1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
29 #include "gdb_obstack.h"
32 #include "expression.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
42 #include "gdb-demangle.h"
44 #include "target-float.h"
46 #include "cp-support.h"
49 #include "stabsread.h"
51 /* See stabsread.h for these globals. */
53 const char *(*next_symbol_text_func) (struct objfile *);
54 unsigned char processing_gcc_compilation;
56 struct symbol *global_sym_chain[HASHSIZE];
57 struct pending_stabs *global_stabs;
58 int previous_stab_code;
59 int *this_object_header_files;
60 int n_this_object_header_files;
61 int n_allocated_this_object_header_files;
65 struct nextfield *next;
67 /* This is the raw visibility from the stab. It is not checked
68 for being one of the visibilities we recognize, so code which
69 examines this field better be able to deal. */
75 struct next_fnfieldlist
77 struct next_fnfieldlist *next;
78 struct fn_fieldlist fn_fieldlist;
81 /* The routines that read and process a complete stabs for a C struct or
82 C++ class pass lists of data member fields and lists of member function
83 fields in an instance of a field_info structure, as defined below.
84 This is part of some reorganization of low level C++ support and is
85 expected to eventually go away... (FIXME) */
87 struct stab_field_info
89 struct nextfield *list = nullptr;
90 struct next_fnfieldlist *fnlist = nullptr;
96 read_one_struct_field (struct stab_field_info *, const char **, const char *,
97 struct type *, struct objfile *);
99 static struct type *dbx_alloc_type (int[2], struct objfile *);
101 static long read_huge_number (const char **, int, int *, int);
103 static struct type *error_type (const char **, struct objfile *);
106 patch_block_stabs (struct pending *, struct pending_stabs *,
109 static void fix_common_block (struct symbol *, CORE_ADDR);
111 static int read_type_number (const char **, int *);
113 static struct type *read_type (const char **, struct objfile *);
115 static struct type *read_range_type (const char **, int[2],
116 int, struct objfile *);
118 static struct type *read_sun_builtin_type (const char **,
119 int[2], struct objfile *);
121 static struct type *read_sun_floating_type (const char **, int[2],
124 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126 static struct type *rs6000_builtin_type (int, struct objfile *);
129 read_member_functions (struct stab_field_info *, const char **, struct type *,
133 read_struct_fields (struct stab_field_info *, const char **, struct type *,
137 read_baseclasses (struct stab_field_info *, const char **, struct type *,
141 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
144 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146 static int attach_fields_to_type (struct stab_field_info *, struct type *,
149 static struct type *read_struct_type (const char **, struct type *,
153 static struct type *read_array_type (const char **, struct type *,
156 static struct field *read_args (const char **, int, struct objfile *,
159 static void add_undefined_type (struct type *, int[2]);
162 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
165 static const char *find_name_end (const char *name);
167 static int process_reference (const char **string);
169 void stabsread_clear_cache (void);
171 static const char vptr_name[] = "_vptr$";
172 static const char vb_name[] = "_vb$";
175 invalid_cpp_abbrev_complaint (const char *arg1)
177 complaint (_("invalid C++ abbreviation `%s'"), arg1);
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 complaint (_("bad register number %d (max %d) in symbol %s"),
184 regnum, num_regs - 1, sym);
188 stabs_general_complaint (const char *arg1)
190 complaint ("%s", arg1);
193 /* Make a list of forward references which haven't been defined. */
195 static struct type **undef_types;
196 static int undef_types_allocated;
197 static int undef_types_length;
198 static struct symbol *current_symbol = NULL;
200 /* Make a list of nameless types that are undefined.
201 This happens when another type is referenced by its number
202 before this type is actually defined. For instance "t(0,1)=k(0,2)"
203 and type (0,2) is defined only later. */
210 static struct nat *noname_undefs;
211 static int noname_undefs_allocated;
212 static int noname_undefs_length;
214 /* Check for and handle cretinous stabs symbol name continuation! */
215 #define STABS_CONTINUE(pp,objfile) \
217 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
218 *(pp) = next_symbol_text (objfile); \
221 /* Vector of types defined so far, indexed by their type numbers.
222 (In newer sun systems, dbx uses a pair of numbers in parens,
223 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
224 Then these numbers must be translated through the type_translations
225 hash table to get the index into the type vector.) */
227 static struct type **type_vector;
229 /* Number of elements allocated for type_vector currently. */
231 static int type_vector_length;
233 /* Initial size of type vector. Is realloc'd larger if needed, and
234 realloc'd down to the size actually used, when completed. */
236 #define INITIAL_TYPE_VECTOR_LENGTH 160
239 /* Look up a dbx type-number pair. Return the address of the slot
240 where the type for that number-pair is stored.
241 The number-pair is in TYPENUMS.
243 This can be used for finding the type associated with that pair
244 or for associating a new type with the pair. */
246 static struct type **
247 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 int filenum = typenums[0];
250 int index = typenums[1];
253 struct header_file *f;
256 if (filenum == -1) /* -1,-1 is for temporary types. */
259 if (filenum < 0 || filenum >= n_this_object_header_files)
261 complaint (_("Invalid symbol data: type number "
262 "(%d,%d) out of range at symtab pos %d."),
263 filenum, index, symnum);
271 /* Caller wants address of address of type. We think
272 that negative (rs6k builtin) types will never appear as
273 "lvalues", (nor should they), so we stuff the real type
274 pointer into a temp, and return its address. If referenced,
275 this will do the right thing. */
276 static struct type *temp_type;
278 temp_type = rs6000_builtin_type (index, objfile);
282 /* Type is defined outside of header files.
283 Find it in this object file's type vector. */
284 if (index >= type_vector_length)
286 old_len = type_vector_length;
289 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
290 type_vector = XNEWVEC (struct type *, type_vector_length);
292 while (index >= type_vector_length)
294 type_vector_length *= 2;
296 type_vector = (struct type **)
297 xrealloc ((char *) type_vector,
298 (type_vector_length * sizeof (struct type *)));
299 memset (&type_vector[old_len], 0,
300 (type_vector_length - old_len) * sizeof (struct type *));
302 return (&type_vector[index]);
306 real_filenum = this_object_header_files[filenum];
308 if (real_filenum >= N_HEADER_FILES (objfile))
310 static struct type *temp_type;
312 warning (_("GDB internal error: bad real_filenum"));
315 temp_type = objfile_type (objfile)->builtin_error;
319 f = HEADER_FILES (objfile) + real_filenum;
321 f_orig_length = f->length;
322 if (index >= f_orig_length)
324 while (index >= f->length)
328 f->vector = (struct type **)
329 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
330 memset (&f->vector[f_orig_length], 0,
331 (f->length - f_orig_length) * sizeof (struct type *));
333 return (&f->vector[index]);
337 /* Make sure there is a type allocated for type numbers TYPENUMS
338 and return the type object.
339 This can create an empty (zeroed) type object.
340 TYPENUMS may be (-1, -1) to return a new type object that is not
341 put into the type vector, and so may not be referred to by number. */
344 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 struct type **type_addr;
348 if (typenums[0] == -1)
350 return (alloc_type (objfile));
353 type_addr = dbx_lookup_type (typenums, objfile);
355 /* If we are referring to a type not known at all yet,
356 allocate an empty type for it.
357 We will fill it in later if we find out how. */
360 *type_addr = alloc_type (objfile);
366 /* Allocate a floating-point type of size BITS. */
369 dbx_init_float_type (struct objfile *objfile, int bits)
371 struct gdbarch *gdbarch = get_objfile_arch (objfile);
372 const struct floatformat **format;
375 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 type = init_float_type (objfile, bits, NULL, format);
379 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
384 /* for all the stabs in a given stab vector, build appropriate types
385 and fix their symbols in given symbol vector. */
388 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
389 struct objfile *objfile)
398 /* for all the stab entries, find their corresponding symbols and
399 patch their types! */
401 for (ii = 0; ii < stabs->count; ++ii)
403 name = stabs->stab[ii];
404 pp = (char *) strchr (name, ':');
405 gdb_assert (pp); /* Must find a ':' or game's over. */
409 pp = (char *) strchr (pp, ':');
411 sym = find_symbol_in_list (symbols, name, pp - name);
414 /* FIXME-maybe: it would be nice if we noticed whether
415 the variable was defined *anywhere*, not just whether
416 it is defined in this compilation unit. But neither
417 xlc or GCC seem to need such a definition, and until
418 we do psymtabs (so that the minimal symbols from all
419 compilation units are available now), I'm not sure
420 how to get the information. */
422 /* On xcoff, if a global is defined and never referenced,
423 ld will remove it from the executable. There is then
424 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
425 sym = allocate_symbol (objfile);
426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
427 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
428 SYMBOL_SET_LINKAGE_NAME
429 (sym, obstack_strndup (&objfile->objfile_obstack,
432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
438 lookup_function_type (read_type (&pp, objfile));
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
444 add_symbol_to_list (sym, get_global_symbols ());
449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
452 lookup_function_type (read_type (&pp, objfile));
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
470 Returns 0 for success, -1 for error. */
473 read_type_number (const char **pp, int *typenums)
480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
517 static struct ref_map *ref_map;
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count = 0;
522 /* Number of chunks malloced. */
523 static int ref_chunk = 0;
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
529 stabsread_clear_cache (void)
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
555 ref_chunk += new_chunks;
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
562 /* Return defined sym for the reference REFNUM. */
564 ref_search (int refnum)
566 if (refnum < 0 || refnum > ref_count)
568 return ref_map[refnum].sym;
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
575 process_reference (const char **string)
583 /* Advance beyond the initial '#'. */
586 /* Read number as reference id. */
587 while (*p && isdigit (*p))
589 refnum = refnum * 10 + *p - '0';
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
600 symbol_reference_defined (const char **string)
602 const char *p = *string;
605 refnum = process_reference (&p);
607 /* Defining symbols end in '='. */
610 /* Symbol is being defined here. */
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 SYMBOL_PRINT_NAME (sym));
633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
639 static const struct symbol_register_ops stab_register_funcs = {
643 /* The "aclass" indices for computed symbols. */
645 static int stab_register_index;
646 static int stab_regparm_index;
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 struct objfile *objfile)
652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
654 const char *p = find_name_end (string);
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
666 /* Ignore syms with empty names. */
670 /* Ignore old-style symbols from cc -go. */
681 _("Bad stabs string '%s'"), string);
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
690 current_symbol = sym = allocate_symbol (objfile);
692 if (processing_gcc_compilation)
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
700 SYMBOL_LINE (sym) = 0; /* unknown */
703 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
704 &objfile->objfile_obstack);
706 if (is_cplus_marker (string[0]))
708 /* Special GNU C++ names. */
712 SYMBOL_SET_LINKAGE_NAME (sym, "this");
715 case 'v': /* $vtbl_ptr_type */
719 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
723 /* This was an anonymous type that was never fixed up. */
727 /* SunPRO (3.0 at least) static variable encoding. */
728 if (gdbarch_static_transform_name_p (gdbarch))
733 complaint (_("Unknown C++ symbol name `%s'"),
735 goto normal; /* Do *something* with it. */
741 std::string new_name;
743 if (SYMBOL_LANGUAGE (sym) == language_cplus)
745 char *name = (char *) alloca (p - string + 1);
747 memcpy (name, string, p - string);
748 name[p - string] = '\0';
749 new_name = cp_canonicalize_string (name);
751 if (!new_name.empty ())
753 SYMBOL_SET_NAMES (sym,
754 new_name.c_str (), new_name.length (),
758 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
760 if (SYMBOL_LANGUAGE (sym) == language_cplus)
761 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
767 /* Determine the type of name being defined. */
769 /* Getting GDB to correctly skip the symbol on an undefined symbol
770 descriptor and not ever dump core is a very dodgy proposition if
771 we do things this way. I say the acorn RISC machine can just
772 fix their compiler. */
773 /* The Acorn RISC machine's compiler can put out locals that don't
774 start with "234=" or "(3,4)=", so assume anything other than the
775 deftypes we know how to handle is a local. */
776 if (!strchr ("cfFGpPrStTvVXCR", *p))
778 if (isdigit (*p) || *p == '(' || *p == '-')
787 /* c is a special case, not followed by a type-number.
