1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
29 #include "gdb_obstack.h"
32 #include "expression.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
40 #include "complaints.h"
42 #include "gdb-demangle.h"
46 #include "cp-support.h"
49 /* Ask stabsread.h to define the vars it normally declares `extern'. */
52 #include "stabsread.h" /* Our own declarations */
57 struct nextfield *next;
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
67 struct next_fnfieldlist
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
73 /* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
77 expected to eventually go away... (FIXME) */
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
86 read_one_struct_field (struct field_info *, const char **, const char *,
87 struct type *, struct objfile *);
89 static struct type *dbx_alloc_type (int[2], struct objfile *);
91 static long read_huge_number (const char **, int, int *, int);
93 static struct type *error_type (const char **, struct objfile *);
96 patch_block_stabs (struct pending *, struct pending_stabs *,
99 static void fix_common_block (struct symbol *, CORE_ADDR);
101 static int read_type_number (const char **, int *);
103 static struct type *read_type (const char **, struct objfile *);
105 static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
108 static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
111 static struct type *read_sun_floating_type (const char **, int[2],
114 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
116 static struct type *rs6000_builtin_type (int, struct objfile *);
119 read_member_functions (struct field_info *, const char **, struct type *,
123 read_struct_fields (struct field_info *, const char **, struct type *,
127 read_baseclasses (struct field_info *, const char **, struct type *,
131 read_tilde_fields (struct field_info *, const char **, struct type *,
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136 static int attach_fields_to_type (struct field_info *, struct type *,
139 static struct type *read_struct_type (const char **, struct type *,
143 static struct type *read_array_type (const char **, struct type *,
146 static struct field *read_args (const char **, int, struct objfile *,
149 static void add_undefined_type (struct type *, int[2]);
152 read_cpp_abbrev (struct field_info *, const char **, struct type *,
155 static const char *find_name_end (const char *name);
157 static int process_reference (const char **string);
159 void stabsread_clear_cache (void);
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
165 invalid_cpp_abbrev_complaint (const char *arg1)
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
173 complaint (&symfile_complaints,
174 _("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
179 stabs_general_complaint (const char *arg1)
181 complaint (&symfile_complaints, "%s", arg1);
184 /* Make a list of forward references which haven't been defined. */
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
212 /* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
218 static struct type **type_vector;
220 /* Number of elements allocated for type_vector currently. */
222 static int type_vector_length;
224 /* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
227 #define INITIAL_TYPE_VECTOR_LENGTH 160
230 /* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
237 static struct type **
238 dbx_lookup_type (int typenums[2], struct objfile *objfile)
240 int filenum = typenums[0];
241 int index = typenums[1];
244 struct header_file *f;
247 if (filenum == -1) /* -1,-1 is for temporary types. */
250 if (filenum < 0 || filenum >= n_this_object_header_files)
252 complaint (&symfile_complaints,
253 _("Invalid symbol data: type number "
254 "(%d,%d) out of range at symtab pos %d."),
255 filenum, index, symnum);
263 /* Caller wants address of address of type. We think
264 that negative (rs6k builtin) types will never appear as
265 "lvalues", (nor should they), so we stuff the real type
266 pointer into a temp, and return its address. If referenced,
267 this will do the right thing. */
268 static struct type *temp_type;
270 temp_type = rs6000_builtin_type (index, objfile);
274 /* Type is defined outside of header files.
275 Find it in this object file's type vector. */
276 if (index >= type_vector_length)
278 old_len = type_vector_length;
281 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
282 type_vector = XNEWVEC (struct type *, type_vector_length);
284 while (index >= type_vector_length)
286 type_vector_length *= 2;
288 type_vector = (struct type **)
289 xrealloc ((char *) type_vector,
290 (type_vector_length * sizeof (struct type *)));
291 memset (&type_vector[old_len], 0,
292 (type_vector_length - old_len) * sizeof (struct type *));
294 return (&type_vector[index]);
298 real_filenum = this_object_header_files[filenum];
300 if (real_filenum >= N_HEADER_FILES (objfile))
302 static struct type *temp_type;
304 warning (_("GDB internal error: bad real_filenum"));
307 temp_type = objfile_type (objfile)->builtin_error;
311 f = HEADER_FILES (objfile) + real_filenum;
313 f_orig_length = f->length;
314 if (index >= f_orig_length)
316 while (index >= f->length)
320 f->vector = (struct type **)
321 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
322 memset (&f->vector[f_orig_length], 0,
323 (f->length - f_orig_length) * sizeof (struct type *));
325 return (&f->vector[index]);
329 /* Make sure there is a type allocated for type numbers TYPENUMS
330 and return the type object.
331 This can create an empty (zeroed) type object.
332 TYPENUMS may be (-1, -1) to return a new type object that is not
333 put into the type vector, and so may not be referred to by number. */
336 dbx_alloc_type (int typenums[2], struct objfile *objfile)
338 struct type **type_addr;
340 if (typenums[0] == -1)
342 return (alloc_type (objfile));
345 type_addr = dbx_lookup_type (typenums, objfile);
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
352 *type_addr = alloc_type (objfile);
358 /* Allocate a floating-point type of size BITS. */
361 dbx_init_float_type (struct objfile *objfile, int bits)
363 struct gdbarch *gdbarch = get_objfile_arch (objfile);
364 const struct floatformat **format;
367 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
369 type = init_float_type (objfile, bits, NULL, format);
371 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
376 /* for all the stabs in a given stab vector, build appropriate types
377 and fix their symbols in given symbol vector. */
380 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
381 struct objfile *objfile)
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
393 for (ii = 0; ii < stabs->count; ++ii)
395 name = stabs->stab[ii];
396 pp = (char *) strchr (name, ':');
397 gdb_assert (pp); /* Must find a ':' or game's over. */
401 pp = (char *) strchr (pp, ':');
403 sym = find_symbol_in_list (symbols, name, pp - name);
406 /* FIXME-maybe: it would be nice if we noticed whether
407 the variable was defined *anywhere*, not just whether
408 it is defined in this compilation unit. But neither
409 xlc or GCC seem to need such a definition, and until
410 we do psymtabs (so that the minimal symbols from all
411 compilation units are available now), I'm not sure
412 how to get the information. */
414 /* On xcoff, if a global is defined and never referenced,
415 ld will remove it from the executable. There is then
416 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
417 sym = allocate_symbol (objfile);
418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
419 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
420 SYMBOL_SET_LINKAGE_NAME
421 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
424 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
426 /* I don't think the linker does this with functions,
427 so as far as I know this is never executed.
428 But it doesn't hurt to check. */
430 lookup_function_type (read_type (&pp, objfile));
434 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
436 add_symbol_to_list (sym, &global_symbols);
441 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
444 lookup_function_type (read_type (&pp, objfile));
448 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
456 /* Read a number by which a type is referred to in dbx data,
457 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
458 Just a single number N is equivalent to (0,N).
459 Return the two numbers by storing them in the vector TYPENUMS.
460 TYPENUMS will then be used as an argument to dbx_lookup_type.
462 Returns 0 for success, -1 for error. */
465 read_type_number (const char **pp, int *typenums)
472 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
475 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
482 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
490 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
491 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
492 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
493 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
495 /* Structure for storing pointers to reference definitions for fast lookup
496 during "process_later". */
505 #define MAX_CHUNK_REFS 100
506 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
507 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
509 static struct ref_map *ref_map;
511 /* Ptr to free cell in chunk's linked list. */
512 static int ref_count = 0;
514 /* Number of chunks malloced. */
515 static int ref_chunk = 0;
517 /* This file maintains a cache of stabs aliases found in the symbol
518 table. If the symbol table changes, this cache must be cleared
519 or we are left holding onto data in invalid obstacks. */
521 stabsread_clear_cache (void)
527 /* Create array of pointers mapping refids to symbols and stab strings.
528 Add pointers to reference definition symbols and/or their values as we
529 find them, using their reference numbers as our index.
530 These will be used later when we resolve references. */
532 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
536 if (refnum >= ref_count)
537 ref_count = refnum + 1;
538 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
540 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
541 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
543 ref_map = (struct ref_map *)
544 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
545 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
546 new_chunks * REF_CHUNK_SIZE);
547 ref_chunk += new_chunks;
549 ref_map[refnum].stabs = stabs;
550 ref_map[refnum].sym = sym;
551 ref_map[refnum].value = value;
554 /* Return defined sym for the reference REFNUM. */
556 ref_search (int refnum)
558 if (refnum < 0 || refnum > ref_count)
560 return ref_map[refnum].sym;
563 /* Parse a reference id in STRING and return the resulting
564 reference number. Move STRING beyond the reference id. */
567 process_reference (const char **string)
575 /* Advance beyond the initial '#'. */
578 /* Read number as reference id. */
579 while (*p && isdigit (*p))
581 refnum = refnum * 10 + *p - '0';
588 /* If STRING defines a reference, store away a pointer to the reference
589 definition for later use. Return the reference number. */
592 symbol_reference_defined (const char **string)
594 const char *p = *string;
597 refnum = process_reference (&p);
599 /* Defining symbols end in '='. */
602 /* Symbol is being defined here. */
608 /* Must be a reference. Either the symbol has already been defined,
609 or this is a forward reference to it. */
616 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
618 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
621 || regno >= (gdbarch_num_regs (gdbarch)
622 + gdbarch_num_pseudo_regs (gdbarch)))
624 reg_value_complaint (regno,
625 gdbarch_num_regs (gdbarch)
626 + gdbarch_num_pseudo_regs (gdbarch),
627 SYMBOL_PRINT_NAME (sym));
629 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
635 static const struct symbol_register_ops stab_register_funcs = {
639 /* The "aclass" indices for computed symbols. */
641 static int stab_register_index;
642 static int stab_regparm_index;
645 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
646 struct objfile *objfile)
648 struct gdbarch *gdbarch = get_objfile_arch (objfile);
650 const char *p = find_name_end (string);
655 /* We would like to eliminate nameless symbols, but keep their types.
656 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
657 to type 2, but, should not create a symbol to address that type. Since
658 the symbol will be nameless, there is no way any user can refer to it. */
662 /* Ignore syms with empty names. */
666 /* Ignore old-style symbols from cc -go. */
676 complaint (&symfile_complaints,
677 _("Bad stabs string '%s'"), string);
682 /* If a nameless stab entry, all we need is the type, not the symbol.
683 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
684 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
686 current_symbol = sym = allocate_symbol (objfile);
688 if (processing_gcc_compilation)
690 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
691 number of bytes occupied by a type or object, which we ignore. */
692 SYMBOL_LINE (sym) = desc;
696 SYMBOL_LINE (sym) = 0; /* unknown */
699 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
700 &objfile->objfile_obstack);
702 if (is_cplus_marker (string[0]))
704 /* Special GNU C++ names. */
708 SYMBOL_SET_LINKAGE_NAME (sym, "this");
711 case 'v': /* $vtbl_ptr_type */
715 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
719 /* This was an anonymous type that was never fixed up. */
723 /* SunPRO (3.0 at least) static variable encoding. */
724 if (gdbarch_static_transform_name_p (gdbarch))
726 /* ... fall through ... */
729 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
731 goto normal; /* Do *something* with it. */
737 std::string new_name;
739 if (SYMBOL_LANGUAGE (sym) == language_cplus)
741 char *name = (char *) alloca (p - string + 1);
743 memcpy (name, string, p - string);
744 name[p - string] = '\0';
745 new_name = cp_canonicalize_string (name);
747 if (!new_name.empty ())
749 SYMBOL_SET_NAMES (sym,
750 new_name.c_str (), new_name.length (),
754 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
756 if (SYMBOL_LANGUAGE (sym) == language_cplus)
757 cp_scan_for_anonymous_namespaces (sym, objfile);
762 /* Determine the type of name being defined. */
764 /* Getting GDB to correctly skip the symbol on an undefined symbol
765 descriptor and not ever dump core is a very dodgy proposition if
766 we do things this way. I say the acorn RISC machine can just
767 fix their compiler. */
768 /* The Acorn RISC machine's compiler can put out locals that don't
769 start with "234=" or "(3,4)=", so assume anything other than the
770 deftypes we know how to handle is a local. */
771 if (!strchr ("cfFGpPrStTvVXCR", *p))
773 if (isdigit (*p) || *p == '(' || *p == '-')
782 /* c is a special case, not followed by a type-number.
