1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
29 #include "gdb_obstack.h"
32 #include "expression.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
42 #include "gdb-demangle.h"
44 #include "target-float.h"
46 #include "cp-support.h"
49 #include "stabsread.h"
51 /* See stabsread.h for these globals. */
53 const char *(*next_symbol_text_func) (struct objfile *);
54 unsigned char processing_gcc_compilation;
56 struct symbol *global_sym_chain[HASHSIZE];
57 struct pending_stabs *global_stabs;
58 int previous_stab_code;
59 int *this_object_header_files;
60 int n_this_object_header_files;
61 int n_allocated_this_object_header_files;
65 struct nextfield *next;
67 /* This is the raw visibility from the stab. It is not checked
68 for being one of the visibilities we recognize, so code which
69 examines this field better be able to deal. */
75 struct next_fnfieldlist
77 struct next_fnfieldlist *next;
78 struct fn_fieldlist fn_fieldlist;
81 /* The routines that read and process a complete stabs for a C struct or
82 C++ class pass lists of data member fields and lists of member function
83 fields in an instance of a field_info structure, as defined below.
84 This is part of some reorganization of low level C++ support and is
85 expected to eventually go away... (FIXME) */
87 struct stab_field_info
89 struct nextfield *list = nullptr;
90 struct next_fnfieldlist *fnlist = nullptr;
96 read_one_struct_field (struct stab_field_info *, const char **, const char *,
97 struct type *, struct objfile *);
99 static struct type *dbx_alloc_type (int[2], struct objfile *);
101 static long read_huge_number (const char **, int, int *, int);
103 static struct type *error_type (const char **, struct objfile *);
106 patch_block_stabs (struct pending *, struct pending_stabs *,
109 static void fix_common_block (struct symbol *, CORE_ADDR);
111 static int read_type_number (const char **, int *);
113 static struct type *read_type (const char **, struct objfile *);
115 static struct type *read_range_type (const char **, int[2],
116 int, struct objfile *);
118 static struct type *read_sun_builtin_type (const char **,
119 int[2], struct objfile *);
121 static struct type *read_sun_floating_type (const char **, int[2],
124 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126 static struct type *rs6000_builtin_type (int, struct objfile *);
129 read_member_functions (struct stab_field_info *, const char **, struct type *,
133 read_struct_fields (struct stab_field_info *, const char **, struct type *,
137 read_baseclasses (struct stab_field_info *, const char **, struct type *,
141 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
144 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146 static int attach_fields_to_type (struct stab_field_info *, struct type *,
149 static struct type *read_struct_type (const char **, struct type *,
153 static struct type *read_array_type (const char **, struct type *,
156 static struct field *read_args (const char **, int, struct objfile *,
159 static void add_undefined_type (struct type *, int[2]);
162 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
165 static const char *find_name_end (const char *name);
167 static int process_reference (const char **string);
169 void stabsread_clear_cache (void);
171 static const char vptr_name[] = "_vptr$";
172 static const char vb_name[] = "_vb$";
175 invalid_cpp_abbrev_complaint (const char *arg1)
177 complaint (_("invalid C++ abbreviation `%s'"), arg1);
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 complaint (_("bad register number %d (max %d) in symbol %s"),
184 regnum, num_regs - 1, sym);
188 stabs_general_complaint (const char *arg1)
190 complaint ("%s", arg1);
193 /* Make a list of forward references which haven't been defined. */
195 static struct type **undef_types;
196 static int undef_types_allocated;
197 static int undef_types_length;
198 static struct symbol *current_symbol = NULL;
200 /* Make a list of nameless types that are undefined.
201 This happens when another type is referenced by its number
202 before this type is actually defined. For instance "t(0,1)=k(0,2)"
203 and type (0,2) is defined only later. */
210 static struct nat *noname_undefs;
211 static int noname_undefs_allocated;
212 static int noname_undefs_length;
214 /* Check for and handle cretinous stabs symbol name continuation! */
215 #define STABS_CONTINUE(pp,objfile) \
217 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
218 *(pp) = next_symbol_text (objfile); \
221 /* Vector of types defined so far, indexed by their type numbers.
222 (In newer sun systems, dbx uses a pair of numbers in parens,
223 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
224 Then these numbers must be translated through the type_translations
225 hash table to get the index into the type vector.) */
227 static struct type **type_vector;
229 /* Number of elements allocated for type_vector currently. */
231 static int type_vector_length;
233 /* Initial size of type vector. Is realloc'd larger if needed, and
234 realloc'd down to the size actually used, when completed. */
236 #define INITIAL_TYPE_VECTOR_LENGTH 160
239 /* Look up a dbx type-number pair. Return the address of the slot
240 where the type for that number-pair is stored.
241 The number-pair is in TYPENUMS.
243 This can be used for finding the type associated with that pair
244 or for associating a new type with the pair. */
246 static struct type **
247 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 int filenum = typenums[0];
250 int index = typenums[1];
253 struct header_file *f;
256 if (filenum == -1) /* -1,-1 is for temporary types. */
259 if (filenum < 0 || filenum >= n_this_object_header_files)
261 complaint (_("Invalid symbol data: type number "
262 "(%d,%d) out of range at symtab pos %d."),
263 filenum, index, symnum);
271 /* Caller wants address of address of type. We think
272 that negative (rs6k builtin) types will never appear as
273 "lvalues", (nor should they), so we stuff the real type
274 pointer into a temp, and return its address. If referenced,
275 this will do the right thing. */
276 static struct type *temp_type;
278 temp_type = rs6000_builtin_type (index, objfile);
282 /* Type is defined outside of header files.
283 Find it in this object file's type vector. */
284 if (index >= type_vector_length)
286 old_len = type_vector_length;
289 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
290 type_vector = XNEWVEC (struct type *, type_vector_length);
292 while (index >= type_vector_length)
294 type_vector_length *= 2;
296 type_vector = (struct type **)
297 xrealloc ((char *) type_vector,
298 (type_vector_length * sizeof (struct type *)));
299 memset (&type_vector[old_len], 0,
300 (type_vector_length - old_len) * sizeof (struct type *));
302 return (&type_vector[index]);
306 real_filenum = this_object_header_files[filenum];
308 if (real_filenum >= N_HEADER_FILES (objfile))
310 static struct type *temp_type;
312 warning (_("GDB internal error: bad real_filenum"));
315 temp_type = objfile_type (objfile)->builtin_error;
319 f = HEADER_FILES (objfile) + real_filenum;
321 f_orig_length = f->length;
322 if (index >= f_orig_length)
324 while (index >= f->length)
328 f->vector = (struct type **)
329 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
330 memset (&f->vector[f_orig_length], 0,
331 (f->length - f_orig_length) * sizeof (struct type *));
333 return (&f->vector[index]);
337 /* Make sure there is a type allocated for type numbers TYPENUMS
338 and return the type object.
339 This can create an empty (zeroed) type object.
340 TYPENUMS may be (-1, -1) to return a new type object that is not
341 put into the type vector, and so may not be referred to by number. */
344 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 struct type **type_addr;
348 if (typenums[0] == -1)
350 return (alloc_type (objfile));
353 type_addr = dbx_lookup_type (typenums, objfile);
355 /* If we are referring to a type not known at all yet,
356 allocate an empty type for it.
357 We will fill it in later if we find out how. */
360 *type_addr = alloc_type (objfile);
366 /* Allocate a floating-point type of size BITS. */
369 dbx_init_float_type (struct objfile *objfile, int bits)
371 struct gdbarch *gdbarch = get_objfile_arch (objfile);
372 const struct floatformat **format;
375 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 type = init_float_type (objfile, bits, NULL, format);
379 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
384 /* for all the stabs in a given stab vector, build appropriate types
385 and fix their symbols in given symbol vector. */
388 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
389 struct objfile *objfile)
398 /* for all the stab entries, find their corresponding symbols and
399 patch their types! */
401 for (ii = 0; ii < stabs->count; ++ii)
403 name = stabs->stab[ii];
404 pp = (char *) strchr (name, ':');
405 gdb_assert (pp); /* Must find a ':' or game's over. */
409 pp = (char *) strchr (pp, ':');
411 sym = find_symbol_in_list (symbols, name, pp - name);
414 /* FIXME-maybe: it would be nice if we noticed whether
415 the variable was defined *anywhere*, not just whether
416 it is defined in this compilation unit. But neither
417 xlc or GCC seem to need such a definition, and until
418 we do psymtabs (so that the minimal symbols from all
419 compilation units are available now), I'm not sure
420 how to get the information. */
422 /* On xcoff, if a global is defined and never referenced,
423 ld will remove it from the executable. There is then
424 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
425 sym = allocate_symbol (objfile);
426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
427 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
428 SYMBOL_SET_LINKAGE_NAME
429 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
438 lookup_function_type (read_type (&pp, objfile));
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
444 add_symbol_to_list (sym, get_global_symbols ());
449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
452 lookup_function_type (read_type (&pp, objfile));
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
470 Returns 0 for success, -1 for error. */
473 read_type_number (const char **pp, int *typenums)
480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
517 static struct ref_map *ref_map;
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count = 0;
522 /* Number of chunks malloced. */
523 static int ref_chunk = 0;
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
529 stabsread_clear_cache (void)
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
555 ref_chunk += new_chunks;
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
562 /* Return defined sym for the reference REFNUM. */
564 ref_search (int refnum)
566 if (refnum < 0 || refnum > ref_count)
568 return ref_map[refnum].sym;
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
575 process_reference (const char **string)
583 /* Advance beyond the initial '#'. */
586 /* Read number as reference id. */
587 while (*p && isdigit (*p))
589 refnum = refnum * 10 + *p - '0';
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
600 symbol_reference_defined (const char **string)
602 const char *p = *string;
605 refnum = process_reference (&p);
607 /* Defining symbols end in '='. */
610 /* Symbol is being defined here. */
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 SYMBOL_PRINT_NAME (sym));
633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
639 static const struct symbol_register_ops stab_register_funcs = {
643 /* The "aclass" indices for computed symbols. */
645 static int stab_register_index;
646 static int stab_regparm_index;
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 struct objfile *objfile)
652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
654 const char *p = find_name_end (string);
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
666 /* Ignore syms with empty names. */
670 /* Ignore old-style symbols from cc -go. */
681 _("Bad stabs string '%s'"), string);
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
690 current_symbol = sym = allocate_symbol (objfile);
692 if (processing_gcc_compilation)
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
700 SYMBOL_LINE (sym) = 0; /* unknown */
703 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
704 &objfile->objfile_obstack);
706 if (is_cplus_marker (string[0]))
708 /* Special GNU C++ names. */
712 SYMBOL_SET_LINKAGE_NAME (sym, "this");
715 case 'v': /* $vtbl_ptr_type */
719 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
723 /* This was an anonymous type that was never fixed up. */
727 /* SunPRO (3.0 at least) static variable encoding. */
728 if (gdbarch_static_transform_name_p (gdbarch))
733 complaint (_("Unknown C++ symbol name `%s'"),
735 goto normal; /* Do *something* with it. */
741 std::string new_name;
743 if (SYMBOL_LANGUAGE (sym) == language_cplus)
745 char *name = (char *) alloca (p - string + 1);
747 memcpy (name, string, p - string);
748 name[p - string] = '\0';
749 new_name = cp_canonicalize_string (name);
751 if (!new_name.empty ())
753 SYMBOL_SET_NAMES (sym,
754 new_name.c_str (), new_name.length (),
758 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
760 if (SYMBOL_LANGUAGE (sym) == language_cplus)
761 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
767 /* Determine the type of name being defined. */
769 /* Getting GDB to correctly skip the symbol on an undefined symbol
770 descriptor and not ever dump core is a very dodgy proposition if
771 we do things this way. I say the acorn RISC machine can just
772 fix their compiler. */
773 /* The Acorn RISC machine's compiler can put out locals that don't
774 start with "234=" or "(3,4)=", so assume anything other than the
775 deftypes we know how to handle is a local. */
776 if (!strchr ("cfFGpPrStTvVXCR", *p))
778 if (isdigit (*p) || *p == '(' || *p == '-')
787 /* c is a special case, not followed by a type-number.
