_NAME (sym, "this");
706 case 'v': /* $vtbl_ptr_type */
710 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
714 /* This was an anonymous type that was never fixed up. */
718 /* SunPRO (3.0 at least) static variable encoding. */
719 if (gdbarch_static_transform_name_p (gdbarch))
724 complaint (_("Unknown C++ symbol name `%s'"),
726 goto normal; /* Do *something* with it. */
732 std::string new_name;
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
736 char *name = (char *) alloca (p - string + 1);
738 memcpy (name, string, p - string);
739 name[p - string] = '\0';
740 new_name = cp_canonicalize_string (name);
742 if (!new_name.empty ())
744 SYMBOL_SET_NAMES (sym,
745 new_name.c_str (), new_name.length (),
749 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
751 if (SYMBOL_LANGUAGE (sym) == language_cplus)
752 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
758 /* Determine the type of name being defined. */
760 /* Getting GDB to correctly skip the symbol on an undefined symbol
761 descriptor and not ever dump core is a very dodgy proposition if
762 we do things this way. I say the acorn RISC machine can just
763 fix their compiler. */
764 /* The Acorn RISC machine's compiler can put out locals that don't
765 start with "234=" or "(3,4)=", so assume anything other than the
766 deftypes we know how to handle is a local. */
767 if (!strchr ("cfFGpPrStTvVXCR", *p))
769 if (isdigit (*p) || *p == '(' || *p == '-')
778 /* c is a special case, not followed by a type-number.
779 SYMBOL:c=iVALUE for an integer constant symbol.
780 SYMBOL:c=rVALUE for a floating constant symbol.
781 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
782 e.g. "b:c=e6,0" for "const b = blob1"
783 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
786 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
787 SYMBOL_TYPE (sym) = error_type (&p, objfile);
788 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
789 add_symbol_to_list (sym, get_file_symbols ());
798 struct type *dbl_type;
800 dbl_type = objfile_type (objfile)->builtin_double;
802 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
803 TYPE_LENGTH (dbl_type));
805 target_float_from_string (dbl_valu, dbl_type, std::string (p));
807 SYMBOL_TYPE (sym) = dbl_type;
808 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
814 /* Defining integer constants this way is kind of silly,
815 since 'e' constants allows the compiler to give not
816 only the value, but the type as well. C has at least
817 int, long, unsigned int, and long long as constant
818 types; other languages probably should have at least
819 unsigned as well as signed constants. */
821 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
822 SYMBOL_VALUE (sym) = atoi (p);
823 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
829 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
830 SYMBOL_VALUE (sym) = atoi (p);
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
837 struct type *range_type;
840 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
841 gdb_byte *string_value;
843 if (quote != '\'' && quote != '"')
845 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
846 SYMBOL_TYPE (sym) = error_type (&p, objfile);
847 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
848 add_symbol_to_list (sym, get_file_symbols ());
852 /* Find matching quote, rejecting escaped quotes. */
853 while (*p && *p != quote)
855 if (*p == '\\' && p[1] == quote)
857 string_local[ind] = (gdb_byte) quote;
863 string_local[ind] = (gdb_byte) (*p);
870 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
871 SYMBOL_TYPE (sym) = error_type (&p, objfile);
872 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
873 add_symbol_to_list (sym, get_file_symbols ());
877 /* NULL terminate the string. */
878 string_local[ind] = 0;
880 = create_static_range_type (NULL,
881 objfile_type (objfile)->builtin_int,
883 SYMBOL_TYPE (sym) = create_array_type (NULL,
884 objfile_type (objfile)->builtin_char,
887 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
888 memcpy (string_value, string_local, ind + 1);
891 SYMBOL_VALUE_BYTES (sym) = string_value;
892 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
897 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
898 can be represented as integral.
899 e.g. "b:c=e6,0" for "const b = blob1"
900 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
902 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
903 SYMBOL_TYPE (sym) = read_type (&p, objfile);
907 SYMBOL_TYPE (sym) = error_type (&p, objfile);
912 /* If the value is too big to fit in an int (perhaps because
913 it is unsigned), or something like that, we silently get
914 a bogus value. The type and everything else about it is
915 correct. Ideally, we should be using whatever we have
916 available for parsing unsigned and long long values,
918 SYMBOL_VALUE (sym) = atoi (p);
923 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
924 SYMBOL_TYPE (sym) = error_type (&p, objfile);
927 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
928 add_symbol_to_list (sym, get_file_symbols ());
932 /* The name of a caught exception. */
933 SYMBOL_TYPE (sym) = read_type (&p, objfile);
934 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
935 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
936 SYMBOL_VALUE_ADDRESS (sym) = valu;
937 add_symbol_to_list (sym, get_local_symbols ());
941 /* A static function definition. */
942 SYMBOL_TYPE (sym) = read_type (&p, objfile);
943 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
944 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
945 add_symbol_to_list (sym, get_file_symbols ());
946 /* fall into process_function_types. */
948 process_function_types:
949 /* Function result types are described as the result type in stabs.
950 We need to convert this to the function-returning-type-X type
951 in GDB. E.g. "int" is converted to "function returning int". */
952 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
953 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
955 /* All functions in C++ have prototypes. Stabs does not offer an
956 explicit way to identify prototyped or unprototyped functions,
957 but both GCC and Sun CC emit stabs for the "call-as" type rather
958 than the "declared-as" type for unprototyped functions, so
959 we treat all functions as if they were prototyped. This is used
960 primarily for promotion when calling the function from GDB. */
961 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
963 /* fall into process_prototype_types. */
965 process_prototype_types:
966 /* Sun acc puts declared types of arguments here. */
969 struct type *ftype = SYMBOL_TYPE (sym);
974 /* Obtain a worst case guess for the number of arguments
975 by counting the semicolons. */
982 /* Allocate parameter information fields and fill them in. */
983 TYPE_FIELDS (ftype) = (struct field *)
984 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
989 /* A type number of zero indicates the start of varargs.
990 FIXME: GDB currently ignores vararg functions. */
991 if (p[0] == '0' && p[1] == '\0')
993 ptype = read_type (&p, objfile);
995 /* The Sun compilers mark integer arguments, which should
996 be promoted to the width of the calling conventions, with
997 a type which references itself. This type is turned into
998 a TYPE_CODE_VOID type by read_type, and we have to turn
999 it back into builtin_int here.
1000 FIXME: Do we need a new builtin_promoted_int_arg ? */
1001 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1002 ptype = objfile_type (objfile)->builtin_int;
1003 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1004 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1006 TYPE_NFIELDS (ftype) = nparams;
1007 TYPE_PROTOTYPED (ftype) = 1;
1012 /* A global function definition. */
1013 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1014 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1015 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1016 add_symbol_to_list (sym, get_global_symbols ());
1017 goto process_function_types;
1020 /* For a class G (global) symbol, it appears that the
1021 value is not correct. It is necessary to search for the
1022 corresponding linker definition to find the value.
1023 These definitions appear at the end of the namelist. */
1024 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1025 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1026 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1027 /* Don't add symbol references to global_sym_chain.
1028 Symbol references don't have valid names and wont't match up with
1029 minimal symbols when the global_sym_chain is relocated.
1030 We'll fixup symbol references when we fixup the defining symbol. */
1031 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1033 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1034 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1035 global_sym_chain[i] = sym;
1037 add_symbol_to_list (sym, get_global_symbols ());
1040 /* This case is faked by a conditional above,
1041 when there is no code letter in the dbx data.
1042 Dbx data never actually contains 'l'. */
1045 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1046 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1047 SYMBOL_VALUE (sym) = valu;
1048 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1049 add_symbol_to_list (sym, get_local_symbols ());
1054 /* pF is a two-letter code that means a function parameter in Fortran.
1055 The type-number specifies the type of the return value.
1056 Translate it into a pointer-to-function type. */
1060 = lookup_pointer_type
1061 (lookup_function_type (read_type (&p, objfile)));
1064 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1066 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1067 SYMBOL_VALUE (sym) = valu;
1068 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1069 SYMBOL_IS_ARGUMENT (sym) = 1;
1070 add_symbol_to_list (sym, get_local_symbols ());
1072 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1074 /* On little-endian machines, this crud is never necessary,
1075 and, if the extra bytes contain garbage, is harmful. */
1079 /* If it's gcc-compiled, if it says `short', believe it. */
1080 if (processing_gcc_compilation
1081 || gdbarch_believe_pcc_promotion (gdbarch))
1084 if (!gdbarch_believe_pcc_promotion (gdbarch))
1086 /* If PCC says a parameter is a short or a char, it is
1088 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1089 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1090 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1093 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1094 ? objfile_type (objfile)->builtin_unsigned_int
1095 : objfile_type (objfile)->builtin_int;
1102 /* acc seems to use P to declare the prototypes of functions that
1103 are referenced by this file. gdb is not prepared to deal
1104 with this extra information. FIXME, it ought to. */
1107 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1108 goto process_prototype_types;
1113 /* Parameter which is in a register. */
1114 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1115 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1116 SYMBOL_IS_ARGUMENT (sym) = 1;
1117 SYMBOL_VALUE (sym) = valu;
1118 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1119 add_symbol_to_list (sym, get_local_symbols ());
1123 /* Register variable (either global or local). */
1124 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1125 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1126 SYMBOL_VALUE (sym) = valu;
1127 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1128 if (within_function)
1130 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1131 the same name to represent an argument passed in a
1132 register. GCC uses 'P' for the same case. So if we find
1133 such a symbol pair we combine it into one 'P' symbol.
1134 For Sun cc we need to do this regardless of
1135 stabs_argument_has_addr, because the compiler puts out
1136 the 'p' symbol even if it never saves the argument onto
1139 On most machines, we want to preserve both symbols, so
1140 that we can still get information about what is going on
1141 with the stack (VAX for computing args_printed, using
1142 stack slots instead of saved registers in backtraces,
1145 Note that this code illegally combines
1146 main(argc) struct foo argc; { register struct foo argc; }
1147 but this case is considered pathological and causes a warning
1148 from a decent compiler. */
1150 struct pending *local_symbols = *get_local_symbols ();
1152 && local_symbols->nsyms > 0
1153 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1155 struct symbol *prev_sym;
1157 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1158 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1159 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1160 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1161 SYMBOL_LINKAGE_NAME (sym)) == 0)
1163 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1164 /* Use the type from the LOC_REGISTER; that is the type
1165 that is actually in that register. */
1166 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1167 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1172 add_symbol_to_list (sym, get_local_symbols ());
1175 add_symbol_to_list (sym, get_file_symbols ());
1179 /* Static symbol at top level of file. */
1180 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1181 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1182 SYMBOL_VALUE_ADDRESS (sym) = valu;
1183 if (gdbarch_static_transform_name_p (gdbarch)
1184 && gdbarch_static_transform_name (gdbarch,
1185 SYMBOL_LINKAGE_NAME (sym))
1186 != SYMBOL_LINKAGE_NAME (sym))
1188 struct bound_minimal_symbol msym;
1190 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1192 if (msym.minsym != NULL)
1194 const char *new_name = gdbarch_static_transform_name
1195 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1197 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1198 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1201 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1202 add_symbol_to_list (sym, get_file_symbols ());
1206 /* In Ada, there is no distinction between typedef and non-typedef;
1207 any type declaration implicitly has the equivalent of a typedef,
1208 and thus 't' is in fact equivalent to 'Tt'.