783 SYMBOL:c=iVALUE for an integer constant symbol.
784 SYMBOL:c=rVALUE for a floating constant symbol.
785 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
786 e.g. "b:c=e6,0" for "const b = blob1"
787 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
790 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
791 SYMBOL_TYPE (sym) = error_type (&p, objfile);
792 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
793 add_symbol_to_list (sym, &file_symbols);
803 struct type *dbl_type;
805 /* FIXME-if-picky-about-floating-accuracy: Should be using
806 target arithmetic to get the value. real.c in GCC
807 probably has the necessary code. */
809 dbl_type = objfile_type (objfile)->builtin_double;
811 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
812 TYPE_LENGTH (dbl_type));
813 store_typed_floating (dbl_valu, dbl_type, d);
815 SYMBOL_TYPE (sym) = dbl_type;
816 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
822 /* Defining integer constants this way is kind of silly,
823 since 'e' constants allows the compiler to give not
824 only the value, but the type as well. C has at least
825 int, long, unsigned int, and long long as constant
826 types; other languages probably should have at least
827 unsigned as well as signed constants. */
829 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
830 SYMBOL_VALUE (sym) = atoi (p);
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
837 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
838 SYMBOL_VALUE (sym) = atoi (p);
839 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
845 struct type *range_type;
848 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
849 gdb_byte *string_value;
851 if (quote != '\'' && quote != '"')
853 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
854 SYMBOL_TYPE (sym) = error_type (&p, objfile);
855 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
856 add_symbol_to_list (sym, &file_symbols);
860 /* Find matching quote, rejecting escaped quotes. */
861 while (*p && *p != quote)
863 if (*p == '\\' && p[1] == quote)
865 string_local[ind] = (gdb_byte) quote;
871 string_local[ind] = (gdb_byte) (*p);
878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
879 SYMBOL_TYPE (sym) = error_type (&p, objfile);
880 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
881 add_symbol_to_list (sym, &file_symbols);
885 /* NULL terminate the string. */
886 string_local[ind] = 0;
888 = create_static_range_type (NULL,
889 objfile_type (objfile)->builtin_int,
891 SYMBOL_TYPE (sym) = create_array_type (NULL,
892 objfile_type (objfile)->builtin_char,
895 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
896 memcpy (string_value, string_local, ind + 1);
899 SYMBOL_VALUE_BYTES (sym) = string_value;
900 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
905 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
906 can be represented as integral.
907 e.g. "b:c=e6,0" for "const b = blob1"
908 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
910 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
911 SYMBOL_TYPE (sym) = read_type (&p, objfile);
915 SYMBOL_TYPE (sym) = error_type (&p, objfile);
920 /* If the value is too big to fit in an int (perhaps because
921 it is unsigned), or something like that, we silently get
922 a bogus value. The type and everything else about it is
923 correct. Ideally, we should be using whatever we have
924 available for parsing unsigned and long long values,
926 SYMBOL_VALUE (sym) = atoi (p);
931 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
932 SYMBOL_TYPE (sym) = error_type (&p, objfile);
935 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
936 add_symbol_to_list (sym, &file_symbols);
940 /* The name of a caught exception. */
941 SYMBOL_TYPE (sym) = read_type (&p, objfile);
942 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
943 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
944 SYMBOL_VALUE_ADDRESS (sym) = valu;
945 add_symbol_to_list (sym, &local_symbols);
949 /* A static function definition. */
950 SYMBOL_TYPE (sym) = read_type (&p, objfile);
951 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
952 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
953 add_symbol_to_list (sym, &file_symbols);
954 /* fall into process_function_types. */
956 process_function_types:
957 /* Function result types are described as the result type in stabs.
958 We need to convert this to the function-returning-type-X type
959 in GDB. E.g. "int" is converted to "function returning int". */
960 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
961 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
963 /* All functions in C++ have prototypes. Stabs does not offer an
964 explicit way to identify prototyped or unprototyped functions,
965 but both GCC and Sun CC emit stabs for the "call-as" type rather
966 than the "declared-as" type for unprototyped functions, so
967 we treat all functions as if they were prototyped. This is used
968 primarily for promotion when calling the function from GDB. */
969 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
971 /* fall into process_prototype_types. */
973 process_prototype_types:
974 /* Sun acc puts declared types of arguments here. */
977 struct type *ftype = SYMBOL_TYPE (sym);
982 /* Obtain a worst case guess for the number of arguments
983 by counting the semicolons. */
990 /* Allocate parameter information fields and fill them in. */
991 TYPE_FIELDS (ftype) = (struct field *)
992 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
997 /* A type number of zero indicates the start of varargs.
998 FIXME: GDB currently ignores vararg functions. */
999 if (p[0] == '0' && p[1] == '\0')
1001 ptype = read_type (&p, objfile);
1003 /* The Sun compilers mark integer arguments, which should
1004 be promoted to the width of the calling conventions, with
1005 a type which references itself. This type is turned into
1006 a TYPE_CODE_VOID type by read_type, and we have to turn
1007 it back into builtin_int here.
1008 FIXME: Do we need a new builtin_promoted_int_arg ? */
1009 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1010 ptype = objfile_type (objfile)->builtin_int;
1011 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1012 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1014 TYPE_NFIELDS (ftype) = nparams;
1015 TYPE_PROTOTYPED (ftype) = 1;
1020 /* A global function definition. */
1021 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1022 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1023 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1024 add_symbol_to_list (sym, &global_symbols);
1025 goto process_function_types;
1028 /* For a class G (global) symbol, it appears that the
1029 value is not correct. It is necessary to search for the
1030 corresponding linker definition to find the value.
1031 These definitions appear at the end of the namelist. */
1032 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1033 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1035 /* Don't add symbol references to global_sym_chain.
1036 Symbol references don't have valid names and wont't match up with
1037 minimal symbols when the global_sym_chain is relocated.
1038 We'll fixup symbol references when we fixup the defining symbol. */
1039 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1041 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1042 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1043 global_sym_chain[i] = sym;
1045 add_symbol_to_list (sym, &global_symbols);
1048 /* This case is faked by a conditional above,
1049 when there is no code letter in the dbx data.
1050 Dbx data never actually contains 'l'. */
1053 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1054 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1055 SYMBOL_VALUE (sym) = valu;
1056 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1057 add_symbol_to_list (sym, &local_symbols);
1062 /* pF is a two-letter code that means a function parameter in Fortran.
1063 The type-number specifies the type of the return value.
1064 Translate it into a pointer-to-function type. */
1068 = lookup_pointer_type
1069 (lookup_function_type (read_type (&p, objfile)));
1072 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1074 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1075 SYMBOL_VALUE (sym) = valu;
1076 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1077 SYMBOL_IS_ARGUMENT (sym) = 1;
1078 add_symbol_to_list (sym, &local_symbols);
1080 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1082 /* On little-endian machines, this crud is never necessary,
1083 and, if the extra bytes contain garbage, is harmful. */
1087 /* If it's gcc-compiled, if it says `short', believe it. */
1088 if (processing_gcc_compilation
1089 || gdbarch_believe_pcc_promotion (gdbarch))
1092 if (!gdbarch_believe_pcc_promotion (gdbarch))
1094 /* If PCC says a parameter is a short or a char, it is
1096 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1097 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1098 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1101 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1102 ? objfile_type (objfile)->builtin_unsigned_int
1103 : objfile_type (objfile)->builtin_int;
1109 /* acc seems to use P to declare the prototypes of functions that
1110 are referenced by this file. gdb is not prepared to deal
1111 with this extra information. FIXME, it ought to. */
1114 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1115 goto process_prototype_types;
1120 /* Parameter which is in a register. */
1121 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1122 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1123 SYMBOL_IS_ARGUMENT (sym) = 1;
1124 SYMBOL_VALUE (sym) = valu;
1125 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1126 add_symbol_to_list (sym, &local_symbols);
1130 /* Register variable (either global or local). */
1131 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1132 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1133 SYMBOL_VALUE (sym) = valu;
1134 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1135 if (within_function)
1137 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1138 the same name to represent an argument passed in a
1139 register. GCC uses 'P' for the same case. So if we find
1140 such a symbol pair we combine it into one 'P' symbol.
1141 For Sun cc we need to do this regardless of
1142 stabs_argument_has_addr, because the compiler puts out
1143 the 'p' symbol even if it never saves the argument onto
1146 On most machines, we want to preserve both symbols, so
1147 that we can still get information about what is going on
1148 with the stack (VAX for computing args_printed, using
1149 stack slots instead of saved registers in backtraces,
1152 Note that this code illegally combines
1153 main(argc) struct foo argc; { register struct foo argc; }
1154 but this case is considered pathological and causes a warning
1155 from a decent compiler. */
1158 && local_symbols->nsyms > 0
1159 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1161 struct symbol *prev_sym;
1163 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1164 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1165 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1166 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1167 SYMBOL_LINKAGE_NAME (sym)) == 0)
1169 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1170 /* Use the type from the LOC_REGISTER; that is the type
1171 that is actually in that register. */
1172 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1173 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1178 add_symbol_to_list (sym, &local_symbols);
1181 add_symbol_to_list (sym, &file_symbols);
1185 /* Static symbol at top level of file. */
1186 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1187 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1188 SYMBOL_VALUE_ADDRESS (sym) = valu;
1189 if (gdbarch_static_transform_name_p (gdbarch)
1190 && gdbarch_static_transform_name (gdbarch,
1191 SYMBOL_LINKAGE_NAME (sym))
1192 != SYMBOL_LINKAGE_NAME (sym))
1194 struct bound_minimal_symbol msym;
1196 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1198 if (msym.minsym != NULL)
1200 const char *new_name = gdbarch_static_transform_name
1201 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1203 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1204 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1207 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1208 add_symbol_to_list (sym, &file_symbols);
1212 /* In Ada, there is no distinction between typedef and non-typedef;
1213 any type declaration implicitly has the equivalent of a typedef,
1214 and thus 't' is in fact equivalent to 'Tt'.
1216 Therefore, for Ada units, we check the character immediately
1217 before the 't', and if we do not find a 'T', then make sure to
1218 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1219 will be stored in the VAR_DOMAIN). If the symbol was indeed
1220 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1221 elsewhere, so we don't need to take care of that.
1223 This is important to do, because of forward references:
1224 The cleanup of undefined types stored in undef_types only uses
1225 STRUCT_DOMAIN symbols to perform the replacement. */
1226 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1229 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1231 /* For a nameless type, we don't want a create a symbol, thus we
1232 did not use `sym'. Return without further processing. */
1236 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1237 SYMBOL_VALUE (sym) = valu;
1238 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1239 /* C++ vagaries: we may have a type which is derived from
1240 a base type which did not have its name defined when the
1241 derived class was output. We fill in the derived class's
1242 base part member's name here in that case. */
1243 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1244 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1245 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1246 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1250 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1251 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1252 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1253 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1256 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1258 /* gcc-2.6 or later (when using -fvtable-thunks)
1259 emits a unique named type for a vtable entry.
1260 Some gdb code depends on that specific name. */
1261 extern const char vtbl_ptr_name[];
1263 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1264 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1265 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1267 /* If we are giving a name to a type such as "pointer to
1268 foo" or "function returning foo", we better not set
1269 the TYPE_NAME. If the program contains "typedef char
1270 *caddr_t;", we don't want all variables of type char
1271 * to print as caddr_t. This is not just a
1272 consequence of GDB's type management; PCC and GCC (at
1273 least through version 2.4) both output variables of
1274 either type char * or caddr_t with the type number
1275 defined in the 't' symbol for caddr_t. If a future
1276 compiler cleans this up it GDB is not ready for it
1277 yet, but if it becomes ready we somehow need to
1278 disable this check (without breaking the PCC/GCC2.4
1283 Fortunately, this check seems not to be necessary
1284 for anything except pointers or functions. */
1285 /* ezannoni: 2000-10-26. This seems to apply for
1286 versions of gcc older than 2.8. This was the original
1287 problem: with the following code gdb would tell that
1288 the type for name1 is caddr_t, and func is char().