788 SYMBOL:c=iVALUE for an integer constant symbol.
789 SYMBOL:c=rVALUE for a floating constant symbol.
790 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
791 e.g. "b:c=e6,0" for "const b = blob1"
792 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
796 SYMBOL_TYPE (sym) = error_type (&p, objfile);
797 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
798 add_symbol_to_list (sym, get_file_symbols ());
807 struct type *dbl_type;
809 dbl_type = objfile_type (objfile)->builtin_double;
811 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
812 TYPE_LENGTH (dbl_type));
814 target_float_from_string (dbl_valu, dbl_type, std::string (p));
816 SYMBOL_TYPE (sym) = dbl_type;
817 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
818 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
823 /* Defining integer constants this way is kind of silly,
824 since 'e' constants allows the compiler to give not
825 only the value, but the type as well. C has at least
826 int, long, unsigned int, and long long as constant
827 types; other languages probably should have at least
828 unsigned as well as signed constants. */
830 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
831 SYMBOL_VALUE (sym) = atoi (p);
832 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
838 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
839 SYMBOL_VALUE (sym) = atoi (p);
840 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
846 struct type *range_type;
849 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
850 gdb_byte *string_value;
852 if (quote != '\'' && quote != '"')
854 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
855 SYMBOL_TYPE (sym) = error_type (&p, objfile);
856 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
857 add_symbol_to_list (sym, get_file_symbols ());
861 /* Find matching quote, rejecting escaped quotes. */
862 while (*p && *p != quote)
864 if (*p == '\\' && p[1] == quote)
866 string_local[ind] = (gdb_byte) quote;
872 string_local[ind] = (gdb_byte) (*p);
879 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
880 SYMBOL_TYPE (sym) = error_type (&p, objfile);
881 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
882 add_symbol_to_list (sym, get_file_symbols ());
886 /* NULL terminate the string. */
887 string_local[ind] = 0;
889 = create_static_range_type (NULL,
890 objfile_type (objfile)->builtin_int,
892 SYMBOL_TYPE (sym) = create_array_type (NULL,
893 objfile_type (objfile)->builtin_char,
896 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
897 memcpy (string_value, string_local, ind + 1);
900 SYMBOL_VALUE_BYTES (sym) = string_value;
901 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
906 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
907 can be represented as integral.
908 e.g. "b:c=e6,0" for "const b = blob1"
909 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
911 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
912 SYMBOL_TYPE (sym) = read_type (&p, objfile);
916 SYMBOL_TYPE (sym) = error_type (&p, objfile);
921 /* If the value is too big to fit in an int (perhaps because
922 it is unsigned), or something like that, we silently get
923 a bogus value. The type and everything else about it is
924 correct. Ideally, we should be using whatever we have
925 available for parsing unsigned and long long values,
927 SYMBOL_VALUE (sym) = atoi (p);
932 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
933 SYMBOL_TYPE (sym) = error_type (&p, objfile);
936 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
937 add_symbol_to_list (sym, get_file_symbols ());
941 /* The name of a caught exception. */
942 SYMBOL_TYPE (sym) = read_type (&p, objfile);
943 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
944 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
945 SYMBOL_VALUE_ADDRESS (sym) = valu;
946 add_symbol_to_list (sym, get_local_symbols ());
950 /* A static function definition. */
951 SYMBOL_TYPE (sym) = read_type (&p, objfile);
952 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
953 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
954 add_symbol_to_list (sym, get_file_symbols ());
955 /* fall into process_function_types. */
957 process_function_types:
958 /* Function result types are described as the result type in stabs.
959 We need to convert this to the function-returning-type-X type
960 in GDB. E.g. "int" is converted to "function returning int". */
961 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
962 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
964 /* All functions in C++ have prototypes. Stabs does not offer an
965 explicit way to identify prototyped or unprototyped functions,
966 but both GCC and Sun CC emit stabs for the "call-as" type rather
967 than the "declared-as" type for unprototyped functions, so
968 we treat all functions as if they were prototyped. This is used
969 primarily for promotion when calling the function from GDB. */
970 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
972 /* fall into process_prototype_types. */
974 process_prototype_types:
975 /* Sun acc puts declared types of arguments here. */
978 struct type *ftype = SYMBOL_TYPE (sym);
983 /* Obtain a worst case guess for the number of arguments
984 by counting the semicolons. */
991 /* Allocate parameter information fields and fill them in. */
992 TYPE_FIELDS (ftype) = (struct field *)
993 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
998 /* A type number of zero indicates the start of varargs.
999 FIXME: GDB currently ignores vararg functions. */
1000 if (p[0] == '0' && p[1] == '\0')
1002 ptype = read_type (&p, objfile);
1004 /* The Sun compilers mark integer arguments, which should
1005 be promoted to the width of the calling conventions, with
1006 a type which references itself. This type is turned into
1007 a TYPE_CODE_VOID type by read_type, and we have to turn
1008 it back into builtin_int here.
1009 FIXME: Do we need a new builtin_promoted_int_arg ? */
1010 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1011 ptype = objfile_type (objfile)->builtin_int;
1012 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1013 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1015 TYPE_NFIELDS (ftype) = nparams;
1016 TYPE_PROTOTYPED (ftype) = 1;
1021 /* A global function definition. */
1022 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1023 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1025 add_symbol_to_list (sym, get_global_symbols ());
1026 goto process_function_types;
1029 /* For a class G (global) symbol, it appears that the
1030 value is not correct. It is necessary to search for the
1031 corresponding linker definition to find the value.
1032 These definitions appear at the end of the namelist. */
1033 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1034 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1035 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1036 /* Don't add symbol references to global_sym_chain.
1037 Symbol references don't have valid names and wont't match up with
1038 minimal symbols when the global_sym_chain is relocated.
1039 We'll fixup symbol references when we fixup the defining symbol. */
1040 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1042 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1043 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1044 global_sym_chain[i] = sym;
1046 add_symbol_to_list (sym, get_global_symbols ());
1049 /* This case is faked by a conditional above,
1050 when there is no code letter in the dbx data.
1051 Dbx data never actually contains 'l'. */
1054 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1055 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1056 SYMBOL_VALUE (sym) = valu;
1057 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1058 add_symbol_to_list (sym, get_local_symbols ());
1063 /* pF is a two-letter code that means a function parameter in Fortran.
1064 The type-number specifies the type of the return value.
1065 Translate it into a pointer-to-function type. */
1069 = lookup_pointer_type
1070 (lookup_function_type (read_type (&p, objfile)));
1073 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1075 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1076 SYMBOL_VALUE (sym) = valu;
1077 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1078 SYMBOL_IS_ARGUMENT (sym) = 1;
1079 add_symbol_to_list (sym, get_local_symbols ());
1081 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1083 /* On little-endian machines, this crud is never necessary,
1084 and, if the extra bytes contain garbage, is harmful. */
1088 /* If it's gcc-compiled, if it says `short', believe it. */
1089 if (processing_gcc_compilation
1090 || gdbarch_believe_pcc_promotion (gdbarch))
1093 if (!gdbarch_believe_pcc_promotion (gdbarch))
1095 /* If PCC says a parameter is a short or a char, it is
1097 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1098 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1099 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1102 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1103 ? objfile_type (objfile)->builtin_unsigned_int
1104 : objfile_type (objfile)->builtin_int;
1111 /* acc seems to use P to declare the prototypes of functions that
1112 are referenced by this file. gdb is not prepared to deal
1113 with this extra information. FIXME, it ought to. */
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1117 goto process_prototype_types;
1122 /* Parameter which is in a register. */
1123 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1124 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1125 SYMBOL_IS_ARGUMENT (sym) = 1;
1126 SYMBOL_VALUE (sym) = valu;
1127 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1128 add_symbol_to_list (sym, get_local_symbols ());
1132 /* Register variable (either global or local). */
1133 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1134 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1135 SYMBOL_VALUE (sym) = valu;
1136 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1137 if (within_function)
1139 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1140 the same name to represent an argument passed in a
1141 register. GCC uses 'P' for the same case. So if we find
1142 such a symbol pair we combine it into one 'P' symbol.
1143 For Sun cc we need to do this regardless of
1144 stabs_argument_has_addr, because the compiler puts out
1145 the 'p' symbol even if it never saves the argument onto
1148 On most machines, we want to preserve both symbols, so
1149 that we can still get information about what is going on
1150 with the stack (VAX for computing args_printed, using
1151 stack slots instead of saved registers in backtraces,
1154 Note that this code illegally combines
1155 main(argc) struct foo argc; { register struct foo argc; }
1156 but this case is considered pathological and causes a warning
1157 from a decent compiler. */
1159 struct pending *local_symbols = *get_local_symbols ();
1161 && local_symbols->nsyms > 0
1162 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1164 struct symbol *prev_sym;
1166 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1167 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1168 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1169 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1170 SYMBOL_LINKAGE_NAME (sym)) == 0)
1172 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1173 /* Use the type from the LOC_REGISTER; that is the type
1174 that is actually in that register. */
1175 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1176 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1181 add_symbol_to_list (sym, get_local_symbols ());
1184 add_symbol_to_list (sym, get_file_symbols ());
1188 /* Static symbol at top level of file. */
1189 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1190 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1191 SYMBOL_VALUE_ADDRESS (sym) = valu;
1192 if (gdbarch_static_transform_name_p (gdbarch)
1193 && gdbarch_static_transform_name (gdbarch,
1194 SYMBOL_LINKAGE_NAME (sym))
1195 != SYMBOL_LINKAGE_NAME (sym))
1197 struct bound_minimal_symbol msym;
1199 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1201 if (msym.minsym != NULL)
1203 const char *new_name = gdbarch_static_transform_name
1204 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1206 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1207 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1210 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1211 add_symbol_to_list (sym, get_file_symbols ());
1215 /* In Ada, there is no distinction between typedef and non-typedef;
1216 any type declaration implicitly has the equivalent of a typedef,
1217 and thus 't' is in fact equivalent to 'Tt'.
1219 Therefore, for Ada units, we check the character immediately
1220 before the 't', and if we do not find a 'T', then make sure to
1221 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1222 will be stored in the VAR_DOMAIN). If the symbol was indeed
1223 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1224 elsewhere, so we don't need to take care of that.
1226 This is important to do, because of forward references:
1227 The cleanup of undefined types stored in undef_types only uses
1228 STRUCT_DOMAIN symbols to perform the replacement. */
1229 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1232 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1234 /* For a nameless type, we don't want a create a symbol, thus we
1235 did not use `sym'. Return without further processing. */
1239 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1240 SYMBOL_VALUE (sym) = valu;
1241 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1242 /* C++ vagaries: we may have a type which is derived from
1243 a base type which did not have its name defined when the
1244 derived class was output. We fill in the derived class's
1245 base part member's name here in that case. */
1246 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1247 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1249 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1253 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1254 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1255 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1256 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1259 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1261 /* gcc-2.6 or later (when using -fvtable-thunks)
1262 emits a unique named type for a vtable entry.