788 SYMBOL:c=iVALUE for an integer constant symbol.
789 SYMBOL:c=rVALUE for a floating constant symbol.
790 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
791 e.g. "b:c=e6,0" for "const b = blob1"
792 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
796 SYMBOL_TYPE (sym) = error_type (&p, objfile);
797 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
798 add_symbol_to_list (sym, get_file_symbols ());
807 struct type *dbl_type;
809 dbl_type = objfile_type (objfile)->builtin_double;
811 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
812 TYPE_LENGTH (dbl_type));
814 target_float_from_string (dbl_valu, dbl_type, std::string (p));
816 SYMBOL_TYPE (sym) = dbl_type;
817 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
818 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
823 /* Defining integer constants this way is kind of silly,
824 since 'e' constants allows the compiler to give not
825 only the value, but the type as well. C has at least
826 int, long, unsigned int, and long long as constant
827 types; other languages probably should have at least
828 unsigned as well as signed constants. */
830 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
831 SYMBOL_VALUE (sym) = atoi (p);
832 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
838 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
839 SYMBOL_VALUE (sym) = atoi (p);
840 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
846 struct type *range_type;
849 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
850 gdb_byte *string_value;
852 if (quote != '\'' && quote != '"')
854 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
855 SYMBOL_TYPE (sym) = error_type (&p, objfile);
856 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
857 add_symbol_to_list (sym, get_file_symbols ());
861 /* Find matching quote, rejecting escaped quotes. */
862 while (*p && *p != quote)
864 if (*p == '\\' && p[1] == quote)
866 string_local[ind] = (gdb_byte) quote;
872 string_local[ind] = (gdb_byte) (*p);
879 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
880 SYMBOL_TYPE (sym) = error_type (&p, objfile);
881 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
882 add_symbol_to_list (sym, get_file_symbols ());
886 /* NULL terminate the string. */
887 string_local[ind] = 0;
889 = create_static_range_type (NULL,
890 objfile_type (objfile)->builtin_int,
892 SYMBOL_TYPE (sym) = create_array_type (NULL,
893 objfile_type (objfile)->builtin_char,
896 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
897 memcpy (string_value, string_local, ind + 1);
900 SYMBOL_VALUE_BYTES (sym) = string_value;
901 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
906 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
907 can be represented as integral.
908 e.g. "b:c=e6,0" for "const b = blob1"
909 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
911 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
912 SYMBOL_TYPE (sym) = read_type (&p, objfile);
916 SYMBOL_TYPE (sym) = error_type (&p, objfile);
921 /* If the value is too big to fit in an int (perhaps because
922 it is unsigned), or something like that, we silently get
923 a bogus value. The type and everything else about it is
924 correct. Ideally, we should be using whatever we have
925 available for parsing unsigned and long long values,
927 SYMBOL_VALUE (sym) = atoi (p);
932 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
933 SYMBOL_TYPE (sym) = error_type (&p, objfile);
936 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
937 add_symbol_to_list (sym, get_file_symbols ());
941 /* The name of a caught exception. */
942 SYMBOL_TYPE (sym) = read_type (&p, objfile);
943 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
944 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
945 SYMBOL_VALUE_ADDRESS (sym) = valu;
946 add_symbol_to_list (sym, get_local_symbols ());
950 /* A static function definition. */
951 SYMBOL_TYPE (sym) = read_type (&p, objfile);
952 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
953 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
954 add_symbol_to_list (sym, get_file_symbols ());
955 /* fall into process_function_types. */
957 process_function_types:
958 /* Function result types are described as the result type in stabs.
959 We need to convert this to the function-returning-type-X type
960 in GDB. E.g. "int" is converted to "function returning int". */
961 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
962 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
964 /* All functions in C++ have prototypes. Stabs does not offer an
965 explicit way to identify prototyped or unprototyped functions,
966 but both GCC and Sun CC emit stabs for the "call-as" type rather
967 than the "declared-as" type for unprototyped functions, so
968 we treat all functions as if they were prototyped. This is used
969 primarily for promotion when calling the function from GDB. */
970 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
972 /* fall into process_prototype_types. */
974 process_prototype_types:
975 /* Sun acc puts declared types of arguments here. */
978 struct type *ftype = SYMBOL_TYPE (sym);
983 /* Obtain a worst case guess for the number of arguments
984 by counting the semicolons. */
991 /* Allocate parameter information fields and fill them in. */
992 TYPE_FIELDS (ftype) = (struct field *)
993 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
998 /* A type number of zero indicates the start of varargs.
999 FIXME: GDB currently ignores vararg functions. */
1000 if (p[0] == '0' && p[1] == '\0')
1002 ptype = read_type (&p, objfile);
1004 /* The Sun compilers mark integer arguments, which should
1005 be promoted to the width of the calling conventions, with
1006 a type which references itself. This type is turned into
1007 a TYPE_CODE_VOID type by read_type, and we have to turn
1008 it back into builtin_int here.
1009 FIXME: Do we need a new builtin_promoted_int_arg ? */
1010 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1011 ptype = objfile_type (objfile)->builtin_int;
1012 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1013 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1015 TYPE_NFIELDS (ftype) = nparams;
1016 TYPE_PROTOTYPED (ftype) = 1;
1021 /* A global function definition. */
1022 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1023 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1025 add_symbol_to_list (sym, get_global_symbols ());
1026 goto process_function_types;
1029 /* For a class G (global) symbol, it appears that the
1030 value is not correct. It is necessary to search for the
1031 corresponding linker definition to find the value.
1032 These definitions appear at the end of the namelist. */
1033 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1034 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1035 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1036 /* Don't add symbol references to global_sym_chain.
1037 Symbol references don't have valid names and wont't match up with
1038 minimal symbols when the global_sym_chain is relocated.
1039 We'll fixup symbol references when we fixup the defining symbol. */
1040 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1042 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1043 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1044 global_sym_chain[i] = sym;
1046 add_symbol_to_list (sym, get_global_symbols ());
1049 /* This case is faked by a conditional above,
1050 when there is no code letter in the dbx data.
1051 Dbx data never actually contains 'l'. */
1054 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1055 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1056 SYMBOL_VALUE (sym) = valu;
1057 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1058 add_symbol_to_list (sym, get_local_symbols ());
1063 /* pF is a two-letter code that means a function parameter in Fortran.
1064 The type-number specifies the type of the return value.
1065 Translate it into a pointer-to-function type. */
1069 = lookup_pointer_type
1070 (lookup_function_type (read_type (&p, objfile)));
1073 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1075 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1076 SYMBOL_VALUE (sym) = valu;
1077 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1078 SYMBOL_IS_ARGUMENT (sym) = 1;
1079 add_symbol_to_list (sym, get_local_symbols ());
1081 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1083 /* On little-endian machines, this crud is never necessary,
1084 and, if the extra bytes contain garbage, is harmful. */
1088 /* If it's gcc-compiled, if it says `short', believe it. */
1089 if (processing_gcc_compilation
1090 || gdbarch_believe_pcc_promotion (gdbarch))
1093 if (!gdbarch_believe_pcc_promotion (gdbarch))
1095 /* If PCC says a parameter is a short or a char, it is
1097 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1098 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1099 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1102 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1103 ? objfile_type (objfile)->builtin_unsigned_int
1104 : objfile_type (objfile)->builtin_int;
1111 /* acc seems to use P to declare the prototypes of functions that
1112 are referenced by this file. gdb is not prepared to deal
1113 with this extra information. FIXME, it ought to. */
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1117 goto process_prototype_types;
1122 /* Parameter which is in a register. */
1123 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1124 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1125 SYMBOL_IS_ARGUMENT (sym) = 1;
1126 SYMBOL_VALUE (sym) = valu;
1127 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1128 add_symbol_to_list (sym, get_local_symbols ());
1132 /* Register variable (either global or local). */
1133 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1134 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1135 SYMBOL_VALUE (sym) = valu;
1136 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1137 if (within_function)
1139 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1140 the same name to represent an argument passed in a
1141 register. GCC uses 'P' for the same case. So if we find
1142 such a symbol pair we combine it into one 'P' symbol.
1143 For Sun cc we need to do this regardless of
1144 stabs_argument_has_addr, because the compiler puts out
1145 the 'p' symbol even if it never saves the argument onto
1148 On most machines, we want to preserve both symbols, so
1149 that we can still get information about what is going on
1150 with the stack (VAX for computing args_printed, using
1151 stack slots instead of saved registers in backtraces,
1154 Note that this code illegally combines
1155 main(argc) struct foo argc; { register struct foo argc; }
1156 but this case is considered pathological and causes a warning
1157 from a decent compiler. */
1159 struct pending *local_symbols = *get_local_symbols ();
1161 && local_symbols->nsyms > 0
1162 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1164 struct symbol *prev_sym;
1166 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1167 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1168 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1169 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1170 SYMBOL_LINKAGE_NAME (sym)) == 0)
1172 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1173 /* Use the type from the LOC_REGISTER; that is the type
1174 that is actually in that register. */
1175 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1176 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1181 add_symbol_to_list (sym, get_local_symbols ());
1184 add_symbol_to_list (sym, get_file_symbols ());
1188 /* Static symbol at top level of file. */
1189 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1190 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1191 SYMBOL_VALUE_ADDRESS (sym) = valu;
1192 if (gdbarch_static_transform_name_p (gdbarch)
1193 && gdbarch_static_transform_name (gdbarch,
1194 SYMBOL_LINKAGE_NAME (sym))
1195 != SYMBOL_LINKAGE_NAME (sym))
1197 struct bound_minimal_symbol msym;
1199 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1201 if (msym.minsym != NULL)
1203 const char *new_name = gdbarch_static_transform_name
1204 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1206 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1207 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1210 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1211 add_symbol_to_list (sym, get_file_symbols ());
1215 /* In Ada, there is no distinction between typedef and non-typedef;
1216 any type declaration implicitly has the equivalent of a typedef,
1217 and thus 't' is in fact equivalent to 'Tt'.
1219 Therefore, for Ada units, we check the character immediately
1220 before the 't', and if we do not find a 'T', then make sure to
1221 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1222 will be stored in the VAR_DOMAIN). If the symbol was indeed
1223 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1224 elsewhere, so we don't need to take care of that.
1226 This is important to do, because of forward references:
1227 The cleanup of undefined types stored in undef_types only uses
1228 STRUCT_DOMAIN symbols to perform the replacement. */
1229 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1232 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1234 /* For a nameless type, we don't want a create a symbol, thus we
1235 did not use `sym'. Return without further processing. */
1239 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1240 SYMBOL_VALUE (sym) = valu;
1241 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1242 /* C++ vagaries: we may have a type which is derived from
1243 a base type which did not have its name defined when the
1244 derived class was output. We fill in the derived class's
1245 base part member's name here in that case. */
1246 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1247 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1249 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1253 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1254 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1255 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1256 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1259 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1261 /* gcc-2.6 or later (when using -fvtable-thunks)
1262 emits a unique named type for a vtable entry.
1263 Some gdb code depends on that specific name. */
1264 extern const char vtbl_ptr_name[];
1266 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1267 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1268 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1270 /* If we are giving a name to a type such as "pointer to
1271 foo" or "function returning foo", we better not set
1272 the TYPE_NAME. If the program contains "typedef char
1273 *caddr_t;", we don't want all variables of type char
1274 * to print as caddr_t. This is not just a
1275 consequence of GDB's type management; PCC and GCC (at
1276 least through version 2.4) both output variables of
1277 either type char * or caddr_t with the type number
1278 defined in the 't' symbol for caddr_t. If a future
1279 compiler cleans this up it GDB is not ready for it
1280 yet, but if it becomes ready we somehow need to
1281 disable this check (without breaking the PCC/GCC2.4
1286 Fortunately, this check seems not to be necessary
1287 for anything except pointers or functions. */
1288 /* ezannoni: 2000-10-26. This seems to apply for
1289 versions of gcc older than 2.8. This was the original
1290 problem: with the following code gdb would tell that
1291 the type for name1 is caddr_t, and func is char().