1290 typedef char *caddr_t;
1302 /* Pascal accepts names for pointer types. */
1303 if (current_subfile->language == language_pascal)
1305 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1309 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1312 add_symbol_to_list (sym, &file_symbols);
1316 /* Create the STRUCT_DOMAIN clone. */
1317 struct symbol *struct_sym = allocate_symbol (objfile);
1320 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1321 SYMBOL_VALUE (struct_sym) = valu;
1322 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1323 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1324 TYPE_NAME (SYMBOL_TYPE (sym))
1325 = obconcat (&objfile->objfile_obstack,
1326 SYMBOL_LINKAGE_NAME (sym),
1328 add_symbol_to_list (struct_sym, &file_symbols);
1334 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1335 by 't' which means we are typedef'ing it as well. */
1336 synonym = *p == 't';
1341 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1343 /* For a nameless type, we don't want a create a symbol, thus we
1344 did not use `sym'. Return without further processing. */
1348 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1349 SYMBOL_VALUE (sym) = valu;
1350 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1351 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1352 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1353 = obconcat (&objfile->objfile_obstack,
1354 SYMBOL_LINKAGE_NAME (sym),
1356 add_symbol_to_list (sym, &file_symbols);
1360 /* Clone the sym and then modify it. */
1361 struct symbol *typedef_sym = allocate_symbol (objfile);
1363 *typedef_sym = *sym;
1364 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1365 SYMBOL_VALUE (typedef_sym) = valu;
1366 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1367 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1368 TYPE_NAME (SYMBOL_TYPE (sym))
1369 = obconcat (&objfile->objfile_obstack,
1370 SYMBOL_LINKAGE_NAME (sym),
1372 add_symbol_to_list (typedef_sym, &file_symbols);
1377 /* Static symbol of local scope. */
1378 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1379 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1380 SYMBOL_VALUE_ADDRESS (sym) = valu;
1381 if (gdbarch_static_transform_name_p (gdbarch)
1382 && gdbarch_static_transform_name (gdbarch,
1383 SYMBOL_LINKAGE_NAME (sym))
1384 != SYMBOL_LINKAGE_NAME (sym))
1386 struct bound_minimal_symbol msym;
1388 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1390 if (msym.minsym != NULL)
1392 const char *new_name = gdbarch_static_transform_name
1393 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1395 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1396 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1399 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1400 add_symbol_to_list (sym, &local_symbols);
1404 /* Reference parameter */
1405 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1406 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1407 SYMBOL_IS_ARGUMENT (sym) = 1;
1408 SYMBOL_VALUE (sym) = valu;
1409 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1410 add_symbol_to_list (sym, &local_symbols);
1414 /* Reference parameter which is in a register. */
1415 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1416 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1417 SYMBOL_IS_ARGUMENT (sym) = 1;
1418 SYMBOL_VALUE (sym) = valu;
1419 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1420 add_symbol_to_list (sym, &local_symbols);
1424 /* This is used by Sun FORTRAN for "function result value".
1425 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1426 that Pascal uses it too, but when I tried it Pascal used
1427 "x:3" (local symbol) instead. */
1428 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1429 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1430 SYMBOL_VALUE (sym) = valu;
1431 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1432 add_symbol_to_list (sym, &local_symbols);
1436 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1437 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1438 SYMBOL_VALUE (sym) = 0;
1439 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1440 add_symbol_to_list (sym, &file_symbols);
1444 /* Some systems pass variables of certain types by reference instead
1445 of by value, i.e. they will pass the address of a structure (in a
1446 register or on the stack) instead of the structure itself. */
1448 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1449 && SYMBOL_IS_ARGUMENT (sym))
1451 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1452 variables passed in a register). */
1453 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1454 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1455 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1456 and subsequent arguments on SPARC, for example). */
1457 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1458 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1464 /* Skip rest of this symbol and return an error type.
1466 General notes on error recovery: error_type always skips to the
1467 end of the symbol (modulo cretinous dbx symbol name continuation).
1468 Thus code like this:
1470 if (*(*pp)++ != ';')
1471 return error_type (pp, objfile);
1473 is wrong because if *pp starts out pointing at '\0' (typically as the
1474 result of an earlier error), it will be incremented to point to the
1475 start of the next symbol, which might produce strange results, at least
1476 if you run off the end of the string table. Instead use
1479 return error_type (pp, objfile);
1485 foo = error_type (pp, objfile);
1489 And in case it isn't obvious, the point of all this hair is so the compiler
1490 can define new types and new syntaxes, and old versions of the
1491 debugger will be able to read the new symbol tables. */
1493 static struct type *
1494 error_type (const char **pp, struct objfile *objfile)
1496 complaint (&symfile_complaints,
1497 _("couldn't parse type; debugger out of date?"));
1500 /* Skip to end of symbol. */
1501 while (**pp != '\0')
1506 /* Check for and handle cretinous dbx symbol name continuation! */
1507 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1509 *pp = next_symbol_text (objfile);
1516 return objfile_type (objfile)->builtin_error;
1520 /* Read type information or a type definition; return the type. Even
1521 though this routine accepts either type information or a type
1522 definition, the distinction is relevant--some parts of stabsread.c
1523 assume that type information starts with a digit, '-', or '(' in
1524 deciding whether to call read_type. */
1526 static struct type *
1527 read_type (const char **pp, struct objfile *objfile)
1529 struct type *type = 0;
1532 char type_descriptor;
1534 /* Size in bits of type if specified by a type attribute, or -1 if
1535 there is no size attribute. */
1538 /* Used to distinguish string and bitstring from char-array and set. */
1541 /* Used to distinguish vector from array. */
1544 /* Read type number if present. The type number may be omitted.
1545 for instance in a two-dimensional array declared with type
1546 "ar1;1;10;ar1;1;10;4". */
1547 if ((**pp >= '0' && **pp <= '9')
1551 if (read_type_number (pp, typenums) != 0)
1552 return error_type (pp, objfile);
1556 /* Type is not being defined here. Either it already
1557 exists, or this is a forward reference to it.
1558 dbx_alloc_type handles both cases. */
1559 type = dbx_alloc_type (typenums, objfile);
1561 /* If this is a forward reference, arrange to complain if it
1562 doesn't get patched up by the time we're done
1564 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1565 add_undefined_type (type, typenums);
1570 /* Type is being defined here. */
1572 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1577 /* 'typenums=' not present, type is anonymous. Read and return
1578 the definition, but don't put it in the type vector. */
1579 typenums[0] = typenums[1] = -1;
1584 type_descriptor = (*pp)[-1];
1585 switch (type_descriptor)
1589 enum type_code code;
1591 /* Used to index through file_symbols. */
1592 struct pending *ppt;
1595 /* Name including "struct", etc. */
1599 const char *from, *p, *q1, *q2;
1601 /* Set the type code according to the following letter. */
1605 code = TYPE_CODE_STRUCT;
1608 code = TYPE_CODE_UNION;
1611 code = TYPE_CODE_ENUM;
1615 /* Complain and keep going, so compilers can invent new
1616 cross-reference types. */
1617 complaint (&symfile_complaints,
1618 _("Unrecognized cross-reference type `%c'"),
1620 code = TYPE_CODE_STRUCT;
1625 q1 = strchr (*pp, '<');
1626 p = strchr (*pp, ':');
1628 return error_type (pp, objfile);
1629 if (q1 && p > q1 && p[1] == ':')
1631 int nesting_level = 0;
1633 for (q2 = q1; *q2; q2++)
1637 else if (*q2 == '>')
1639 else if (*q2 == ':' && nesting_level == 0)
1644 return error_type (pp, objfile);
1647 if (current_subfile->language == language_cplus)
1649 char *name = (char *) alloca (p - *pp + 1);
1651 memcpy (name, *pp, p - *pp);
1652 name[p - *pp] = '\0';
1654 std::string new_name = cp_canonicalize_string (name);
1655 if (!new_name.empty ())
1658 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1660 new_name.length ());
1663 if (type_name == NULL)
1665 char *to = type_name = (char *)
1666 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1668 /* Copy the name. */
1675 /* Set the pointer ahead of the name which we just read, and
1680 /* If this type has already been declared, then reuse the same
1681 type, rather than allocating a new one. This saves some
1684 for (ppt = file_symbols; ppt; ppt = ppt->next)
1685 for (i = 0; i < ppt->nsyms; i++)
1687 struct symbol *sym = ppt->symbol[i];
1689 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1690 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1691 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1692 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1694 obstack_free (&objfile->objfile_obstack, type_name);
1695 type = SYMBOL_TYPE (sym);
1696 if (typenums[0] != -1)
1697 *dbx_lookup_type (typenums, objfile) = type;
1702 /* Didn't find the type to which this refers, so we must
1703 be dealing with a forward reference. Allocate a type
1704 structure for it, and keep track of it so we can
1705 fill in the rest of the fields when we get the full
1707 type = dbx_alloc_type (typenums, objfile);
1708 TYPE_CODE (type) = code;
1709 TYPE_TAG_NAME (type) = type_name;
1710 INIT_CPLUS_SPECIFIC (type);
1711 TYPE_STUB (type) = 1;
1713 add_undefined_type (type, typenums);
1717 case '-': /* RS/6000 built-in type */
1731 /* We deal with something like t(1,2)=(3,4)=... which
1732 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1734 /* Allocate and enter the typedef type first.
1735 This handles recursive types. */
1736 type = dbx_alloc_type (typenums, objfile);
1737 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1739 struct type *xtype = read_type (pp, objfile);
1743 /* It's being defined as itself. That means it is "void". */
1744 TYPE_CODE (type) = TYPE_CODE_VOID;
1745 TYPE_LENGTH (type) = 1;
1747 else if (type_size >= 0 || is_string)
1749 /* This is the absolute wrong way to construct types. Every
1750 other debug format has found a way around this problem and
1751 the related problems with unnecessarily stubbed types;
1752 someone motivated should attempt to clean up the issue
1753 here as well. Once a type pointed to has been created it
1754 should not be modified.
1756 Well, it's not *absolutely* wrong. Constructing recursive
1757 types (trees, linked lists) necessarily entails modifying
1758 types after creating them. Constructing any loop structure
1759 entails side effects. The Dwarf 2 reader does handle this
1760 more gracefully (it never constructs more than once
1761 instance of a type object, so it doesn't have to copy type
1762 objects wholesale), but it still mutates type objects after
1763 other folks have references to them.
1765 Keep in mind that this circularity/mutation issue shows up
1766 at the source language level, too: C's "incomplete types",
1767 for example. So the proper cleanup, I think, would be to
1768 limit GDB's type smashing to match exactly those required
1769 by the source language. So GDB could have a
1770 "complete_this_type" function, but never create unnecessary
1771 copies of a type otherwise. */
1772 replace_type (type, xtype);
1773 TYPE_NAME (type) = NULL;
1774 TYPE_TAG_NAME (type) = NULL;
1778 TYPE_TARGET_STUB (type) = 1;
1779 TYPE_TARGET_TYPE (type) = xtype;
1784 /* In the following types, we must be sure to overwrite any existing
1785 type that the typenums refer to, rather than allocating a new one
1786 and making the typenums point to the new one. This is because there
1787 may already be pointers to the existing type (if it had been
1788 forward-referenced), and we must change it to a pointer, function,
1789 reference, or whatever, *in-place*. */
1791 case '*': /* Pointer to another type */
1792 type1 = read_type (pp, objfile);
1793 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1796 case '&': /* Reference to another type */
1797 type1 = read_type (pp, objfile);
1798 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1802 case 'f': /* Function returning another type */
1803 type1 = read_type (pp, objfile);
1804 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1807 case 'g': /* Prototyped function. (Sun) */
1809 /* Unresolved questions:
1811 - According to Sun's ``STABS Interface Manual'', for 'f'
1812 and 'F' symbol descriptors, a `0' in the argument type list
1813 indicates a varargs function. But it doesn't say how 'g'
1814 type descriptors represent that info. Someone with access
1815 to Sun's toolchain should try it out.