1263 Some gdb code depends on that specific name. */
1264 extern const char vtbl_ptr_name[];
1266 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1267 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1268 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1270 /* If we are giving a name to a type such as "pointer to
1271 foo" or "function returning foo", we better not set
1272 the TYPE_NAME. If the program contains "typedef char
1273 *caddr_t;", we don't want all variables of type char
1274 * to print as caddr_t. This is not just a
1275 consequence of GDB's type management; PCC and GCC (at
1276 least through version 2.4) both output variables of
1277 either type char * or caddr_t with the type number
1278 defined in the 't' symbol for caddr_t. If a future
1279 compiler cleans this up it GDB is not ready for it
1280 yet, but if it becomes ready we somehow need to
1281 disable this check (without breaking the PCC/GCC2.4
1286 Fortunately, this check seems not to be necessary
1287 for anything except pointers or functions. */
1288 /* ezannoni: 2000-10-26. This seems to apply for
1289 versions of gcc older than 2.8. This was the original
1290 problem: with the following code gdb would tell that
1291 the type for name1 is caddr_t, and func is char().
1293 typedef char *caddr_t;
1305 /* Pascal accepts names for pointer types. */
1306 if (get_current_subfile ()->language == language_pascal)
1308 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1312 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1315 add_symbol_to_list (sym, get_file_symbols ());
1319 /* Create the STRUCT_DOMAIN clone. */
1320 struct symbol *struct_sym = allocate_symbol (objfile);
1323 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1324 SYMBOL_VALUE (struct_sym) = valu;
1325 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1326 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1327 TYPE_NAME (SYMBOL_TYPE (sym))
1328 = obconcat (&objfile->objfile_obstack,
1329 SYMBOL_LINKAGE_NAME (sym),
1331 add_symbol_to_list (struct_sym, get_file_symbols ());
1337 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1338 by 't' which means we are typedef'ing it as well. */
1339 synonym = *p == 't';
1344 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1346 /* For a nameless type, we don't want a create a symbol, thus we
1347 did not use `sym'. Return without further processing. */
1351 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1352 SYMBOL_VALUE (sym) = valu;
1353 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1354 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1355 TYPE_NAME (SYMBOL_TYPE (sym))
1356 = obconcat (&objfile->objfile_obstack,
1357 SYMBOL_LINKAGE_NAME (sym),
1359 add_symbol_to_list (sym, get_file_symbols ());
1363 /* Clone the sym and then modify it. */
1364 struct symbol *typedef_sym = allocate_symbol (objfile);
1366 *typedef_sym = *sym;
1367 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1368 SYMBOL_VALUE (typedef_sym) = valu;
1369 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1370 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1371 TYPE_NAME (SYMBOL_TYPE (sym))
1372 = obconcat (&objfile->objfile_obstack,
1373 SYMBOL_LINKAGE_NAME (sym),
1375 add_symbol_to_list (typedef_sym, get_file_symbols ());
1380 /* Static symbol of local scope. */
1381 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1382 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1383 SYMBOL_VALUE_ADDRESS (sym) = valu;
1384 if (gdbarch_static_transform_name_p (gdbarch)
1385 && gdbarch_static_transform_name (gdbarch,
1386 SYMBOL_LINKAGE_NAME (sym))
1387 != SYMBOL_LINKAGE_NAME (sym))
1389 struct bound_minimal_symbol msym;
1391 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1393 if (msym.minsym != NULL)
1395 const char *new_name = gdbarch_static_transform_name
1396 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1398 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1399 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1402 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1403 add_symbol_to_list (sym, get_local_symbols ());
1407 /* Reference parameter */
1408 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1409 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1410 SYMBOL_IS_ARGUMENT (sym) = 1;
1411 SYMBOL_VALUE (sym) = valu;
1412 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1413 add_symbol_to_list (sym, get_local_symbols ());
1417 /* Reference parameter which is in a register. */
1418 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1419 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1420 SYMBOL_IS_ARGUMENT (sym) = 1;
1421 SYMBOL_VALUE (sym) = valu;
1422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1423 add_symbol_to_list (sym, get_local_symbols ());
1427 /* This is used by Sun FORTRAN for "function result value".
1428 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1429 that Pascal uses it too, but when I tried it Pascal used
1430 "x:3" (local symbol) instead. */
1431 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1433 SYMBOL_VALUE (sym) = valu;
1434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1435 add_symbol_to_list (sym, get_local_symbols ());
1439 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1440 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1441 SYMBOL_VALUE (sym) = 0;
1442 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1443 add_symbol_to_list (sym, get_file_symbols ());
1447 /* Some systems pass variables of certain types by reference instead
1448 of by value, i.e. they will pass the address of a structure (in a
1449 register or on the stack) instead of the structure itself. */
1451 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1452 && SYMBOL_IS_ARGUMENT (sym))
1454 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1455 variables passed in a register). */
1456 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1457 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1458 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1459 and subsequent arguments on SPARC, for example). */
1460 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1461 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1467 /* Skip rest of this symbol and return an error type.
1469 General notes on error recovery: error_type always skips to the
1470 end of the symbol (modulo cretinous dbx symbol name continuation).
1471 Thus code like this:
1473 if (*(*pp)++ != ';')
1474 return error_type (pp, objfile);
1476 is wrong because if *pp starts out pointing at '\0' (typically as the
1477 result of an earlier error), it will be incremented to point to the
1478 start of the next symbol, which might produce strange results, at least
1479 if you run off the end of the string table. Instead use
1482 return error_type (pp, objfile);
1488 foo = error_type (pp, objfile);
1492 And in case it isn't obvious, the point of all this hair is so the compiler
1493 can define new types and new syntaxes, and old versions of the
1494 debugger will be able to read the new symbol tables. */
1496 static struct type *
1497 error_type (const char **pp, struct objfile *objfile)
1499 complaint (_("couldn't parse type; debugger out of date?"));
1502 /* Skip to end of symbol. */
1503 while (**pp != '\0')
1508 /* Check for and handle cretinous dbx symbol name continuation! */
1509 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1511 *pp = next_symbol_text (objfile);
1518 return objfile_type (objfile)->builtin_error;
1522 /* Read type information or a type definition; return the type. Even
1523 though this routine accepts either type information or a type
1524 definition, the distinction is relevant--some parts of stabsread.c
1525 assume that type information starts with a digit, '-', or '(' in
1526 deciding whether to call read_type. */
1528 static struct type *
1529 read_type (const char **pp, struct objfile *objfile)
1531 struct type *type = 0;
1534 char type_descriptor;
1536 /* Size in bits of type if specified by a type attribute, or -1 if
1537 there is no size attribute. */
1540 /* Used to distinguish string and bitstring from char-array and set. */
1543 /* Used to distinguish vector from array. */
1546 /* Read type number if present. The type number may be omitted.
1547 for instance in a two-dimensional array declared with type
1548 "ar1;1;10;ar1;1;10;4". */
1549 if ((**pp >= '0' && **pp <= '9')
1553 if (read_type_number (pp, typenums) != 0)
1554 return error_type (pp, objfile);
1558 /* Type is not being defined here. Either it already
1559 exists, or this is a forward reference to it.
1560 dbx_alloc_type handles both cases. */
1561 type = dbx_alloc_type (typenums, objfile);
1563 /* If this is a forward reference, arrange to complain if it
1564 doesn't get patched up by the time we're done
1566 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1567 add_undefined_type (type, typenums);
1572 /* Type is being defined here. */
1574 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1579 /* 'typenums=' not present, type is anonymous. Read and return
1580 the definition, but don't put it in the type vector. */
1581 typenums[0] = typenums[1] = -1;
1586 type_descriptor = (*pp)[-1];
1587 switch (type_descriptor)
1591 enum type_code code;
1593 /* Used to index through file_symbols. */
1594 struct pending *ppt;
1597 /* Name including "struct", etc. */
1601 const char *from, *p, *q1, *q2;
1603 /* Set the type code according to the following letter. */
1607 code = TYPE_CODE_STRUCT;
1610 code = TYPE_CODE_UNION;
1613 code = TYPE_CODE_ENUM;
1617 /* Complain and keep going, so compilers can invent new
1618 cross-reference types. */
1619 complaint (_("Unrecognized cross-reference type `%c'"),
1621 code = TYPE_CODE_STRUCT;
1626 q1 = strchr (*pp, '<');
1627 p = strchr (*pp, ':');
1629 return error_type (pp, objfile);
1630 if (q1 && p > q1 && p[1] == ':')
1632 int nesting_level = 0;
1634 for (q2 = q1; *q2; q2++)
1638 else if (*q2 == '>')
1640 else if (*q2 == ':' && nesting_level == 0)
1645 return error_type (pp, objfile);
1648 if (get_current_subfile ()->language == language_cplus)
1650 char *name = (char *) alloca (p - *pp + 1);
1652 memcpy (name, *pp, p - *pp);
1653 name[p - *pp] = '\0';
1655 std::string new_name = cp_canonicalize_string (name);
1656 if (!new_name.empty ())
1657 type_name = obstack_strdup (&objfile->objfile_obstack,
1660 if (type_name == NULL)
1662 char *to = type_name = (char *)
1663 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1665 /* Copy the name. */
1672 /* Set the pointer ahead of the name which we just read, and
1677 /* If this type has already been declared, then reuse the same
1678 type, rather than allocating a new one. This saves some
1681 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1682 for (i = 0; i < ppt->nsyms; i++)
1684 struct symbol *sym = ppt->symbol[i];
1686 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1687 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1688 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1689 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1691 obstack_free (&objfile->objfile_obstack, type_name);
1692 type = SYMBOL_TYPE (sym);
1693 if (typenums[0] != -1)
1694 *dbx_lookup_type (typenums, objfile) = type;
1699 /* Didn't find the type to which this refers, so we must
1700 be dealing with a forward reference. Allocate a type
1701 structure for it, and keep track of it so we can
1702 fill in the rest of the fields when we get the full
1704 type = dbx_alloc_type (typenums, objfile);
1705 TYPE_CODE (type) = code;
1706 TYPE_NAME (type) = type_name;
1707 INIT_CPLUS_SPECIFIC (type);
1708 TYPE_STUB (type) = 1;
1710 add_undefined_type (type, typenums);
1714 case '-': /* RS/6000 built-in type */
1728 /* We deal with something like t(1,2)=(3,4)=... which
1729 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1731 /* Allocate and enter the typedef type first.
1732 This handles recursive types. */
1733 type = dbx_alloc_type (typenums, objfile);
1734 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1736 struct type *xtype = read_type (pp, objfile);
1740 /* It's being defined as itself. That means it is "void". */
1741 TYPE_CODE (type) = TYPE_CODE_VOID;
1742 TYPE_LENGTH (type) = 1;
1744 else if (type_size >= 0 || is_string)
1746 /* This is the absolute wrong way to construct types. Every
1747 other debug format has found a way around this problem and
1748 the related problems with unnecessarily stubbed types;
1749 someone motivated should attempt to clean up the issue
1750 here as well. Once a type pointed to has been created it
1751 should not be modified.