1293 typedef char *caddr_t;
1305 /* Pascal accepts names for pointer types. */
1306 if (get_current_subfile ()->language == language_pascal)
1308 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1312 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1315 add_symbol_to_list (sym, get_file_symbols ());
1319 /* Create the STRUCT_DOMAIN clone. */
1320 struct symbol *struct_sym = allocate_symbol (objfile);
1323 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1324 SYMBOL_VALUE (struct_sym) = valu;
1325 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1326 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1327 TYPE_NAME (SYMBOL_TYPE (sym))
1328 = obconcat (&objfile->objfile_obstack,
1329 SYMBOL_LINKAGE_NAME (sym),
1331 add_symbol_to_list (struct_sym, get_file_symbols ());
1337 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1338 by 't' which means we are typedef'ing it as well. */
1339 synonym = *p == 't';
1344 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1346 /* For a nameless type, we don't want a create a symbol, thus we
1347 did not use `sym'. Return without further processing. */
1351 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1352 SYMBOL_VALUE (sym) = valu;
1353 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1354 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1355 TYPE_NAME (SYMBOL_TYPE (sym))
1356 = obconcat (&objfile->objfile_obstack,
1357 SYMBOL_LINKAGE_NAME (sym),
1359 add_symbol_to_list (sym, get_file_symbols ());
1363 /* Clone the sym and then modify it. */
1364 struct symbol *typedef_sym = allocate_symbol (objfile);
1366 *typedef_sym = *sym;
1367 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1368 SYMBOL_VALUE (typedef_sym) = valu;
1369 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1370 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1371 TYPE_NAME (SYMBOL_TYPE (sym))
1372 = obconcat (&objfile->objfile_obstack,
1373 SYMBOL_LINKAGE_NAME (sym),
1375 add_symbol_to_list (typedef_sym, get_file_symbols ());
1380 /* Static symbol of local scope. */
1381 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1382 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1383 SYMBOL_VALUE_ADDRESS (sym) = valu;
1384 if (gdbarch_static_transform_name_p (gdbarch)
1385 && gdbarch_static_transform_name (gdbarch,
1386 SYMBOL_LINKAGE_NAME (sym))
1387 != SYMBOL_LINKAGE_NAME (sym))
1389 struct bound_minimal_symbol msym;
1391 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1393 if (msym.minsym != NULL)
1395 const char *new_name = gdbarch_static_transform_name
1396 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1398 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1399 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1402 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1403 add_symbol_to_list (sym, get_local_symbols ());
1407 /* Reference parameter */
1408 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1409 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1410 SYMBOL_IS_ARGUMENT (sym) = 1;
1411 SYMBOL_VALUE (sym) = valu;
1412 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1413 add_symbol_to_list (sym, get_local_symbols ());
1417 /* Reference parameter which is in a register. */
1418 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1419 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1420 SYMBOL_IS_ARGUMENT (sym) = 1;
1421 SYMBOL_VALUE (sym) = valu;
1422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1423 add_symbol_to_list (sym, get_local_symbols ());
1427 /* This is used by Sun FORTRAN for "function result value".
1428 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1429 that Pascal uses it too, but when I tried it Pascal used
1430 "x:3" (local symbol) instead. */
1431 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1433 SYMBOL_VALUE (sym) = valu;
1434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1435 add_symbol_to_list (sym, get_local_symbols ());
1439 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1440 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1441 SYMBOL_VALUE (sym) = 0;
1442 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1443 add_symbol_to_list (sym, get_file_symbols ());
1447 /* Some systems pass variables of certain types by reference instead
1448 of by value, i.e. they will pass the address of a structure (in a
1449 register or on the stack) instead of the structure itself. */
1451 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1452 && SYMBOL_IS_ARGUMENT (sym))
1454 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1455 variables passed in a register). */
1456 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1457 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1458 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1459 and subsequent arguments on SPARC, for example). */
1460 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1461 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1467 /* Skip rest of this symbol and return an error type.
1469 General notes on error recovery: error_type always skips to the
1470 end of the symbol (modulo cretinous dbx symbol name continuation).
1471 Thus code like this:
1473 if (*(*pp)++ != ';')
1474 return error_type (pp, objfile);
1476 is wrong because if *pp starts out pointing at '\0' (typically as the
1477 result of an earlier error), it will be incremented to point to the
1478 start of the next symbol, which might produce strange results, at least
1479 if you run off the end of the string table. Instead use
1482 return error_type (pp, objfile);
1488 foo = error_type (pp, objfile);
1492 And in case it isn't obvious, the point of all this hair is so the compiler
1493 can define new types and new syntaxes, and old versions of the
1494 debugger will be able to read the new symbol tables. */
1496 static struct type *
1497 error_type (const char **pp, struct objfile *objfile)
1499 complaint (_("couldn't parse type; debugger out of date?"));
1502 /* Skip to end of symbol. */
1503 while (**pp != '\0')
1508 /* Check for and handle cretinous dbx symbol name continuation! */
1509 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1511 *pp = next_symbol_text (objfile);
1518 return objfile_type (objfile)->builtin_error;
1522 /* Read type information or a type definition; return the type. Even
1523 though this routine accepts either type information or a type
1524 definition, the distinction is relevant--some parts of stabsread.c
1525 assume that type information starts with a digit, '-', or '(' in
1526 deciding whether to call read_type. */
1528 static struct type *
1529 read_type (const char **pp, struct objfile *objfile)
1531 struct type *type = 0;
1534 char type_descriptor;
1536 /* Size in bits of type if specified by a type attribute, or -1 if
1537 there is no size attribute. */
1540 /* Used to distinguish string and bitstring from char-array and set. */
1543 /* Used to distinguish vector from array. */
1546 /* Read type number if present. The type number may be omitted.
1547 for instance in a two-dimensional array declared with type
1548 "ar1;1;10;ar1;1;10;4". */
1549 if ((**pp >= '0' && **pp <= '9')
1553 if (read_type_number (pp, typenums) != 0)
1554 return error_type (pp, objfile);
1558 /* Type is not being defined here. Either it already
1559 exists, or this is a forward reference to it.
1560 dbx_alloc_type handles both cases. */
1561 type = dbx_alloc_type (typenums, objfile);
1563 /* If this is a forward reference, arrange to complain if it
1564 doesn't get patched up by the time we're done
1566 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1567 add_undefined_type (type, typenums);
1572 /* Type is being defined here. */
1574 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1579 /* 'typenums=' not present, type is anonymous. Read and return
1580 the definition, but don't put it in the type vector. */
1581 typenums[0] = typenums[1] = -1;
1586 type_descriptor = (*pp)[-1];
1587 switch (type_descriptor)
1591 enum type_code code;
1593 /* Used to index through file_symbols. */
1594 struct pending *ppt;
1597 /* Name including "struct", etc. */
1601 const char *from, *p, *q1, *q2;
1603 /* Set the type code according to the following letter. */
1607 code = TYPE_CODE_STRUCT;
1610 code = TYPE_CODE_UNION;
1613 code = TYPE_CODE_ENUM;
1617 /* Complain and keep going, so compilers can invent new
1618 cross-reference types. */
1619 complaint (_("Unrecognized cross-reference type `%c'"),
1621 code = TYPE_CODE_STRUCT;
1626 q1 = strchr (*pp, '<');
1627 p = strchr (*pp, ':');
1629 return error_type (pp, objfile);
1630 if (q1 && p > q1 && p[1] == ':')
1632 int nesting_level = 0;
1634 for (q2 = q1; *q2; q2++)
1638 else if (*q2 == '>')
1640 else if (*q2 == ':' && nesting_level == 0)
1645 return error_type (pp, objfile);
1648 if (get_current_subfile ()->language == language_cplus)
1650 char *name = (char *) alloca (p - *pp + 1);
1652 memcpy (name, *pp, p - *pp);
1653 name[p - *pp] = '\0';
1655 std::string new_name = cp_canonicalize_string (name);
1656 if (!new_name.empty ())
1659 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1661 new_name.length ());
1664 if (type_name == NULL)
1666 char *to = type_name = (char *)
1667 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1669 /* Copy the name. */
1676 /* Set the pointer ahead of the name which we just read, and
1681 /* If this type has already been declared, then reuse the same
1682 type, rather than allocating a new one. This saves some
1685 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1686 for (i = 0; i < ppt->nsyms; i++)
1688 struct symbol *sym = ppt->symbol[i];
1690 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1691 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1692 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1693 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1695 obstack_free (&objfile->objfile_obstack, type_name);
1696 type = SYMBOL_TYPE (sym);
1697 if (typenums[0] != -1)
1698 *dbx_lookup_type (typenums, objfile) = type;
1703 /* Didn't find the type to which this refers, so we must
1704 be dealing with a forward reference. Allocate a type
1705 structure for it, and keep track of it so we can
1706 fill in the rest of the fields when we get the full
1708 type = dbx_alloc_type (typenums, objfile);
1709 TYPE_CODE (type) = code;
1710 TYPE_NAME (type) = type_name;
1711 INIT_CPLUS_SPECIFIC (type);
1712 TYPE_STUB (type) = 1;
1714 add_undefined_type (type, typenums);
1718 case '-': /* RS/6000 built-in type */
1732 /* We deal with something like t(1,2)=(3,4)=... which
1733 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1735 /* Allocate and enter the typedef type first.
1736 This handles recursive types. */
1737 type = dbx_alloc_type (typenums, objfile);
1738 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1740 struct type *xtype = read_type (pp, objfile);
1744 /* It's being defined as itself. That means it is "void". */
1745 TYPE_CODE (type) = TYPE_CODE_VOID;
1746 TYPE_LENGTH (type) = 1;
1748 else if (type_size >= 0 || is_string)
1750 /* This is the absolute wrong way to construct types. Every
1751 other debug format has found a way around this problem and
1752 the related problems with unnecessarily stubbed types;
1753 someone motivated should attempt to clean up the issue
1754 here as well. Once a type pointed to has been created it
1755 should not be modified.
1757 Well, it's not *absolutely* wrong. Constructing recursive
1758 types (trees, linked lists) necessarily entails modifying
1759 types after creating them. Constructing any loop structure
1760 entails side effects. The Dwarf 2 reader does handle this
1761 more gracefully (it never constructs more than once
1762 instance of a type object, so it doesn't have to copy type
1763 objects wholesale), but it still mutates type objects after
1764 other folks have references to them.
1766 Keep in mind that this circularity/mutation issue shows up
1767 at the source language level, too: C's "incomplete types",
1768 for example. So the proper cleanup, I think, would be to
1769 limit GDB's type smashing to match exactly those required
1770 by the source language. So GDB could have a
1771 "complete_this_type" function, but never create unnecessary
1772 copies of a type otherwise. */
1773 replace_type (type, xtype);
1774 TYPE_NAME (type) = NULL;
1778 TYPE_TARGET_STUB (type) = 1;
1779 TYPE_TARGET_TYPE (type) = xtype;
1784 /* In the following types, we must be sure to overwrite any existing
1785 type that the typenums refer to, rather than allocating a new one
1786 and making the typenums point to the new one. This is because there
1787 may already be pointers to the existing type (if it had been
1788 forward-referenced), and we must change it to a pointer, function,
1789 reference, or whatever, *in-place*. */
1791 case '*': /* Pointer to another type */
1792 type1 = read_type (pp, objfile);
1793 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1796 case '&': /* Reference to another type */
1797 type1 = read_type (pp, objfile);
1798 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1802 case 'f': /* Function returning another type */
1803 type1 = read_type (pp, objfile);
1804 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1807 case 'g': /* Prototyped function. (Sun) */
1809 /* Unresolved questions:
1811 - According to Sun's ``STABS Interface Manual'', for 'f'
1812 and 'F' symbol descriptors, a `0' in the argument type list
1813 indicates a varargs function. But it doesn't say how 'g'
1814 type descriptors represent that info. Someone with access
1815 to Sun's toolchain should try it out.