1817 - According to the comment in define_symbol (search for
1818 `process_prototype_types:'), Sun emits integer arguments as
1819 types which ref themselves --- like `void' types. Do we
1820 have to deal with that here, too? Again, someone with
1821 access to Sun's toolchain should try it out and let us
1824 const char *type_start = (*pp) - 1;
1825 struct type *return_type = read_type (pp, objfile);
1826 struct type *func_type
1827 = make_function_type (return_type,
1828 dbx_lookup_type (typenums, objfile));
1831 struct type_list *next;
1835 while (**pp && **pp != '#')
1837 struct type *arg_type = read_type (pp, objfile);
1838 struct type_list *newobj = XALLOCA (struct type_list);
1839 newobj->type = arg_type;
1840 newobj->next = arg_types;
1848 complaint (&symfile_complaints,
1849 _("Prototyped function type didn't "
1850 "end arguments with `#':\n%s"),
1854 /* If there is just one argument whose type is `void', then
1855 that's just an empty argument list. */
1857 && ! arg_types->next
1858 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1861 TYPE_FIELDS (func_type)
1862 = (struct field *) TYPE_ALLOC (func_type,
1863 num_args * sizeof (struct field));
1864 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1867 struct type_list *t;
1869 /* We stuck each argument type onto the front of the list
1870 when we read it, so the list is reversed. Build the
1871 fields array right-to-left. */
1872 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1873 TYPE_FIELD_TYPE (func_type, i) = t->type;
1875 TYPE_NFIELDS (func_type) = num_args;
1876 TYPE_PROTOTYPED (func_type) = 1;
1882 case 'k': /* Const qualifier on some type (Sun) */
1883 type = read_type (pp, objfile);
1884 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1885 dbx_lookup_type (typenums, objfile));
1888 case 'B': /* Volatile qual on some type (Sun) */
1889 type = read_type (pp, objfile);
1890 type = make_cv_type (TYPE_CONST (type), 1, type,
1891 dbx_lookup_type (typenums, objfile));
1895 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1896 { /* Member (class & variable) type */
1897 /* FIXME -- we should be doing smash_to_XXX types here. */
1899 struct type *domain = read_type (pp, objfile);
1900 struct type *memtype;
1903 /* Invalid member type data format. */
1904 return error_type (pp, objfile);
1907 memtype = read_type (pp, objfile);
1908 type = dbx_alloc_type (typenums, objfile);
1909 smash_to_memberptr_type (type, domain, memtype);
1912 /* type attribute */
1914 const char *attr = *pp;
1916 /* Skip to the semicolon. */
1917 while (**pp != ';' && **pp != '\0')
1920 return error_type (pp, objfile);
1922 ++ * pp; /* Skip the semicolon. */
1926 case 's': /* Size attribute */
1927 type_size = atoi (attr + 1);
1932 case 'S': /* String attribute */
1933 /* FIXME: check to see if following type is array? */
1937 case 'V': /* Vector attribute */
1938 /* FIXME: check to see if following type is array? */
1943 /* Ignore unrecognized type attributes, so future compilers
1944 can invent new ones. */
1952 case '#': /* Method (class & fn) type */
1953 if ((*pp)[0] == '#')
1955 /* We'll get the parameter types from the name. */
1956 struct type *return_type;
1959 return_type = read_type (pp, objfile);
1960 if (*(*pp)++ != ';')
1961 complaint (&symfile_complaints,
1962 _("invalid (minimal) member type "
1963 "data format at symtab pos %d."),
1965 type = allocate_stub_method (return_type);
1966 if (typenums[0] != -1)
1967 *dbx_lookup_type (typenums, objfile) = type;
1971 struct type *domain = read_type (pp, objfile);
1972 struct type *return_type;
1977 /* Invalid member type data format. */
1978 return error_type (pp, objfile);
1982 return_type = read_type (pp, objfile);
1983 args = read_args (pp, ';', objfile, &nargs, &varargs);
1985 return error_type (pp, objfile);
1986 type = dbx_alloc_type (typenums, objfile);
1987 smash_to_method_type (type, domain, return_type, args,
1992 case 'r': /* Range type */
1993 type = read_range_type (pp, typenums, type_size, objfile);
1994 if (typenums[0] != -1)
1995 *dbx_lookup_type (typenums, objfile) = type;
2000 /* Sun ACC builtin int type */
2001 type = read_sun_builtin_type (pp, typenums, objfile);
2002 if (typenums[0] != -1)
2003 *dbx_lookup_type (typenums, objfile) = type;
2007 case 'R': /* Sun ACC builtin float type */
2008 type = read_sun_floating_type (pp, typenums, objfile);
2009 if (typenums[0] != -1)
2010 *dbx_lookup_type (typenums, objfile) = type;
2013 case 'e': /* Enumeration type */
2014 type = dbx_alloc_type (typenums, objfile);
2015 type = read_enum_type (pp, type, objfile);
2016 if (typenums[0] != -1)
2017 *dbx_lookup_type (typenums, objfile) = type;
2020 case 's': /* Struct type */
2021 case 'u': /* Union type */
2023 enum type_code type_code = TYPE_CODE_UNDEF;
2024 type = dbx_alloc_type (typenums, objfile);
2025 switch (type_descriptor)
2028 type_code = TYPE_CODE_STRUCT;
2031 type_code = TYPE_CODE_UNION;
2034 type = read_struct_type (pp, type, type_code, objfile);
2038 case 'a': /* Array type */
2040 return error_type (pp, objfile);
2043 type = dbx_alloc_type (typenums, objfile);
2044 type = read_array_type (pp, type, objfile);
2046 TYPE_CODE (type) = TYPE_CODE_STRING;
2048 make_vector_type (type);
2051 case 'S': /* Set type */
2052 type1 = read_type (pp, objfile);
2053 type = create_set_type ((struct type *) NULL, type1);
2054 if (typenums[0] != -1)
2055 *dbx_lookup_type (typenums, objfile) = type;
2059 --*pp; /* Go back to the symbol in error. */
2060 /* Particularly important if it was \0! */
2061 return error_type (pp, objfile);
2066 warning (_("GDB internal error, type is NULL in stabsread.c."));
2067 return error_type (pp, objfile);
2070 /* Size specified in a type attribute overrides any other size. */
2071 if (type_size != -1)
2072 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2077 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2078 Return the proper type node for a given builtin type number. */
2080 static const struct objfile_data *rs6000_builtin_type_data;
2082 static struct type *
2083 rs6000_builtin_type (int typenum, struct objfile *objfile)
2085 struct type **negative_types
2086 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2088 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2089 #define NUMBER_RECOGNIZED 34
2090 struct type *rettype = NULL;
2092 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2094 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2095 return objfile_type (objfile)->builtin_error;
2098 if (!negative_types)
2100 /* This includes an empty slot for type number -0. */
2101 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2102 NUMBER_RECOGNIZED + 1, struct type *);
2103 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2106 if (negative_types[-typenum] != NULL)
2107 return negative_types[-typenum];
2109 #if TARGET_CHAR_BIT != 8
2110 #error This code wrong for TARGET_CHAR_BIT not 8
2111 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2112 that if that ever becomes not true, the correct fix will be to
2113 make the size in the struct type to be in bits, not in units of
2120 /* The size of this and all the other types are fixed, defined
2121 by the debugging format. If there is a type called "int" which
2122 is other than 32 bits, then it should use a new negative type
2123 number (or avoid negative type numbers for that case).
2124 See stabs.texinfo. */
2125 rettype = init_integer_type (objfile, 32, 0, "int");
2128 rettype = init_integer_type (objfile, 8, 0, "char");
2129 TYPE_NOSIGN (rettype) = 1;
2132 rettype = init_integer_type (objfile, 16, 0, "short");
2135 rettype = init_integer_type (objfile, 32, 0, "long");
2138 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2141 rettype = init_integer_type (objfile, 8, 0, "signed char");
2144 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2147 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2150 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2153 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2156 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2159 /* IEEE single precision (32 bit). */
2160 rettype = init_float_type (objfile, 32, "float",
2161 floatformats_ieee_single);
2164 /* IEEE double precision (64 bit). */
2165 rettype = init_float_type (objfile, 64, "double",
2166 floatformats_ieee_double);
2169 /* This is an IEEE double on the RS/6000, and different machines with
2170 different sizes for "long double" should use different negative
2171 type numbers. See stabs.texinfo. */
2172 rettype = init_float_type (objfile, 64, "long double",
2173 floatformats_ieee_double);
2176 rettype = init_integer_type (objfile, 32, 0, "integer");
2179 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2182 rettype = init_float_type (objfile, 32, "short real",
2183 floatformats_ieee_single);
2186 rettype = init_float_type (objfile, 64, "real",
2187 floatformats_ieee_double);
2190 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2193 rettype = init_character_type (objfile, 8, 1, "character");
2196 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2199 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2202 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2205 rettype = init_boolean_type (objfile, 32, 1, "logical");
2208 /* Complex type consisting of two IEEE single precision values. */
2209 rettype = init_complex_type (objfile, "complex",
2210 rs6000_builtin_type (12, objfile));
2213 /* Complex type consisting of two IEEE double precision values. */
2214 rettype = init_complex_type (objfile, "double complex",
2215 rs6000_builtin_type (13, objfile));
2218 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2221 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2224 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2227 rettype = init_character_type (objfile, 16, 0, "wchar");
2230 rettype = init_integer_type (objfile, 64, 0, "long long");
2233 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2236 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2239 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2242 negative_types[-typenum] = rettype;
2246 /* This page contains subroutines of read_type. */
2248 /* Wrapper around method_name_from_physname to flag a complaint
2249 if there is an error. */
2252 stabs_method_name_from_physname (const char *physname)
2256 method_name = method_name_from_physname (physname);
2258 if (method_name == NULL)
2260 complaint (&symfile_complaints,
2261 _("Method has bad physname %s\n"), physname);
2268 /* Read member function stabs info for C++ classes. The form of each member
2271 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2273 An example with two member functions is:
2275 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2277 For the case of overloaded operators, the format is op$::*.funcs, where
2278 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2279 name (such as `+=') and `.' marks the end of the operator name.
2281 Returns 1 for success, 0 for failure. */
2284 read_member_functions (struct field_info *fip, const char **pp,
2285 struct type *type, struct objfile *objfile)
2292 struct next_fnfield *next;
2293 struct fn_field fn_field;
2296 struct type *look_ahead_type;
2297 struct next_fnfieldlist *new_fnlist;
2298 struct next_fnfield *new_sublist;
2302 /* Process each list until we find something that is not a member function
2303 or find the end of the functions. */
2307 /* We should be positioned at the start of the function name.
2308 Scan forward to find the first ':' and if it is not the
2309 first of a "::" delimiter, then this is not a member function. */
2321 look_ahead_type = NULL;
2324 new_fnlist = XCNEW (struct next_fnfieldlist);
2325 make_cleanup (xfree, new_fnlist);
2327 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2329 /* This is a completely wierd case. In order to stuff in the
2330 names that might contain colons (the usual name delimiter),
2331 Mike Tiemann defined a different name format which is
2332 signalled if the identifier is "op$". In that case, the
2333 format is "op$::XXXX." where XXXX is the name. This is
2334 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2335 /* This lets the user type "break operator+".
2336 We could just put in "+" as the name, but that wouldn't
2338 static char opname[32] = "op$";
2339 char *o = opname + 3;
2341 /* Skip past '::'. */
2344 STABS_CONTINUE (pp, objfile);
2350 main_fn_name = savestring (opname, o - opname);
2356 main_fn_name = savestring (*pp, p - *pp);
2357 /* Skip past '::'. */
2360 new_fnlist->fn_fieldlist.name = main_fn_name;
2364 new_sublist = XCNEW (struct next_fnfield);
2365 make_cleanup (xfree, new_sublist);
2367 /* Check for and handle cretinous dbx symbol name continuation! */
2368 if (look_ahead_type == NULL)
2371 STABS_CONTINUE (pp, objfile);
2373 new_sublist->fn_field.type = read_type (pp, objfile);
2376 /* Invalid symtab info for member function. */
2382 /* g++ version 1 kludge */
2383 new_sublist->fn_field.type = look_ahead_type;
2384 look_ahead_type = NULL;
2394 /* These are methods, not functions. */
2395 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2396 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2398 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2399 == TYPE_CODE_METHOD);
2401 /* If this is just a stub, then we don't have the real name here. */
2402 if (TYPE_STUB (new_sublist->fn_field.type))
2404 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2405 set_type_self_type (new_sublist->fn_field.type, type);
2406 new_sublist->fn_field.is_stub = 1;
2409 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2412 /* Set this member function's visibility fields. */
2415 case VISIBILITY_PRIVATE:
2416 new_sublist->fn_field.is_private = 1;
2418 case VISIBILITY_PROTECTED:
2419 new_sublist->fn_field.is_protected = 1;
2423 STABS_CONTINUE (pp, objfile);
2426 case 'A': /* Normal functions. */
2427 new_sublist->fn_field.is_const = 0;
2428 new_sublist->fn_field.is_volatile = 0;
2431 case 'B': /* `const' member functions. */
2432 new_sublist->fn_field.is_const = 1;
2433 new_sublist->fn_field.is_volatile = 0;
2436 case 'C': /* `volatile' member function. */
2437 new_sublist->fn_field.is_const = 0;
2438 new_sublist->fn_field.is_volatile = 1;
2441 case 'D': /* `const volatile' member function. */
2442 new_sublist->fn_field.is_const = 1;
2443 new_sublist->fn_field.is_volatile = 1;
2446 case '*': /* File compiled with g++ version 1 --
2452 complaint (&symfile_complaints,
2453 _("const/volatile indicator missing, got '%c'"),
2463 /* virtual member function, followed by index.
2464 The sign bit is set to distinguish pointers-to-methods
2465 from virtual function indicies. Since the array is
2466 in words, the quantity must be shifted left by 1
2467 on 16 bit machine, and by 2 on 32 bit machine, forcing
2468 the sign bit out, and usable as a valid index into
2469 the array. Remove the sign bit here. */
2470 new_sublist->fn_field.voffset =
2471 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2475 STABS_CONTINUE (pp, objfile);
2476 if (**pp == ';' || **pp == '\0')
2478 /* Must be g++ version 1. */
2479 new_sublist->fn_field.fcontext = 0;
2483 /* Figure out from whence this virtual function came.