1210 Therefore, for Ada units, we check the character immediately
1211 before the 't', and if we do not find a 'T', then make sure to
1212 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1213 will be stored in the VAR_DOMAIN). If the symbol was indeed
1214 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1215 elsewhere, so we don't need to take care of that.
1217 This is important to do, because of forward references:
1218 The cleanup of undefined types stored in undef_types only uses
1219 STRUCT_DOMAIN symbols to perform the replacement. */
1220 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1223 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1225 /* For a nameless type, we don't want a create a symbol, thus we
1226 did not use `sym'. Return without further processing. */
1230 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1231 SYMBOL_VALUE (sym) = valu;
1232 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1233 /* C++ vagaries: we may have a type which is derived from
1234 a base type which did not have its name defined when the
1235 derived class was output. We fill in the derived class's
1236 base part member's name here in that case. */
1237 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1238 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1239 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1240 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1244 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1245 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1246 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1247 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1250 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1252 /* gcc-2.6 or later (when using -fvtable-thunks)
1253 emits a unique named type for a vtable entry.
1254 Some gdb code depends on that specific name. */
1255 extern const char vtbl_ptr_name[];
1257 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1258 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1259 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1261 /* If we are giving a name to a type such as "pointer to
1262 foo" or "function returning foo", we better not set
1263 the TYPE_NAME. If the program contains "typedef char
1264 *caddr_t;", we don't want all variables of type char
1265 * to print as caddr_t. This is not just a
1266 consequence of GDB's type management; PCC and GCC (at
1267 least through version 2.4) both output variables of
1268 either type char * or caddr_t with the type number
1269 defined in the 't' symbol for caddr_t. If a future
1270 compiler cleans this up it GDB is not ready for it
1271 yet, but if it becomes ready we somehow need to
1272 disable this check (without breaking the PCC/GCC2.4
1277 Fortunately, this check seems not to be necessary
1278 for anything except pointers or functions. */
1279 /* ezannoni: 2000-10-26. This seems to apply for
1280 versions of gcc older than 2.8. This was the original
1281 problem: with the following code gdb would tell that
1282 the type for name1 is caddr_t, and func is char().
1284 typedef char *caddr_t;
1296 /* Pascal accepts names for pointer types. */
1297 if (get_current_subfile ()->language == language_pascal)
1299 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1303 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1306 add_symbol_to_list (sym, get_file_symbols ());
1310 /* Create the STRUCT_DOMAIN clone. */
1311 struct symbol *struct_sym = allocate_symbol (objfile);
1314 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1315 SYMBOL_VALUE (struct_sym) = valu;
1316 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1317 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1318 TYPE_NAME (SYMBOL_TYPE (sym))
1319 = obconcat (&objfile->objfile_obstack,
1320 SYMBOL_LINKAGE_NAME (sym),
1322 add_symbol_to_list (struct_sym, get_file_symbols ());
1328 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1329 by 't' which means we are typedef'ing it as well. */
1330 synonym = *p == 't';
1335 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1337 /* For a nameless type, we don't want a create a symbol, thus we
1338 did not use `sym'. Return without further processing. */
1342 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1343 SYMBOL_VALUE (sym) = valu;
1344 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1350 add_symbol_to_list (sym, get_file_symbols ());
1354 /* Clone the sym and then modify it. */
1355 struct symbol *typedef_sym = allocate_symbol (objfile);
1357 *typedef_sym = *sym;
1358 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1359 SYMBOL_VALUE (typedef_sym) = valu;
1360 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1361 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1362 TYPE_NAME (SYMBOL_TYPE (sym))
1363 = obconcat (&objfile->objfile_obstack,
1364 SYMBOL_LINKAGE_NAME (sym),
1366 add_symbol_to_list (typedef_sym, get_file_symbols ());
1371 /* Static symbol of local scope. */
1372 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1373 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1374 SYMBOL_VALUE_ADDRESS (sym) = valu;
1375 if (gdbarch_static_transform_name_p (gdbarch)
1376 && gdbarch_static_transform_name (gdbarch,
1377 SYMBOL_LINKAGE_NAME (sym))
1378 != SYMBOL_LINKAGE_NAME (sym))
1380 struct bound_minimal_symbol msym;
1382 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1384 if (msym.minsym != NULL)
1386 const char *new_name = gdbarch_static_transform_name
1387 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1389 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1390 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1393 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1394 add_symbol_to_list (sym, get_local_symbols ());
1398 /* Reference parameter */
1399 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1400 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1401 SYMBOL_IS_ARGUMENT (sym) = 1;
1402 SYMBOL_VALUE (sym) = valu;
1403 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1404 add_symbol_to_list (sym, get_local_symbols ());
1408 /* Reference parameter which is in a register. */
1409 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1410 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1411 SYMBOL_IS_ARGUMENT (sym) = 1;
1412 SYMBOL_VALUE (sym) = valu;
1413 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1414 add_symbol_to_list (sym, get_local_symbols ());
1418 /* This is used by Sun FORTRAN for "function result value".
1419 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1420 that Pascal uses it too, but when I tried it Pascal used
1421 "x:3" (local symbol) instead. */
1422 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1423 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1424 SYMBOL_VALUE (sym) = valu;
1425 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1426 add_symbol_to_list (sym, get_local_symbols ());
1430 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1431 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1432 SYMBOL_VALUE (sym) = 0;
1433 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1434 add_symbol_to_list (sym, get_file_symbols ());
1438 /* Some systems pass variables of certain types by reference instead
1439 of by value, i.e. they will pass the address of a structure (in a
1440 register or on the stack) instead of the structure itself. */
1442 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1443 && SYMBOL_IS_ARGUMENT (sym))
1445 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1446 variables passed in a register). */
1447 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1448 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1449 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1450 and subsequent arguments on SPARC, for example). */
1451 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1452 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1458 /* Skip rest of this symbol and return an error type.
1460 General notes on error recovery: error_type always skips to the
1461 end of the symbol (modulo cretinous dbx symbol name continuation).
1462 Thus code like this:
1464 if (*(*pp)++ != ';')
1465 return error_type (pp, objfile);
1467 is wrong because if *pp starts out pointing at '\0' (typically as the
1468 result of an earlier error), it will be incremented to point to the
1469 start of the next symbol, which might produce strange results, at least
1470 if you run off the end of the string table. Instead use
1473 return error_type (pp, objfile);
1479 foo = error_type (pp, objfile);
1483 And in case it isn't obvious, the point of all this hair is so the compiler
1484 can define new types and new syntaxes, and old versions of the
1485 debugger will be able to read the new symbol tables. */
1487 static struct type *
1488 error_type (const char **pp, struct objfile *objfile)
1490 complaint (_("couldn't parse type; debugger out of date?"));
1493 /* Skip to end of symbol. */
1494 while (**pp != '\0')
1499 /* Check for and handle cretinous dbx symbol name continuation! */
1500 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1502 *pp = next_symbol_text (objfile);
1509 return objfile_type (objfile)->builtin_error;
1513 /* Read type information or a type definition; return the type. Even
1514 though this routine accepts either type information or a type
1515 definition, the distinction is relevant--some parts of stabsread.c
1516 assume that type information starts with a digit, '-', or '(' in
1517 deciding whether to call read_type. */
1519 static struct type *
1520 read_type (const char **pp, struct objfile *objfile)
1522 struct type *type = 0;
1525 char type_descriptor;
1527 /* Size in bits of type if specified by a type attribute, or -1 if
1528 there is no size attribute. */
1531 /* Used to distinguish string and bitstring from char-array and set. */
1534 /* Used to distinguish vector from array. */
1537 /* Read type number if present. The type number may be omitted.
1538 for instance in a two-dimensional array declared with type
1539 "ar1;1;10;ar1;1;10;4". */
1540 if ((**pp >= '0' && **pp <= '9')
1544 if (read_type_number (pp, typenums) != 0)
1545 return error_type (pp, objfile);
1549 /* Type is not being defined here. Either it already
1550 exists, or this is a forward reference to it.
1551 dbx_alloc_type handles both cases. */
1552 type = dbx_alloc_type (typenums, objfile);
1554 /* If this is a forward reference, arrange to complain if it
1555 doesn't get patched up by the time we're done
1557 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1558 add_undefined_type (type, typenums);
1563 /* Type is being defined here. */
1565 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1570 /* 'typenums=' not present, type is anonymous. Read and return
1571 the definition, but don't put it in the type vector. */
1572 typenums[0] = typenums[1] = -1;
1577 type_descriptor = (*pp)[-1];
1578 switch (type_descriptor)
1582 enum type_code code;
1584 /* Used to index through file_symbols. */
1585 struct pending *ppt;
1588 /* Name including "struct", etc. */
1592 const char *from, *p, *q1, *q2;
1594 /* Set the type code according to the following letter. */
1598 code = TYPE_CODE_STRUCT;
1601 code = TYPE_CODE_UNION;
1604 code = TYPE_CODE_ENUM;
1608 /* Complain and keep going, so compilers can invent new
1609 cross-reference types. */
1610 complaint (_("Unrecognized cross-reference type `%c'"),
1612 code = TYPE_CODE_STRUCT;
1617 q1 = strchr (*pp, '<');
1618 p = strchr (*pp, ':');
1620 return error_type (pp, objfile);
1621 if (q1 && p > q1 && p[1] == ':')
1623 int nesting_level = 0;
1625 for (q2 = q1; *q2; q2++)
1629 else if (*q2 == '>')
1631 else if (*q2 == ':' && nesting_level == 0)
1636 return error_type (pp, objfile);
1639 if (get_current_subfile ()->language == language_cplus)
1641 char *name = (char *) alloca (p - *pp + 1);
1643 memcpy (name, *pp, p - *pp);
1644 name[p - *pp] = '\0';
1646 std::string new_name = cp_canonicalize_string (name);
1647 if (!new_name.empty ())
1650 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1652 new_name.length ());
1655 if (type_name == NULL)
1657 char *to = type_name = (char *)
1658 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1660 /* Copy the name. */
1667 /* Set the pointer ahead of the name which we just read, and
1672 /* If this type has already been declared, then reuse the same
1673 type, rather than allocating a new one. This saves some
1676 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1677 for (i = 0; i < ppt->nsyms; i++)
1679 struct symbol *sym = ppt->symbol[i];
1681 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1682 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1683 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1684 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1686 obstack_free (&objfile->objfile_obstack, type_name);
1687 type = SYMBOL_TYPE (sym);
1688 if (typenums[0] != -1)
1689 *dbx_lookup_type (typenums, objfile) = type;
1694 /* Didn't find the type to which this refers, so we must
1695 be dealing with a forward reference. Allocate a type
1696 structure for it, and keep track of it so we can
1697 fill in the rest of the fields when we get the full
1699 type = dbx_alloc_type (typenums, objfile);
1700 TYPE_CODE (type) = code;
1701 TYPE_NAME (type) = type_name;
1702 INIT_CPLUS_SPECIFIC (type);
1703 TYPE_STUB (type) = 1;
1705 add_undefined_type (type, typenums);
1709 case '-': /* RS/6000 built-in type */
1723 /* We deal with something like t(1,2)=(3,4)=... which
1724 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1726 /* Allocate and enter the typedef type first.