1817 - According to the comment in define_symbol (search for
1818 `process_prototype_types:'), Sun emits integer arguments as
1819 types which ref themselves --- like `void' types. Do we
1820 have to deal with that here, too? Again, someone with
1821 access to Sun's toolchain should try it out and let us
1824 const char *type_start = (*pp) - 1;
1825 struct type *return_type = read_type (pp, objfile);
1826 struct type *func_type
1827 = make_function_type (return_type,
1828 dbx_lookup_type (typenums, objfile));
1831 struct type_list *next;
1835 while (**pp && **pp != '#')
1837 struct type *arg_type = read_type (pp, objfile);
1838 struct type_list *newobj = XALLOCA (struct type_list);
1839 newobj->type = arg_type;
1840 newobj->next = arg_types;
1848 complaint (_("Prototyped function type didn't "
1849 "end arguments with `#':\n%s"),
1853 /* If there is just one argument whose type is `void', then
1854 that's just an empty argument list. */
1856 && ! arg_types->next
1857 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1860 TYPE_FIELDS (func_type)
1861 = (struct field *) TYPE_ALLOC (func_type,
1862 num_args * sizeof (struct field));
1863 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1866 struct type_list *t;
1868 /* We stuck each argument type onto the front of the list
1869 when we read it, so the list is reversed. Build the
1870 fields array right-to-left. */
1871 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1872 TYPE_FIELD_TYPE (func_type, i) = t->type;
1874 TYPE_NFIELDS (func_type) = num_args;
1875 TYPE_PROTOTYPED (func_type) = 1;
1881 case 'k': /* Const qualifier on some type (Sun) */
1882 type = read_type (pp, objfile);
1883 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1884 dbx_lookup_type (typenums, objfile));
1887 case 'B': /* Volatile qual on some type (Sun) */
1888 type = read_type (pp, objfile);
1889 type = make_cv_type (TYPE_CONST (type), 1, type,
1890 dbx_lookup_type (typenums, objfile));
1894 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1895 { /* Member (class & variable) type */
1896 /* FIXME -- we should be doing smash_to_XXX types here. */
1898 struct type *domain = read_type (pp, objfile);
1899 struct type *memtype;
1902 /* Invalid member type data format. */
1903 return error_type (pp, objfile);
1906 memtype = read_type (pp, objfile);
1907 type = dbx_alloc_type (typenums, objfile);
1908 smash_to_memberptr_type (type, domain, memtype);
1911 /* type attribute */
1913 const char *attr = *pp;
1915 /* Skip to the semicolon. */
1916 while (**pp != ';' && **pp != '\0')
1919 return error_type (pp, objfile);
1921 ++ * pp; /* Skip the semicolon. */
1925 case 's': /* Size attribute */
1926 type_size = atoi (attr + 1);
1931 case 'S': /* String attribute */
1932 /* FIXME: check to see if following type is array? */
1936 case 'V': /* Vector attribute */
1937 /* FIXME: check to see if following type is array? */
1942 /* Ignore unrecognized type attributes, so future compilers
1943 can invent new ones. */
1951 case '#': /* Method (class & fn) type */
1952 if ((*pp)[0] == '#')
1954 /* We'll get the parameter types from the name. */
1955 struct type *return_type;
1958 return_type = read_type (pp, objfile);
1959 if (*(*pp)++ != ';')
1960 complaint (_("invalid (minimal) member type "
1961 "data format at symtab pos %d."),
1963 type = allocate_stub_method (return_type);
1964 if (typenums[0] != -1)
1965 *dbx_lookup_type (typenums, objfile) = type;
1969 struct type *domain = read_type (pp, objfile);
1970 struct type *return_type;
1975 /* Invalid member type data format. */
1976 return error_type (pp, objfile);
1980 return_type = read_type (pp, objfile);
1981 args = read_args (pp, ';', objfile, &nargs, &varargs);
1983 return error_type (pp, objfile);
1984 type = dbx_alloc_type (typenums, objfile);
1985 smash_to_method_type (type, domain, return_type, args,
1990 case 'r': /* Range type */
1991 type = read_range_type (pp, typenums, type_size, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1998 /* Sun ACC builtin int type */
1999 type = read_sun_builtin_type (pp, typenums, objfile);
2000 if (typenums[0] != -1)
2001 *dbx_lookup_type (typenums, objfile) = type;
2005 case 'R': /* Sun ACC builtin float type */
2006 type = read_sun_floating_type (pp, typenums, objfile);
2007 if (typenums[0] != -1)
2008 *dbx_lookup_type (typenums, objfile) = type;
2011 case 'e': /* Enumeration type */
2012 type = dbx_alloc_type (typenums, objfile);
2013 type = read_enum_type (pp, type, objfile);
2014 if (typenums[0] != -1)
2015 *dbx_lookup_type (typenums, objfile) = type;
2018 case 's': /* Struct type */
2019 case 'u': /* Union type */
2021 enum type_code type_code = TYPE_CODE_UNDEF;
2022 type = dbx_alloc_type (typenums, objfile);
2023 switch (type_descriptor)
2026 type_code = TYPE_CODE_STRUCT;
2029 type_code = TYPE_CODE_UNION;
2032 type = read_struct_type (pp, type, type_code, objfile);
2036 case 'a': /* Array type */
2038 return error_type (pp, objfile);
2041 type = dbx_alloc_type (typenums, objfile);
2042 type = read_array_type (pp, type, objfile);
2044 TYPE_CODE (type) = TYPE_CODE_STRING;
2046 make_vector_type (type);
2049 case 'S': /* Set type */
2050 type1 = read_type (pp, objfile);
2051 type = create_set_type (NULL, type1);
2052 if (typenums[0] != -1)
2053 *dbx_lookup_type (typenums, objfile) = type;
2057 --*pp; /* Go back to the symbol in error. */
2058 /* Particularly important if it was \0! */
2059 return error_type (pp, objfile);
2064 warning (_("GDB internal error, type is NULL in stabsread.c."));
2065 return error_type (pp, objfile);
2068 /* Size specified in a type attribute overrides any other size. */
2069 if (type_size != -1)
2070 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2075 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2076 Return the proper type node for a given builtin type number. */
2078 static const struct objfile_key<struct type *,
2079 gdb::noop_deleter<struct type *>>
2080 rs6000_builtin_type_data;
2082 static struct type *
2083 rs6000_builtin_type (int typenum, struct objfile *objfile)
2085 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2087 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2088 #define NUMBER_RECOGNIZED 34
2089 struct type *rettype = NULL;
2091 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2093 complaint (_("Unknown builtin type %d"), typenum);
2094 return objfile_type (objfile)->builtin_error;
2097 if (!negative_types)
2099 /* This includes an empty slot for type number -0. */
2100 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2101 NUMBER_RECOGNIZED + 1, struct type *);
2102 rs6000_builtin_type_data.set (objfile, negative_types);
2105 if (negative_types[-typenum] != NULL)
2106 return negative_types[-typenum];
2108 #if TARGET_CHAR_BIT != 8
2109 #error This code wrong for TARGET_CHAR_BIT not 8
2110 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2111 that if that ever becomes not true, the correct fix will be to
2112 make the size in the struct type to be in bits, not in units of
2119 /* The size of this and all the other types are fixed, defined
2120 by the debugging format. If there is a type called "int" which
2121 is other than 32 bits, then it should use a new negative type
2122 number (or avoid negative type numbers for that case).
2123 See stabs.texinfo. */
2124 rettype = init_integer_type (objfile, 32, 0, "int");
2127 rettype = init_integer_type (objfile, 8, 0, "char");
2128 TYPE_NOSIGN (rettype) = 1;
2131 rettype = init_integer_type (objfile, 16, 0, "short");
2134 rettype = init_integer_type (objfile, 32, 0, "long");
2137 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2140 rettype = init_integer_type (objfile, 8, 0, "signed char");
2143 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2146 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2149 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2152 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2155 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2158 /* IEEE single precision (32 bit). */
2159 rettype = init_float_type (objfile, 32, "float",
2160 floatformats_ieee_single);
2163 /* IEEE double precision (64 bit). */
2164 rettype = init_float_type (objfile, 64, "double",
2165 floatformats_ieee_double);
2168 /* This is an IEEE double on the RS/6000, and different machines with
2169 different sizes for "long double" should use different negative
2170 type numbers. See stabs.texinfo. */
2171 rettype = init_float_type (objfile, 64, "long double",
2172 floatformats_ieee_double);
2175 rettype = init_integer_type (objfile, 32, 0, "integer");
2178 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2181 rettype = init_float_type (objfile, 32, "short real",
2182 floatformats_ieee_single);
2185 rettype = init_float_type (objfile, 64, "real",
2186 floatformats_ieee_double);
2189 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2192 rettype = init_character_type (objfile, 8, 1, "character");
2195 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2198 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2201 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2204 rettype = init_boolean_type (objfile, 32, 1, "logical");
2207 /* Complex type consisting of two IEEE single precision values. */
2208 rettype = init_complex_type (objfile, "complex",
2209 rs6000_builtin_type (12, objfile));
2212 /* Complex type consisting of two IEEE double precision values. */
2213 rettype = init_complex_type (objfile, "double complex",
2214 rs6000_builtin_type (13, objfile));
2217 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2220 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2223 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2226 rettype = init_character_type (objfile, 16, 0, "wchar");
2229 rettype = init_integer_type (objfile, 64, 0, "long long");
2232 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2235 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2238 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2241 negative_types[-typenum] = rettype;
2245 /* This page contains subroutines of read_type. */
2247 /* Wrapper around method_name_from_physname to flag a complaint
2248 if there is an error. */
2251 stabs_method_name_from_physname (const char *physname)
2255 method_name = method_name_from_physname (physname);
2257 if (method_name == NULL)
2259 complaint (_("Method has bad physname %s\n"), physname);
2266 /* Read member function stabs info for C++ classes. The form of each member
2269 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2271 An example with two member functions is:
2273 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2275 For the case of overloaded operators, the format is op$::*.funcs, where
2276 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2277 name (such as `+=') and `.' marks the end of the operator name.
2279 Returns 1 for success, 0 for failure. */
2282 read_member_functions (struct stab_field_info *fip, const char **pp,
2283 struct type *type, struct objfile *objfile)
2290 struct next_fnfield *next;
2291 struct fn_field fn_field;
2294 struct type *look_ahead_type;
2295 struct next_fnfieldlist *new_fnlist;
2296 struct next_fnfield *new_sublist;
2300 /* Process each list until we find something that is not a member function
2301 or find the end of the functions. */
2305 /* We should be positioned at the start of the function name.
2306 Scan forward to find the first ':' and if it is not the
2307 first of a "::" delimiter, then this is not a member function. */
2319 look_ahead_type = NULL;
2322 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2324 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2326 /* This is a completely wierd case. In order to stuff in the
2327 names that might contain colons (the usual name delimiter),
2328 Mike Tiemann defined a different name format which is
2329 signalled if the identifier is "op$". In that case, the
2330 format is "op$::XXXX." where XXXX is the name. This is
2331 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2332 /* This lets the user type "break operator+".
2333 We could just put in "+" as the name, but that wouldn't
2335 static char opname[32] = "op$";
2336 char *o = opname + 3;
2338 /* Skip past '::'. */
2341 STABS_CONTINUE (pp, objfile);
2347 main_fn_name = savestring (opname, o - opname);
2353 main_fn_name = savestring (*pp, p - *pp);
2354 /* Skip past '::'. */
2357 new_fnlist->fn_fieldlist.name = main_fn_name;
2361 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2363 /* Check for and handle cretinous dbx symbol name continuation! */
2364 if (look_ahead_type == NULL)
2367 STABS_CONTINUE (pp, objfile);
2369 new_sublist->fn_field.type = read_type (pp, objfile);
2372 /* Invalid symtab info for member function. */
2378 /* g++ version 1 kludge */
2379 new_sublist->fn_field.type = look_ahead_type;
2380 look_ahead_type = NULL;
2390 /* These are methods, not functions. */
2391 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2392 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2394 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2395 == TYPE_CODE_METHOD);
2397 /* If this is just a stub, then we don't have the real name here. */
2398 if (TYPE_STUB (new_sublist->fn_field.type))
2400 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2401 set_type_self_type (new_sublist->fn_field.type, type);
2402 new_sublist->fn_field.is_stub = 1;
2405 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2408 /* Set this member function's visibility fields. */
2411 case VISIBILITY_PRIVATE:
2412 new_sublist->fn_field.is_private = 1;
2414 case VISIBILITY_PROTECTED:
2415 new_sublist->fn_field.is_protected = 1;
2419 STABS_CONTINUE (pp, objfile);
2422 case 'A': /* Normal functions. */
2423 new_sublist->fn_field.is_const = 0;
2424 new_sublist->fn_field.is_volatile = 0;
2427 case 'B': /* `const' member functions. */
2428 new_sublist->fn_field.is_const = 1;
2429 new_sublist->fn_field.is_volatile = 0;
2432 case 'C': /* `volatile' member function. */
2433 new_sublist->fn_field.is_const = 0;
2434 new_sublist->fn_field.is_volatile = 1;
2437 case 'D': /* `const volatile' member function. */
2438 new_sublist->fn_field.is_const = 1;
2439 new_sublist->fn_field.is_volatile = 1;
2442 case '*': /* File compiled with g++ version 1 --
2448 complaint (_("const/volatile indicator missing, got '%c'"),
2458 /* virtual member function, followed by index.
2459 The sign bit is set to distinguish pointers-to-methods
2460 from virtual function indicies. Since the array is
2461 in words, the quantity must be shifted left by 1
2462 on 16 bit machine, and by 2 on 32 bit machine, forcing
2463 the sign bit out, and usable as a valid index into
2464 the array. Remove the sign bit here. */
2465 new_sublist->fn_field.voffset =
2466 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2470 STABS_CONTINUE (pp, objfile);
2471 if (**pp == ';' || **pp == '\0')
2473 /* Must be g++ version 1. */
2474 new_sublist->fn_field.fcontext = 0;
2478 /* Figure out from whence this virtual function came.