2484 It may belong to virtual function table of
2485 one of its baseclasses. */
2486 look_ahead_type = read_type (pp, objfile);
2489 /* g++ version 1 overloaded methods. */
2493 new_sublist->fn_field.fcontext = look_ahead_type;
2502 look_ahead_type = NULL;
2508 /* static member function. */
2510 int slen = strlen (main_fn_name);
2512 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2514 /* For static member functions, we can't tell if they
2515 are stubbed, as they are put out as functions, and not as
2517 GCC v2 emits the fully mangled name if
2518 dbxout.c:flag_minimal_debug is not set, so we have to
2519 detect a fully mangled physname here and set is_stub
2520 accordingly. Fully mangled physnames in v2 start with
2521 the member function name, followed by two underscores.
2522 GCC v3 currently always emits stubbed member functions,
2523 but with fully mangled physnames, which start with _Z. */
2524 if (!(strncmp (new_sublist->fn_field.physname,
2525 main_fn_name, slen) == 0
2526 && new_sublist->fn_field.physname[slen] == '_'
2527 && new_sublist->fn_field.physname[slen + 1] == '_'))
2529 new_sublist->fn_field.is_stub = 1;
2536 complaint (&symfile_complaints,
2537 _("member function type missing, got '%c'"),
2539 /* Fall through into normal member function. */
2542 /* normal member function. */
2543 new_sublist->fn_field.voffset = 0;
2544 new_sublist->fn_field.fcontext = 0;
2548 new_sublist->next = sublist;
2549 sublist = new_sublist;
2551 STABS_CONTINUE (pp, objfile);
2553 while (**pp != ';' && **pp != '\0');
2556 STABS_CONTINUE (pp, objfile);
2558 /* Skip GCC 3.X member functions which are duplicates of the callable
2559 constructor/destructor. */
2560 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2561 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2562 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2564 xfree (main_fn_name);
2569 int has_destructor = 0, has_other = 0;
2571 struct next_fnfield *tmp_sublist;
2573 /* Various versions of GCC emit various mostly-useless
2574 strings in the name field for special member functions.
2576 For stub methods, we need to defer correcting the name
2577 until we are ready to unstub the method, because the current
2578 name string is used by gdb_mangle_name. The only stub methods
2579 of concern here are GNU v2 operators; other methods have their
2580 names correct (see caveat below).
2582 For non-stub methods, in GNU v3, we have a complete physname.
2583 Therefore we can safely correct the name now. This primarily
2584 affects constructors and destructors, whose name will be
2585 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2586 operators will also have incorrect names; for instance,
2587 "operator int" will be named "operator i" (i.e. the type is
2590 For non-stub methods in GNU v2, we have no easy way to
2591 know if we have a complete physname or not. For most
2592 methods the result depends on the platform (if CPLUS_MARKER
2593 can be `$' or `.', it will use minimal debug information, or
2594 otherwise the full physname will be included).
2596 Rather than dealing with this, we take a different approach.
2597 For v3 mangled names, we can use the full physname; for v2,
2598 we use cplus_demangle_opname (which is actually v2 specific),
2599 because the only interesting names are all operators - once again
2600 barring the caveat below. Skip this process if any method in the
2601 group is a stub, to prevent our fouling up the workings of
2604 The caveat: GCC 2.95.x (and earlier?) put constructors and
2605 destructors in the same method group. We need to split this
2606 into two groups, because they should have different names.
2607 So for each method group we check whether it contains both
2608 routines whose physname appears to be a destructor (the physnames
2609 for and destructors are always provided, due to quirks in v2
2610 mangling) and routines whose physname does not appear to be a
2611 destructor. If so then we break up the list into two halves.
2612 Even if the constructors and destructors aren't in the same group
2613 the destructor will still lack the leading tilde, so that also
2616 So, to summarize what we expect and handle here:
2618 Given Given Real Real Action
2619 method name physname physname method name
2621 __opi [none] __opi__3Foo operator int opname
2623 Foo _._3Foo _._3Foo ~Foo separate and
2625 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2626 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2629 tmp_sublist = sublist;
2630 while (tmp_sublist != NULL)
2632 if (tmp_sublist->fn_field.is_stub)
2634 if (tmp_sublist->fn_field.physname[0] == '_'
2635 && tmp_sublist->fn_field.physname[1] == 'Z')
2638 if (is_destructor_name (tmp_sublist->fn_field.physname))
2643 tmp_sublist = tmp_sublist->next;
2646 if (has_destructor && has_other)
2648 struct next_fnfieldlist *destr_fnlist;
2649 struct next_fnfield *last_sublist;
2651 /* Create a new fn_fieldlist for the destructors. */
2653 destr_fnlist = XCNEW (struct next_fnfieldlist);
2654 make_cleanup (xfree, destr_fnlist);
2656 destr_fnlist->fn_fieldlist.name
2657 = obconcat (&objfile->objfile_obstack, "~",
2658 new_fnlist->fn_fieldlist.name, (char *) NULL);
2660 destr_fnlist->fn_fieldlist.fn_fields =
2661 XOBNEWVEC (&objfile->objfile_obstack,
2662 struct fn_field, has_destructor);
2663 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2664 sizeof (struct fn_field) * has_destructor);
2665 tmp_sublist = sublist;
2666 last_sublist = NULL;
2668 while (tmp_sublist != NULL)
2670 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2672 tmp_sublist = tmp_sublist->next;
2676 destr_fnlist->fn_fieldlist.fn_fields[i++]
2677 = tmp_sublist->fn_field;
2679 last_sublist->next = tmp_sublist->next;
2681 sublist = tmp_sublist->next;
2682 last_sublist = tmp_sublist;
2683 tmp_sublist = tmp_sublist->next;
2686 destr_fnlist->fn_fieldlist.length = has_destructor;
2687 destr_fnlist->next = fip->fnlist;
2688 fip->fnlist = destr_fnlist;
2690 length -= has_destructor;
2694 /* v3 mangling prevents the use of abbreviated physnames,
2695 so we can do this here. There are stubbed methods in v3
2697 - in -gstabs instead of -gstabs+
2698 - or for static methods, which are output as a function type
2699 instead of a method type. */
2700 char *new_method_name =
2701 stabs_method_name_from_physname (sublist->fn_field.physname);
2703 if (new_method_name != NULL
2704 && strcmp (new_method_name,
2705 new_fnlist->fn_fieldlist.name) != 0)
2707 new_fnlist->fn_fieldlist.name = new_method_name;
2708 xfree (main_fn_name);
2711 xfree (new_method_name);
2713 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2715 new_fnlist->fn_fieldlist.name =
2716 obconcat (&objfile->objfile_obstack,
2717 "~", main_fn_name, (char *)NULL);
2718 xfree (main_fn_name);
2722 char dem_opname[256];
2725 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2726 dem_opname, DMGL_ANSI);
2728 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2731 new_fnlist->fn_fieldlist.name
2733 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2734 strlen (dem_opname)));
2735 xfree (main_fn_name);
2738 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2739 obstack_alloc (&objfile->objfile_obstack,
2740 sizeof (struct fn_field) * length);
2741 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2742 sizeof (struct fn_field) * length);
2743 for (i = length; (i--, sublist); sublist = sublist->next)
2745 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2748 new_fnlist->fn_fieldlist.length = length;
2749 new_fnlist->next = fip->fnlist;
2750 fip->fnlist = new_fnlist;
2757 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2758 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2759 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2760 memset (TYPE_FN_FIELDLISTS (type), 0,
2761 sizeof (struct fn_fieldlist) * nfn_fields);
2762 TYPE_NFN_FIELDS (type) = nfn_fields;
2768 /* Special GNU C++ name.
2770 Returns 1 for success, 0 for failure. "failure" means that we can't
2771 keep parsing and it's time for error_type(). */
2774 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2775 struct objfile *objfile)
2780 struct type *context;
2790 /* At this point, *pp points to something like "22:23=*22...",
2791 where the type number before the ':' is the "context" and
2792 everything after is a regular type definition. Lookup the
2793 type, find it's name, and construct the field name. */
2795 context = read_type (pp, objfile);
2799 case 'f': /* $vf -- a virtual function table pointer */
2800 name = type_name_no_tag (context);
2805 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2806 vptr_name, name, (char *) NULL);
2809 case 'b': /* $vb -- a virtual bsomethingorother */
2810 name = type_name_no_tag (context);
2813 complaint (&symfile_complaints,
2814 _("C++ abbreviated type name "
2815 "unknown at symtab pos %d"),
2819 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2820 name, (char *) NULL);
2824 invalid_cpp_abbrev_complaint (*pp);
2825 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2826 "INVALID_CPLUSPLUS_ABBREV",
2831 /* At this point, *pp points to the ':'. Skip it and read the
2837 invalid_cpp_abbrev_complaint (*pp);
2840 fip->list->field.type = read_type (pp, objfile);
2842 (*pp)++; /* Skip the comma. */
2849 SET_FIELD_BITPOS (fip->list->field,
2850 read_huge_number (pp, ';', &nbits, 0));
2854 /* This field is unpacked. */
2855 FIELD_BITSIZE (fip->list->field) = 0;
2856 fip->list->visibility = VISIBILITY_PRIVATE;
2860 invalid_cpp_abbrev_complaint (*pp);
2861 /* We have no idea what syntax an unrecognized abbrev would have, so
2862 better return 0. If we returned 1, we would need to at least advance
2863 *pp to avoid an infinite loop. */
2870 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2871 struct type *type, struct objfile *objfile)
2873 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2875 fip->list->field.name
2876 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2879 /* This means we have a visibility for a field coming. */
2883 fip->list->visibility = *(*pp)++;
2887 /* normal dbx-style format, no explicit visibility */
2888 fip->list->visibility = VISIBILITY_PUBLIC;
2891 fip->list->field.type = read_type (pp, objfile);
2896 /* Possible future hook for nested types. */
2899 fip->list->field.bitpos = (long) -2; /* nested type */
2909 /* Static class member. */
2910 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2914 else if (**pp != ',')
2916 /* Bad structure-type format. */
2917 stabs_general_complaint ("bad structure-type format");
2921 (*pp)++; /* Skip the comma. */
2926 SET_FIELD_BITPOS (fip->list->field,
2927 read_huge_number (pp, ',', &nbits, 0));
2930 stabs_general_complaint ("bad structure-type format");
2933 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2936 stabs_general_complaint ("bad structure-type format");
2941 if (FIELD_BITPOS (fip->list->field) == 0
2942 && FIELD_BITSIZE (fip->list->field) == 0)
2944 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2945 it is a field which has been optimized out. The correct stab for
2946 this case is to use VISIBILITY_IGNORE, but that is a recent
2947 invention. (2) It is a 0-size array. For example
2948 union { int num; char str[0]; } foo. Printing _("<no value>" for
2949 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2950 will continue to work, and a 0-size array as a whole doesn't
2951 have any contents to print.
2953 I suspect this probably could also happen with gcc -gstabs (not
2954 -gstabs+) for static fields, and perhaps other C++ extensions.
2955 Hopefully few people use -gstabs with gdb, since it is intended
2956 for dbx compatibility. */
2958 /* Ignore this field. */
2959 fip->list->visibility = VISIBILITY_IGNORE;
2963 /* Detect an unpacked field and mark it as such.
2964 dbx gives a bit size for all fields.
2965 Note that forward refs cannot be packed,
2966 and treat enums as if they had the width of ints. */
2968 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2970 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2971 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2972 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2973 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2975 FIELD_BITSIZE (fip->list->field) = 0;
2977 if ((FIELD_BITSIZE (fip->list->field)
2978 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2979 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2980 && FIELD_BITSIZE (fip->list->field)
2981 == gdbarch_int_bit (gdbarch))
2984 FIELD_BITPOS (fip->list->field) % 8 == 0)
2986 FIELD_BITSIZE (fip->list->field) = 0;
2992 /* Read struct or class data fields. They have the form:
2994 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2996 At the end, we see a semicolon instead of a field.
2998 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
3001 The optional VISIBILITY is one of:
3003 '/0' (VISIBILITY_PRIVATE)
3004 '/1' (VISIBILITY_PROTECTED)
3005 '/2' (VISIBILITY_PUBLIC)
3006 '/9' (VISIBILITY_IGNORE)
3008 or nothing, for C style fields with public visibility.