1727 This handles recursive types. */
1728 type = dbx_alloc_type (typenums, objfile);
1729 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1731 struct type *xtype = read_type (pp, objfile);
1735 /* It's being defined as itself. That means it is "void". */
1736 TYPE_CODE (type) = TYPE_CODE_VOID;
1737 TYPE_LENGTH (type) = 1;
1739 else if (type_size >= 0 || is_string)
1741 /* This is the absolute wrong way to construct types. Every
1742 other debug format has found a way around this problem and
1743 the related problems with unnecessarily stubbed types;
1744 someone motivated should attempt to clean up the issue
1745 here as well. Once a type pointed to has been created it
1746 should not be modified.
1748 Well, it's not *absolutely* wrong. Constructing recursive
1749 types (trees, linked lists) necessarily entails modifying
1750 types after creating them. Constructing any loop structure
1751 entails side effects. The Dwarf 2 reader does handle this
1752 more gracefully (it never constructs more than once
1753 instance of a type object, so it doesn't have to copy type
1754 objects wholesale), but it still mutates type objects after
1755 other folks have references to them.
1757 Keep in mind that this circularity/mutation issue shows up
1758 at the source language level, too: C's "incomplete types",
1759 for example. So the proper cleanup, I think, would be to
1760 limit GDB's type smashing to match exactly those required
1761 by the source language. So GDB could have a
1762 "complete_this_type" function, but never create unnecessary
1763 copies of a type otherwise. */
1764 replace_type (type, xtype);
1765 TYPE_NAME (type) = NULL;
1769 TYPE_TARGET_STUB (type) = 1;
1770 TYPE_TARGET_TYPE (type) = xtype;
1775 /* In the following types, we must be sure to overwrite any existing
1776 type that the typenums refer to, rather than allocating a new one
1777 and making the typenums point to the new one. This is because there
1778 may already be pointers to the existing type (if it had been
1779 forward-referenced), and we must change it to a pointer, function,
1780 reference, or whatever, *in-place*. */
1782 case '*': /* Pointer to another type */
1783 type1 = read_type (pp, objfile);
1784 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1787 case '&': /* Reference to another type */
1788 type1 = read_type (pp, objfile);
1789 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1793 case 'f': /* Function returning another type */
1794 type1 = read_type (pp, objfile);
1795 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1798 case 'g': /* Prototyped function. (Sun) */
1800 /* Unresolved questions:
1802 - According to Sun's ``STABS Interface Manual'', for 'f'
1803 and 'F' symbol descriptors, a `0' in the argument type list
1804 indicates a varargs function. But it doesn't say how 'g'
1805 type descriptors represent that info. Someone with access
1806 to Sun's toolchain should try it out.
1808 - According to the comment in define_symbol (search for
1809 `process_prototype_types:'), Sun emits integer arguments as
1810 types which ref themselves --- like `void' types. Do we
1811 have to deal with that here, too? Again, someone with
1812 access to Sun's toolchain should try it out and let us
1815 const char *type_start = (*pp) - 1;
1816 struct type *return_type = read_type (pp, objfile);
1817 struct type *func_type
1818 = make_function_type (return_type,
1819 dbx_lookup_type (typenums, objfile));
1822 struct type_list *next;
1826 while (**pp && **pp != '#')
1828 struct type *arg_type = read_type (pp, objfile);
1829 struct type_list *newobj = XALLOCA (struct type_list);
1830 newobj->type = arg_type;
1831 newobj->next = arg_types;
1839 complaint (_("Prototyped function type didn't "
1840 "end arguments with `#':\n%s"),
1844 /* If there is just one argument whose type is `void', then
1845 that's just an empty argument list. */
1847 && ! arg_types->next
1848 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1851 TYPE_FIELDS (func_type)
1852 = (struct field *) TYPE_ALLOC (func_type,
1853 num_args * sizeof (struct field));
1854 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1857 struct type_list *t;
1859 /* We stuck each argument type onto the front of the list
1860 when we read it, so the list is reversed. Build the
1861 fields array right-to-left. */
1862 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1863 TYPE_FIELD_TYPE (func_type, i) = t->type;
1865 TYPE_NFIELDS (func_type) = num_args;
1866 TYPE_PROTOTYPED (func_type) = 1;
1872 case 'k': /* Const qualifier on some type (Sun) */
1873 type = read_type (pp, objfile);
1874 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1875 dbx_lookup_type (typenums, objfile));
1878 case 'B': /* Volatile qual on some type (Sun) */
1879 type = read_type (pp, objfile);
1880 type = make_cv_type (TYPE_CONST (type), 1, type,
1881 dbx_lookup_type (typenums, objfile));
1885 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1886 { /* Member (class & variable) type */
1887 /* FIXME -- we should be doing smash_to_XXX types here. */
1889 struct type *domain = read_type (pp, objfile);
1890 struct type *memtype;
1893 /* Invalid member type data format. */
1894 return error_type (pp, objfile);
1897 memtype = read_type (pp, objfile);
1898 type = dbx_alloc_type (typenums, objfile);
1899 smash_to_memberptr_type (type, domain, memtype);
1902 /* type attribute */
1904 const char *attr = *pp;
1906 /* Skip to the semicolon. */
1907 while (**pp != ';' && **pp != '\0')
1910 return error_type (pp, objfile);
1912 ++ * pp; /* Skip the semicolon. */
1916 case 's': /* Size attribute */
1917 type_size = atoi (attr + 1);
1922 case 'S': /* String attribute */
1923 /* FIXME: check to see if following type is array? */
1927 case 'V': /* Vector attribute */
1928 /* FIXME: check to see if following type is array? */
1933 /* Ignore unrecognized type attributes, so future compilers
1934 can invent new ones. */
1942 case '#': /* Method (class & fn) type */
1943 if ((*pp)[0] == '#')
1945 /* We'll get the parameter types from the name. */
1946 struct type *return_type;
1949 return_type = read_type (pp, objfile);
1950 if (*(*pp)++ != ';')
1951 complaint (_("invalid (minimal) member type "
1952 "data format at symtab pos %d."),
1954 type = allocate_stub_method (return_type);
1955 if (typenums[0] != -1)
1956 *dbx_lookup_type (typenums, objfile) = type;
1960 struct type *domain = read_type (pp, objfile);
1961 struct type *return_type;
1966 /* Invalid member type data format. */
1967 return error_type (pp, objfile);
1971 return_type = read_type (pp, objfile);
1972 args = read_args (pp, ';', objfile, &nargs, &varargs);
1974 return error_type (pp, objfile);
1975 type = dbx_alloc_type (typenums, objfile);
1976 smash_to_method_type (type, domain, return_type, args,
1981 case 'r': /* Range type */
1982 type = read_range_type (pp, typenums, type_size, objfile);
1983 if (typenums[0] != -1)
1984 *dbx_lookup_type (typenums, objfile) = type;
1989 /* Sun ACC builtin int type */
1990 type = read_sun_builtin_type (pp, typenums, objfile);
1991 if (typenums[0] != -1)
1992 *dbx_lookup_type (typenums, objfile) = type;
1996 case 'R': /* Sun ACC builtin float type */
1997 type = read_sun_floating_type (pp, typenums, objfile);
1998 if (typenums[0] != -1)
1999 *dbx_lookup_type (typenums, objfile) = type;
2002 case 'e': /* Enumeration type */
2003 type = dbx_alloc_type (typenums, objfile);
2004 type = read_enum_type (pp, type, objfile);
2005 if (typenums[0] != -1)
2006 *dbx_lookup_type (typenums, objfile) = type;
2009 case 's': /* Struct type */
2010 case 'u': /* Union type */
2012 enum type_code type_code = TYPE_CODE_UNDEF;
2013 type = dbx_alloc_type (typenums, objfile);
2014 switch (type_descriptor)
2017 type_code = TYPE_CODE_STRUCT;
2020 type_code = TYPE_CODE_UNION;
2023 type = read_struct_type (pp, type, type_code, objfile);
2027 case 'a': /* Array type */
2029 return error_type (pp, objfile);
2032 type = dbx_alloc_type (typenums, objfile);
2033 type = read_array_type (pp, type, objfile);
2035 TYPE_CODE (type) = TYPE_CODE_STRING;
2037 make_vector_type (type);
2040 case 'S': /* Set type */
2041 type1 = read_type (pp, objfile);
2042 type = create_set_type ((struct type *) NULL, type1);
2043 if (typenums[0] != -1)
2044 *dbx_lookup_type (typenums, objfile) = type;
2048 --*pp; /* Go back to the symbol in error. */
2049 /* Particularly important if it was \0! */
2050 return error_type (pp, objfile);
2055 warning (_("GDB internal error, type is NULL in stabsread.c."));
2056 return error_type (pp, objfile);
2059 /* Size specified in a type attribute overrides any other size. */
2060 if (type_size != -1)
2061 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2066 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2067 Return the proper type node for a given builtin type number. */
2069 static const struct objfile_data *rs6000_builtin_type_data;
2071 static struct type *
2072 rs6000_builtin_type (int typenum, struct objfile *objfile)
2074 struct type **negative_types
2075 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2077 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2078 #define NUMBER_RECOGNIZED 34
2079 struct type *rettype = NULL;
2081 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2083 complaint (_("Unknown builtin type %d"), typenum);
2084 return objfile_type (objfile)->builtin_error;
2087 if (!negative_types)
2089 /* This includes an empty slot for type number -0. */
2090 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2091 NUMBER_RECOGNIZED + 1, struct type *);
2092 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2095 if (negative_types[-typenum] != NULL)
2096 return negative_types[-typenum];
2098 #if TARGET_CHAR_BIT != 8
2099 #error This code wrong for TARGET_CHAR_BIT not 8
2100 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2101 that if that ever becomes not true, the correct fix will be to
2102 make the size in the struct type to be in bits, not in units of
2109 /* The size of this and all the other types are fixed, defined
2110 by the debugging format. If there is a type called "int" which
2111 is other than 32 bits, then it should use a new negative type
2112 number (or avoid negative type numbers for that case).