2479 It may belong to virtual function table of
2480 one of its baseclasses. */
2481 look_ahead_type = read_type (pp, objfile);
2484 /* g++ version 1 overloaded methods. */
2488 new_sublist->fn_field.fcontext = look_ahead_type;
2497 look_ahead_type = NULL;
2503 /* static member function. */
2505 int slen = strlen (main_fn_name);
2507 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2509 /* For static member functions, we can't tell if they
2510 are stubbed, as they are put out as functions, and not as
2512 GCC v2 emits the fully mangled name if
2513 dbxout.c:flag_minimal_debug is not set, so we have to
2514 detect a fully mangled physname here and set is_stub
2515 accordingly. Fully mangled physnames in v2 start with
2516 the member function name, followed by two underscores.
2517 GCC v3 currently always emits stubbed member functions,
2518 but with fully mangled physnames, which start with _Z. */
2519 if (!(strncmp (new_sublist->fn_field.physname,
2520 main_fn_name, slen) == 0
2521 && new_sublist->fn_field.physname[slen] == '_'
2522 && new_sublist->fn_field.physname[slen + 1] == '_'))
2524 new_sublist->fn_field.is_stub = 1;
2531 complaint (_("member function type missing, got '%c'"),
2533 /* Normal member function. */
2537 /* normal member function. */
2538 new_sublist->fn_field.voffset = 0;
2539 new_sublist->fn_field.fcontext = 0;
2543 new_sublist->next = sublist;
2544 sublist = new_sublist;
2546 STABS_CONTINUE (pp, objfile);
2548 while (**pp != ';' && **pp != '\0');
2551 STABS_CONTINUE (pp, objfile);
2553 /* Skip GCC 3.X member functions which are duplicates of the callable
2554 constructor/destructor. */
2555 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2556 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2557 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2559 xfree (main_fn_name);
2563 int has_destructor = 0, has_other = 0;
2565 struct next_fnfield *tmp_sublist;
2567 /* Various versions of GCC emit various mostly-useless
2568 strings in the name field for special member functions.
2570 For stub methods, we need to defer correcting the name
2571 until we are ready to unstub the method, because the current
2572 name string is used by gdb_mangle_name. The only stub methods
2573 of concern here are GNU v2 operators; other methods have their
2574 names correct (see caveat below).
2576 For non-stub methods, in GNU v3, we have a complete physname.
2577 Therefore we can safely correct the name now. This primarily
2578 affects constructors and destructors, whose name will be
2579 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2580 operators will also have incorrect names; for instance,
2581 "operator int" will be named "operator i" (i.e. the type is
2584 For non-stub methods in GNU v2, we have no easy way to
2585 know if we have a complete physname or not. For most
2586 methods the result depends on the platform (if CPLUS_MARKER
2587 can be `$' or `.', it will use minimal debug information, or
2588 otherwise the full physname will be included).
2590 Rather than dealing with this, we take a different approach.
2591 For v3 mangled names, we can use the full physname; for v2,
2592 we use cplus_demangle_opname (which is actually v2 specific),
2593 because the only interesting names are all operators - once again
2594 barring the caveat below. Skip this process if any method in the
2595 group is a stub, to prevent our fouling up the workings of
2598 The caveat: GCC 2.95.x (and earlier?) put constructors and
2599 destructors in the same method group. We need to split this
2600 into two groups, because they should have different names.
2601 So for each method group we check whether it contains both
2602 routines whose physname appears to be a destructor (the physnames
2603 for and destructors are always provided, due to quirks in v2
2604 mangling) and routines whose physname does not appear to be a
2605 destructor. If so then we break up the list into two halves.
2606 Even if the constructors and destructors aren't in the same group
2607 the destructor will still lack the leading tilde, so that also
2610 So, to summarize what we expect and handle here:
2612 Given Given Real Real Action
2613 method name physname physname method name
2615 __opi [none] __opi__3Foo operator int opname
2617 Foo _._3Foo _._3Foo ~Foo separate and
2619 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2620 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2623 tmp_sublist = sublist;
2624 while (tmp_sublist != NULL)
2626 if (tmp_sublist->fn_field.physname[0] == '_'
2627 && tmp_sublist->fn_field.physname[1] == 'Z')
2630 if (is_destructor_name (tmp_sublist->fn_field.physname))
2635 tmp_sublist = tmp_sublist->next;
2638 if (has_destructor && has_other)
2640 struct next_fnfieldlist *destr_fnlist;
2641 struct next_fnfield *last_sublist;
2643 /* Create a new fn_fieldlist for the destructors. */
2645 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2646 struct next_fnfieldlist);
2648 destr_fnlist->fn_fieldlist.name
2649 = obconcat (&objfile->objfile_obstack, "~",
2650 new_fnlist->fn_fieldlist.name, (char *) NULL);
2652 destr_fnlist->fn_fieldlist.fn_fields =
2653 XOBNEWVEC (&objfile->objfile_obstack,
2654 struct fn_field, has_destructor);
2655 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2656 sizeof (struct fn_field) * has_destructor);
2657 tmp_sublist = sublist;
2658 last_sublist = NULL;
2660 while (tmp_sublist != NULL)
2662 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2664 tmp_sublist = tmp_sublist->next;
2668 destr_fnlist->fn_fieldlist.fn_fields[i++]
2669 = tmp_sublist->fn_field;
2671 last_sublist->next = tmp_sublist->next;
2673 sublist = tmp_sublist->next;
2674 last_sublist = tmp_sublist;
2675 tmp_sublist = tmp_sublist->next;
2678 destr_fnlist->fn_fieldlist.length = has_destructor;
2679 destr_fnlist->next = fip->fnlist;
2680 fip->fnlist = destr_fnlist;
2682 length -= has_destructor;
2686 /* v3 mangling prevents the use of abbreviated physnames,
2687 so we can do this here. There are stubbed methods in v3
2689 - in -gstabs instead of -gstabs+
2690 - or for static methods, which are output as a function type
2691 instead of a method type. */
2692 char *new_method_name =
2693 stabs_method_name_from_physname (sublist->fn_field.physname);
2695 if (new_method_name != NULL
2696 && strcmp (new_method_name,
2697 new_fnlist->fn_fieldlist.name) != 0)
2699 new_fnlist->fn_fieldlist.name = new_method_name;
2700 xfree (main_fn_name);
2703 xfree (new_method_name);
2705 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2707 new_fnlist->fn_fieldlist.name =
2708 obconcat (&objfile->objfile_obstack,
2709 "~", main_fn_name, (char *)NULL);
2710 xfree (main_fn_name);
2713 new_fnlist->fn_fieldlist.fn_fields
2714 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2715 for (i = length; (i--, sublist); sublist = sublist->next)
2717 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2720 new_fnlist->fn_fieldlist.length = length;
2721 new_fnlist->next = fip->fnlist;
2722 fip->fnlist = new_fnlist;
2729 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2730 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2731 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2732 memset (TYPE_FN_FIELDLISTS (type), 0,
2733 sizeof (struct fn_fieldlist) * nfn_fields);
2734 TYPE_NFN_FIELDS (type) = nfn_fields;
2740 /* Special GNU C++ name.
2742 Returns 1 for success, 0 for failure. "failure" means that we can't
2743 keep parsing and it's time for error_type(). */
2746 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2747 struct type *type, struct objfile *objfile)
2752 struct type *context;
2762 /* At this point, *pp points to something like "22:23=*22...",
2763 where the type number before the ':' is the "context" and
2764 everything after is a regular type definition. Lookup the
2765 type, find it's name, and construct the field name. */
2767 context = read_type (pp, objfile);
2771 case 'f': /* $vf -- a virtual function table pointer */
2772 name = TYPE_NAME (context);
2777 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2778 vptr_name, name, (char *) NULL);
2781 case 'b': /* $vb -- a virtual bsomethingorother */
2782 name = TYPE_NAME (context);
2785 complaint (_("C++ abbreviated type name "
2786 "unknown at symtab pos %d"),
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2791 name, (char *) NULL);
2795 invalid_cpp_abbrev_complaint (*pp);
2796 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2797 "INVALID_CPLUSPLUS_ABBREV",
2802 /* At this point, *pp points to the ':'. Skip it and read the
2808 invalid_cpp_abbrev_complaint (*pp);
2811 fip->list->field.type = read_type (pp, objfile);
2813 (*pp)++; /* Skip the comma. */
2820 SET_FIELD_BITPOS (fip->list->field,
2821 read_huge_number (pp, ';', &nbits, 0));
2825 /* This field is unpacked. */
2826 FIELD_BITSIZE (fip->list->field) = 0;
2827 fip->list->visibility = VISIBILITY_PRIVATE;
2831 invalid_cpp_abbrev_complaint (*pp);
2832 /* We have no idea what syntax an unrecognized abbrev would have, so
2833 better return 0. If we returned 1, we would need to at least advance
2834 *pp to avoid an infinite loop. */
2841 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2842 const char *p, struct type *type,
2843 struct objfile *objfile)
2845 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2847 fip->list->field.name
2848 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2851 /* This means we have a visibility for a field coming. */
2855 fip->list->visibility = *(*pp)++;
2859 /* normal dbx-style format, no explicit visibility */
2860 fip->list->visibility = VISIBILITY_PUBLIC;
2863 fip->list->field.type = read_type (pp, objfile);
2868 /* Possible future hook for nested types. */
2871 fip->list->field.bitpos = (long) -2; /* nested type */
2881 /* Static class member. */
2882 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2886 else if (**pp != ',')
2888 /* Bad structure-type format. */
2889 stabs_general_complaint ("bad structure-type format");
2893 (*pp)++; /* Skip the comma. */
2898 SET_FIELD_BITPOS (fip->list->field,
2899 read_huge_number (pp, ',', &nbits, 0));
2902 stabs_general_complaint ("bad structure-type format");
2905 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2908 stabs_general_complaint ("bad structure-type format");
2913 if (FIELD_BITPOS (fip->list->field) == 0
2914 && FIELD_BITSIZE (fip->list->field) == 0)
2916 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2917 it is a field which has been optimized out. The correct stab for
2918 this case is to use VISIBILITY_IGNORE, but that is a recent
2919 invention. (2) It is a 0-size array. For example
2920 union { int num; char str[0]; } foo. Printing _("<no value>" for
2921 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2922 will continue to work, and a 0-size array as a whole doesn't
2923 have any contents to print.
2925 I suspect this probably could also happen with gcc -gstabs (not
2926 -gstabs+) for static fields, and perhaps other C++ extensions.
2927 Hopefully few people use -gstabs with gdb, since it is intended
2928 for dbx compatibility. */
2930 /* Ignore this field. */
2931 fip->list->visibility = VISIBILITY_IGNORE;
2935 /* Detect an unpacked field and mark it as such.
2936 dbx gives a bit size for all fields.
2937 Note that forward refs cannot be packed,
2938 and treat enums as if they had the width of ints. */
2940 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2942 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2943 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2944 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2945 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2947 FIELD_BITSIZE (fip->list->field) = 0;
2949 if ((FIELD_BITSIZE (fip->list->field)
2950 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2951 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2952 && FIELD_BITSIZE (fip->list->field)
2953 == gdbarch_int_bit (gdbarch))
2956 FIELD_BITPOS (fip->list->field) % 8 == 0)
2958 FIELD_BITSIZE (fip->list->field) = 0;
2964 /* Read struct or class data fields. They have the form:
2966 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2968 At the end, we see a semicolon instead of a field.
2970 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2973 The optional VISIBILITY is one of:
2975 '/0' (VISIBILITY_PRIVATE)
2976 '/1' (VISIBILITY_PROTECTED)
2977 '/2' (VISIBILITY_PUBLIC)
2978 '/9' (VISIBILITY_IGNORE)
2980 or nothing, for C style fields with public visibility.