3010 Returns 1 for success, 0 for failure. */
3013 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
3014 struct objfile *objfile)
3017 struct nextfield *newobj;
3019 /* We better set p right now, in case there are no fields at all... */
3023 /* Read each data member type until we find the terminating ';' at the end of
3024 the data member list, or break for some other reason such as finding the
3025 start of the member function list. */
3026 /* Stab string for structure/union does not end with two ';' in
3027 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3029 while (**pp != ';' && **pp != '\0')
3031 STABS_CONTINUE (pp, objfile);
3032 /* Get space to record the next field's data. */
3033 newobj = XCNEW (struct nextfield);
3034 make_cleanup (xfree, newobj);
3036 newobj->next = fip->list;
3039 /* Get the field name. */
3042 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3043 unless the CPLUS_MARKER is followed by an underscore, in
3044 which case it is just the name of an anonymous type, which we
3045 should handle like any other type name. */
3047 if (is_cplus_marker (p[0]) && p[1] != '_')
3049 if (!read_cpp_abbrev (fip, pp, type, objfile))
3054 /* Look for the ':' that separates the field name from the field
3055 values. Data members are delimited by a single ':', while member
3056 functions are delimited by a pair of ':'s. When we hit the member
3057 functions (if any), terminate scan loop and return. */
3059 while (*p != ':' && *p != '\0')
3066 /* Check to see if we have hit the member functions yet. */
3071 read_one_struct_field (fip, pp, p, type, objfile);
3073 if (p[0] == ':' && p[1] == ':')
3075 /* (the deleted) chill the list of fields: the last entry (at
3076 the head) is a partially constructed entry which we now
3078 fip->list = fip->list->next;
3083 /* The stabs for C++ derived classes contain baseclass information which
3084 is marked by a '!' character after the total size. This function is
3085 called when we encounter the baseclass marker, and slurps up all the
3086 baseclass information.
3088 Immediately following the '!' marker is the number of base classes that
3089 the class is derived from, followed by information for each base class.
3090 For each base class, there are two visibility specifiers, a bit offset
3091 to the base class information within the derived class, a reference to
3092 the type for the base class, and a terminating semicolon.
3094 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3096 Baseclass information marker __________________|| | | | | | |
3097 Number of baseclasses __________________________| | | | | | |
3098 Visibility specifiers (2) ________________________| | | | | |
3099 Offset in bits from start of class _________________| | | | |
3100 Type number for base class ___________________________| | | |
3101 Visibility specifiers (2) _______________________________| | |
3102 Offset in bits from start of class ________________________| |
3103 Type number of base class ____________________________________|
3105 Return 1 for success, 0 for (error-type-inducing) failure. */
3111 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3112 struct objfile *objfile)
3115 struct nextfield *newobj;
3123 /* Skip the '!' baseclass information marker. */
3127 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3131 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3137 /* Some stupid compilers have trouble with the following, so break
3138 it up into simpler expressions. */
3139 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3140 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3143 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3146 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3147 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3151 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3153 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3155 newobj = XCNEW (struct nextfield);
3156 make_cleanup (xfree, newobj);
3158 newobj->next = fip->list;
3160 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3163 STABS_CONTINUE (pp, objfile);
3167 /* Nothing to do. */
3170 SET_TYPE_FIELD_VIRTUAL (type, i);
3173 /* Unknown character. Complain and treat it as non-virtual. */
3175 complaint (&symfile_complaints,
3176 _("Unknown virtual character `%c' for baseclass"),
3182 newobj->visibility = *(*pp)++;
3183 switch (newobj->visibility)
3185 case VISIBILITY_PRIVATE:
3186 case VISIBILITY_PROTECTED:
3187 case VISIBILITY_PUBLIC:
3190 /* Bad visibility format. Complain and treat it as
3193 complaint (&symfile_complaints,
3194 _("Unknown visibility `%c' for baseclass"),
3195 newobj->visibility);
3196 newobj->visibility = VISIBILITY_PUBLIC;
3203 /* The remaining value is the bit offset of the portion of the object
3204 corresponding to this baseclass. Always zero in the absence of
3205 multiple inheritance. */
3207 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3212 /* The last piece of baseclass information is the type of the
3213 base class. Read it, and remember it's type name as this
3216 newobj->field.type = read_type (pp, objfile);
3217 newobj->field.name = type_name_no_tag (newobj->field.type);
3219 /* Skip trailing ';' and bump count of number of fields seen. */
3228 /* The tail end of stabs for C++ classes that contain a virtual function
3229 pointer contains a tilde, a %, and a type number.
3230 The type number refers to the base class (possibly this class itself) which
3231 contains the vtable pointer for the current class.
3233 This function is called when we have parsed all the method declarations,
3234 so we can look for the vptr base class info. */
3237 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3238 struct objfile *objfile)
3242 STABS_CONTINUE (pp, objfile);
3244 /* If we are positioned at a ';', then skip it. */
3254 if (**pp == '=' || **pp == '+' || **pp == '-')
3256 /* Obsolete flags that used to indicate the presence
3257 of constructors and/or destructors. */
3261 /* Read either a '%' or the final ';'. */
3262 if (*(*pp)++ == '%')
3264 /* The next number is the type number of the base class
3265 (possibly our own class) which supplies the vtable for
3266 this class. Parse it out, and search that class to find
3267 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3268 and TYPE_VPTR_FIELDNO. */
3273 t = read_type (pp, objfile);
3275 while (*p != '\0' && *p != ';')
3281 /* Premature end of symbol. */
3285 set_type_vptr_basetype (type, t);
3286 if (type == t) /* Our own class provides vtbl ptr. */
3288 for (i = TYPE_NFIELDS (t) - 1;
3289 i >= TYPE_N_BASECLASSES (t);
3292 const char *name = TYPE_FIELD_NAME (t, i);
3294 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3295 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3297 set_type_vptr_fieldno (type, i);
3301 /* Virtual function table field not found. */
3302 complaint (&symfile_complaints,
3303 _("virtual function table pointer "
3304 "not found when defining class `%s'"),
3310 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3321 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3325 for (n = TYPE_NFN_FIELDS (type);
3326 fip->fnlist != NULL;
3327 fip->fnlist = fip->fnlist->next)
3329 --n; /* Circumvent Sun3 compiler bug. */
3330 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3335 /* Create the vector of fields, and record how big it is.
3336 We need this info to record proper virtual function table information
3337 for this class's virtual functions. */
3340 attach_fields_to_type (struct field_info *fip, struct type *type,
3341 struct objfile *objfile)
3344 int non_public_fields = 0;
3345 struct nextfield *scan;
3347 /* Count up the number of fields that we have, as well as taking note of
3348 whether or not there are any non-public fields, which requires us to
3349 allocate and build the private_field_bits and protected_field_bits
3352 for (scan = fip->list; scan != NULL; scan = scan->next)
3355 if (scan->visibility != VISIBILITY_PUBLIC)
3357 non_public_fields++;
3361 /* Now we know how many fields there are, and whether or not there are any
3362 non-public fields. Record the field count, allocate space for the
3363 array of fields, and create blank visibility bitfields if necessary. */
3365 TYPE_NFIELDS (type) = nfields;
3366 TYPE_FIELDS (type) = (struct field *)
3367 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3368 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3370 if (non_public_fields)
3372 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3374 TYPE_FIELD_PRIVATE_BITS (type) =
3375 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3376 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3378 TYPE_FIELD_PROTECTED_BITS (type) =
3379 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3380 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3382 TYPE_FIELD_IGNORE_BITS (type) =
3383 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3384 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3387 /* Copy the saved-up fields into the field vector. Start from the
3388 head of the list, adding to the tail of the field array, so that
3389 they end up in the same order in the array in which they were
3390 added to the list. */
3392 while (nfields-- > 0)
3394 TYPE_FIELD (type, nfields) = fip->list->field;
3395 switch (fip->list->visibility)
3397 case VISIBILITY_PRIVATE:
3398 SET_TYPE_FIELD_PRIVATE (type, nfields);
3401 case VISIBILITY_PROTECTED:
3402 SET_TYPE_FIELD_PROTECTED (type, nfields);
3405 case VISIBILITY_IGNORE:
3406 SET_TYPE_FIELD_IGNORE (type, nfields);
3409 case VISIBILITY_PUBLIC:
3413 /* Unknown visibility. Complain and treat it as public. */
3415 complaint (&symfile_complaints,
3416 _("Unknown visibility `%c' for field"),
3417 fip->list->visibility);
3421 fip->list = fip->list->next;
3427 /* Complain that the compiler has emitted more than one definition for the
3428 structure type TYPE. */
3430 complain_about_struct_wipeout (struct type *type)
3432 const char *name = "";
3433 const char *kind = "";
3435 if (TYPE_TAG_NAME (type))
3437 name = TYPE_TAG_NAME (type);
3438 switch (TYPE_CODE (type))
3440 case TYPE_CODE_STRUCT: kind = "struct "; break;
3441 case TYPE_CODE_UNION: kind = "union "; break;
3442 case TYPE_CODE_ENUM: kind = "enum "; break;
3446 else if (TYPE_NAME (type))
3448 name = TYPE_NAME (type);
3457 complaint (&symfile_complaints,
3458 _("struct/union type gets multiply defined: %s%s"), kind, name);
3461 /* Set the length for all variants of a same main_type, which are
3462 connected in the closed chain.
3464 This is something that needs to be done when a type is defined *after*
3465 some cross references to this type have already been read. Consider
3466 for instance the following scenario where we have the following two
3469 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3470 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3472 A stubbed version of type dummy is created while processing the first
3473 stabs entry. The length of that type is initially set to zero, since
3474 it is unknown at this point. Also, a "constant" variation of type
3475 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3478 The second stabs entry allows us to replace the stubbed definition
3479 with the real definition. However, we still need to adjust the length
3480 of the "constant" variation of that type, as its length was left
3481 untouched during the main type replacement... */
3484 set_length_in_type_chain (struct type *type)
3486 struct type *ntype = TYPE_CHAIN (type);
3488 while (ntype != type)
3490 if (TYPE_LENGTH(ntype) == 0)
3491 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3493 complain_about_struct_wipeout (ntype);
3494 ntype = TYPE_CHAIN (ntype);
3498 /* Read the description of a structure (or union type) and return an object
3499 describing the type.
3501 PP points to a character pointer that points to the next unconsumed token
3502 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3503 *PP will point to "4a:1,0,32;;".
3505 TYPE points to an incomplete type that needs to be filled in.
3507 OBJFILE points to the current objfile from which the stabs information is
3508 being read. (Note that it is redundant in that TYPE also contains a pointer
3509 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3512 static struct type *
3513 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3514 struct objfile *objfile)
3516 struct cleanup *back_to;
3517 struct field_info fi;
3522 /* When describing struct/union/class types in stabs, G++ always drops
3523 all qualifications from the name. So if you've got:
3524 struct A { ... struct B { ... }; ... };
3525 then G++ will emit stabs for `struct A::B' that call it simply
3526 `struct B'. Obviously, if you've got a real top-level definition for
3527 `struct B', or other nested definitions, this is going to cause
3530 Obviously, GDB can't fix this by itself, but it can at least avoid
3531 scribbling on existing structure type objects when new definitions
3533 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3534 || TYPE_STUB (type)))
3536 complain_about_struct_wipeout (type);
3538 /* It's probably best to return the type unchanged. */
3542 back_to = make_cleanup (null_cleanup, 0);
3544 INIT_CPLUS_SPECIFIC (type);
3545 TYPE_CODE (type) = type_code;
3546 TYPE_STUB (type) = 0;
3548 /* First comes the total size in bytes. */
3553 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3556 do_cleanups (back_to);
3557 return error_type (pp, objfile);
3559 set_length_in_type_chain (type);
3562 /* Now read the baseclasses, if any, read the regular C struct or C++
3563 class member fields, attach the fields to the type, read the C++
3564 member functions, attach them to the type, and then read any tilde
3565 field (baseclass specifier for the class holding the main vtable). */
3567 if (!read_baseclasses (&fi, pp, type, objfile)
3568 || !read_struct_fields (&fi, pp, type, objfile)
3569 || !attach_fields_to_type (&fi, type, objfile)
3570 || !read_member_functions (&fi, pp, type, objfile)
3571 || !attach_fn_fields_to_type (&fi, type)
3572 || !read_tilde_fields (&fi, pp, type, objfile))
3574 type = error_type (pp, objfile);
3577 do_cleanups (back_to);
3581 /* Read a definition of an array type,
3582 and create and return a suitable type object.
3583 Also creates a range type which represents the bounds of that
3586 static struct type *
3587 read_array_type (const char **pp, struct type *type,
3588 struct objfile *objfile)
3590 struct type *index_type, *element_type, *range_type;
3595 /* Format of an array type:
3596 "ar<index type>;lower;upper;<array_contents_type>".
3597 OS9000: "arlower,upper;<array_contents_type>".
3599 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3600 for these, produce a type like float[][]. */
3603 index_type = read_type (pp, objfile);
3605 /* Improper format of array type decl. */
3606 return error_type (pp, objfile);
3610 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3615 lower = read_huge_number (pp, ';', &nbits, 0);
3618 return error_type (pp, objfile);
3620 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3625 upper = read_huge_number (pp, ';', &nbits, 0);
3627 return error_type (pp, objfile);
3629 element_type = read_type (pp, objfile);
3638 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3639 type = create_array_type (type, element_type, range_type);
3645 /* Read a definition of an enumeration type,
3646 and create and return a suitable type object.