2113 See stabs.texinfo. */
2114 rettype = init_integer_type (objfile, 32, 0, "int");
2117 rettype = init_integer_type (objfile, 8, 0, "char");
2118 TYPE_NOSIGN (rettype) = 1;
2121 rettype = init_integer_type (objfile, 16, 0, "short");
2124 rettype = init_integer_type (objfile, 32, 0, "long");
2127 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2130 rettype = init_integer_type (objfile, 8, 0, "signed char");
2133 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2136 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2139 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2142 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2145 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2148 /* IEEE single precision (32 bit). */
2149 rettype = init_float_type (objfile, 32, "float",
2150 floatformats_ieee_single);
2153 /* IEEE double precision (64 bit). */
2154 rettype = init_float_type (objfile, 64, "double",
2155 floatformats_ieee_double);
2158 /* This is an IEEE double on the RS/6000, and different machines with
2159 different sizes for "long double" should use different negative
2160 type numbers. See stabs.texinfo. */
2161 rettype = init_float_type (objfile, 64, "long double",
2162 floatformats_ieee_double);
2165 rettype = init_integer_type (objfile, 32, 0, "integer");
2168 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2171 rettype = init_float_type (objfile, 32, "short real",
2172 floatformats_ieee_single);
2175 rettype = init_float_type (objfile, 64, "real",
2176 floatformats_ieee_double);
2179 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2182 rettype = init_character_type (objfile, 8, 1, "character");
2185 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2188 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2191 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2194 rettype = init_boolean_type (objfile, 32, 1, "logical");
2197 /* Complex type consisting of two IEEE single precision values. */
2198 rettype = init_complex_type (objfile, "complex",
2199 rs6000_builtin_type (12, objfile));
2202 /* Complex type consisting of two IEEE double precision values. */
2203 rettype = init_complex_type (objfile, "double complex",
2204 rs6000_builtin_type (13, objfile));
2207 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2210 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2213 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2216 rettype = init_character_type (objfile, 16, 0, "wchar");
2219 rettype = init_integer_type (objfile, 64, 0, "long long");
2222 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2225 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2228 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2231 negative_types[-typenum] = rettype;
2235 /* This page contains subroutines of read_type. */
2237 /* Wrapper around method_name_from_physname to flag a complaint
2238 if there is an error. */
2241 stabs_method_name_from_physname (const char *physname)
2245 method_name = method_name_from_physname (physname);
2247 if (method_name == NULL)
2249 complaint (_("Method has bad physname %s\n"), physname);
2256 /* Read member function stabs info for C++ classes. The form of each member
2259 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2261 An example with two member functions is:
2263 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2265 For the case of overloaded operators, the format is op$::*.funcs, where
2266 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2267 name (such as `+=') and `.' marks the end of the operator name.
2269 Returns 1 for success, 0 for failure. */
2272 read_member_functions (struct field_info *fip, const char **pp,
2273 struct type *type, struct objfile *objfile)
2280 struct next_fnfield *next;
2281 struct fn_field fn_field;
2284 struct type *look_ahead_type;
2285 struct next_fnfieldlist *new_fnlist;
2286 struct next_fnfield *new_sublist;
2290 /* Process each list until we find something that is not a member function
2291 or find the end of the functions. */
2295 /* We should be positioned at the start of the function name.
2296 Scan forward to find the first ':' and if it is not the
2297 first of a "::" delimiter, then this is not a member function. */
2309 look_ahead_type = NULL;
2312 new_fnlist = XCNEW (struct next_fnfieldlist);
2313 make_cleanup (xfree, new_fnlist);
2315 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2317 /* This is a completely wierd case. In order to stuff in the
2318 names that might contain colons (the usual name delimiter),
2319 Mike Tiemann defined a different name format which is
2320 signalled if the identifier is "op$". In that case, the
2321 format is "op$::XXXX." where XXXX is the name. This is
2322 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2323 /* This lets the user type "break operator+".
2324 We could just put in "+" as the name, but that wouldn't
2326 static char opname[32] = "op$";
2327 char *o = opname + 3;
2329 /* Skip past '::'. */
2332 STABS_CONTINUE (pp, objfile);
2338 main_fn_name = savestring (opname, o - opname);
2344 main_fn_name = savestring (*pp, p - *pp);
2345 /* Skip past '::'. */
2348 new_fnlist->fn_fieldlist.name = main_fn_name;
2352 new_sublist = XCNEW (struct next_fnfield);
2353 make_cleanup (xfree, new_sublist);
2355 /* Check for and handle cretinous dbx symbol name continuation! */
2356 if (look_ahead_type == NULL)
2359 STABS_CONTINUE (pp, objfile);
2361 new_sublist->fn_field.type = read_type (pp, objfile);
2364 /* Invalid symtab info for member function. */
2370 /* g++ version 1 kludge */
2371 new_sublist->fn_field.type = look_ahead_type;
2372 look_ahead_type = NULL;
2382 /* These are methods, not functions. */
2383 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2384 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2386 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2387 == TYPE_CODE_METHOD);
2389 /* If this is just a stub, then we don't have the real name here. */
2390 if (TYPE_STUB (new_sublist->fn_field.type))
2392 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2393 set_type_self_type (new_sublist->fn_field.type, type);
2394 new_sublist->fn_field.is_stub = 1;
2397 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2400 /* Set this member function's visibility fields. */
2403 case VISIBILITY_PRIVATE:
2404 new_sublist->fn_field.is_private = 1;
2406 case VISIBILITY_PROTECTED:
2407 new_sublist->fn_field.is_protected = 1;
2411 STABS_CONTINUE (pp, objfile);
2414 case 'A': /* Normal functions. */
2415 new_sublist->fn_field.is_const = 0;
2416 new_sublist->fn_field.is_volatile = 0;
2419 case 'B': /* `const' member functions. */
2420 new_sublist->fn_field.is_const = 1;
2421 new_sublist->fn_field.is_volatile = 0;
2424 case 'C': /* `volatile' member function. */
2425 new_sublist->fn_field.is_const = 0;
2426 new_sublist->fn_field.is_volatile = 1;
2429 case 'D': /* `const volatile' member function. */
2430 new_sublist->fn_field.is_const = 1;
2431 new_sublist->fn_field.is_volatile = 1;
2434 case '*': /* File compiled with g++ version 1 --
2440 complaint (_("const/volatile indicator missing, got '%c'"),
2450 /* virtual member function, followed by index.
2451 The sign bit is set to distinguish pointers-to-methods
2452 from virtual function indicies. Since the array is
2453 in words, the quantity must be shifted left by 1
2454 on 16 bit machine, and by 2 on 32 bit machine, forcing
2455 the sign bit out, and usable as a valid index into
2456 the array. Remove the sign bit here. */
2457 new_sublist->fn_field.voffset =
2458 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2462 STABS_CONTINUE (pp, objfile);
2463 if (**pp == ';' || **pp == '\0')
2465 /* Must be g++ version 1. */
2466 new_sublist->fn_field.fcontext = 0;
2470 /* Figure out from whence this virtual function came.
2471 It may belong to virtual function table of
2472 one of its baseclasses. */
2473 look_ahead_type = read_type (pp, objfile);
2476 /* g++ version 1 overloaded methods. */
2480 new_sublist->fn_field.fcontext = look_ahead_type;
2489 look_ahead_type = NULL;
2495 /* static member function. */
2497 int slen = strlen (main_fn_name);
2499 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2501 /* For static member functions, we can't tell if they
2502 are stubbed, as they are put out as functions, and not as
2504 GCC v2 emits the fully mangled name if
2505 dbxout.c:flag_minimal_debug is not set, so we have to
2506 detect a fully mangled physname here and set is_stub
2507 accordingly. Fully mangled physnames in v2 start with
2508 the member function name, followed by two underscores.
2509 GCC v3 currently always emits stubbed member functions,
2510 but with fully mangled physnames, which start with _Z. */
2511 if (!(strncmp (new_sublist->fn_field.physname,
2512 main_fn_name, slen) == 0
2513 && new_sublist->fn_field.physname[slen] == '_'
2514 && new_sublist->fn_field.physname[slen + 1] == '_'))
2516 new_sublist->fn_field.is_stub = 1;
2523 complaint (_("member function type missing, got '%c'"),
2525 /* Normal member function. */
2529 /* normal member function. */
2530 new_sublist->fn_field.voffset = 0;
2531 new_sublist->fn_field.fcontext = 0;
2535 new_sublist->next = sublist;
2536 sublist = new_sublist;
2538 STABS_CONTINUE (pp, objfile);
2540 while (**pp != ';' && **pp != '\0');
2543 STABS_CONTINUE (pp, objfile);
2545 /* Skip GCC 3.X member functions which are duplicates of the callable
2546 constructor/destructor. */
2547 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2548 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2549 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2551 xfree (main_fn_name);
2556 int has_destructor = 0, has_other = 0;
2558 struct next_fnfield *tmp_sublist;
2560 /* Various versions of GCC emit various mostly-useless
2561 strings in the name field for special member functions.
2563 For stub methods, we need to defer correcting the name
2564 until we are ready to unstub the method, because the current
2565 name string is used by gdb_mangle_name. The only stub methods
2566 of concern here are GNU v2 operators; other methods have their
2567 names correct (see caveat below).
2569 For non-stub methods, in GNU v3, we have a complete physname.
2570 Therefore we can safely correct the name now. This primarily
2571 affects constructors and destructors, whose name will be
2572 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2573 operators will also have incorrect names; for instance,
2574 "operator int" will be named "operator i" (i.e. the type is
2577 For non-stub methods in GNU v2, we have no easy way to
2578 know if we have a complete physname or not. For most
2579 methods the result depends on the platform (if CPLUS_MARKER
2580 can be `$' or `.', it will use minimal debug information, or
2581 otherwise the full physname will be included).
2583 Rather than dealing with this, we take a different approach.
2584 For v3 mangled names, we can use the full physname; for v2,
2585 we use cplus_demangle_opname (which is actually v2 specific),
2586 because the only interesting names are all operators - once again
2587 barring the caveat below. Skip this process if any method in the
2588 group is a stub, to prevent our fouling up the workings of
2591 The caveat: GCC 2.95.x (and earlier?) put constructors and
2592 destructors in the same method group. We need to split this
2593 into two groups, because they should have different names.
2594 So for each method group we check whether it contains both
2595 routines whose physname appears to be a destructor (the physnames
2596 for and destructors are always provided, due to quirks in v2
2597 mangling) and routines whose physname does not appear to be a
2598 destructor. If so then we break up the list into two halves.