2982 Returns 1 for success, 0 for failure. */
2985 read_struct_fields (struct stab_field_info *fip, const char **pp,
2986 struct type *type, struct objfile *objfile)
2989 struct nextfield *newobj;
2991 /* We better set p right now, in case there are no fields at all... */
2995 /* Read each data member type until we find the terminating ';' at the end of
2996 the data member list, or break for some other reason such as finding the
2997 start of the member function list. */
2998 /* Stab string for structure/union does not end with two ';' in
2999 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3001 while (**pp != ';' && **pp != '\0')
3003 STABS_CONTINUE (pp, objfile);
3004 /* Get space to record the next field's data. */
3005 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3007 newobj->next = fip->list;
3010 /* Get the field name. */
3013 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3014 unless the CPLUS_MARKER is followed by an underscore, in
3015 which case it is just the name of an anonymous type, which we
3016 should handle like any other type name. */
3018 if (is_cplus_marker (p[0]) && p[1] != '_')
3020 if (!read_cpp_abbrev (fip, pp, type, objfile))
3025 /* Look for the ':' that separates the field name from the field
3026 values. Data members are delimited by a single ':', while member
3027 functions are delimited by a pair of ':'s. When we hit the member
3028 functions (if any), terminate scan loop and return. */
3030 while (*p != ':' && *p != '\0')
3037 /* Check to see if we have hit the member functions yet. */
3042 read_one_struct_field (fip, pp, p, type, objfile);
3044 if (p[0] == ':' && p[1] == ':')
3046 /* (the deleted) chill the list of fields: the last entry (at
3047 the head) is a partially constructed entry which we now
3049 fip->list = fip->list->next;
3054 /* The stabs for C++ derived classes contain baseclass information which
3055 is marked by a '!' character after the total size. This function is
3056 called when we encounter the baseclass marker, and slurps up all the
3057 baseclass information.
3059 Immediately following the '!' marker is the number of base classes that
3060 the class is derived from, followed by information for each base class.
3061 For each base class, there are two visibility specifiers, a bit offset
3062 to the base class information within the derived class, a reference to
3063 the type for the base class, and a terminating semicolon.
3065 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3067 Baseclass information marker __________________|| | | | | | |
3068 Number of baseclasses __________________________| | | | | | |
3069 Visibility specifiers (2) ________________________| | | | | |
3070 Offset in bits from start of class _________________| | | | |
3071 Type number for base class ___________________________| | | |
3072 Visibility specifiers (2) _______________________________| | |
3073 Offset in bits from start of class ________________________| |
3074 Type number of base class ____________________________________|
3076 Return 1 for success, 0 for (error-type-inducing) failure. */
3082 read_baseclasses (struct stab_field_info *fip, const char **pp,
3083 struct type *type, struct objfile *objfile)
3086 struct nextfield *newobj;
3094 /* Skip the '!' baseclass information marker. */
3098 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3102 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3108 /* Some stupid compilers have trouble with the following, so break
3109 it up into simpler expressions. */
3110 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3111 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3114 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3117 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3118 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3122 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3124 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3126 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3128 newobj->next = fip->list;
3130 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3133 STABS_CONTINUE (pp, objfile);
3137 /* Nothing to do. */
3140 SET_TYPE_FIELD_VIRTUAL (type, i);
3143 /* Unknown character. Complain and treat it as non-virtual. */
3145 complaint (_("Unknown virtual character `%c' for baseclass"),
3151 newobj->visibility = *(*pp)++;
3152 switch (newobj->visibility)
3154 case VISIBILITY_PRIVATE:
3155 case VISIBILITY_PROTECTED:
3156 case VISIBILITY_PUBLIC:
3159 /* Bad visibility format. Complain and treat it as
3162 complaint (_("Unknown visibility `%c' for baseclass"),
3163 newobj->visibility);
3164 newobj->visibility = VISIBILITY_PUBLIC;
3171 /* The remaining value is the bit offset of the portion of the object
3172 corresponding to this baseclass. Always zero in the absence of
3173 multiple inheritance. */
3175 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3180 /* The last piece of baseclass information is the type of the
3181 base class. Read it, and remember it's type name as this
3184 newobj->field.type = read_type (pp, objfile);
3185 newobj->field.name = TYPE_NAME (newobj->field.type);
3187 /* Skip trailing ';' and bump count of number of fields seen. */
3196 /* The tail end of stabs for C++ classes that contain a virtual function
3197 pointer contains a tilde, a %, and a type number.
3198 The type number refers to the base class (possibly this class itself) which
3199 contains the vtable pointer for the current class.
3201 This function is called when we have parsed all the method declarations,
3202 so we can look for the vptr base class info. */
3205 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3206 struct type *type, struct objfile *objfile)
3210 STABS_CONTINUE (pp, objfile);
3212 /* If we are positioned at a ';', then skip it. */
3222 if (**pp == '=' || **pp == '+' || **pp == '-')
3224 /* Obsolete flags that used to indicate the presence
3225 of constructors and/or destructors. */
3229 /* Read either a '%' or the final ';'. */
3230 if (*(*pp)++ == '%')
3232 /* The next number is the type number of the base class
3233 (possibly our own class) which supplies the vtable for
3234 this class. Parse it out, and search that class to find
3235 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3236 and TYPE_VPTR_FIELDNO. */
3241 t = read_type (pp, objfile);
3243 while (*p != '\0' && *p != ';')
3249 /* Premature end of symbol. */
3253 set_type_vptr_basetype (type, t);
3254 if (type == t) /* Our own class provides vtbl ptr. */
3256 for (i = TYPE_NFIELDS (t) - 1;
3257 i >= TYPE_N_BASECLASSES (t);
3260 const char *name = TYPE_FIELD_NAME (t, i);
3262 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3263 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3265 set_type_vptr_fieldno (type, i);
3269 /* Virtual function table field not found. */
3270 complaint (_("virtual function table pointer "
3271 "not found when defining class `%s'"),
3277 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3288 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3292 for (n = TYPE_NFN_FIELDS (type);
3293 fip->fnlist != NULL;
3294 fip->fnlist = fip->fnlist->next)
3296 --n; /* Circumvent Sun3 compiler bug. */
3297 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3302 /* Create the vector of fields, and record how big it is.
3303 We need this info to record proper virtual function table information
3304 for this class's virtual functions. */
3307 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3308 struct objfile *objfile)
3311 int non_public_fields = 0;
3312 struct nextfield *scan;
3314 /* Count up the number of fields that we have, as well as taking note of
3315 whether or not there are any non-public fields, which requires us to
3316 allocate and build the private_field_bits and protected_field_bits
3319 for (scan = fip->list; scan != NULL; scan = scan->next)
3322 if (scan->visibility != VISIBILITY_PUBLIC)
3324 non_public_fields++;
3328 /* Now we know how many fields there are, and whether or not there are any
3329 non-public fields. Record the field count, allocate space for the
3330 array of fields, and create blank visibility bitfields if necessary. */
3332 TYPE_NFIELDS (type) = nfields;
3333 TYPE_FIELDS (type) = (struct field *)
3334 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3335 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3337 if (non_public_fields)
3339 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3341 TYPE_FIELD_PRIVATE_BITS (type) =
3342 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3343 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3345 TYPE_FIELD_PROTECTED_BITS (type) =
3346 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3347 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3349 TYPE_FIELD_IGNORE_BITS (type) =
3350 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3351 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3354 /* Copy the saved-up fields into the field vector. Start from the
3355 head of the list, adding to the tail of the field array, so that
3356 they end up in the same order in the array in which they were
3357 added to the list. */
3359 while (nfields-- > 0)
3361 TYPE_FIELD (type, nfields) = fip->list->field;
3362 switch (fip->list->visibility)
3364 case VISIBILITY_PRIVATE:
3365 SET_TYPE_FIELD_PRIVATE (type, nfields);
3368 case VISIBILITY_PROTECTED:
3369 SET_TYPE_FIELD_PROTECTED (type, nfields);
3372 case VISIBILITY_IGNORE:
3373 SET_TYPE_FIELD_IGNORE (type, nfields);
3376 case VISIBILITY_PUBLIC:
3380 /* Unknown visibility. Complain and treat it as public. */
3382 complaint (_("Unknown visibility `%c' for field"),
3383 fip->list->visibility);
3387 fip->list = fip->list->next;
3393 /* Complain that the compiler has emitted more than one definition for the
3394 structure type TYPE. */
3396 complain_about_struct_wipeout (struct type *type)
3398 const char *name = "";
3399 const char *kind = "";
3401 if (TYPE_NAME (type))
3403 name = TYPE_NAME (type);
3404 switch (TYPE_CODE (type))
3406 case TYPE_CODE_STRUCT: kind = "struct "; break;
3407 case TYPE_CODE_UNION: kind = "union "; break;
3408 case TYPE_CODE_ENUM: kind = "enum "; break;
3418 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3421 /* Set the length for all variants of a same main_type, which are
3422 connected in the closed chain.
3424 This is something that needs to be done when a type is defined *after*
3425 some cross references to this type have already been read. Consider
3426 for instance the following scenario where we have the following two
3429 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3430 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3432 A stubbed version of type dummy is created while processing the first
3433 stabs entry. The length of that type is initially set to zero, since
3434 it is unknown at this point. Also, a "constant" variation of type
3435 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3438 The second stabs entry allows us to replace the stubbed definition
3439 with the real definition. However, we still need to adjust the length
3440 of the "constant" variation of that type, as its length was left
3441 untouched during the main type replacement... */
3444 set_length_in_type_chain (struct type *type)
3446 struct type *ntype = TYPE_CHAIN (type);
3448 while (ntype != type)
3450 if (TYPE_LENGTH(ntype) == 0)
3451 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3453 complain_about_struct_wipeout (ntype);
3454 ntype = TYPE_CHAIN (ntype);
3458 /* Read the description of a structure (or union type) and return an object
3459 describing the type.
3461 PP points to a character pointer that points to the next unconsumed token
3462 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3463 *PP will point to "4a:1,0,32;;".
3465 TYPE points to an incomplete type that needs to be filled in.
3467 OBJFILE points to the current objfile from which the stabs information is
3468 being read. (Note that it is redundant in that TYPE also contains a pointer
3469 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3472 static struct type *
3473 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3474 struct objfile *objfile)
3476 struct stab_field_info fi;
3478 /* When describing struct/union/class types in stabs, G++ always drops
3479 all qualifications from the name. So if you've got:
3480 struct A { ... struct B { ... }; ... };
3481 then G++ will emit stabs for `struct A::B' that call it simply
3482 `struct B'. Obviously, if you've got a real top-level definition for
3483 `struct B', or other nested definitions, this is going to cause
3486 Obviously, GDB can't fix this by itself, but it can at least avoid
3487 scribbling on existing structure type objects when new definitions
3489 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3490 || TYPE_STUB (type)))
3492 complain_about_struct_wipeout (type);
3494 /* It's probably best to return the type unchanged. */
3498 INIT_CPLUS_SPECIFIC (type);
3499 TYPE_CODE (type) = type_code;
3500 TYPE_STUB (type) = 0;
3502 /* First comes the total size in bytes. */
3507 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3509 return error_type (pp, objfile);
3510 set_length_in_type_chain (type);
3513 /* Now read the baseclasses, if any, read the regular C struct or C++
3514 class member fields, attach the fields to the type, read the C++
3515 member functions, attach them to the type, and then read any tilde
3516 field (baseclass specifier for the class holding the main vtable). */
3518 if (!read_baseclasses (&fi, pp, type, objfile)
3519 || !read_struct_fields (&fi, pp, type, objfile)
3520 || !attach_fields_to_type (&fi, type, objfile)
3521 || !read_member_functions (&fi, pp, type, objfile)
3522 || !attach_fn_fields_to_type (&fi, type)
3523 || !read_tilde_fields (&fi, pp, type, objfile))
3525 type = error_type (pp, objfile);
3531 /* Read a definition of an array type,
3532 and create and return a suitable type object.
3533 Also creates a range type which represents the bounds of that
3536 static struct type *
3537 read_array_type (const char **pp, struct type *type,
3538 struct objfile *objfile)
3540 struct type *index_type, *element_type, *range_type;
3545 /* Format of an array type:
3546 "ar<index type>;lower;upper;<array_contents_type>".
3547 OS9000: "arlower,upper;<array_contents_type>".
3549 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3550 for these, produce a type like float[][]. */
3553 index_type = read_type (pp, objfile);
3555 /* Improper format of array type decl. */
3556 return error_type (pp, objfile);
3560 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3565 lower = read_huge_number (pp, ';', &nbits, 0);
3568 return error_type (pp, objfile);
3570 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3575 upper = read_huge_number (pp, ';', &nbits, 0);
3577 return error_type (pp, objfile);
3579 element_type = read_type (pp, objfile);
3588 create_static_range_type (NULL, index_type, lower, upper);
3589 type = create_array_type (type, element_type, range_type);
3595 /* Read a definition of an enumeration type,
3596 and create and return a suitable type object.