1753 Well, it's not *absolutely* wrong. Constructing recursive
1754 types (trees, linked lists) necessarily entails modifying
1755 types after creating them. Constructing any loop structure
1756 entails side effects. The Dwarf 2 reader does handle this
1757 more gracefully (it never constructs more than once
1758 instance of a type object, so it doesn't have to copy type
1759 objects wholesale), but it still mutates type objects after
1760 other folks have references to them.
1762 Keep in mind that this circularity/mutation issue shows up
1763 at the source language level, too: C's "incomplete types",
1764 for example. So the proper cleanup, I think, would be to
1765 limit GDB's type smashing to match exactly those required
1766 by the source language. So GDB could have a
1767 "complete_this_type" function, but never create unnecessary
1768 copies of a type otherwise. */
1769 replace_type (type, xtype);
1770 TYPE_NAME (type) = NULL;
1774 TYPE_TARGET_STUB (type) = 1;
1775 TYPE_TARGET_TYPE (type) = xtype;
1780 /* In the following types, we must be sure to overwrite any existing
1781 type that the typenums refer to, rather than allocating a new one
1782 and making the typenums point to the new one. This is because there
1783 may already be pointers to the existing type (if it had been
1784 forward-referenced), and we must change it to a pointer, function,
1785 reference, or whatever, *in-place*. */
1787 case '*': /* Pointer to another type */
1788 type1 = read_type (pp, objfile);
1789 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1792 case '&': /* Reference to another type */
1793 type1 = read_type (pp, objfile);
1794 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1798 case 'f': /* Function returning another type */
1799 type1 = read_type (pp, objfile);
1800 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1803 case 'g': /* Prototyped function. (Sun) */
1805 /* Unresolved questions:
1807 - According to Sun's ``STABS Interface Manual'', for 'f'
1808 and 'F' symbol descriptors, a `0' in the argument type list
1809 indicates a varargs function. But it doesn't say how 'g'
1810 type descriptors represent that info. Someone with access
1811 to Sun's toolchain should try it out.
1813 - According to the comment in define_symbol (search for
1814 `process_prototype_types:'), Sun emits integer arguments as
1815 types which ref themselves --- like `void' types. Do we
1816 have to deal with that here, too? Again, someone with
1817 access to Sun's toolchain should try it out and let us
1820 const char *type_start = (*pp) - 1;
1821 struct type *return_type = read_type (pp, objfile);
1822 struct type *func_type
1823 = make_function_type (return_type,
1824 dbx_lookup_type (typenums, objfile));
1827 struct type_list *next;
1831 while (**pp && **pp != '#')
1833 struct type *arg_type = read_type (pp, objfile);
1834 struct type_list *newobj = XALLOCA (struct type_list);
1835 newobj->type = arg_type;
1836 newobj->next = arg_types;
1844 complaint (_("Prototyped function type didn't "
1845 "end arguments with `#':\n%s"),
1849 /* If there is just one argument whose type is `void', then
1850 that's just an empty argument list. */
1852 && ! arg_types->next
1853 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1856 TYPE_FIELDS (func_type)
1857 = (struct field *) TYPE_ALLOC (func_type,
1858 num_args * sizeof (struct field));
1859 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1862 struct type_list *t;
1864 /* We stuck each argument type onto the front of the list
1865 when we read it, so the list is reversed. Build the
1866 fields array right-to-left. */
1867 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1868 TYPE_FIELD_TYPE (func_type, i) = t->type;
1870 TYPE_NFIELDS (func_type) = num_args;
1871 TYPE_PROTOTYPED (func_type) = 1;
1877 case 'k': /* Const qualifier on some type (Sun) */
1878 type = read_type (pp, objfile);
1879 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1880 dbx_lookup_type (typenums, objfile));
1883 case 'B': /* Volatile qual on some type (Sun) */
1884 type = read_type (pp, objfile);
1885 type = make_cv_type (TYPE_CONST (type), 1, type,
1886 dbx_lookup_type (typenums, objfile));
1890 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1891 { /* Member (class & variable) type */
1892 /* FIXME -- we should be doing smash_to_XXX types here. */
1894 struct type *domain = read_type (pp, objfile);
1895 struct type *memtype;
1898 /* Invalid member type data format. */
1899 return error_type (pp, objfile);
1902 memtype = read_type (pp, objfile);
1903 type = dbx_alloc_type (typenums, objfile);
1904 smash_to_memberptr_type (type, domain, memtype);
1907 /* type attribute */
1909 const char *attr = *pp;
1911 /* Skip to the semicolon. */
1912 while (**pp != ';' && **pp != '\0')
1915 return error_type (pp, objfile);
1917 ++ * pp; /* Skip the semicolon. */
1921 case 's': /* Size attribute */
1922 type_size = atoi (attr + 1);
1927 case 'S': /* String attribute */
1928 /* FIXME: check to see if following type is array? */
1932 case 'V': /* Vector attribute */
1933 /* FIXME: check to see if following type is array? */
1938 /* Ignore unrecognized type attributes, so future compilers
1939 can invent new ones. */
1947 case '#': /* Method (class & fn) type */
1948 if ((*pp)[0] == '#')
1950 /* We'll get the parameter types from the name. */
1951 struct type *return_type;
1954 return_type = read_type (pp, objfile);
1955 if (*(*pp)++ != ';')
1956 complaint (_("invalid (minimal) member type "
1957 "data format at symtab pos %d."),
1959 type = allocate_stub_method (return_type);
1960 if (typenums[0] != -1)
1961 *dbx_lookup_type (typenums, objfile) = type;
1965 struct type *domain = read_type (pp, objfile);
1966 struct type *return_type;
1971 /* Invalid member type data format. */
1972 return error_type (pp, objfile);
1976 return_type = read_type (pp, objfile);
1977 args = read_args (pp, ';', objfile, &nargs, &varargs);
1979 return error_type (pp, objfile);
1980 type = dbx_alloc_type (typenums, objfile);
1981 smash_to_method_type (type, domain, return_type, args,
1986 case 'r': /* Range type */
1987 type = read_range_type (pp, typenums, type_size, objfile);
1988 if (typenums[0] != -1)
1989 *dbx_lookup_type (typenums, objfile) = type;
1994 /* Sun ACC builtin int type */
1995 type = read_sun_builtin_type (pp, typenums, objfile);
1996 if (typenums[0] != -1)
1997 *dbx_lookup_type (typenums, objfile) = type;
2001 case 'R': /* Sun ACC builtin float type */
2002 type = read_sun_floating_type (pp, typenums, objfile);
2003 if (typenums[0] != -1)
2004 *dbx_lookup_type (typenums, objfile) = type;
2007 case 'e': /* Enumeration type */
2008 type = dbx_alloc_type (typenums, objfile);
2009 type = read_enum_type (pp, type, objfile);
2010 if (typenums[0] != -1)
2011 *dbx_lookup_type (typenums, objfile) = type;
2014 case 's': /* Struct type */
2015 case 'u': /* Union type */
2017 enum type_code type_code = TYPE_CODE_UNDEF;
2018 type = dbx_alloc_type (typenums, objfile);
2019 switch (type_descriptor)
2022 type_code = TYPE_CODE_STRUCT;
2025 type_code = TYPE_CODE_UNION;
2028 type = read_struct_type (pp, type, type_code, objfile);
2032 case 'a': /* Array type */
2034 return error_type (pp, objfile);
2037 type = dbx_alloc_type (typenums, objfile);
2038 type = read_array_type (pp, type, objfile);
2040 TYPE_CODE (type) = TYPE_CODE_STRING;
2042 make_vector_type (type);
2045 case 'S': /* Set type */
2046 type1 = read_type (pp, objfile);
2047 type = create_set_type (NULL, type1);
2048 if (typenums[0] != -1)
2049 *dbx_lookup_type (typenums, objfile) = type;
2053 --*pp; /* Go back to the symbol in error. */
2054 /* Particularly important if it was \0! */
2055 return error_type (pp, objfile);
2060 warning (_("GDB internal error, type is NULL in stabsread.c."));
2061 return error_type (pp, objfile);
2064 /* Size specified in a type attribute overrides any other size. */
2065 if (type_size != -1)
2066 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2071 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2072 Return the proper type node for a given builtin type number. */
2074 static const struct objfile_key<struct type *,
2075 gdb::noop_deleter<struct type *>>
2076 rs6000_builtin_type_data;
2078 static struct type *
2079 rs6000_builtin_type (int typenum, struct objfile *objfile)
2081 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2083 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2084 #define NUMBER_RECOGNIZED 34
2085 struct type *rettype = NULL;
2087 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2089 complaint (_("Unknown builtin type %d"), typenum);
2090 return objfile_type (objfile)->builtin_error;
2093 if (!negative_types)
2095 /* This includes an empty slot for type number -0. */
2096 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2097 NUMBER_RECOGNIZED + 1, struct type *);
2098 rs6000_builtin_type_data.set (objfile, negative_types);
2101 if (negative_types[-typenum] != NULL)
2102 return negative_types[-typenum];
2104 #if TARGET_CHAR_BIT != 8
2105 #error This code wrong for TARGET_CHAR_BIT not 8
2106 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2107 that if that ever becomes not true, the correct fix will be to
2108 make the size in the struct type to be in bits, not in units of
2115 /* The size of this and all the other types are fixed, defined
2116 by the debugging format. If there is a type called "int" which
2117 is other than 32 bits, then it should use a new negative type
2118 number (or avoid negative type numbers for that case).
2119 See stabs.texinfo. */
2120 rettype = init_integer_type (objfile, 32, 0, "int");
2123 rettype = init_integer_type (objfile, 8, 0, "char");
2124 TYPE_NOSIGN (rettype) = 1;
2127 rettype = init_integer_type (objfile, 16, 0, "short");
2130 rettype = init_integer_type (objfile, 32, 0, "long");
2133 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2136 rettype = init_integer_type (objfile, 8, 0, "signed char");
2139 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2142 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2145 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2148 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2151 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2154 /* IEEE single precision (32 bit). */
2155 rettype = init_float_type (objfile, 32, "float",
2156 floatformats_ieee_single);
2159 /* IEEE double precision (64 bit). */
2160 rettype = init_float_type (objfile, 64, "double",
2161 floatformats_ieee_double);
2164 /* This is an IEEE double on the RS/6000, and different machines with
2165 different sizes for "long double" should use different negative
2166 type numbers. See stabs.texinfo. */
2167 rettype = init_float_type (objfile, 64, "long double",
2168 floatformats_ieee_double);
2171 rettype = init_integer_type (objfile, 32, 0, "integer");
2174 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2177 rettype = init_float_type (objfile, 32, "short real",
2178 floatformats_ieee_single);
2181 rettype = init_float_type (objfile, 64, "real",
2182 floatformats_ieee_double);
2185 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2188 rettype = init_character_type (objfile, 8, 1, "character");
2191 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2194 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2197 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2200 rettype = init_boolean_type (objfile, 32, 1, "logical");
2203 /* Complex type consisting of two IEEE single precision values. */
2204 rettype = init_complex_type (objfile, "complex",
2205 rs6000_builtin_type (12, objfile));
2208 /* Complex type consisting of two IEEE double precision values. */
2209 rettype = init_complex_type (objfile, "double complex",
2210 rs6000_builtin_type (13, objfile));
2213 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2216 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2219 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2222 rettype = init_character_type (objfile, 16, 0, "wchar");
2225 rettype = init_integer_type (objfile, 64, 0, "long long");
2228 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2231 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2234 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2237 negative_types[-typenum] = rettype;
2241 /* This page contains subroutines of read_type. */
2243 /* Wrapper around method_name_from_physname to flag a complaint
2244 if there is an error. */
2247 stabs_method_name_from_physname (const char *physname)
2251 method_name = method_name_from_physname (physname);
2253 if (method_name == NULL)
2255 complaint (_("Method has bad physname %s\n"), physname);
2262 /* Read member function stabs info for C++ classes. The form of each member
2265 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2267 An example with two member functions is:
2269 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2271 For the case of overloaded operators, the format is op$::*.funcs, where
2272 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2273 name (such as `+=') and `.' marks the end of the operator name.