2599 Even if the constructors and destructors aren't in the same group
2600 the destructor will still lack the leading tilde, so that also
2603 So, to summarize what we expect and handle here:
2605 Given Given Real Real Action
2606 method name physname physname method name
2608 __opi [none] __opi__3Foo operator int opname
2610 Foo _._3Foo _._3Foo ~Foo separate and
2612 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2613 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2616 tmp_sublist = sublist;
2617 while (tmp_sublist != NULL)
2619 if (tmp_sublist->fn_field.is_stub)
2621 if (tmp_sublist->fn_field.physname[0] == '_'
2622 && tmp_sublist->fn_field.physname[1] == 'Z')
2625 if (is_destructor_name (tmp_sublist->fn_field.physname))
2630 tmp_sublist = tmp_sublist->next;
2633 if (has_destructor && has_other)
2635 struct next_fnfieldlist *destr_fnlist;
2636 struct next_fnfield *last_sublist;
2638 /* Create a new fn_fieldlist for the destructors. */
2640 destr_fnlist = XCNEW (struct next_fnfieldlist);
2641 make_cleanup (xfree, destr_fnlist);
2643 destr_fnlist->fn_fieldlist.name
2644 = obconcat (&objfile->objfile_obstack, "~",
2645 new_fnlist->fn_fieldlist.name, (char *) NULL);
2647 destr_fnlist->fn_fieldlist.fn_fields =
2648 XOBNEWVEC (&objfile->objfile_obstack,
2649 struct fn_field, has_destructor);
2650 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2651 sizeof (struct fn_field) * has_destructor);
2652 tmp_sublist = sublist;
2653 last_sublist = NULL;
2655 while (tmp_sublist != NULL)
2657 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2659 tmp_sublist = tmp_sublist->next;
2663 destr_fnlist->fn_fieldlist.fn_fields[i++]
2664 = tmp_sublist->fn_field;
2666 last_sublist->next = tmp_sublist->next;
2668 sublist = tmp_sublist->next;
2669 last_sublist = tmp_sublist;
2670 tmp_sublist = tmp_sublist->next;
2673 destr_fnlist->fn_fieldlist.length = has_destructor;
2674 destr_fnlist->next = fip->fnlist;
2675 fip->fnlist = destr_fnlist;
2677 length -= has_destructor;
2681 /* v3 mangling prevents the use of abbreviated physnames,
2682 so we can do this here. There are stubbed methods in v3
2684 - in -gstabs instead of -gstabs+
2685 - or for static methods, which are output as a function type
2686 instead of a method type. */
2687 char *new_method_name =
2688 stabs_method_name_from_physname (sublist->fn_field.physname);
2690 if (new_method_name != NULL
2691 && strcmp (new_method_name,
2692 new_fnlist->fn_fieldlist.name) != 0)
2694 new_fnlist->fn_fieldlist.name = new_method_name;
2695 xfree (main_fn_name);
2698 xfree (new_method_name);
2700 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2702 new_fnlist->fn_fieldlist.name =
2703 obconcat (&objfile->objfile_obstack,
2704 "~", main_fn_name, (char *)NULL);
2705 xfree (main_fn_name);
2709 char dem_opname[256];
2712 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2713 dem_opname, DMGL_ANSI);
2715 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2718 new_fnlist->fn_fieldlist.name
2720 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2721 strlen (dem_opname)));
2722 xfree (main_fn_name);
2725 new_fnlist->fn_fieldlist.fn_fields
2726 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2727 for (i = length; (i--, sublist); sublist = sublist->next)
2729 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2732 new_fnlist->fn_fieldlist.length = length;
2733 new_fnlist->next = fip->fnlist;
2734 fip->fnlist = new_fnlist;
2741 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2742 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2743 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2744 memset (TYPE_FN_FIELDLISTS (type), 0,
2745 sizeof (struct fn_fieldlist) * nfn_fields);
2746 TYPE_NFN_FIELDS (type) = nfn_fields;
2752 /* Special GNU C++ name.
2754 Returns 1 for success, 0 for failure. "failure" means that we can't
2755 keep parsing and it's time for error_type(). */
2758 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2759 struct objfile *objfile)
2764 struct type *context;
2774 /* At this point, *pp points to something like "22:23=*22...",
2775 where the type number before the ':' is the "context" and
2776 everything after is a regular type definition. Lookup the
2777 type, find it's name, and construct the field name. */
2779 context = read_type (pp, objfile);
2783 case 'f': /* $vf -- a virtual function table pointer */
2784 name = TYPE_NAME (context);
2789 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2790 vptr_name, name, (char *) NULL);
2793 case 'b': /* $vb -- a virtual bsomethingorother */
2794 name = TYPE_NAME (context);
2797 complaint (_("C++ abbreviated type name "
2798 "unknown at symtab pos %d"),
2802 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2803 name, (char *) NULL);
2807 invalid_cpp_abbrev_complaint (*pp);
2808 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2809 "INVALID_CPLUSPLUS_ABBREV",
2814 /* At this point, *pp points to the ':'. Skip it and read the
2820 invalid_cpp_abbrev_complaint (*pp);
2823 fip->list->field.type = read_type (pp, objfile);
2825 (*pp)++; /* Skip the comma. */
2832 SET_FIELD_BITPOS (fip->list->field,
2833 read_huge_number (pp, ';', &nbits, 0));
2837 /* This field is unpacked. */
2838 FIELD_BITSIZE (fip->list->field) = 0;
2839 fip->list->visibility = VISIBILITY_PRIVATE;
2843 invalid_cpp_abbrev_complaint (*pp);
2844 /* We have no idea what syntax an unrecognized abbrev would have, so
2845 better return 0. If we returned 1, we would need to at least advance
2846 *pp to avoid an infinite loop. */
2853 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2854 struct type *type, struct objfile *objfile)
2856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2858 fip->list->field.name
2859 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2862 /* This means we have a visibility for a field coming. */
2866 fip->list->visibility = *(*pp)++;
2870 /* normal dbx-style format, no explicit visibility */
2871 fip->list->visibility = VISIBILITY_PUBLIC;
2874 fip->list->field.type = read_type (pp, objfile);
2879 /* Possible future hook for nested types. */
2882 fip->list->field.bitpos = (long) -2; /* nested type */
2892 /* Static class member. */
2893 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2897 else if (**pp != ',')
2899 /* Bad structure-type format. */
2900 stabs_general_complaint ("bad structure-type format");
2904 (*pp)++; /* Skip the comma. */
2909 SET_FIELD_BITPOS (fip->list->field,
2910 read_huge_number (pp, ',', &nbits, 0));
2913 stabs_general_complaint ("bad structure-type format");
2916 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2919 stabs_general_complaint ("bad structure-type format");
2924 if (FIELD_BITPOS (fip->list->field) == 0
2925 && FIELD_BITSIZE (fip->list->field) == 0)
2927 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2928 it is a field which has been optimized out. The correct stab for
2929 this case is to use VISIBILITY_IGNORE, but that is a recent
2930 invention. (2) It is a 0-size array. For example
2931 union { int num; char str[0]; } foo. Printing _("<no value>" for
2932 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2933 will continue to work, and a 0-size array as a whole doesn't
2934 have any contents to print.
2936 I suspect this probably could also happen with gcc -gstabs (not
2937 -gstabs+) for static fields, and perhaps other C++ extensions.
2938 Hopefully few people use -gstabs with gdb, since it is intended
2939 for dbx compatibility. */
2941 /* Ignore this field. */
2942 fip->list->visibility = VISIBILITY_IGNORE;
2946 /* Detect an unpacked field and mark it as such.
2947 dbx gives a bit size for all fields.
2948 Note that forward refs cannot be packed,
2949 and treat enums as if they had the width of ints. */
2951 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2953 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2954 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2955 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2956 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2958 FIELD_BITSIZE (fip->list->field) = 0;
2960 if ((FIELD_BITSIZE (fip->list->field)
2961 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2962 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2963 && FIELD_BITSIZE (fip->list->field)
2964 == gdbarch_int_bit (gdbarch))
2967 FIELD_BITPOS (fip->list->field) % 8 == 0)
2969 FIELD_BITSIZE (fip->list->field) = 0;
2975 /* Read struct or class data fields. They have the form:
2977 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2979 At the end, we see a semicolon instead of a field.
2981 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2984 The optional VISIBILITY is one of:
2986 '/0' (VISIBILITY_PRIVATE)
2987 '/1' (VISIBILITY_PROTECTED)
2988 '/2' (VISIBILITY_PUBLIC)
2989 '/9' (VISIBILITY_IGNORE)
2991 or nothing, for C style fields with public visibility.
2993 Returns 1 for success, 0 for failure. */
2996 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
2997 struct objfile *objfile)
3000 struct nextfield *newobj;
3002 /* We better set p right now, in case there are no fields at all... */
3006 /* Read each data member type until we find the terminating ';' at the end of
3007 the data member list, or break for some other reason such as finding the
3008 start of the member function list. */
3009 /* Stab string for structure/union does not end with two ';' in
3010 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3012 while (**pp != ';' && **pp != '\0')
3014 STABS_CONTINUE (pp, objfile);
3015 /* Get space to record the next field's data. */
3016 newobj = XCNEW (struct nextfield);
3017 make_cleanup (xfree, newobj);
3019 newobj->next = fip->list;
3022 /* Get the field name. */
3025 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3026 unless the CPLUS_MARKER is followed by an underscore, in
3027 which case it is just the name of an anonymous type, which we
3028 should handle like any other type name. */
3030 if (is_cplus_marker (p[0]) && p[1] != '_')
3032 if (!read_cpp_abbrev (fip, pp, type, objfile))
3037 /* Look for the ':' that separates the field name from the field
3038 values. Data members are delimited by a single ':', while member
3039 functions are delimited by a pair of ':'s. When we hit the member
3040 functions (if any), terminate scan loop and return. */
3042 while (*p != ':' && *p != '\0')
3049 /* Check to see if we have hit the member functions yet. */
3054 read_one_struct_field (fip, pp, p, type, objfile);
3056 if (p[0] == ':' && p[1] == ':')
3058 /* (the deleted) chill the list of fields: the last entry (at
3059 the head) is a partially constructed entry which we now
3061 fip->list = fip->list->next;
3066 /* The stabs for C++ derived classes contain baseclass information which
3067 is marked by a '!' character after the total size. This function is
3068 called when we encounter the baseclass marker, and slurps up all the
3069 baseclass information.
3071 Immediately following the '!' marker is the number of base classes that
3072 the class is derived from, followed by information for each base class.
3073 For each base class, there are two visibility specifiers, a bit offset
3074 to the base class information within the derived class, a reference to
3075 the type for the base class, and a terminating semicolon.
3077 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3079 Baseclass information marker __________________|| | | | | | |
3080 Number of baseclasses __________________________| | | | | | |
3081 Visibility specifiers (2) ________________________| | | | | |
3082 Offset in bits from start of class _________________| | | | |
3083 Type number for base class ___________________________| | | |
3084 Visibility specifiers (2) _______________________________| | |
3085 Offset in bits from start of class ________________________| |
3086 Type number of base class ____________________________________|
3088 Return 1 for success, 0 for (error-type-inducing) failure. */
3094 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3095 struct objfile *objfile)
3098 struct nextfield *newobj;
3106 /* Skip the '!' baseclass information marker. */
3110 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3114 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3120 /* Some stupid compilers have trouble with the following, so break
3121 it up into simpler expressions. */
3122 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3123 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3126 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3129 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3130 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3134 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3136 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3138 newobj = XCNEW (struct nextfield);
3139 make_cleanup (xfree, newobj);
3141 newobj->next = fip->list;
3143 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3146 STABS_CONTINUE (pp, objfile);
3150 /* Nothing to do. */
3153 SET_TYPE_FIELD_VIRTUAL (type, i);
3156 /* Unknown character. Complain and treat it as non-virtual. */
3158 complaint (_("Unknown virtual character `%c' for baseclass"),
3164 newobj->visibility = *(*pp)++;
3165 switch (newobj->visibility)
3167 case VISIBILITY_PRIVATE:
3168 case VISIBILITY_PROTECTED:
3169 case VISIBILITY_PUBLIC:
3172 /* Bad visibility format. Complain and treat it as
3175 complaint (_("Unknown visibility `%c' for baseclass"),
3176 newobj->visibility);
3177 newobj->visibility = VISIBILITY_PUBLIC;
3184 /* The remaining value is the bit offset of the portion of the object
3185 corresponding to this baseclass. Always zero in the absence of
3186 multiple inheritance. */
3188 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3193 /* The last piece of baseclass information is the type of the
3194 base class. Read it, and remember it's type name as this
3197 newobj->field.type = read_type (pp, objfile);
3198 newobj->field.name = TYPE_NAME (newobj->field.type);
3200 /* Skip trailing ';' and bump count of number of fields seen. */
3209 /* The tail end of stabs for C++ classes that contain a virtual function
3210 pointer contains a tilde, a %, and a type number.
3211 The type number refers to the base class (possibly this class itself) which
3212 contains the vtable pointer for the current class.