3597 Also defines the symbols that represent the values of the type. */
3599 static struct type *
3600 read_enum_type (const char **pp, struct type *type,
3601 struct objfile *objfile)
3603 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3609 struct pending **symlist;
3610 struct pending *osyms, *syms;
3613 int unsigned_enum = 1;
3616 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3617 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3618 to do? For now, force all enum values to file scope. */
3619 if (within_function)
3620 symlist = get_local_symbols ();
3623 symlist = get_file_symbols ();
3625 o_nsyms = osyms ? osyms->nsyms : 0;
3627 /* The aix4 compiler emits an extra field before the enum members;
3628 my guess is it's a type of some sort. Just ignore it. */
3631 /* Skip over the type. */
3635 /* Skip over the colon. */
3639 /* Read the value-names and their values.
3640 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3641 A semicolon or comma instead of a NAME means the end. */
3642 while (**pp && **pp != ';' && **pp != ',')
3644 STABS_CONTINUE (pp, objfile);
3648 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3650 n = read_huge_number (pp, ',', &nbits, 0);
3652 return error_type (pp, objfile);
3654 sym = allocate_symbol (objfile);
3655 SYMBOL_SET_LINKAGE_NAME (sym, name);
3656 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3657 &objfile->objfile_obstack);
3658 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3659 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3660 SYMBOL_VALUE (sym) = n;
3663 add_symbol_to_list (sym, symlist);
3668 (*pp)++; /* Skip the semicolon. */
3670 /* Now fill in the fields of the type-structure. */
3672 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3673 set_length_in_type_chain (type);
3674 TYPE_CODE (type) = TYPE_CODE_ENUM;
3675 TYPE_STUB (type) = 0;
3677 TYPE_UNSIGNED (type) = 1;
3678 TYPE_NFIELDS (type) = nsyms;
3679 TYPE_FIELDS (type) = (struct field *)
3680 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3681 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3683 /* Find the symbols for the values and put them into the type.
3684 The symbols can be found in the symlist that we put them on
3685 to cause them to be defined. osyms contains the old value
3686 of that symlist; everything up to there was defined by us. */
3687 /* Note that we preserve the order of the enum constants, so
3688 that in something like "enum {FOO, LAST_THING=FOO}" we print
3689 FOO, not LAST_THING. */
3691 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3693 int last = syms == osyms ? o_nsyms : 0;
3694 int j = syms->nsyms;
3696 for (; --j >= last; --n)
3698 struct symbol *xsym = syms->symbol[j];
3700 SYMBOL_TYPE (xsym) = type;
3701 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3702 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3703 TYPE_FIELD_BITSIZE (type, n) = 0;
3712 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3713 typedefs in every file (for int, long, etc):
3715 type = b <signed> <width> <format type>; <offset>; <nbits>
3717 optional format type = c or b for char or boolean.
3718 offset = offset from high order bit to start bit of type.
3719 width is # bytes in object of this type, nbits is # bits in type.
3721 The width/offset stuff appears to be for small objects stored in
3722 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3725 static struct type *
3726 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3731 int boolean_type = 0;
3742 return error_type (pp, objfile);
3746 /* For some odd reason, all forms of char put a c here. This is strange
3747 because no other type has this honor. We can safely ignore this because
3748 we actually determine 'char'acterness by the number of bits specified in
3750 Boolean forms, e.g Fortran logical*X, put a b here. */
3754 else if (**pp == 'b')
3760 /* The first number appears to be the number of bytes occupied
3761 by this type, except that unsigned short is 4 instead of 2.
3762 Since this information is redundant with the third number,
3763 we will ignore it. */
3764 read_huge_number (pp, ';', &nbits, 0);
3766 return error_type (pp, objfile);
3768 /* The second number is always 0, so ignore it too. */
3769 read_huge_number (pp, ';', &nbits, 0);
3771 return error_type (pp, objfile);
3773 /* The third number is the number of bits for this type. */
3774 type_bits = read_huge_number (pp, 0, &nbits, 0);
3776 return error_type (pp, objfile);
3777 /* The type *should* end with a semicolon. If it are embedded
3778 in a larger type the semicolon may be the only way to know where
3779 the type ends. If this type is at the end of the stabstring we
3780 can deal with the omitted semicolon (but we don't have to like
3781 it). Don't bother to complain(), Sun's compiler omits the semicolon
3788 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3789 TARGET_CHAR_BIT, NULL);
3791 TYPE_UNSIGNED (type) = 1;
3796 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3798 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3801 static struct type *
3802 read_sun_floating_type (const char **pp, int typenums[2],
3803 struct objfile *objfile)
3808 struct type *rettype;
3810 /* The first number has more details about the type, for example
3812 details = read_huge_number (pp, ';', &nbits, 0);
3814 return error_type (pp, objfile);
3816 /* The second number is the number of bytes occupied by this type. */
3817 nbytes = read_huge_number (pp, ';', &nbits, 0);
3819 return error_type (pp, objfile);
3821 nbits = nbytes * TARGET_CHAR_BIT;
3823 if (details == NF_COMPLEX || details == NF_COMPLEX16
3824 || details == NF_COMPLEX32)
3826 rettype = dbx_init_float_type (objfile, nbits / 2);
3827 return init_complex_type (objfile, NULL, rettype);
3830 return dbx_init_float_type (objfile, nbits);
3833 /* Read a number from the string pointed to by *PP.
3834 The value of *PP is advanced over the number.
3835 If END is nonzero, the character that ends the
3836 number must match END, or an error happens;
3837 and that character is skipped if it does match.
3838 If END is zero, *PP is left pointing to that character.
3840 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3841 the number is represented in an octal representation, assume that
3842 it is represented in a 2's complement representation with a size of
3843 TWOS_COMPLEMENT_BITS.
3845 If the number fits in a long, set *BITS to 0 and return the value.
3846 If not, set *BITS to be the number of bits in the number and return 0.
3848 If encounter garbage, set *BITS to -1 and return 0. */
3851 read_huge_number (const char **pp, int end, int *bits,
3852 int twos_complement_bits)
3854 const char *p = *pp;
3863 int twos_complement_representation = 0;
3871 /* Leading zero means octal. GCC uses this to output values larger
3872 than an int (because that would be hard in decimal). */
3879 /* Skip extra zeros. */
3883 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3885 /* Octal, possibly signed. Check if we have enough chars for a
3891 while ((c = *p1) >= '0' && c < '8')
3895 if (len > twos_complement_bits / 3
3896 || (twos_complement_bits % 3 == 0
3897 && len == twos_complement_bits / 3))
3899 /* Ok, we have enough characters for a signed value, check
3900 for signness by testing if the sign bit is set. */
3901 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3903 if (c & (1 << sign_bit))
3905 /* Definitely signed. */
3906 twos_complement_representation = 1;
3912 upper_limit = LONG_MAX / radix;
3914 while ((c = *p++) >= '0' && c < ('0' + radix))
3916 if (n <= upper_limit)
3918 if (twos_complement_representation)
3920 /* Octal, signed, twos complement representation. In
3921 this case, n is the corresponding absolute value. */
3924 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3936 /* unsigned representation */
3938 n += c - '0'; /* FIXME this overflows anyway. */
3944 /* This depends on large values being output in octal, which is
3951 /* Ignore leading zeroes. */
3955 else if (c == '2' || c == '3')
3976 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3978 /* We were supposed to parse a number with maximum
3979 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3990 /* Large decimal constants are an error (because it is hard to
3991 count how many bits are in them). */
3997 /* -0x7f is the same as 0x80. So deal with it by adding one to
3998 the number of bits. Two's complement represention octals
3999 can't have a '-' in front. */
4000 if (sign == -1 && !twos_complement_representation)
4011 /* It's *BITS which has the interesting information. */
4015 static struct type *
4016 read_range_type (const char **pp, int typenums[2], int type_size,
4017 struct objfile *objfile)
4019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4020 const char *orig_pp = *pp;
4025 struct type *result_type;
4026 struct type *index_type = NULL;
4028 /* First comes a type we are a subrange of.
4029 In C it is usually 0, 1 or the type being defined. */
4030 if (read_type_number (pp, rangenums) != 0)
4031 return error_type (pp, objfile);
4032 self_subrange = (rangenums[0] == typenums[0] &&
4033 rangenums[1] == typenums[1]);
4038 index_type = read_type (pp, objfile);
4041 /* A semicolon should now follow; skip it. */
4045 /* The remaining two operands are usually lower and upper bounds
4046 of the range. But in some special cases they mean something else. */
4047 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4048 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4050 if (n2bits == -1 || n3bits == -1)
4051 return error_type (pp, objfile);
4054 goto handle_true_range;
4056 /* If limits are huge, must be large integral type. */
4057 if (n2bits != 0 || n3bits != 0)
4059 char got_signed = 0;
4060 char got_unsigned = 0;
4061 /* Number of bits in the type. */
4064 /* If a type size attribute has been specified, the bounds of
4065 the range should fit in this size. If the lower bounds needs
4066 more bits than the upper bound, then the type is signed. */
4067 if (n2bits <= type_size && n3bits <= type_size)
4069 if (n2bits == type_size && n2bits > n3bits)
4075 /* Range from 0 to <large number> is an unsigned large integral type. */
4076 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4081 /* Range from <large number> to <large number>-1 is a large signed
4082 integral type. Take care of the case where <large number> doesn't
4083 fit in a long but <large number>-1 does. */
4084 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4085 || (n2bits != 0 && n3bits == 0
4086 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4093 if (got_signed || got_unsigned)
4094 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4096 return error_type (pp, objfile);
4099 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4100 if (self_subrange && n2 == 0 && n3 == 0)
4101 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4103 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4104 is the width in bytes.