2275 Returns 1 for success, 0 for failure. */
2278 read_member_functions (struct stab_field_info *fip, const char **pp,
2279 struct type *type, struct objfile *objfile)
2286 struct next_fnfield *next;
2287 struct fn_field fn_field;
2290 struct type *look_ahead_type;
2291 struct next_fnfieldlist *new_fnlist;
2292 struct next_fnfield *new_sublist;
2296 /* Process each list until we find something that is not a member function
2297 or find the end of the functions. */
2301 /* We should be positioned at the start of the function name.
2302 Scan forward to find the first ':' and if it is not the
2303 first of a "::" delimiter, then this is not a member function. */
2315 look_ahead_type = NULL;
2318 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2320 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2322 /* This is a completely wierd case. In order to stuff in the
2323 names that might contain colons (the usual name delimiter),
2324 Mike Tiemann defined a different name format which is
2325 signalled if the identifier is "op$". In that case, the
2326 format is "op$::XXXX." where XXXX is the name. This is
2327 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2328 /* This lets the user type "break operator+".
2329 We could just put in "+" as the name, but that wouldn't
2331 static char opname[32] = "op$";
2332 char *o = opname + 3;
2334 /* Skip past '::'. */
2337 STABS_CONTINUE (pp, objfile);
2343 main_fn_name = savestring (opname, o - opname);
2349 main_fn_name = savestring (*pp, p - *pp);
2350 /* Skip past '::'. */
2353 new_fnlist->fn_fieldlist.name = main_fn_name;
2357 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2359 /* Check for and handle cretinous dbx symbol name continuation! */
2360 if (look_ahead_type == NULL)
2363 STABS_CONTINUE (pp, objfile);
2365 new_sublist->fn_field.type = read_type (pp, objfile);
2368 /* Invalid symtab info for member function. */
2374 /* g++ version 1 kludge */
2375 new_sublist->fn_field.type = look_ahead_type;
2376 look_ahead_type = NULL;
2386 /* These are methods, not functions. */
2387 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2388 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2390 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2391 == TYPE_CODE_METHOD);
2393 /* If this is just a stub, then we don't have the real name here. */
2394 if (TYPE_STUB (new_sublist->fn_field.type))
2396 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2397 set_type_self_type (new_sublist->fn_field.type, type);
2398 new_sublist->fn_field.is_stub = 1;
2401 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2404 /* Set this member function's visibility fields. */
2407 case VISIBILITY_PRIVATE:
2408 new_sublist->fn_field.is_private = 1;
2410 case VISIBILITY_PROTECTED:
2411 new_sublist->fn_field.is_protected = 1;
2415 STABS_CONTINUE (pp, objfile);
2418 case 'A': /* Normal functions. */
2419 new_sublist->fn_field.is_const = 0;
2420 new_sublist->fn_field.is_volatile = 0;
2423 case 'B': /* `const' member functions. */
2424 new_sublist->fn_field.is_const = 1;
2425 new_sublist->fn_field.is_volatile = 0;
2428 case 'C': /* `volatile' member function. */
2429 new_sublist->fn_field.is_const = 0;
2430 new_sublist->fn_field.is_volatile = 1;
2433 case 'D': /* `const volatile' member function. */
2434 new_sublist->fn_field.is_const = 1;
2435 new_sublist->fn_field.is_volatile = 1;
2438 case '*': /* File compiled with g++ version 1 --
2444 complaint (_("const/volatile indicator missing, got '%c'"),
2454 /* virtual member function, followed by index.
2455 The sign bit is set to distinguish pointers-to-methods
2456 from virtual function indicies. Since the array is
2457 in words, the quantity must be shifted left by 1
2458 on 16 bit machine, and by 2 on 32 bit machine, forcing
2459 the sign bit out, and usable as a valid index into
2460 the array. Remove the sign bit here. */
2461 new_sublist->fn_field.voffset =
2462 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2466 STABS_CONTINUE (pp, objfile);
2467 if (**pp == ';' || **pp == '\0')
2469 /* Must be g++ version 1. */
2470 new_sublist->fn_field.fcontext = 0;
2474 /* Figure out from whence this virtual function came.
2475 It may belong to virtual function table of
2476 one of its baseclasses. */
2477 look_ahead_type = read_type (pp, objfile);
2480 /* g++ version 1 overloaded methods. */
2484 new_sublist->fn_field.fcontext = look_ahead_type;
2493 look_ahead_type = NULL;
2499 /* static member function. */
2501 int slen = strlen (main_fn_name);
2503 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2505 /* For static member functions, we can't tell if they
2506 are stubbed, as they are put out as functions, and not as
2508 GCC v2 emits the fully mangled name if
2509 dbxout.c:flag_minimal_debug is not set, so we have to
2510 detect a fully mangled physname here and set is_stub
2511 accordingly. Fully mangled physnames in v2 start with
2512 the member function name, followed by two underscores.
2513 GCC v3 currently always emits stubbed member functions,
2514 but with fully mangled physnames, which start with _Z. */
2515 if (!(strncmp (new_sublist->fn_field.physname,
2516 main_fn_name, slen) == 0
2517 && new_sublist->fn_field.physname[slen] == '_'
2518 && new_sublist->fn_field.physname[slen + 1] == '_'))
2520 new_sublist->fn_field.is_stub = 1;
2527 complaint (_("member function type missing, got '%c'"),
2529 /* Normal member function. */
2533 /* normal member function. */
2534 new_sublist->fn_field.voffset = 0;
2535 new_sublist->fn_field.fcontext = 0;
2539 new_sublist->next = sublist;
2540 sublist = new_sublist;
2542 STABS_CONTINUE (pp, objfile);
2544 while (**pp != ';' && **pp != '\0');
2547 STABS_CONTINUE (pp, objfile);
2549 /* Skip GCC 3.X member functions which are duplicates of the callable
2550 constructor/destructor. */
2551 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2552 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2553 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2555 xfree (main_fn_name);
2559 int has_destructor = 0, has_other = 0;
2561 struct next_fnfield *tmp_sublist;
2563 /* Various versions of GCC emit various mostly-useless
2564 strings in the name field for special member functions.
2566 For stub methods, we need to defer correcting the name
2567 until we are ready to unstub the method, because the current
2568 name string is used by gdb_mangle_name. The only stub methods
2569 of concern here are GNU v2 operators; other methods have their
2570 names correct (see caveat below).
2572 For non-stub methods, in GNU v3, we have a complete physname.
2573 Therefore we can safely correct the name now. This primarily
2574 affects constructors and destructors, whose name will be
2575 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2576 operators will also have incorrect names; for instance,
2577 "operator int" will be named "operator i" (i.e. the type is
2580 For non-stub methods in GNU v2, we have no easy way to
2581 know if we have a complete physname or not. For most
2582 methods the result depends on the platform (if CPLUS_MARKER
2583 can be `$' or `.', it will use minimal debug information, or
2584 otherwise the full physname will be included).
2586 Rather than dealing with this, we take a different approach.
2587 For v3 mangled names, we can use the full physname; for v2,
2588 we use cplus_demangle_opname (which is actually v2 specific),
2589 because the only interesting names are all operators - once again
2590 barring the caveat below. Skip this process if any method in the
2591 group is a stub, to prevent our fouling up the workings of
2594 The caveat: GCC 2.95.x (and earlier?) put constructors and
2595 destructors in the same method group. We need to split this
2596 into two groups, because they should have different names.
2597 So for each method group we check whether it contains both
2598 routines whose physname appears to be a destructor (the physnames
2599 for and destructors are always provided, due to quirks in v2
2600 mangling) and routines whose physname does not appear to be a
2601 destructor. If so then we break up the list into two halves.
2602 Even if the constructors and destructors aren't in the same group
2603 the destructor will still lack the leading tilde, so that also
2606 So, to summarize what we expect and handle here:
2608 Given Given Real Real Action
2609 method name physname physname method name
2611 __opi [none] __opi__3Foo operator int opname
2613 Foo _._3Foo _._3Foo ~Foo separate and
2615 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2616 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2619 tmp_sublist = sublist;
2620 while (tmp_sublist != NULL)
2622 if (tmp_sublist->fn_field.physname[0] == '_'
2623 && tmp_sublist->fn_field.physname[1] == 'Z')
2626 if (is_destructor_name (tmp_sublist->fn_field.physname))
2631 tmp_sublist = tmp_sublist->next;
2634 if (has_destructor && has_other)
2636 struct next_fnfieldlist *destr_fnlist;
2637 struct next_fnfield *last_sublist;
2639 /* Create a new fn_fieldlist for the destructors. */
2641 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2642 struct next_fnfieldlist);
2644 destr_fnlist->fn_fieldlist.name
2645 = obconcat (&objfile->objfile_obstack, "~",
2646 new_fnlist->fn_fieldlist.name, (char *) NULL);
2648 destr_fnlist->fn_fieldlist.fn_fields =
2649 XOBNEWVEC (&objfile->objfile_obstack,
2650 struct fn_field, has_destructor);
2651 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2652 sizeof (struct fn_field) * has_destructor);
2653 tmp_sublist = sublist;
2654 last_sublist = NULL;
2656 while (tmp_sublist != NULL)
2658 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2660 tmp_sublist = tmp_sublist->next;
2664 destr_fnlist->fn_fieldlist.fn_fields[i++]
2665 = tmp_sublist->fn_field;
2667 last_sublist->next = tmp_sublist->next;
2669 sublist = tmp_sublist->next;
2670 last_sublist = tmp_sublist;
2671 tmp_sublist = tmp_sublist->next;
2674 destr_fnlist->fn_fieldlist.length = has_destructor;
2675 destr_fnlist->next = fip->fnlist;
2676 fip->fnlist = destr_fnlist;
2678 length -= has_destructor;
2682 /* v3 mangling prevents the use of abbreviated physnames,
2683 so we can do this here. There are stubbed methods in v3
2685 - in -gstabs instead of -gstabs+
2686 - or for static methods, which are output as a function type
2687 instead of a method type. */
2688 char *new_method_name =
2689 stabs_method_name_from_physname (sublist->fn_field.physname);
2691 if (new_method_name != NULL
2692 && strcmp (new_method_name,
2693 new_fnlist->fn_fieldlist.name) != 0)
2695 new_fnlist->fn_fieldlist.name = new_method_name;
2696 xfree (main_fn_name);
2699 xfree (new_method_name);
2701 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2703 new_fnlist->fn_fieldlist.name =
2704 obconcat (&objfile->objfile_obstack,
2705 "~", main_fn_name, (char *)NULL);
2706 xfree (main_fn_name);
2709 new_fnlist->fn_fieldlist.fn_fields
2710 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2711 for (i = length; (i--, sublist); sublist = sublist->next)
2713 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2716 new_fnlist->fn_fieldlist.length = length;
2717 new_fnlist->next = fip->fnlist;
2718 fip->fnlist = new_fnlist;
2725 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2726 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2727 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2728 memset (TYPE_FN_FIELDLISTS (type), 0,
2729 sizeof (struct fn_fieldlist) * nfn_fields);
2730 TYPE_NFN_FIELDS (type) = nfn_fields;
2736 /* Special GNU C++ name.