3214 This function is called when we have parsed all the method declarations,
3215 so we can look for the vptr base class info. */
3218 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3219 struct objfile *objfile)
3223 STABS_CONTINUE (pp, objfile);
3225 /* If we are positioned at a ';', then skip it. */
3235 if (**pp == '=' || **pp == '+' || **pp == '-')
3237 /* Obsolete flags that used to indicate the presence
3238 of constructors and/or destructors. */
3242 /* Read either a '%' or the final ';'. */
3243 if (*(*pp)++ == '%')
3245 /* The next number is the type number of the base class
3246 (possibly our own class) which supplies the vtable for
3247 this class. Parse it out, and search that class to find
3248 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3249 and TYPE_VPTR_FIELDNO. */
3254 t = read_type (pp, objfile);
3256 while (*p != '\0' && *p != ';')
3262 /* Premature end of symbol. */
3266 set_type_vptr_basetype (type, t);
3267 if (type == t) /* Our own class provides vtbl ptr. */
3269 for (i = TYPE_NFIELDS (t) - 1;
3270 i >= TYPE_N_BASECLASSES (t);
3273 const char *name = TYPE_FIELD_NAME (t, i);
3275 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3276 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3278 set_type_vptr_fieldno (type, i);
3282 /* Virtual function table field not found. */
3283 complaint (_("virtual function table pointer "
3284 "not found when defining class `%s'"),
3290 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3301 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3305 for (n = TYPE_NFN_FIELDS (type);
3306 fip->fnlist != NULL;
3307 fip->fnlist = fip->fnlist->next)
3309 --n; /* Circumvent Sun3 compiler bug. */
3310 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3315 /* Create the vector of fields, and record how big it is.
3316 We need this info to record proper virtual function table information
3317 for this class's virtual functions. */
3320 attach_fields_to_type (struct field_info *fip, struct type *type,
3321 struct objfile *objfile)
3324 int non_public_fields = 0;
3325 struct nextfield *scan;
3327 /* Count up the number of fields that we have, as well as taking note of
3328 whether or not there are any non-public fields, which requires us to
3329 allocate and build the private_field_bits and protected_field_bits
3332 for (scan = fip->list; scan != NULL; scan = scan->next)
3335 if (scan->visibility != VISIBILITY_PUBLIC)
3337 non_public_fields++;
3341 /* Now we know how many fields there are, and whether or not there are any
3342 non-public fields. Record the field count, allocate space for the
3343 array of fields, and create blank visibility bitfields if necessary. */
3345 TYPE_NFIELDS (type) = nfields;
3346 TYPE_FIELDS (type) = (struct field *)
3347 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3348 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3350 if (non_public_fields)
3352 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3354 TYPE_FIELD_PRIVATE_BITS (type) =
3355 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3356 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3358 TYPE_FIELD_PROTECTED_BITS (type) =
3359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3360 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3362 TYPE_FIELD_IGNORE_BITS (type) =
3363 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3364 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3367 /* Copy the saved-up fields into the field vector. Start from the
3368 head of the list, adding to the tail of the field array, so that
3369 they end up in the same order in the array in which they were
3370 added to the list. */
3372 while (nfields-- > 0)
3374 TYPE_FIELD (type, nfields) = fip->list->field;
3375 switch (fip->list->visibility)
3377 case VISIBILITY_PRIVATE:
3378 SET_TYPE_FIELD_PRIVATE (type, nfields);
3381 case VISIBILITY_PROTECTED:
3382 SET_TYPE_FIELD_PROTECTED (type, nfields);
3385 case VISIBILITY_IGNORE:
3386 SET_TYPE_FIELD_IGNORE (type, nfields);
3389 case VISIBILITY_PUBLIC:
3393 /* Unknown visibility. Complain and treat it as public. */
3395 complaint (_("Unknown visibility `%c' for field"),
3396 fip->list->visibility);
3400 fip->list = fip->list->next;
3406 /* Complain that the compiler has emitted more than one definition for the
3407 structure type TYPE. */
3409 complain_about_struct_wipeout (struct type *type)
3411 const char *name = "";
3412 const char *kind = "";
3414 if (TYPE_NAME (type))
3416 name = TYPE_NAME (type);
3417 switch (TYPE_CODE (type))
3419 case TYPE_CODE_STRUCT: kind = "struct "; break;
3420 case TYPE_CODE_UNION: kind = "union "; break;
3421 case TYPE_CODE_ENUM: kind = "enum "; break;
3431 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3434 /* Set the length for all variants of a same main_type, which are
3435 connected in the closed chain.
3437 This is something that needs to be done when a type is defined *after*
3438 some cross references to this type have already been read. Consider
3439 for instance the following scenario where we have the following two
3442 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3443 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3445 A stubbed version of type dummy is created while processing the first
3446 stabs entry. The length of that type is initially set to zero, since
3447 it is unknown at this point. Also, a "constant" variation of type
3448 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3451 The second stabs entry allows us to replace the stubbed definition
3452 with the real definition. However, we still need to adjust the length
3453 of the "constant" variation of that type, as its length was left
3454 untouched during the main type replacement... */
3457 set_length_in_type_chain (struct type *type)
3459 struct type *ntype = TYPE_CHAIN (type);
3461 while (ntype != type)
3463 if (TYPE_LENGTH(ntype) == 0)
3464 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3466 complain_about_struct_wipeout (ntype);
3467 ntype = TYPE_CHAIN (ntype);
3471 /* Read the description of a structure (or union type) and return an object
3472 describing the type.
3474 PP points to a character pointer that points to the next unconsumed token
3475 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3476 *PP will point to "4a:1,0,32;;".
3478 TYPE points to an incomplete type that needs to be filled in.
3480 OBJFILE points to the current objfile from which the stabs information is
3481 being read. (Note that it is redundant in that TYPE also contains a pointer
3482 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3485 static struct type *
3486 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3487 struct objfile *objfile)
3489 struct cleanup *back_to;
3490 struct field_info fi;
3495 /* When describing struct/union/class types in stabs, G++ always drops
3496 all qualifications from the name. So if you've got:
3497 struct A { ... struct B { ... }; ... };
3498 then G++ will emit stabs for `struct A::B' that call it simply
3499 `struct B'. Obviously, if you've got a real top-level definition for
3500 `struct B', or other nested definitions, this is going to cause
3503 Obviously, GDB can't fix this by itself, but it can at least avoid
3504 scribbling on existing structure type objects when new definitions
3506 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3507 || TYPE_STUB (type)))
3509 complain_about_struct_wipeout (type);
3511 /* It's probably best to return the type unchanged. */
3515 back_to = make_cleanup (null_cleanup, 0);
3517 INIT_CPLUS_SPECIFIC (type);
3518 TYPE_CODE (type) = type_code;
3519 TYPE_STUB (type) = 0;
3521 /* First comes the total size in bytes. */
3526 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3529 do_cleanups (back_to);
3530 return error_type (pp, objfile);
3532 set_length_in_type_chain (type);
3535 /* Now read the baseclasses, if any, read the regular C struct or C++
3536 class member fields, attach the fields to the type, read the C++
3537 member functions, attach them to the type, and then read any tilde
3538 field (baseclass specifier for the class holding the main vtable). */
3540 if (!read_baseclasses (&fi, pp, type, objfile)
3541 || !read_struct_fields (&fi, pp, type, objfile)
3542 || !attach_fields_to_type (&fi, type, objfile)
3543 || !read_member_functions (&fi, pp, type, objfile)
3544 || !attach_fn_fields_to_type (&fi, type)
3545 || !read_tilde_fields (&fi, pp, type, objfile))
3547 type = error_type (pp, objfile);
3550 do_cleanups (back_to);
3554 /* Read a definition of an array type,
3555 and create and return a suitable type object.
3556 Also creates a range type which represents the bounds of that
3559 static struct type *
3560 read_array_type (const char **pp, struct type *type,
3561 struct objfile *objfile)
3563 struct type *index_type, *element_type, *range_type;
3568 /* Format of an array type:
3569 "ar<index type>;lower;upper;<array_contents_type>".
3570 OS9000: "arlower,upper;<array_contents_type>".
3572 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3573 for these, produce a type like float[][]. */
3576 index_type = read_type (pp, objfile);
3578 /* Improper format of array type decl. */
3579 return error_type (pp, objfile);
3583 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3588 lower = read_huge_number (pp, ';', &nbits, 0);
3591 return error_type (pp, objfile);
3593 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3598 upper = read_huge_number (pp, ';', &nbits, 0);
3600 return error_type (pp, objfile);
3602 element_type = read_type (pp, objfile);
3611 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3612 type = create_array_type (type, element_type, range_type);
3618 /* Read a definition of an enumeration type,
3619 and create and return a suitable type object.
3620 Also defines the symbols that represent the values of the type. */
3622 static struct type *
3623 read_enum_type (const char **pp, struct type *type,
3624 struct objfile *objfile)
3626 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3632 struct pending **symlist;
3633 struct pending *osyms, *syms;
3636 int unsigned_enum = 1;
3639 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3640 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3641 to do? For now, force all enum values to file scope. */
3642 if (within_function)
3643 symlist = get_local_symbols ();
3646 symlist = get_file_symbols ();
3648 o_nsyms = osyms ? osyms->nsyms : 0;
3650 /* The aix4 compiler emits an extra field before the enum members;
3651 my guess is it's a type of some sort. Just ignore it. */
3654 /* Skip over the type. */
3658 /* Skip over the colon. */
3662 /* Read the value-names and their values.
3663 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3664 A semicolon or comma instead of a NAME means the end. */
3665 while (**pp && **pp != ';' && **pp != ',')
3667 STABS_CONTINUE (pp, objfile);
3671 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3673 n = read_huge_number (pp, ',', &nbits, 0);
3675 return error_type (pp, objfile);
3677 sym = allocate_symbol (objfile);
3678 SYMBOL_SET_LINKAGE_NAME (sym, name);
3679 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3680 &objfile->objfile_obstack);
3681 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3682 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3683 SYMBOL_VALUE (sym) = n;
3686 add_symbol_to_list (sym, symlist);
3691 (*pp)++; /* Skip the semicolon. */
3693 /* Now fill in the fields of the type-structure. */
3695 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3696 set_length_in_type_chain (type);
3697 TYPE_CODE (type) = TYPE_CODE_ENUM;
3698 TYPE_STUB (type) = 0;
3700 TYPE_UNSIGNED (type) = 1;
3701 TYPE_NFIELDS (type) = nsyms;
3702 TYPE_FIELDS (type) = (struct field *)
3703 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3704 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3706 /* Find the symbols for the values and put them into the type.
3707 The symbols can be found in the symlist that we put them on
3708 to cause them to be defined. osyms contains the old value
3709 of that symlist; everything up to there was defined by us. */
3710 /* Note that we preserve the order of the enum constants, so
3711 that in something like "enum {FOO, LAST_THING=FOO}" we print
3712 FOO, not LAST_THING. */
3714 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3716 int last = syms == osyms ? o_nsyms : 0;
3717 int j = syms->nsyms;
3719 for (; --j >= last; --n)
3721 struct symbol *xsym = syms->symbol[j];
3723 SYMBOL_TYPE (xsym) = type;
3724 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3725 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3726 TYPE_FIELD_BITSIZE (type, n) = 0;
3735 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3736 typedefs in every file (for int, long, etc):
3738 type = b <signed> <width> <format type>; <offset>; <nbits>
3740 optional format type = c or b for char or boolean.