4106 Fortran programs appear to use this for complex types also. To
4107 distinguish between floats and complex, g77 (and others?) seem
4108 to use self-subranges for the complexes, and subranges of int for
4111 Also note that for complexes, g77 sets n2 to the size of one of
4112 the member floats, not the whole complex beast. My guess is that
4113 this was to work well with pre-COMPLEX versions of gdb. */
4115 if (n3 == 0 && n2 > 0)
4117 struct type *float_type
4118 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4121 return init_complex_type (objfile, NULL, float_type);
4126 /* If the upper bound is -1, it must really be an unsigned integral. */
4128 else if (n2 == 0 && n3 == -1)
4130 int bits = type_size;
4134 /* We don't know its size. It is unsigned int or unsigned
4135 long. GCC 2.3.3 uses this for long long too, but that is
4136 just a GDB 3.5 compatibility hack. */
4137 bits = gdbarch_int_bit (gdbarch);
4140 return init_integer_type (objfile, bits, 1, NULL);
4143 /* Special case: char is defined (Who knows why) as a subrange of
4144 itself with range 0-127. */
4145 else if (self_subrange && n2 == 0 && n3 == 127)
4147 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4149 TYPE_NOSIGN (type) = 1;
4152 /* We used to do this only for subrange of self or subrange of int. */
4155 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4156 "unsigned long", and we already checked for that,
4157 so don't need to test for it here. */
4160 /* n3 actually gives the size. */
4161 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4163 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4164 unsigned n-byte integer. But do require n to be a power of
4165 two; we don't want 3- and 5-byte integers flying around. */
4171 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4174 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4175 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4178 /* I think this is for Convex "long long". Since I don't know whether
4179 Convex sets self_subrange, I also accept that particular size regardless
4180 of self_subrange. */
4181 else if (n3 == 0 && n2 < 0
4183 || n2 == -gdbarch_long_long_bit
4184 (gdbarch) / TARGET_CHAR_BIT))
4185 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4186 else if (n2 == -n3 - 1)
4189 return init_integer_type (objfile, 8, 0, NULL);
4191 return init_integer_type (objfile, 16, 0, NULL);
4192 if (n3 == 0x7fffffff)
4193 return init_integer_type (objfile, 32, 0, NULL);
4196 /* We have a real range type on our hands. Allocate space and
4197 return a real pointer. */
4201 index_type = objfile_type (objfile)->builtin_int;
4203 index_type = *dbx_lookup_type (rangenums, objfile);
4204 if (index_type == NULL)
4206 /* Does this actually ever happen? Is that why we are worrying
4207 about dealing with it rather than just calling error_type? */
4209 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4211 index_type = objfile_type (objfile)->builtin_int;
4215 = create_static_range_type (NULL, index_type, n2, n3);
4216 return (result_type);
4219 /* Read in an argument list. This is a list of types, separated by commas
4220 and terminated with END. Return the list of types read in, or NULL
4221 if there is an error. */
4223 static struct field *
4224 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4227 /* FIXME! Remove this arbitrary limit! */
4228 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4235 /* Invalid argument list: no ','. */
4238 STABS_CONTINUE (pp, objfile);
4239 types[n++] = read_type (pp, objfile);
4241 (*pp)++; /* get past `end' (the ':' character). */
4245 /* We should read at least the THIS parameter here. Some broken stabs
4246 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4247 have been present ";-16,(0,43)" reference instead. This way the
4248 excessive ";" marker prematurely stops the parameters parsing. */
4250 complaint (_("Invalid (empty) method arguments"));
4253 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4261 rval = XCNEWVEC (struct field, n);
4262 for (i = 0; i < n; i++)
4263 rval[i].type = types[i];
4268 /* Common block handling. */
4270 /* List of symbols declared since the last BCOMM. This list is a tail
4271 of local_symbols. When ECOMM is seen, the symbols on the list
4272 are noted so their proper addresses can be filled in later,
4273 using the common block base address gotten from the assembler
4276 static struct pending *common_block;
4277 static int common_block_i;
4279 /* Name of the current common block. We get it from the BCOMM instead of the
4280 ECOMM to match IBM documentation (even though IBM puts the name both places
4281 like everyone else). */
4282 static char *common_block_name;
4284 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4285 to remain after this function returns. */
4288 common_block_start (const char *name, struct objfile *objfile)
4290 if (common_block_name != NULL)
4292 complaint (_("Invalid symbol data: common block within common block"));
4294 common_block = *get_local_symbols ();
4295 common_block_i = common_block ? common_block->nsyms : 0;
4296 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4300 /* Process a N_ECOMM symbol. */
4303 common_block_end (struct objfile *objfile)
4305 /* Symbols declared since the BCOMM are to have the common block
4306 start address added in when we know it. common_block and
4307 common_block_i point to the first symbol after the BCOMM in
4308 the local_symbols list; copy the list and hang it off the
4309 symbol for the common block name for later fixup. */
4312 struct pending *newobj = 0;
4313 struct pending *next;
4316 if (common_block_name == NULL)
4318 complaint (_("ECOMM symbol unmatched by BCOMM"));
4322 sym = allocate_symbol (objfile);
4323 /* Note: common_block_name already saved on objfile_obstack. */
4324 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4325 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4327 /* Now we copy all the symbols which have been defined since the BCOMM. */
4329 /* Copy all the struct pendings before common_block. */
4330 for (next = *get_local_symbols ();
4331 next != NULL && next != common_block;
4334 for (j = 0; j < next->nsyms; j++)
4335 add_symbol_to_list (next->symbol[j], &newobj);
4338 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4339 NULL, it means copy all the local symbols (which we already did
4342 if (common_block != NULL)
4343 for (j = common_block_i; j < common_block->nsyms; j++)
4344 add_symbol_to_list (common_block->symbol[j], &newobj);
4346 SYMBOL_TYPE (sym) = (struct type *) newobj;
4348 /* Should we be putting local_symbols back to what it was?
4351 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4352 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4353 global_sym_chain[i] = sym;
4354 common_block_name = NULL;
4357 /* Add a common block's start address to the offset of each symbol
4358 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4359 the common block name). */
4362 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4364 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4366 for (; next; next = next->next)
4370 for (j = next->nsyms - 1; j >= 0; j--)
4371 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4377 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4378 See add_undefined_type for more details. */
4381 add_undefined_type_noname (struct type *type, int typenums[2])
4385 nat.typenums[0] = typenums [0];
4386 nat.typenums[1] = typenums [1];
4389 if (noname_undefs_length == noname_undefs_allocated)
4391 noname_undefs_allocated *= 2;
4392 noname_undefs = (struct nat *)
4393 xrealloc ((char *) noname_undefs,
4394 noname_undefs_allocated * sizeof (struct nat));
4396 noname_undefs[noname_undefs_length++] = nat;
4399 /* Add TYPE to the UNDEF_TYPES vector.
4400 See add_undefined_type for more details. */
4403 add_undefined_type_1 (struct type *type)
4405 if (undef_types_length == undef_types_allocated)
4407 undef_types_allocated *= 2;
4408 undef_types = (struct type **)
4409 xrealloc ((char *) undef_types,
4410 undef_types_allocated * sizeof (struct type *));
4412 undef_types[undef_types_length++] = type;
4415 /* What about types defined as forward references inside of a small lexical
4417 /* Add a type to the list of undefined types to be checked through
4418 once this file has been read in.
4420 In practice, we actually maintain two such lists: The first list
4421 (UNDEF_TYPES) is used for types whose name has been provided, and
4422 concerns forward references (eg 'xs' or 'xu' forward references);
4423 the second list (NONAME_UNDEFS) is used for types whose name is
4424 unknown at creation time, because they were referenced through
4425 their type number before the actual type was declared.
4426 This function actually adds the given type to the proper list. */
4429 add_undefined_type (struct type *type, int typenums[2])
4431 if (TYPE_NAME (type) == NULL)
4432 add_undefined_type_noname (type, typenums);
4434 add_undefined_type_1 (type);
4437 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4440 cleanup_undefined_types_noname (struct objfile *objfile)
4444 for (i = 0; i < noname_undefs_length; i++)
4446 struct nat nat = noname_undefs[i];
4449 type = dbx_lookup_type (nat.typenums, objfile);
4450 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4452 /* The instance flags of the undefined type are still unset,
4453 and needs to be copied over from the reference type.
4454 Since replace_type expects them to be identical, we need
4455 to set these flags manually before hand. */
4456 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4457 replace_type (nat.type, *type);
4461 noname_undefs_length = 0;
4464 /* Go through each undefined type, see if it's still undefined, and fix it
4465 up if possible. We have two kinds of undefined types:
4467 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4468 Fix: update array length using the element bounds
4469 and the target type's length.
4470 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4471 yet defined at the time a pointer to it was made.
4472 Fix: Do a full lookup on the struct/union tag. */
4475 cleanup_undefined_types_1 (void)
4479 /* Iterate over every undefined type, and look for a symbol whose type
4480 matches our undefined type. The symbol matches if:
4481 1. It is a typedef in the STRUCT domain;
4482 2. It has the same name, and same type code;
4483 3. The instance flags are identical.
4485 It is important to check the instance flags, because we have seen
4486 examples where the debug info contained definitions such as:
4488 "foo_t:t30=B31=xefoo_t:"
4490 In this case, we have created an undefined type named "foo_t" whose
4491 instance flags is null (when processing "xefoo_t"), and then created
4492 another type with the same name, but with different instance flags
4493 ('B' means volatile). I think that the definition above is wrong,
4494 since the same type cannot be volatile and non-volatile at the same
4495 time, but we need to be able to cope with it when it happens. The
4496 approach taken here is to treat these two types as different. */
4498 for (type = undef_types; type < undef_types + undef_types_length; type++)
4500 switch (TYPE_CODE (*type))
4503 case TYPE_CODE_STRUCT:
4504 case TYPE_CODE_UNION:
4505 case TYPE_CODE_ENUM:
4507 /* Check if it has been defined since. Need to do this here
4508 as well as in check_typedef to deal with the (legitimate in
4509 C though not C++) case of several types with the same name
4510 in different source files. */
4511 if (TYPE_STUB (*type))
4513 struct pending *ppt;
4515 /* Name of the type, without "struct" or "union". */
4516 const char *type_name = TYPE_NAME (*type);
4518 if (type_name == NULL)
4520 complaint (_("need a type name"));
4523 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4525 for (i = 0; i < ppt->nsyms; i++)
4527 struct symbol *sym = ppt->symbol[i];
4529 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4530 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4531 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4533 && (TYPE_INSTANCE_FLAGS (*type) ==
4534 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4535 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4537 replace_type (*type, SYMBOL_TYPE (sym));
4546 complaint (_("forward-referenced types left unresolved, "
4554 undef_types_length = 0;
4557 /* Try to fix all the undefined types we ecountered while processing
4561 cleanup_undefined_stabs_types (struct objfile *objfile)
4563 cleanup_undefined_types_1 ();
4564 cleanup_undefined_types_noname (objfile);
4567 /* See stabsread.h. */
4570 scan_file_globals (struct objfile *objfile)
4573 struct symbol *sym, *prev;
4574 struct objfile *resolve_objfile;
4576 /* SVR4 based linkers copy referenced global symbols from shared
4577 libraries to the main executable.
4578 If we are scanning the symbols for a shared library, try to resolve
4579 them from the minimal symbols of the main executable first. */
4581 if (symfile_objfile && objfile != symfile_objfile)
4582 resolve_objfile = symfile_objfile;
4584 resolve_objfile = objfile;
4588 /* Avoid expensive loop through all minimal symbols if there are
4589 no unresolved symbols. */
4590 for (hash = 0; hash < HASHSIZE; hash++)
4592 if (global_sym_chain[hash])
4595 if (hash >= HASHSIZE)
4598 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4602 /* Skip static symbols. */
4603 switch (MSYMBOL_TYPE (msymbol))
4615 /* Get the hash index and check all the symbols
4616 under that hash index. */
4618 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4620 for (sym = global_sym_chain[hash]; sym;)
4622 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4623 SYMBOL_LINKAGE_NAME (sym)) == 0)
4625 /* Splice this symbol out of the hash chain and
4626 assign the value we have to it. */
4629 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4633 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4636 /* Check to see whether we need to fix up a common block. */
4637 /* Note: this code might be executed several times for
4638 the same symbol if there are multiple references. */
4641 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4643 fix_common_block (sym,
4644 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4649 SYMBOL_VALUE_ADDRESS (sym)
4650 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4652 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4657 sym = SYMBOL_VALUE_CHAIN (prev);
4661 sym = global_sym_chain[hash];
4667 sym = SYMBOL_VALUE_CHAIN (sym);
4671 if (resolve_objfile == objfile)
4673 resolve_objfile = objfile;
4676 /* Change the storage class of any remaining unresolved globals to
4677 LOC_UNRESOLVED and remove them from the chain. */
4678 for (hash = 0; hash < HASHSIZE; hash++)
4680 sym = global_sym_chain[hash];
4684 sym = SYMBOL_VALUE_CHAIN (sym);
4686 /* Change the symbol address from the misleading chain value
4688 SYMBOL_VALUE_ADDRESS (prev) = 0;
4690 /* Complain about unresolved common block symbols. */
4691 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4692 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4694 complaint (_("%s: common block `%s' from "
4695 "global_sym_chain unresolved"),
4696 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4699 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4702 /* Initialize anything that needs initializing when starting to read
4703 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4707 stabsread_init (void)
4711 /* Initialize anything that needs initializing when a completely new
4712 symbol file is specified (not just adding some symbols from another
4713 file, e.g. a shared library). */
4716 stabsread_new_init (void)
4718 /* Empty the hash table of global syms looking for values. */
4719 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4722 /* Initialize anything that needs initializing at the same time as
4723 start_symtab() is called. */
4728 global_stabs = NULL; /* AIX COFF */
4729 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4730 n_this_object_header_files = 1;
4731 type_vector_length = 0;
4732 type_vector = (struct type **) 0;
4733 within_function = 0;
4735 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4736 common_block_name = NULL;
4739 /* Call after end_symtab(). */
4746 xfree (type_vector);
4749 type_vector_length = 0;
4750 previous_stab_code = 0;
4754 finish_global_stabs (struct objfile *objfile)
4758 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4759 xfree (global_stabs);
4760 global_stabs = NULL;
4764 /* Find the end of the name, delimited by a ':', but don't match
4765 ObjC symbols which look like -[Foo bar::]:bla. */
4767 find_name_end (const char *name)
4769 const char *s = name;
4771 if (s[0] == '-' || *s == '+')
4773 /* Must be an ObjC method symbol. */
4776 error (_("invalid symbol name \"%s\""), name);
4778 s = strchr (s, ']');
4781 error (_("invalid symbol name \"%s\""), name);
4783 return strchr (s, ':');
4787 return strchr (s, ':');
4791 /* See stabsread.h. */
4794 hashname (const char *name)
4796 return hash (name, strlen (name)) % HASHSIZE;
4799 /* Initializer for this module. */
4802 _initialize_stabsread (void)
4804 undef_types_allocated = 20;
4805 undef_types_length = 0;
4806 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4808 noname_undefs_allocated = 20;
4809 noname_undefs_length = 0;
4810 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4812 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4813 &stab_register_funcs);
4814 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4815 &stab_register_funcs);