2738 Returns 1 for success, 0 for failure. "failure" means that we can't
2739 keep parsing and it's time for error_type(). */
2742 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2743 struct type *type, struct objfile *objfile)
2748 struct type *context;
2758 /* At this point, *pp points to something like "22:23=*22...",
2759 where the type number before the ':' is the "context" and
2760 everything after is a regular type definition. Lookup the
2761 type, find it's name, and construct the field name. */
2763 context = read_type (pp, objfile);
2767 case 'f': /* $vf -- a virtual function table pointer */
2768 name = TYPE_NAME (context);
2773 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2774 vptr_name, name, (char *) NULL);
2777 case 'b': /* $vb -- a virtual bsomethingorother */
2778 name = TYPE_NAME (context);
2781 complaint (_("C++ abbreviated type name "
2782 "unknown at symtab pos %d"),
2786 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2787 name, (char *) NULL);
2791 invalid_cpp_abbrev_complaint (*pp);
2792 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2793 "INVALID_CPLUSPLUS_ABBREV",
2798 /* At this point, *pp points to the ':'. Skip it and read the
2804 invalid_cpp_abbrev_complaint (*pp);
2807 fip->list->field.type = read_type (pp, objfile);
2809 (*pp)++; /* Skip the comma. */
2816 SET_FIELD_BITPOS (fip->list->field,
2817 read_huge_number (pp, ';', &nbits, 0));
2821 /* This field is unpacked. */
2822 FIELD_BITSIZE (fip->list->field) = 0;
2823 fip->list->visibility = VISIBILITY_PRIVATE;
2827 invalid_cpp_abbrev_complaint (*pp);
2828 /* We have no idea what syntax an unrecognized abbrev would have, so
2829 better return 0. If we returned 1, we would need to at least advance
2830 *pp to avoid an infinite loop. */
2837 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2838 const char *p, struct type *type,
2839 struct objfile *objfile)
2841 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2843 fip->list->field.name
2844 = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
2847 /* This means we have a visibility for a field coming. */
2851 fip->list->visibility = *(*pp)++;
2855 /* normal dbx-style format, no explicit visibility */
2856 fip->list->visibility = VISIBILITY_PUBLIC;
2859 fip->list->field.type = read_type (pp, objfile);
2864 /* Possible future hook for nested types. */
2867 fip->list->field.bitpos = (long) -2; /* nested type */
2877 /* Static class member. */
2878 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2882 else if (**pp != ',')
2884 /* Bad structure-type format. */
2885 stabs_general_complaint ("bad structure-type format");
2889 (*pp)++; /* Skip the comma. */
2894 SET_FIELD_BITPOS (fip->list->field,
2895 read_huge_number (pp, ',', &nbits, 0));
2898 stabs_general_complaint ("bad structure-type format");
2901 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2904 stabs_general_complaint ("bad structure-type format");
2909 if (FIELD_BITPOS (fip->list->field) == 0
2910 && FIELD_BITSIZE (fip->list->field) == 0)
2912 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2913 it is a field which has been optimized out. The correct stab for
2914 this case is to use VISIBILITY_IGNORE, but that is a recent
2915 invention. (2) It is a 0-size array. For example
2916 union { int num; char str[0]; } foo. Printing _("<no value>" for
2917 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2918 will continue to work, and a 0-size array as a whole doesn't
2919 have any contents to print.
2921 I suspect this probably could also happen with gcc -gstabs (not
2922 -gstabs+) for static fields, and perhaps other C++ extensions.
2923 Hopefully few people use -gstabs with gdb, since it is intended
2924 for dbx compatibility. */
2926 /* Ignore this field. */
2927 fip->list->visibility = VISIBILITY_IGNORE;
2931 /* Detect an unpacked field and mark it as such.
2932 dbx gives a bit size for all fields.
2933 Note that forward refs cannot be packed,
2934 and treat enums as if they had the width of ints. */
2936 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2938 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2939 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2940 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2941 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2943 FIELD_BITSIZE (fip->list->field) = 0;
2945 if ((FIELD_BITSIZE (fip->list->field)
2946 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2947 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2948 && FIELD_BITSIZE (fip->list->field)
2949 == gdbarch_int_bit (gdbarch))
2952 FIELD_BITPOS (fip->list->field) % 8 == 0)
2954 FIELD_BITSIZE (fip->list->field) = 0;
2960 /* Read struct or class data fields. They have the form:
2962 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2964 At the end, we see a semicolon instead of a field.
2966 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2969 The optional VISIBILITY is one of:
2971 '/0' (VISIBILITY_PRIVATE)
2972 '/1' (VISIBILITY_PROTECTED)
2973 '/2' (VISIBILITY_PUBLIC)
2974 '/9' (VISIBILITY_IGNORE)
2976 or nothing, for C style fields with public visibility.
2978 Returns 1 for success, 0 for failure. */
2981 read_struct_fields (struct stab_field_info *fip, const char **pp,
2982 struct type *type, struct objfile *objfile)
2985 struct nextfield *newobj;
2987 /* We better set p right now, in case there are no fields at all... */
2991 /* Read each data member type until we find the terminating ';' at the end of
2992 the data member list, or break for some other reason such as finding the
2993 start of the member function list. */
2994 /* Stab string for structure/union does not end with two ';' in
2995 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2997 while (**pp != ';' && **pp != '\0')
2999 STABS_CONTINUE (pp, objfile);
3000 /* Get space to record the next field's data. */
3001 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3003 newobj->next = fip->list;
3006 /* Get the field name. */
3009 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3010 unless the CPLUS_MARKER is followed by an underscore, in
3011 which case it is just the name of an anonymous type, which we
3012 should handle like any other type name. */
3014 if (is_cplus_marker (p[0]) && p[1] != '_')
3016 if (!read_cpp_abbrev (fip, pp, type, objfile))
3021 /* Look for the ':' that separates the field name from the field
3022 values. Data members are delimited by a single ':', while member
3023 functions are delimited by a pair of ':'s. When we hit the member
3024 functions (if any), terminate scan loop and return. */
3026 while (*p != ':' && *p != '\0')
3033 /* Check to see if we have hit the member functions yet. */
3038 read_one_struct_field (fip, pp, p, type, objfile);
3040 if (p[0] == ':' && p[1] == ':')
3042 /* (the deleted) chill the list of fields: the last entry (at
3043 the head) is a partially constructed entry which we now
3045 fip->list = fip->list->next;
3050 /* The stabs for C++ derived classes contain baseclass information which
3051 is marked by a '!' character after the total size. This function is
3052 called when we encounter the baseclass marker, and slurps up all the
3053 baseclass information.
3055 Immediately following the '!' marker is the number of base classes that
3056 the class is derived from, followed by information for each base class.
3057 For each base class, there are two visibility specifiers, a bit offset
3058 to the base class information within the derived class, a reference to
3059 the type for the base class, and a terminating semicolon.
3061 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3063 Baseclass information marker __________________|| | | | | | |
3064 Number of baseclasses __________________________| | | | | | |
3065 Visibility specifiers (2) ________________________| | | | | |
3066 Offset in bits from start of class _________________| | | | |
3067 Type number for base class ___________________________| | | |
3068 Visibility specifiers (2) _______________________________| | |
3069 Offset in bits from start of class ________________________| |
3070 Type number of base class ____________________________________|
3072 Return 1 for success, 0 for (error-type-inducing) failure. */
3078 read_baseclasses (struct stab_field_info *fip, const char **pp,
3079 struct type *type, struct objfile *objfile)
3082 struct nextfield *newobj;
3090 /* Skip the '!' baseclass information marker. */
3094 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3098 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3104 /* Some stupid compilers have trouble with the following, so break
3105 it up into simpler expressions. */
3106 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3107 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3110 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3113 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3114 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3118 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3120 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3122 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3124 newobj->next = fip->list;
3126 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3129 STABS_CONTINUE (pp, objfile);
3133 /* Nothing to do. */
3136 SET_TYPE_FIELD_VIRTUAL (type, i);
3139 /* Unknown character. Complain and treat it as non-virtual. */
3141 complaint (_("Unknown virtual character `%c' for baseclass"),
3147 newobj->visibility = *(*pp)++;
3148 switch (newobj->visibility)
3150 case VISIBILITY_PRIVATE:
3151 case VISIBILITY_PROTECTED:
3152 case VISIBILITY_PUBLIC:
3155 /* Bad visibility format. Complain and treat it as
3158 complaint (_("Unknown visibility `%c' for baseclass"),
3159 newobj->visibility);
3160 newobj->visibility = VISIBILITY_PUBLIC;
3167 /* The remaining value is the bit offset of the portion of the object
3168 corresponding to this baseclass. Always zero in the absence of
3169 multiple inheritance. */
3171 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3176 /* The last piece of baseclass information is the type of the
3177 base class. Read it, and remember it's type name as this
3180 newobj->field.type = read_type (pp, objfile);
3181 newobj->field.name = TYPE_NAME (newobj->field.type);
3183 /* Skip trailing ';' and bump count of number of fields seen. */
3192 /* The tail end of stabs for C++ classes that contain a virtual function
3193 pointer contains a tilde, a %, and a type number.
3194 The type number refers to the base class (possibly this class itself) which
3195 contains the vtable pointer for the current class.
3197 This function is called when we have parsed all the method declarations,
3198 so we can look for the vptr base class info. */
3201 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3202 struct type *type, struct objfile *objfile)
3206 STABS_CONTINUE (pp, objfile);
3208 /* If we are positioned at a ';', then skip it. */
3218 if (**pp == '=' || **pp == '+' || **pp == '-')
3220 /* Obsolete flags that used to indicate the presence
3221 of constructors and/or destructors. */
3225 /* Read either a '%' or the final ';'. */
3226 if (*(*pp)++ == '%')
3228 /* The next number is the type number of the base class
3229 (possibly our own class) which supplies the vtable for
3230 this class. Parse it out, and search that class to find
3231 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3232 and TYPE_VPTR_FIELDNO. */
3237 t = read_type (pp, objfile);
3239 while (*p != '\0' && *p != ';')
3245 /* Premature end of symbol. */
3249 set_type_vptr_basetype (type, t);
3250 if (type == t) /* Our own class provides vtbl ptr. */
3252 for (i = TYPE_NFIELDS (t) - 1;
3253 i >= TYPE_N_BASECLASSES (t);
3256 const char *name = TYPE_FIELD_NAME (t, i);
3258 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3259 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3261 set_type_vptr_fieldno (type, i);
3265 /* Virtual function table field not found. */
3266 complaint (_("virtual function table pointer "
3267 "not found when defining class `%s'"),
3273 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3284 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3288 for (n = TYPE_NFN_FIELDS (type);
3289 fip->fnlist != NULL;
3290 fip->fnlist = fip->fnlist->next)
3292 --n; /* Circumvent Sun3 compiler bug. */
3293 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3298 /* Create the vector of fields, and record how big it is.