3647 Also defines the symbols that represent the values of the type. */
3649 static struct type *
3650 read_enum_type (const char **pp, struct type *type,
3651 struct objfile *objfile)
3653 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3659 struct pending **symlist;
3660 struct pending *osyms, *syms;
3663 int unsigned_enum = 1;
3666 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3667 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3668 to do? For now, force all enum values to file scope. */
3669 if (within_function)
3670 symlist = &local_symbols;
3673 symlist = &file_symbols;
3675 o_nsyms = osyms ? osyms->nsyms : 0;
3677 /* The aix4 compiler emits an extra field before the enum members;
3678 my guess is it's a type of some sort. Just ignore it. */
3681 /* Skip over the type. */
3685 /* Skip over the colon. */
3689 /* Read the value-names and their values.
3690 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3691 A semicolon or comma instead of a NAME means the end. */
3692 while (**pp && **pp != ';' && **pp != ',')
3694 STABS_CONTINUE (pp, objfile);
3698 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3700 n = read_huge_number (pp, ',', &nbits, 0);
3702 return error_type (pp, objfile);
3704 sym = allocate_symbol (objfile);
3705 SYMBOL_SET_LINKAGE_NAME (sym, name);
3706 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3707 &objfile->objfile_obstack);
3708 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3709 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3710 SYMBOL_VALUE (sym) = n;
3713 add_symbol_to_list (sym, symlist);
3718 (*pp)++; /* Skip the semicolon. */
3720 /* Now fill in the fields of the type-structure. */
3722 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3723 set_length_in_type_chain (type);
3724 TYPE_CODE (type) = TYPE_CODE_ENUM;
3725 TYPE_STUB (type) = 0;
3727 TYPE_UNSIGNED (type) = 1;
3728 TYPE_NFIELDS (type) = nsyms;
3729 TYPE_FIELDS (type) = (struct field *)
3730 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3731 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3733 /* Find the symbols for the values and put them into the type.
3734 The symbols can be found in the symlist that we put them on
3735 to cause them to be defined. osyms contains the old value
3736 of that symlist; everything up to there was defined by us. */
3737 /* Note that we preserve the order of the enum constants, so
3738 that in something like "enum {FOO, LAST_THING=FOO}" we print
3739 FOO, not LAST_THING. */
3741 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3743 int last = syms == osyms ? o_nsyms : 0;
3744 int j = syms->nsyms;
3746 for (; --j >= last; --n)
3748 struct symbol *xsym = syms->symbol[j];
3750 SYMBOL_TYPE (xsym) = type;
3751 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3752 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3753 TYPE_FIELD_BITSIZE (type, n) = 0;
3762 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3763 typedefs in every file (for int, long, etc):
3765 type = b <signed> <width> <format type>; <offset>; <nbits>
3767 optional format type = c or b for char or boolean.
3768 offset = offset from high order bit to start bit of type.
3769 width is # bytes in object of this type, nbits is # bits in type.
3771 The width/offset stuff appears to be for small objects stored in
3772 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3775 static struct type *
3776 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3781 int boolean_type = 0;
3792 return error_type (pp, objfile);
3796 /* For some odd reason, all forms of char put a c here. This is strange
3797 because no other type has this honor. We can safely ignore this because
3798 we actually determine 'char'acterness by the number of bits specified in
3800 Boolean forms, e.g Fortran logical*X, put a b here. */
3804 else if (**pp == 'b')
3810 /* The first number appears to be the number of bytes occupied
3811 by this type, except that unsigned short is 4 instead of 2.
3812 Since this information is redundant with the third number,
3813 we will ignore it. */
3814 read_huge_number (pp, ';', &nbits, 0);
3816 return error_type (pp, objfile);
3818 /* The second number is always 0, so ignore it too. */
3819 read_huge_number (pp, ';', &nbits, 0);
3821 return error_type (pp, objfile);
3823 /* The third number is the number of bits for this type. */
3824 type_bits = read_huge_number (pp, 0, &nbits, 0);
3826 return error_type (pp, objfile);
3827 /* The type *should* end with a semicolon. If it are embedded
3828 in a larger type the semicolon may be the only way to know where
3829 the type ends. If this type is at the end of the stabstring we
3830 can deal with the omitted semicolon (but we don't have to like
3831 it). Don't bother to complain(), Sun's compiler omits the semicolon
3838 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3839 TARGET_CHAR_BIT, NULL);
3841 TYPE_UNSIGNED (type) = 1;
3846 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3848 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3851 static struct type *
3852 read_sun_floating_type (const char **pp, int typenums[2],
3853 struct objfile *objfile)
3858 struct type *rettype;
3860 /* The first number has more details about the type, for example
3862 details = read_huge_number (pp, ';', &nbits, 0);
3864 return error_type (pp, objfile);
3866 /* The second number is the number of bytes occupied by this type. */
3867 nbytes = read_huge_number (pp, ';', &nbits, 0);
3869 return error_type (pp, objfile);
3871 nbits = nbytes * TARGET_CHAR_BIT;
3873 if (details == NF_COMPLEX || details == NF_COMPLEX16
3874 || details == NF_COMPLEX32)
3876 rettype = dbx_init_float_type (objfile, nbits / 2);
3877 return init_complex_type (objfile, NULL, rettype);
3880 return dbx_init_float_type (objfile, nbits);
3883 /* Read a number from the string pointed to by *PP.
3884 The value of *PP is advanced over the number.
3885 If END is nonzero, the character that ends the
3886 number must match END, or an error happens;
3887 and that character is skipped if it does match.
3888 If END is zero, *PP is left pointing to that character.
3890 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3891 the number is represented in an octal representation, assume that
3892 it is represented in a 2's complement representation with a size of
3893 TWOS_COMPLEMENT_BITS.
3895 If the number fits in a long, set *BITS to 0 and return the value.
3896 If not, set *BITS to be the number of bits in the number and return 0.
3898 If encounter garbage, set *BITS to -1 and return 0. */
3901 read_huge_number (const char **pp, int end, int *bits,
3902 int twos_complement_bits)
3904 const char *p = *pp;
3913 int twos_complement_representation = 0;
3921 /* Leading zero means octal. GCC uses this to output values larger
3922 than an int (because that would be hard in decimal). */
3929 /* Skip extra zeros. */
3933 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3935 /* Octal, possibly signed. Check if we have enough chars for a
3941 while ((c = *p1) >= '0' && c < '8')
3945 if (len > twos_complement_bits / 3
3946 || (twos_complement_bits % 3 == 0
3947 && len == twos_complement_bits / 3))
3949 /* Ok, we have enough characters for a signed value, check
3950 for signness by testing if the sign bit is set. */
3951 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3953 if (c & (1 << sign_bit))
3955 /* Definitely signed. */
3956 twos_complement_representation = 1;
3962 upper_limit = LONG_MAX / radix;
3964 while ((c = *p++) >= '0' && c < ('0' + radix))
3966 if (n <= upper_limit)
3968 if (twos_complement_representation)
3970 /* Octal, signed, twos complement representation. In
3971 this case, n is the corresponding absolute value. */
3974 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3986 /* unsigned representation */
3988 n += c - '0'; /* FIXME this overflows anyway. */
3994 /* This depends on large values being output in octal, which is
4001 /* Ignore leading zeroes. */
4005 else if (c == '2' || c == '3')
4026 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4028 /* We were supposed to parse a number with maximum
4029 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4040 /* Large decimal constants are an error (because it is hard to
4041 count how many bits are in them). */
4047 /* -0x7f is the same as 0x80. So deal with it by adding one to
4048 the number of bits. Two's complement represention octals
4049 can't have a '-' in front. */
4050 if (sign == -1 && !twos_complement_representation)
4061 /* It's *BITS which has the interesting information. */
4065 static struct type *
4066 read_range_type (const char **pp, int typenums[2], int type_size,
4067 struct objfile *objfile)
4069 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4070 const char *orig_pp = *pp;
4075 struct type *result_type;
4076 struct type *index_type = NULL;
4078 /* First comes a type we are a subrange of.
4079 In C it is usually 0, 1 or the type being defined. */
4080 if (read_type_number (pp, rangenums) != 0)
4081 return error_type (pp, objfile);
4082 self_subrange = (rangenums[0] == typenums[0] &&
4083 rangenums[1] == typenums[1]);
4088 index_type = read_type (pp, objfile);
4091 /* A semicolon should now follow; skip it. */
4095 /* The remaining two operands are usually lower and upper bounds
4096 of the range. But in some special cases they mean something else. */
4097 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4098 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4100 if (n2bits == -1 || n3bits == -1)
4101 return error_type (pp, objfile);
4104 goto handle_true_range;
4106 /* If limits are huge, must be large integral type. */
4107 if (n2bits != 0 || n3bits != 0)
4109 char got_signed = 0;
4110 char got_unsigned = 0;
4111 /* Number of bits in the type. */
4114 /* If a type size attribute has been specified, the bounds of
4115 the range should fit in this size. If the lower bounds needs
4116 more bits than the upper bound, then the type is signed. */
4117 if (n2bits <= type_size && n3bits <= type_size)
4119 if (n2bits == type_size && n2bits > n3bits)
4125 /* Range from 0 to <large number> is an unsigned large integral type. */
4126 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4131 /* Range from <large number> to <large number>-1 is a large signed
4132 integral type. Take care of the case where <large number> doesn't
4133 fit in a long but <large number>-1 does. */
4134 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4135 || (n2bits != 0 && n3bits == 0
4136 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4143 if (got_signed || got_unsigned)
4144 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4146 return error_type (pp, objfile);
4149 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4150 if (self_subrange && n2 == 0 && n3 == 0)
4151 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4153 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4154 is the width in bytes.