3741 offset = offset from high order bit to start bit of type.
3742 width is # bytes in object of this type, nbits is # bits in type.
3744 The width/offset stuff appears to be for small objects stored in
3745 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3748 static struct type *
3749 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3754 int boolean_type = 0;
3765 return error_type (pp, objfile);
3769 /* For some odd reason, all forms of char put a c here. This is strange
3770 because no other type has this honor. We can safely ignore this because
3771 we actually determine 'char'acterness by the number of bits specified in
3773 Boolean forms, e.g Fortran logical*X, put a b here. */
3777 else if (**pp == 'b')
3783 /* The first number appears to be the number of bytes occupied
3784 by this type, except that unsigned short is 4 instead of 2.
3785 Since this information is redundant with the third number,
3786 we will ignore it. */
3787 read_huge_number (pp, ';', &nbits, 0);
3789 return error_type (pp, objfile);
3791 /* The second number is always 0, so ignore it too. */
3792 read_huge_number (pp, ';', &nbits, 0);
3794 return error_type (pp, objfile);
3796 /* The third number is the number of bits for this type. */
3797 type_bits = read_huge_number (pp, 0, &nbits, 0);
3799 return error_type (pp, objfile);
3800 /* The type *should* end with a semicolon. If it are embedded
3801 in a larger type the semicolon may be the only way to know where
3802 the type ends. If this type is at the end of the stabstring we
3803 can deal with the omitted semicolon (but we don't have to like
3804 it). Don't bother to complain(), Sun's compiler omits the semicolon
3811 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3812 TARGET_CHAR_BIT, NULL);
3814 TYPE_UNSIGNED (type) = 1;
3819 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3821 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3824 static struct type *
3825 read_sun_floating_type (const char **pp, int typenums[2],
3826 struct objfile *objfile)
3831 struct type *rettype;
3833 /* The first number has more details about the type, for example
3835 details = read_huge_number (pp, ';', &nbits, 0);
3837 return error_type (pp, objfile);
3839 /* The second number is the number of bytes occupied by this type. */
3840 nbytes = read_huge_number (pp, ';', &nbits, 0);
3842 return error_type (pp, objfile);
3844 nbits = nbytes * TARGET_CHAR_BIT;
3846 if (details == NF_COMPLEX || details == NF_COMPLEX16
3847 || details == NF_COMPLEX32)
3849 rettype = dbx_init_float_type (objfile, nbits / 2);
3850 return init_complex_type (objfile, NULL, rettype);
3853 return dbx_init_float_type (objfile, nbits);
3856 /* Read a number from the string pointed to by *PP.
3857 The value of *PP is advanced over the number.
3858 If END is nonzero, the character that ends the
3859 number must match END, or an error happens;
3860 and that character is skipped if it does match.
3861 If END is zero, *PP is left pointing to that character.
3863 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3864 the number is represented in an octal representation, assume that
3865 it is represented in a 2's complement representation with a size of
3866 TWOS_COMPLEMENT_BITS.
3868 If the number fits in a long, set *BITS to 0 and return the value.
3869 If not, set *BITS to be the number of bits in the number and return 0.
3871 If encounter garbage, set *BITS to -1 and return 0. */
3874 read_huge_number (const char **pp, int end, int *bits,
3875 int twos_complement_bits)
3877 const char *p = *pp;
3886 int twos_complement_representation = 0;
3894 /* Leading zero means octal. GCC uses this to output values larger
3895 than an int (because that would be hard in decimal). */
3902 /* Skip extra zeros. */
3906 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3908 /* Octal, possibly signed. Check if we have enough chars for a
3914 while ((c = *p1) >= '0' && c < '8')
3918 if (len > twos_complement_bits / 3
3919 || (twos_complement_bits % 3 == 0
3920 && len == twos_complement_bits / 3))
3922 /* Ok, we have enough characters for a signed value, check
3923 for signness by testing if the sign bit is set. */
3924 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3926 if (c & (1 << sign_bit))
3928 /* Definitely signed. */
3929 twos_complement_representation = 1;
3935 upper_limit = LONG_MAX / radix;
3937 while ((c = *p++) >= '0' && c < ('0' + radix))
3939 if (n <= upper_limit)
3941 if (twos_complement_representation)
3943 /* Octal, signed, twos complement representation. In
3944 this case, n is the corresponding absolute value. */
3947 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3959 /* unsigned representation */
3961 n += c - '0'; /* FIXME this overflows anyway. */
3967 /* This depends on large values being output in octal, which is
3974 /* Ignore leading zeroes. */
3978 else if (c == '2' || c == '3')
3999 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4001 /* We were supposed to parse a number with maximum
4002 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4013 /* Large decimal constants are an error (because it is hard to
4014 count how many bits are in them). */
4020 /* -0x7f is the same as 0x80. So deal with it by adding one to
4021 the number of bits. Two's complement represention octals
4022 can't have a '-' in front. */
4023 if (sign == -1 && !twos_complement_representation)
4034 /* It's *BITS which has the interesting information. */
4038 static struct type *
4039 read_range_type (const char **pp, int typenums[2], int type_size,
4040 struct objfile *objfile)
4042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4043 const char *orig_pp = *pp;
4048 struct type *result_type;
4049 struct type *index_type = NULL;
4051 /* First comes a type we are a subrange of.
4052 In C it is usually 0, 1 or the type being defined. */
4053 if (read_type_number (pp, rangenums) != 0)
4054 return error_type (pp, objfile);
4055 self_subrange = (rangenums[0] == typenums[0] &&
4056 rangenums[1] == typenums[1]);
4061 index_type = read_type (pp, objfile);
4064 /* A semicolon should now follow; skip it. */
4068 /* The remaining two operands are usually lower and upper bounds
4069 of the range. But in some special cases they mean something else. */
4070 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4071 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4073 if (n2bits == -1 || n3bits == -1)
4074 return error_type (pp, objfile);
4077 goto handle_true_range;
4079 /* If limits are huge, must be large integral type. */
4080 if (n2bits != 0 || n3bits != 0)
4082 char got_signed = 0;
4083 char got_unsigned = 0;
4084 /* Number of bits in the type. */
4087 /* If a type size attribute has been specified, the bounds of
4088 the range should fit in this size. If the lower bounds needs
4089 more bits than the upper bound, then the type is signed. */
4090 if (n2bits <= type_size && n3bits <= type_size)
4092 if (n2bits == type_size && n2bits > n3bits)
4098 /* Range from 0 to <large number> is an unsigned large integral type. */
4099 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4104 /* Range from <large number> to <large number>-1 is a large signed
4105 integral type. Take care of the case where <large number> doesn't
4106 fit in a long but <large number>-1 does. */
4107 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4108 || (n2bits != 0 && n3bits == 0
4109 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4116 if (got_signed || got_unsigned)
4117 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4119 return error_type (pp, objfile);
4122 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4123 if (self_subrange && n2 == 0 && n3 == 0)
4124 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4126 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4127 is the width in bytes.
4129 Fortran programs appear to use this for complex types also. To
4130 distinguish between floats and complex, g77 (and others?) seem
4131 to use self-subranges for the complexes, and subranges of int for
4134 Also note that for complexes, g77 sets n2 to the size of one of
4135 the member floats, not the whole complex beast. My guess is that
4136 this was to work well with pre-COMPLEX versions of gdb. */
4138 if (n3 == 0 && n2 > 0)
4140 struct type *float_type
4141 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4144 return init_complex_type (objfile, NULL, float_type);
4149 /* If the upper bound is -1, it must really be an unsigned integral. */
4151 else if (n2 == 0 && n3 == -1)
4153 int bits = type_size;
4157 /* We don't know its size. It is unsigned int or unsigned
4158 long. GCC 2.3.3 uses this for long long too, but that is
4159 just a GDB 3.5 compatibility hack. */
4160 bits = gdbarch_int_bit (gdbarch);
4163 return init_integer_type (objfile, bits, 1, NULL);
4166 /* Special case: char is defined (Who knows why) as a subrange of
4167 itself with range 0-127. */
4168 else if (self_subrange && n2 == 0 && n3 == 127)
4170 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4172 TYPE_NOSIGN (type) = 1;
4175 /* We used to do this only for subrange of self or subrange of int. */
4178 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4179 "unsigned long", and we already checked for that,
4180 so don't need to test for it here. */
4183 /* n3 actually gives the size. */
4184 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4186 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4187 unsigned n-byte integer. But do require n to be a power of
4188 two; we don't want 3- and 5-byte integers flying around. */
4194 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4197 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4198 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4201 /* I think this is for Convex "long long". Since I don't know whether
4202 Convex sets self_subrange, I also accept that particular size regardless
4203 of self_subrange. */
4204 else if (n3 == 0 && n2 < 0
4206 || n2 == -gdbarch_long_long_bit
4207 (gdbarch) / TARGET_CHAR_BIT))
4208 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4209 else if (n2 == -n3 - 1)
4212 return init_integer_type (objfile, 8, 0, NULL);
4214 return init_integer_type (objfile, 16, 0, NULL);
4215 if (n3 == 0x7fffffff)
4216 return init_integer_type (objfile, 32, 0, NULL);
4219 /* We have a real range type on our hands. Allocate space and
4220 return a real pointer. */
4224 index_type = objfile_type (objfile)->builtin_int;
4226 index_type = *dbx_lookup_type (rangenums, objfile);
4227 if (index_type == NULL)
4229 /* Does this actually ever happen? Is that why we are worrying
4230 about dealing with it rather than just calling error_type? */
4232 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4234 index_type = objfile_type (objfile)->builtin_int;
4238 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4239 return (result_type);
4242 /* Read in an argument list. This is a list of types, separated by commas
4243 and terminated with END. Return the list of types read in, or NULL
4244 if there is an error. */
4246 static struct field *
4247 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4250 /* FIXME! Remove this arbitrary limit! */
4251 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4258 /* Invalid argument list: no ','. */
4261 STABS_CONTINUE (pp, objfile);
4262 types[n++] = read_type (pp, objfile);
4264 (*pp)++; /* get past `end' (the ':' character). */
4268 /* We should read at least the THIS parameter here. Some broken stabs
4269 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4270 have been present ";-16,(0,43)" reference instead. This way the
4271 excessive ";" marker prematurely stops the parameters parsing. */
4273 complaint (_("Invalid (empty) method arguments"));
4276 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4284 rval = XCNEWVEC (struct field, n);
4285 for (i = 0; i < n; i++)
4286 rval[i].type = types[i];
4291 /* Common block handling. */
4293 /* List of symbols declared since the last BCOMM. This list is a tail
4294 of local_symbols. When ECOMM is seen, the symbols on the list
4295 are noted so their proper addresses can be filled in later,
4296 using the common block base address gotten from the assembler
4299 static struct pending *common_block;
4300 static int common_block_i;
4302 /* Name of the current common block. We get it from the BCOMM instead of the
4303 ECOMM to match IBM documentation (even though IBM puts the name both places
4304 like everyone else). */
4305 static char *common_block_name;
4307 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4308 to remain after this function returns. */
4311 common_block_start (const char *name, struct objfile *objfile)
4313 if (common_block_name != NULL)
4315 complaint (_("Invalid symbol data: common block within common block"));
4317 common_block = *get_local_symbols ();
4318 common_block_i = common_block ? common_block->nsyms : 0;
4319 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4323 /* Process a N_ECOMM symbol. */
4326 common_block_end (struct objfile *objfile)
4328 /* Symbols declared since the BCOMM are to have the common block
4329 start address added in when we know it. common_block and
4330 common_block_i point to the first symbol after the BCOMM in
4331 the local_symbols list; copy the list and hang it off the
4332 symbol for the common block name for later fixup. */
4335 struct pending *newobj = 0;
4336 struct pending *next;
4339 if (common_block_name == NULL)
4341 complaint (_("ECOMM symbol unmatched by BCOMM"));
4345 sym = allocate_symbol (objfile);
4346 /* Note: common_block_name already saved on objfile_obstack. */
4347 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4348 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4350 /* Now we copy all the symbols which have been defined since the BCOMM. */
4352 /* Copy all the struct pendings before common_block. */
4353 for (next = *get_local_symbols ();
4354 next != NULL && next != common_block;
4357 for (j = 0; j < next->nsyms; j++)
4358 add_symbol_to_list (next->symbol[j], &newobj);
4361 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4362 NULL, it means copy all the local symbols (which we already did
4365 if (common_block != NULL)
4366 for (j = common_block_i; j < common_block->nsyms; j++)
4367 add_symbol_to_list (common_block->symbol[j], &newobj);
4369 SYMBOL_TYPE (sym) = (struct type *) newobj;
4371 /* Should we be putting local_symbols back to what it was?