3299 We need this info to record proper virtual function table information
3300 for this class's virtual functions. */
3303 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3304 struct objfile *objfile)
3307 int non_public_fields = 0;
3308 struct nextfield *scan;
3310 /* Count up the number of fields that we have, as well as taking note of
3311 whether or not there are any non-public fields, which requires us to
3312 allocate and build the private_field_bits and protected_field_bits
3315 for (scan = fip->list; scan != NULL; scan = scan->next)
3318 if (scan->visibility != VISIBILITY_PUBLIC)
3320 non_public_fields++;
3324 /* Now we know how many fields there are, and whether or not there are any
3325 non-public fields. Record the field count, allocate space for the
3326 array of fields, and create blank visibility bitfields if necessary. */
3328 TYPE_NFIELDS (type) = nfields;
3329 TYPE_FIELDS (type) = (struct field *)
3330 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3331 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3333 if (non_public_fields)
3335 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3337 TYPE_FIELD_PRIVATE_BITS (type) =
3338 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3339 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3341 TYPE_FIELD_PROTECTED_BITS (type) =
3342 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3343 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3345 TYPE_FIELD_IGNORE_BITS (type) =
3346 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3347 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3350 /* Copy the saved-up fields into the field vector. Start from the
3351 head of the list, adding to the tail of the field array, so that
3352 they end up in the same order in the array in which they were
3353 added to the list. */
3355 while (nfields-- > 0)
3357 TYPE_FIELD (type, nfields) = fip->list->field;
3358 switch (fip->list->visibility)
3360 case VISIBILITY_PRIVATE:
3361 SET_TYPE_FIELD_PRIVATE (type, nfields);
3364 case VISIBILITY_PROTECTED:
3365 SET_TYPE_FIELD_PROTECTED (type, nfields);
3368 case VISIBILITY_IGNORE:
3369 SET_TYPE_FIELD_IGNORE (type, nfields);
3372 case VISIBILITY_PUBLIC:
3376 /* Unknown visibility. Complain and treat it as public. */
3378 complaint (_("Unknown visibility `%c' for field"),
3379 fip->list->visibility);
3383 fip->list = fip->list->next;
3389 /* Complain that the compiler has emitted more than one definition for the
3390 structure type TYPE. */
3392 complain_about_struct_wipeout (struct type *type)
3394 const char *name = "";
3395 const char *kind = "";
3397 if (TYPE_NAME (type))
3399 name = TYPE_NAME (type);
3400 switch (TYPE_CODE (type))
3402 case TYPE_CODE_STRUCT: kind = "struct "; break;
3403 case TYPE_CODE_UNION: kind = "union "; break;
3404 case TYPE_CODE_ENUM: kind = "enum "; break;
3414 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3417 /* Set the length for all variants of a same main_type, which are
3418 connected in the closed chain.
3420 This is something that needs to be done when a type is defined *after*
3421 some cross references to this type have already been read. Consider
3422 for instance the following scenario where we have the following two
3425 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3426 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3428 A stubbed version of type dummy is created while processing the first
3429 stabs entry. The length of that type is initially set to zero, since
3430 it is unknown at this point. Also, a "constant" variation of type
3431 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3434 The second stabs entry allows us to replace the stubbed definition
3435 with the real definition. However, we still need to adjust the length
3436 of the "constant" variation of that type, as its length was left
3437 untouched during the main type replacement... */
3440 set_length_in_type_chain (struct type *type)
3442 struct type *ntype = TYPE_CHAIN (type);
3444 while (ntype != type)
3446 if (TYPE_LENGTH(ntype) == 0)
3447 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3449 complain_about_struct_wipeout (ntype);
3450 ntype = TYPE_CHAIN (ntype);
3454 /* Read the description of a structure (or union type) and return an object
3455 describing the type.
3457 PP points to a character pointer that points to the next unconsumed token
3458 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3459 *PP will point to "4a:1,0,32;;".
3461 TYPE points to an incomplete type that needs to be filled in.
3463 OBJFILE points to the current objfile from which the stabs information is
3464 being read. (Note that it is redundant in that TYPE also contains a pointer
3465 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3468 static struct type *
3469 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3470 struct objfile *objfile)
3472 struct stab_field_info fi;
3474 /* When describing struct/union/class types in stabs, G++ always drops
3475 all qualifications from the name. So if you've got:
3476 struct A { ... struct B { ... }; ... };
3477 then G++ will emit stabs for `struct A::B' that call it simply
3478 `struct B'. Obviously, if you've got a real top-level definition for
3479 `struct B', or other nested definitions, this is going to cause
3482 Obviously, GDB can't fix this by itself, but it can at least avoid
3483 scribbling on existing structure type objects when new definitions
3485 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3486 || TYPE_STUB (type)))
3488 complain_about_struct_wipeout (type);
3490 /* It's probably best to return the type unchanged. */
3494 INIT_CPLUS_SPECIFIC (type);
3495 TYPE_CODE (type) = type_code;
3496 TYPE_STUB (type) = 0;
3498 /* First comes the total size in bytes. */
3503 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3505 return error_type (pp, objfile);
3506 set_length_in_type_chain (type);
3509 /* Now read the baseclasses, if any, read the regular C struct or C++
3510 class member fields, attach the fields to the type, read the C++
3511 member functions, attach them to the type, and then read any tilde
3512 field (baseclass specifier for the class holding the main vtable). */
3514 if (!read_baseclasses (&fi, pp, type, objfile)
3515 || !read_struct_fields (&fi, pp, type, objfile)
3516 || !attach_fields_to_type (&fi, type, objfile)
3517 || !read_member_functions (&fi, pp, type, objfile)
3518 || !attach_fn_fields_to_type (&fi, type)
3519 || !read_tilde_fields (&fi, pp, type, objfile))
3521 type = error_type (pp, objfile);
3527 /* Read a definition of an array type,
3528 and create and return a suitable type object.
3529 Also creates a range type which represents the bounds of that
3532 static struct type *
3533 read_array_type (const char **pp, struct type *type,
3534 struct objfile *objfile)
3536 struct type *index_type, *element_type, *range_type;
3541 /* Format of an array type:
3542 "ar<index type>;lower;upper;<array_contents_type>".
3543 OS9000: "arlower,upper;<array_contents_type>".
3545 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3546 for these, produce a type like float[][]. */
3549 index_type = read_type (pp, objfile);
3551 /* Improper format of array type decl. */
3552 return error_type (pp, objfile);
3556 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3561 lower = read_huge_number (pp, ';', &nbits, 0);
3564 return error_type (pp, objfile);
3566 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3571 upper = read_huge_number (pp, ';', &nbits, 0);
3573 return error_type (pp, objfile);
3575 element_type = read_type (pp, objfile);
3584 create_static_range_type (NULL, index_type, lower, upper);
3585 type = create_array_type (type, element_type, range_type);
3591 /* Read a definition of an enumeration type,
3592 and create and return a suitable type object.
3593 Also defines the symbols that represent the values of the type. */
3595 static struct type *
3596 read_enum_type (const char **pp, struct type *type,
3597 struct objfile *objfile)
3599 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3605 struct pending **symlist;
3606 struct pending *osyms, *syms;
3609 int unsigned_enum = 1;
3612 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3613 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3614 to do? For now, force all enum values to file scope. */
3615 if (within_function)
3616 symlist = get_local_symbols ();
3619 symlist = get_file_symbols ();
3621 o_nsyms = osyms ? osyms->nsyms : 0;
3623 /* The aix4 compiler emits an extra field before the enum members;
3624 my guess is it's a type of some sort. Just ignore it. */
3627 /* Skip over the type. */
3631 /* Skip over the colon. */
3635 /* Read the value-names and their values.
3636 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3637 A semicolon or comma instead of a NAME means the end. */
3638 while (**pp && **pp != ';' && **pp != ',')
3640 STABS_CONTINUE (pp, objfile);
3644 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3646 n = read_huge_number (pp, ',', &nbits, 0);
3648 return error_type (pp, objfile);
3650 sym = allocate_symbol (objfile);
3651 SYMBOL_SET_LINKAGE_NAME (sym, name);
3652 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3653 &objfile->objfile_obstack);
3654 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3655 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3656 SYMBOL_VALUE (sym) = n;
3659 add_symbol_to_list (sym, symlist);
3664 (*pp)++; /* Skip the semicolon. */
3666 /* Now fill in the fields of the type-structure. */
3668 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3669 set_length_in_type_chain (type);
3670 TYPE_CODE (type) = TYPE_CODE_ENUM;
3671 TYPE_STUB (type) = 0;
3673 TYPE_UNSIGNED (type) = 1;
3674 TYPE_NFIELDS (type) = nsyms;
3675 TYPE_FIELDS (type) = (struct field *)
3676 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3677 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3679 /* Find the symbols for the values and put them into the type.
3680 The symbols can be found in the symlist that we put them on
3681 to cause them to be defined. osyms contains the old value
3682 of that symlist; everything up to there was defined by us. */
3683 /* Note that we preserve the order of the enum constants, so
3684 that in something like "enum {FOO, LAST_THING=FOO}" we print
3685 FOO, not LAST_THING. */
3687 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3689 int last = syms == osyms ? o_nsyms : 0;
3690 int j = syms->nsyms;
3692 for (; --j >= last; --n)
3694 struct symbol *xsym = syms->symbol[j];
3696 SYMBOL_TYPE (xsym) = type;
3697 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3698 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3699 TYPE_FIELD_BITSIZE (type, n) = 0;
3708 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3709 typedefs in every file (for int, long, etc):
3711 type = b <signed> <width> <format type>; <offset>; <nbits>
3713 optional format type = c or b for char or boolean.
3714 offset = offset from high order bit to start bit of type.
3715 width is # bytes in object of this type, nbits is # bits in type.
3717 The width/offset stuff appears to be for small objects stored in
3718 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3721 static struct type *
3722 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3727 int boolean_type = 0;
3738 return error_type (pp, objfile);
3742 /* For some odd reason, all forms of char put a c here. This is strange
3743 because no other type has this honor. We can safely ignore this because
3744 we actually determine 'char'acterness by the number of bits specified in
3746 Boolean forms, e.g Fortran logical*X, put a b here. */
3750 else if (**pp == 'b')
3756 /* The first number appears to be the number of bytes occupied
3757 by this type, except that unsigned short is 4 instead of 2.
3758 Since this information is redundant with the third number,
3759 we will ignore it. */
3760 read_huge_number (pp, ';', &nbits, 0);
3762 return error_type (pp, objfile);
3764 /* The second number is always 0, so ignore it too. */
3765 read_huge_number (pp, ';', &nbits, 0);
3767 return error_type (pp, objfile);
3769 /* The third number is the number of bits for this type. */
3770 type_bits = read_huge_number (pp, 0, &nbits, 0);
3772 return error_type (pp, objfile);
3773 /* The type *should* end with a semicolon. If it are embedded
3774 in a larger type the semicolon may be the only way to know where
3775 the type ends. If this type is at the end of the stabstring we
3776 can deal with the omitted semicolon (but we don't have to like
3777 it). Don't bother to complain(), Sun's compiler omits the semicolon
3784 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3785 TARGET_CHAR_BIT, NULL);
3787 TYPE_UNSIGNED (type) = 1;
3792 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3794 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3797 static struct type *
3798 read_sun_floating_type (const char **pp, int typenums[2],
3799 struct objfile *objfile)
3804 struct type *rettype;
3806 /* The first number has more details about the type, for example
3808 details = read_huge_number (pp, ';', &nbits, 0);
3810 return error_type (pp, objfile);
3812 /* The second number is the number of bytes occupied by this type. */
3813 nbytes = read_huge_number (pp, ';', &nbits, 0);
3815 return error_type (pp, objfile);
3817 nbits = nbytes * TARGET_CHAR_BIT;
3819 if (details == NF_COMPLEX || details == NF_COMPLEX16
3820 || details == NF_COMPLEX32)
3822 rettype = dbx_init_float_type (objfile, nbits / 2);
3823 return init_complex_type (objfile, NULL, rettype);
3826 return dbx_init_float_type (objfile, nbits);
3829 /* Read a number from the string pointed to by *PP.