4156 Fortran programs appear to use this for complex types also. To
4157 distinguish between floats and complex, g77 (and others?) seem
4158 to use self-subranges for the complexes, and subranges of int for
4161 Also note that for complexes, g77 sets n2 to the size of one of
4162 the member floats, not the whole complex beast. My guess is that
4163 this was to work well with pre-COMPLEX versions of gdb. */
4165 if (n3 == 0 && n2 > 0)
4167 struct type *float_type
4168 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4171 return init_complex_type (objfile, NULL, float_type);
4176 /* If the upper bound is -1, it must really be an unsigned integral. */
4178 else if (n2 == 0 && n3 == -1)
4180 int bits = type_size;
4184 /* We don't know its size. It is unsigned int or unsigned
4185 long. GCC 2.3.3 uses this for long long too, but that is
4186 just a GDB 3.5 compatibility hack. */
4187 bits = gdbarch_int_bit (gdbarch);
4190 return init_integer_type (objfile, bits, 1, NULL);
4193 /* Special case: char is defined (Who knows why) as a subrange of
4194 itself with range 0-127. */
4195 else if (self_subrange && n2 == 0 && n3 == 127)
4197 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4199 TYPE_NOSIGN (type) = 1;
4202 /* We used to do this only for subrange of self or subrange of int. */
4205 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4206 "unsigned long", and we already checked for that,
4207 so don't need to test for it here. */
4210 /* n3 actually gives the size. */
4211 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4213 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4214 unsigned n-byte integer. But do require n to be a power of
4215 two; we don't want 3- and 5-byte integers flying around. */
4221 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4224 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4225 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4228 /* I think this is for Convex "long long". Since I don't know whether
4229 Convex sets self_subrange, I also accept that particular size regardless
4230 of self_subrange. */
4231 else if (n3 == 0 && n2 < 0
4233 || n2 == -gdbarch_long_long_bit
4234 (gdbarch) / TARGET_CHAR_BIT))
4235 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4236 else if (n2 == -n3 - 1)
4239 return init_integer_type (objfile, 8, 0, NULL);
4241 return init_integer_type (objfile, 16, 0, NULL);
4242 if (n3 == 0x7fffffff)
4243 return init_integer_type (objfile, 32, 0, NULL);
4246 /* We have a real range type on our hands. Allocate space and
4247 return a real pointer. */
4251 index_type = objfile_type (objfile)->builtin_int;
4253 index_type = *dbx_lookup_type (rangenums, objfile);
4254 if (index_type == NULL)
4256 /* Does this actually ever happen? Is that why we are worrying
4257 about dealing with it rather than just calling error_type? */
4259 complaint (&symfile_complaints,
4260 _("base type %d of range type is not defined"), rangenums[1]);
4262 index_type = objfile_type (objfile)->builtin_int;
4266 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4267 return (result_type);
4270 /* Read in an argument list. This is a list of types, separated by commas
4271 and terminated with END. Return the list of types read in, or NULL
4272 if there is an error. */
4274 static struct field *
4275 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4278 /* FIXME! Remove this arbitrary limit! */
4279 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4286 /* Invalid argument list: no ','. */
4289 STABS_CONTINUE (pp, objfile);
4290 types[n++] = read_type (pp, objfile);
4292 (*pp)++; /* get past `end' (the ':' character). */
4296 /* We should read at least the THIS parameter here. Some broken stabs
4297 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4298 have been present ";-16,(0,43)" reference instead. This way the
4299 excessive ";" marker prematurely stops the parameters parsing. */
4301 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4304 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4312 rval = XCNEWVEC (struct field, n);
4313 for (i = 0; i < n; i++)
4314 rval[i].type = types[i];
4319 /* Common block handling. */
4321 /* List of symbols declared since the last BCOMM. This list is a tail
4322 of local_symbols. When ECOMM is seen, the symbols on the list
4323 are noted so their proper addresses can be filled in later,
4324 using the common block base address gotten from the assembler
4327 static struct pending *common_block;
4328 static int common_block_i;
4330 /* Name of the current common block. We get it from the BCOMM instead of the
4331 ECOMM to match IBM documentation (even though IBM puts the name both places
4332 like everyone else). */
4333 static char *common_block_name;
4335 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4336 to remain after this function returns. */
4339 common_block_start (const char *name, struct objfile *objfile)
4341 if (common_block_name != NULL)
4343 complaint (&symfile_complaints,
4344 _("Invalid symbol data: common block within common block"));
4346 common_block = local_symbols;
4347 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4348 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4352 /* Process a N_ECOMM symbol. */
4355 common_block_end (struct objfile *objfile)
4357 /* Symbols declared since the BCOMM are to have the common block
4358 start address added in when we know it. common_block and
4359 common_block_i point to the first symbol after the BCOMM in
4360 the local_symbols list; copy the list and hang it off the
4361 symbol for the common block name for later fixup. */
4364 struct pending *newobj = 0;
4365 struct pending *next;
4368 if (common_block_name == NULL)
4370 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4374 sym = allocate_symbol (objfile);
4375 /* Note: common_block_name already saved on objfile_obstack. */
4376 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4377 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4379 /* Now we copy all the symbols which have been defined since the BCOMM. */
4381 /* Copy all the struct pendings before common_block. */
4382 for (next = local_symbols;
4383 next != NULL && next != common_block;
4386 for (j = 0; j < next->nsyms; j++)
4387 add_symbol_to_list (next->symbol[j], &newobj);
4390 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4391 NULL, it means copy all the local symbols (which we already did
4394 if (common_block != NULL)
4395 for (j = common_block_i; j < common_block->nsyms; j++)
4396 add_symbol_to_list (common_block->symbol[j], &newobj);
4398 SYMBOL_TYPE (sym) = (struct type *) newobj;
4400 /* Should we be putting local_symbols back to what it was?
4403 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4404 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4405 global_sym_chain[i] = sym;
4406 common_block_name = NULL;
4409 /* Add a common block's start address to the offset of each symbol
4410 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4411 the common block name). */
4414 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4416 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4418 for (; next; next = next->next)
4422 for (j = next->nsyms - 1; j >= 0; j--)
4423 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4429 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4430 See add_undefined_type for more details. */
4433 add_undefined_type_noname (struct type *type, int typenums[2])
4437 nat.typenums[0] = typenums [0];
4438 nat.typenums[1] = typenums [1];
4441 if (noname_undefs_length == noname_undefs_allocated)
4443 noname_undefs_allocated *= 2;
4444 noname_undefs = (struct nat *)
4445 xrealloc ((char *) noname_undefs,
4446 noname_undefs_allocated * sizeof (struct nat));
4448 noname_undefs[noname_undefs_length++] = nat;
4451 /* Add TYPE to the UNDEF_TYPES vector.
4452 See add_undefined_type for more details. */
4455 add_undefined_type_1 (struct type *type)
4457 if (undef_types_length == undef_types_allocated)
4459 undef_types_allocated *= 2;
4460 undef_types = (struct type **)
4461 xrealloc ((char *) undef_types,
4462 undef_types_allocated * sizeof (struct type *));
4464 undef_types[undef_types_length++] = type;
4467 /* What about types defined as forward references inside of a small lexical
4469 /* Add a type to the list of undefined types to be checked through
4470 once this file has been read in.
4472 In practice, we actually maintain two such lists: The first list
4473 (UNDEF_TYPES) is used for types whose name has been provided, and
4474 concerns forward references (eg 'xs' or 'xu' forward references);
4475 the second list (NONAME_UNDEFS) is used for types whose name is
4476 unknown at creation time, because they were referenced through
4477 their type number before the actual type was declared.
4478 This function actually adds the given type to the proper list. */
4481 add_undefined_type (struct type *type, int typenums[2])
4483 if (TYPE_TAG_NAME (type) == NULL)
4484 add_undefined_type_noname (type, typenums);
4486 add_undefined_type_1 (type);
4489 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4492 cleanup_undefined_types_noname (struct objfile *objfile)
4496 for (i = 0; i < noname_undefs_length; i++)
4498 struct nat nat = noname_undefs[i];
4501 type = dbx_lookup_type (nat.typenums, objfile);
4502 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4504 /* The instance flags of the undefined type are still unset,
4505 and needs to be copied over from the reference type.
4506 Since replace_type expects them to be identical, we need
4507 to set these flags manually before hand. */
4508 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4509 replace_type (nat.type, *type);
4513 noname_undefs_length = 0;
4516 /* Go through each undefined type, see if it's still undefined, and fix it
4517 up if possible. We have two kinds of undefined types:
4519 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4520 Fix: update array length using the element bounds
4521 and the target type's length.
4522 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4523 yet defined at the time a pointer to it was made.
4524 Fix: Do a full lookup on the struct/union tag. */
4527 cleanup_undefined_types_1 (void)
4531 /* Iterate over every undefined type, and look for a symbol whose type
4532 matches our undefined type. The symbol matches if:
4533 1. It is a typedef in the STRUCT domain;
4534 2. It has the same name, and same type code;
4535 3. The instance flags are identical.
4537 It is important to check the instance flags, because we have seen
4538 examples where the debug info contained definitions such as:
4540 "foo_t:t30=B31=xefoo_t:"
4542 In this case, we have created an undefined type named "foo_t" whose
4543 instance flags is null (when processing "xefoo_t"), and then created
4544 another type with the same name, but with different instance flags
4545 ('B' means volatile). I think that the definition above is wrong,
4546 since the same type cannot be volatile and non-volatile at the same
4547 time, but we need to be able to cope with it when it happens. The
4548 approach taken here is to treat these two types as different. */
4550 for (type = undef_types; type < undef_types + undef_types_length; type++)
4552 switch (TYPE_CODE (*type))
4555 case TYPE_CODE_STRUCT:
4556 case TYPE_CODE_UNION:
4557 case TYPE_CODE_ENUM:
4559 /* Check if it has been defined since. Need to do this here
4560 as well as in check_typedef to deal with the (legitimate in
4561 C though not C++) case of several types with the same name
4562 in different source files. */
4563 if (TYPE_STUB (*type))
4565 struct pending *ppt;
4567 /* Name of the type, without "struct" or "union". */
4568 const char *type_name = TYPE_TAG_NAME (*type);
4570 if (type_name == NULL)
4572 complaint (&symfile_complaints, _("need a type name"));
4575 for (ppt = file_symbols; ppt; ppt = ppt->next)
4577 for (i = 0; i < ppt->nsyms; i++)
4579 struct symbol *sym = ppt->symbol[i];
4581 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4582 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4583 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4585 && (TYPE_INSTANCE_FLAGS (*type) ==
4586 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4587 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4589 replace_type (*type, SYMBOL_TYPE (sym));
4598 complaint (&symfile_complaints,
4599 _("forward-referenced types left unresolved, "
4607 undef_types_length = 0;
4610 /* Try to fix all the undefined types we ecountered while processing
4614 cleanup_undefined_stabs_types (struct objfile *objfile)
4616 cleanup_undefined_types_1 ();
4617 cleanup_undefined_types_noname (objfile);
4620 /* Scan through all of the global symbols defined in the object file,
4621 assigning values to the debugging symbols that need to be assigned
4622 to. Get these symbols from the minimal symbol table. */
4625 scan_file_globals (struct objfile *objfile)
4628 struct minimal_symbol *msymbol;
4629 struct symbol *sym, *prev;
4630 struct objfile *resolve_objfile;
4632 /* SVR4 based linkers copy referenced global symbols from shared
4633 libraries to the main executable.
4634 If we are scanning the symbols for a shared library, try to resolve
4635 them from the minimal symbols of the main executable first. */
4637 if (symfile_objfile && objfile != symfile_objfile)
4638 resolve_objfile = symfile_objfile;
4640 resolve_objfile = objfile;
4644 /* Avoid expensive loop through all minimal symbols if there are
4645 no unresolved symbols. */
4646 for (hash = 0; hash < HASHSIZE; hash++)
4648 if (global_sym_chain[hash])
4651 if (hash >= HASHSIZE)
4654 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4658 /* Skip static symbols. */
4659 switch (MSYMBOL_TYPE (msymbol))
4671 /* Get the hash index and check all the symbols
4672 under that hash index. */
4674 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4676 for (sym = global_sym_chain[hash]; sym;)
4678 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4679 SYMBOL_LINKAGE_NAME (sym)) == 0)
4681 /* Splice this symbol out of the hash chain and
4682 assign the value we have to it. */
4685 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4689 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4692 /* Check to see whether we need to fix up a common block. */
4693 /* Note: this code might be executed several times for
4694 the same symbol if there are multiple references. */
4697 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4699 fix_common_block (sym,
4700 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4705 SYMBOL_VALUE_ADDRESS (sym)
4706 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4708 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4713 sym = SYMBOL_VALUE_CHAIN (prev);
4717 sym = global_sym_chain[hash];
4723 sym = SYMBOL_VALUE_CHAIN (sym);
4727 if (resolve_objfile == objfile)
4729 resolve_objfile = objfile;
4732 /* Change the storage class of any remaining unresolved globals to
4733 LOC_UNRESOLVED and remove them from the chain. */
4734 for (hash = 0; hash < HASHSIZE; hash++)
4736 sym = global_sym_chain[hash];
4740 sym = SYMBOL_VALUE_CHAIN (sym);
4742 /* Change the symbol address from the misleading chain value
4744 SYMBOL_VALUE_ADDRESS (prev) = 0;
4746 /* Complain about unresolved common block symbols. */
4747 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4748 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4750 complaint (&symfile_complaints,
4751 _("%s: common block `%s' from "
4752 "global_sym_chain unresolved"),
4753 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4756 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4759 /* Initialize anything that needs initializing when starting to read
4760 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4764 stabsread_init (void)
4768 /* Initialize anything that needs initializing when a completely new
4769 symbol file is specified (not just adding some symbols from another
4770 file, e.g. a shared library). */
4773 stabsread_new_init (void)
4775 /* Empty the hash table of global syms looking for values. */
4776 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4779 /* Initialize anything that needs initializing at the same time as
4780 start_symtab() is called. */
4785 global_stabs = NULL; /* AIX COFF */
4786 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4787 n_this_object_header_files = 1;
4788 type_vector_length = 0;
4789 type_vector = (struct type **) 0;
4791 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4792 common_block_name = NULL;
4795 /* Call after end_symtab(). */
4802 xfree (type_vector);
4805 type_vector_length = 0;
4806 previous_stab_code = 0;
4810 finish_global_stabs (struct objfile *objfile)
4814 patch_block_stabs (global_symbols, global_stabs, objfile);
4815 xfree (global_stabs);
4816 global_stabs = NULL;
4820 /* Find the end of the name, delimited by a ':', but don't match
4821 ObjC symbols which look like -[Foo bar::]:bla. */
4823 find_name_end (const char *name)
4825 const char *s = name;
4827 if (s[0] == '-' || *s == '+')
4829 /* Must be an ObjC method symbol. */
4832 error (_("invalid symbol name \"%s\""), name);
4834 s = strchr (s, ']');
4837 error (_("invalid symbol name \"%s\""), name);
4839 return strchr (s, ':');
4843 return strchr (s, ':');
4847 /* Initializer for this module. */
4850 _initialize_stabsread (void)
4852 rs6000_builtin_type_data = register_objfile_data ();
4854 undef_types_allocated = 20;
4855 undef_types_length = 0;
4856 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4858 noname_undefs_allocated = 20;
4859 noname_undefs_length = 0;
4860 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4862 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4863 &stab_register_funcs);
4864 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4865 &stab_register_funcs);