4374 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4375 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4376 global_sym_chain[i] = sym;
4377 common_block_name = NULL;
4380 /* Add a common block's start address to the offset of each symbol
4381 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4382 the common block name). */
4385 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4387 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4389 for (; next; next = next->next)
4393 for (j = next->nsyms - 1; j >= 0; j--)
4394 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4400 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4401 See add_undefined_type for more details. */
4404 add_undefined_type_noname (struct type *type, int typenums[2])
4408 nat.typenums[0] = typenums [0];
4409 nat.typenums[1] = typenums [1];
4412 if (noname_undefs_length == noname_undefs_allocated)
4414 noname_undefs_allocated *= 2;
4415 noname_undefs = (struct nat *)
4416 xrealloc ((char *) noname_undefs,
4417 noname_undefs_allocated * sizeof (struct nat));
4419 noname_undefs[noname_undefs_length++] = nat;
4422 /* Add TYPE to the UNDEF_TYPES vector.
4423 See add_undefined_type for more details. */
4426 add_undefined_type_1 (struct type *type)
4428 if (undef_types_length == undef_types_allocated)
4430 undef_types_allocated *= 2;
4431 undef_types = (struct type **)
4432 xrealloc ((char *) undef_types,
4433 undef_types_allocated * sizeof (struct type *));
4435 undef_types[undef_types_length++] = type;
4438 /* What about types defined as forward references inside of a small lexical
4440 /* Add a type to the list of undefined types to be checked through
4441 once this file has been read in.
4443 In practice, we actually maintain two such lists: The first list
4444 (UNDEF_TYPES) is used for types whose name has been provided, and
4445 concerns forward references (eg 'xs' or 'xu' forward references);
4446 the second list (NONAME_UNDEFS) is used for types whose name is
4447 unknown at creation time, because they were referenced through
4448 their type number before the actual type was declared.
4449 This function actually adds the given type to the proper list. */
4452 add_undefined_type (struct type *type, int typenums[2])
4454 if (TYPE_NAME (type) == NULL)
4455 add_undefined_type_noname (type, typenums);
4457 add_undefined_type_1 (type);
4460 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4463 cleanup_undefined_types_noname (struct objfile *objfile)
4467 for (i = 0; i < noname_undefs_length; i++)
4469 struct nat nat = noname_undefs[i];
4472 type = dbx_lookup_type (nat.typenums, objfile);
4473 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4475 /* The instance flags of the undefined type are still unset,
4476 and needs to be copied over from the reference type.
4477 Since replace_type expects them to be identical, we need
4478 to set these flags manually before hand. */
4479 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4480 replace_type (nat.type, *type);
4484 noname_undefs_length = 0;
4487 /* Go through each undefined type, see if it's still undefined, and fix it
4488 up if possible. We have two kinds of undefined types:
4490 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4491 Fix: update array length using the element bounds
4492 and the target type's length.
4493 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4494 yet defined at the time a pointer to it was made.
4495 Fix: Do a full lookup on the struct/union tag. */
4498 cleanup_undefined_types_1 (void)
4502 /* Iterate over every undefined type, and look for a symbol whose type
4503 matches our undefined type. The symbol matches if:
4504 1. It is a typedef in the STRUCT domain;
4505 2. It has the same name, and same type code;
4506 3. The instance flags are identical.
4508 It is important to check the instance flags, because we have seen
4509 examples where the debug info contained definitions such as:
4511 "foo_t:t30=B31=xefoo_t:"
4513 In this case, we have created an undefined type named "foo_t" whose
4514 instance flags is null (when processing "xefoo_t"), and then created
4515 another type with the same name, but with different instance flags
4516 ('B' means volatile). I think that the definition above is wrong,
4517 since the same type cannot be volatile and non-volatile at the same
4518 time, but we need to be able to cope with it when it happens. The
4519 approach taken here is to treat these two types as different. */
4521 for (type = undef_types; type < undef_types + undef_types_length; type++)
4523 switch (TYPE_CODE (*type))
4526 case TYPE_CODE_STRUCT:
4527 case TYPE_CODE_UNION:
4528 case TYPE_CODE_ENUM:
4530 /* Check if it has been defined since. Need to do this here
4531 as well as in check_typedef to deal with the (legitimate in
4532 C though not C++) case of several types with the same name
4533 in different source files. */
4534 if (TYPE_STUB (*type))
4536 struct pending *ppt;
4538 /* Name of the type, without "struct" or "union". */
4539 const char *type_name = TYPE_NAME (*type);
4541 if (type_name == NULL)
4543 complaint (_("need a type name"));
4546 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4548 for (i = 0; i < ppt->nsyms; i++)
4550 struct symbol *sym = ppt->symbol[i];
4552 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4553 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4554 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4556 && (TYPE_INSTANCE_FLAGS (*type) ==
4557 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4558 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4560 replace_type (*type, SYMBOL_TYPE (sym));
4569 complaint (_("forward-referenced types left unresolved, "
4577 undef_types_length = 0;
4580 /* Try to fix all the undefined types we ecountered while processing
4584 cleanup_undefined_stabs_types (struct objfile *objfile)
4586 cleanup_undefined_types_1 ();
4587 cleanup_undefined_types_noname (objfile);
4590 /* See stabsread.h. */
4593 scan_file_globals (struct objfile *objfile)
4596 struct minimal_symbol *msymbol;
4597 struct symbol *sym, *prev;
4598 struct objfile *resolve_objfile;
4600 /* SVR4 based linkers copy referenced global symbols from shared
4601 libraries to the main executable.
4602 If we are scanning the symbols for a shared library, try to resolve
4603 them from the minimal symbols of the main executable first. */
4605 if (symfile_objfile && objfile != symfile_objfile)
4606 resolve_objfile = symfile_objfile;
4608 resolve_objfile = objfile;
4612 /* Avoid expensive loop through all minimal symbols if there are
4613 no unresolved symbols. */
4614 for (hash = 0; hash < HASHSIZE; hash++)
4616 if (global_sym_chain[hash])
4619 if (hash >= HASHSIZE)
4622 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4626 /* Skip static symbols. */
4627 switch (MSYMBOL_TYPE (msymbol))
4639 /* Get the hash index and check all the symbols
4640 under that hash index. */
4642 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4644 for (sym = global_sym_chain[hash]; sym;)
4646 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4647 SYMBOL_LINKAGE_NAME (sym)) == 0)
4649 /* Splice this symbol out of the hash chain and
4650 assign the value we have to it. */
4653 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4657 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4660 /* Check to see whether we need to fix up a common block. */
4661 /* Note: this code might be executed several times for
4662 the same symbol if there are multiple references. */
4665 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4667 fix_common_block (sym,
4668 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4673 SYMBOL_VALUE_ADDRESS (sym)
4674 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4676 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4681 sym = SYMBOL_VALUE_CHAIN (prev);
4685 sym = global_sym_chain[hash];
4691 sym = SYMBOL_VALUE_CHAIN (sym);
4695 if (resolve_objfile == objfile)
4697 resolve_objfile = objfile;
4700 /* Change the storage class of any remaining unresolved globals to
4701 LOC_UNRESOLVED and remove them from the chain. */
4702 for (hash = 0; hash < HASHSIZE; hash++)
4704 sym = global_sym_chain[hash];
4708 sym = SYMBOL_VALUE_CHAIN (sym);
4710 /* Change the symbol address from the misleading chain value
4712 SYMBOL_VALUE_ADDRESS (prev) = 0;
4714 /* Complain about unresolved common block symbols. */
4715 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4716 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4718 complaint (_("%s: common block `%s' from "
4719 "global_sym_chain unresolved"),
4720 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4723 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4726 /* Initialize anything that needs initializing when starting to read
4727 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4731 stabsread_init (void)
4735 /* Initialize anything that needs initializing when a completely new
4736 symbol file is specified (not just adding some symbols from another
4737 file, e.g. a shared library). */
4740 stabsread_new_init (void)
4742 /* Empty the hash table of global syms looking for values. */
4743 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4746 /* Initialize anything that needs initializing at the same time as
4747 start_symtab() is called. */
4752 global_stabs = NULL; /* AIX COFF */
4753 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4754 n_this_object_header_files = 1;
4755 type_vector_length = 0;
4756 type_vector = (struct type **) 0;
4757 within_function = 0;
4759 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4760 common_block_name = NULL;
4763 /* Call after end_symtab(). */
4770 xfree (type_vector);
4773 type_vector_length = 0;
4774 previous_stab_code = 0;
4778 finish_global_stabs (struct objfile *objfile)
4782 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4783 xfree (global_stabs);
4784 global_stabs = NULL;
4788 /* Find the end of the name, delimited by a ':', but don't match
4789 ObjC symbols which look like -[Foo bar::]:bla. */
4791 find_name_end (const char *name)
4793 const char *s = name;
4795 if (s[0] == '-' || *s == '+')
4797 /* Must be an ObjC method symbol. */
4800 error (_("invalid symbol name \"%s\""), name);
4802 s = strchr (s, ']');
4805 error (_("invalid symbol name \"%s\""), name);
4807 return strchr (s, ':');
4811 return strchr (s, ':');
4815 /* See stabsread.h. */
4818 hashname (const char *name)
4820 return hash (name, strlen (name)) % HASHSIZE;
4823 /* Initializer for this module. */
4826 _initialize_stabsread (void)
4828 rs6000_builtin_type_data = register_objfile_data ();
4830 undef_types_allocated = 20;
4831 undef_types_length = 0;
4832 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4834 noname_undefs_allocated = 20;
4835 noname_undefs_length = 0;
4836 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4838 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4839 &stab_register_funcs);
4840 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4841 &stab_register_funcs);