3830 The value of *PP is advanced over the number.
3831 If END is nonzero, the character that ends the
3832 number must match END, or an error happens;
3833 and that character is skipped if it does match.
3834 If END is zero, *PP is left pointing to that character.
3836 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3837 the number is represented in an octal representation, assume that
3838 it is represented in a 2's complement representation with a size of
3839 TWOS_COMPLEMENT_BITS.
3841 If the number fits in a long, set *BITS to 0 and return the value.
3842 If not, set *BITS to be the number of bits in the number and return 0.
3844 If encounter garbage, set *BITS to -1 and return 0. */
3847 read_huge_number (const char **pp, int end, int *bits,
3848 int twos_complement_bits)
3850 const char *p = *pp;
3859 int twos_complement_representation = 0;
3867 /* Leading zero means octal. GCC uses this to output values larger
3868 than an int (because that would be hard in decimal). */
3875 /* Skip extra zeros. */
3879 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3881 /* Octal, possibly signed. Check if we have enough chars for a
3887 while ((c = *p1) >= '0' && c < '8')
3891 if (len > twos_complement_bits / 3
3892 || (twos_complement_bits % 3 == 0
3893 && len == twos_complement_bits / 3))
3895 /* Ok, we have enough characters for a signed value, check
3896 for signness by testing if the sign bit is set. */
3897 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3899 if (c & (1 << sign_bit))
3901 /* Definitely signed. */
3902 twos_complement_representation = 1;
3908 upper_limit = LONG_MAX / radix;
3910 while ((c = *p++) >= '0' && c < ('0' + radix))
3912 if (n <= upper_limit)
3914 if (twos_complement_representation)
3916 /* Octal, signed, twos complement representation. In
3917 this case, n is the corresponding absolute value. */
3920 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3932 /* unsigned representation */
3934 n += c - '0'; /* FIXME this overflows anyway. */
3940 /* This depends on large values being output in octal, which is
3947 /* Ignore leading zeroes. */
3951 else if (c == '2' || c == '3')
3972 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3974 /* We were supposed to parse a number with maximum
3975 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3986 /* Large decimal constants are an error (because it is hard to
3987 count how many bits are in them). */
3993 /* -0x7f is the same as 0x80. So deal with it by adding one to
3994 the number of bits. Two's complement represention octals
3995 can't have a '-' in front. */
3996 if (sign == -1 && !twos_complement_representation)
4007 /* It's *BITS which has the interesting information. */
4011 static struct type *
4012 read_range_type (const char **pp, int typenums[2], int type_size,
4013 struct objfile *objfile)
4015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4016 const char *orig_pp = *pp;
4021 struct type *result_type;
4022 struct type *index_type = NULL;
4024 /* First comes a type we are a subrange of.
4025 In C it is usually 0, 1 or the type being defined. */
4026 if (read_type_number (pp, rangenums) != 0)
4027 return error_type (pp, objfile);
4028 self_subrange = (rangenums[0] == typenums[0] &&
4029 rangenums[1] == typenums[1]);
4034 index_type = read_type (pp, objfile);
4037 /* A semicolon should now follow; skip it. */
4041 /* The remaining two operands are usually lower and upper bounds
4042 of the range. But in some special cases they mean something else. */
4043 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4044 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4046 if (n2bits == -1 || n3bits == -1)
4047 return error_type (pp, objfile);
4050 goto handle_true_range;
4052 /* If limits are huge, must be large integral type. */
4053 if (n2bits != 0 || n3bits != 0)
4055 char got_signed = 0;
4056 char got_unsigned = 0;
4057 /* Number of bits in the type. */
4060 /* If a type size attribute has been specified, the bounds of
4061 the range should fit in this size. If the lower bounds needs
4062 more bits than the upper bound, then the type is signed. */
4063 if (n2bits <= type_size && n3bits <= type_size)
4065 if (n2bits == type_size && n2bits > n3bits)
4071 /* Range from 0 to <large number> is an unsigned large integral type. */
4072 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4077 /* Range from <large number> to <large number>-1 is a large signed
4078 integral type. Take care of the case where <large number> doesn't
4079 fit in a long but <large number>-1 does. */
4080 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4081 || (n2bits != 0 && n3bits == 0
4082 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4089 if (got_signed || got_unsigned)
4090 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4092 return error_type (pp, objfile);
4095 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4096 if (self_subrange && n2 == 0 && n3 == 0)
4097 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4099 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4100 is the width in bytes.
4102 Fortran programs appear to use this for complex types also. To
4103 distinguish between floats and complex, g77 (and others?) seem
4104 to use self-subranges for the complexes, and subranges of int for
4107 Also note that for complexes, g77 sets n2 to the size of one of
4108 the member floats, not the whole complex beast. My guess is that
4109 this was to work well with pre-COMPLEX versions of gdb. */
4111 if (n3 == 0 && n2 > 0)
4113 struct type *float_type
4114 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4117 return init_complex_type (objfile, NULL, float_type);
4122 /* If the upper bound is -1, it must really be an unsigned integral. */
4124 else if (n2 == 0 && n3 == -1)
4126 int bits = type_size;
4130 /* We don't know its size. It is unsigned int or unsigned
4131 long. GCC 2.3.3 uses this for long long too, but that is
4132 just a GDB 3.5 compatibility hack. */
4133 bits = gdbarch_int_bit (gdbarch);
4136 return init_integer_type (objfile, bits, 1, NULL);
4139 /* Special case: char is defined (Who knows why) as a subrange of
4140 itself with range 0-127. */
4141 else if (self_subrange && n2 == 0 && n3 == 127)
4143 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4145 TYPE_NOSIGN (type) = 1;
4148 /* We used to do this only for subrange of self or subrange of int. */
4151 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4152 "unsigned long", and we already checked for that,
4153 so don't need to test for it here. */
4156 /* n3 actually gives the size. */
4157 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4159 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4160 unsigned n-byte integer. But do require n to be a power of
4161 two; we don't want 3- and 5-byte integers flying around. */
4167 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4170 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4171 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4174 /* I think this is for Convex "long long". Since I don't know whether
4175 Convex sets self_subrange, I also accept that particular size regardless
4176 of self_subrange. */
4177 else if (n3 == 0 && n2 < 0
4179 || n2 == -gdbarch_long_long_bit
4180 (gdbarch) / TARGET_CHAR_BIT))
4181 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4182 else if (n2 == -n3 - 1)
4185 return init_integer_type (objfile, 8, 0, NULL);
4187 return init_integer_type (objfile, 16, 0, NULL);
4188 if (n3 == 0x7fffffff)
4189 return init_integer_type (objfile, 32, 0, NULL);
4192 /* We have a real range type on our hands. Allocate space and
4193 return a real pointer. */
4197 index_type = objfile_type (objfile)->builtin_int;
4199 index_type = *dbx_lookup_type (rangenums, objfile);
4200 if (index_type == NULL)
4202 /* Does this actually ever happen? Is that why we are worrying
4203 about dealing with it rather than just calling error_type? */
4205 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4207 index_type = objfile_type (objfile)->builtin_int;
4211 = create_static_range_type (NULL, index_type, n2, n3);
4212 return (result_type);
4215 /* Read in an argument list. This is a list of types, separated by commas
4216 and terminated with END. Return the list of types read in, or NULL
4217 if there is an error. */
4219 static struct field *
4220 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4223 /* FIXME! Remove this arbitrary limit! */
4224 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4231 /* Invalid argument list: no ','. */
4234 STABS_CONTINUE (pp, objfile);
4235 types[n++] = read_type (pp, objfile);
4237 (*pp)++; /* get past `end' (the ':' character). */
4241 /* We should read at least the THIS parameter here. Some broken stabs
4242 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4243 have been present ";-16,(0,43)" reference instead. This way the
4244 excessive ";" marker prematurely stops the parameters parsing. */
4246 complaint (_("Invalid (empty) method arguments"));
4249 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4257 rval = XCNEWVEC (struct field, n);
4258 for (i = 0; i < n; i++)
4259 rval[i].type = types[i];
4264 /* Common block handling. */
4266 /* List of symbols declared since the last BCOMM. This list is a tail
4267 of local_symbols. When ECOMM is seen, the symbols on the list
4268 are noted so their proper addresses can be filled in later,
4269 using the common block base address gotten from the assembler
4272 static struct pending *common_block;
4273 static int common_block_i;
4275 /* Name of the current common block. We get it from the BCOMM instead of the
4276 ECOMM to match IBM documentation (even though IBM puts the name both places
4277 like everyone else). */
4278 static char *common_block_name;
4280 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4281 to remain after this function returns. */
4284 common_block_start (const char *name, struct objfile *objfile)
4286 if (common_block_name != NULL)
4288 complaint (_("Invalid symbol data: common block within common block"));
4290 common_block = *get_local_symbols ();
4291 common_block_i = common_block ? common_block->nsyms : 0;
4292 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4295 /* Process a N_ECOMM symbol. */
4298 common_block_end (struct objfile *objfile)
4300 /* Symbols declared since the BCOMM are to have the common block
4301 start address added in when we know it. common_block and
4302 common_block_i point to the first symbol after the BCOMM in
4303 the local_symbols list; copy the list and hang it off the
4304 symbol for the common block name for later fixup. */
4307 struct pending *newobj = 0;
4308 struct pending *next;
4311 if (common_block_name == NULL)
4313 complaint (_("ECOMM symbol unmatched by BCOMM"));
4317 sym = allocate_symbol (objfile);
4318 /* Note: common_block_name already saved on objfile_obstack. */
4319 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4320 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4322 /* Now we copy all the symbols which have been defined since the BCOMM. */
4324 /* Copy all the struct pendings before common_block. */
4325 for (next = *get_local_symbols ();
4326 next != NULL && next != common_block;
4329 for (j = 0; j < next->nsyms; j++)
4330 add_symbol_to_list (next->symbol[j], &newobj);
4333 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4334 NULL, it means copy all the local symbols (which we already did
4337 if (common_block != NULL)
4338 for (j = common_block_i; j < common_block->nsyms; j++)
4339 add_symbol_to_list (common_block->symbol[j], &newobj);
4341 SYMBOL_TYPE (sym) = (struct type *) newobj;
4343 /* Should we be putting local_symbols back to what it was?
4346 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4347 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4348 global_sym_chain[i] = sym;
4349 common_block_name = NULL;
4352 /* Add a common block's start address to the offset of each symbol
4353 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4354 the common block name). */
4357 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4359 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4361 for (; next; next = next->next)
4365 for (j = next->nsyms - 1; j >= 0; j--)
4366 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4372 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4373 See add_undefined_type for more details. */
4376 add_undefined_type_noname (struct type *type, int typenums[2])
4380 nat.typenums[0] = typenums [0];
4381 nat.typenums[1] = typenums [1];
4384 if (noname_undefs_length == noname_undefs_allocated)
4386 noname_undefs_allocated *= 2;
4387 noname_undefs = (struct nat *)
4388 xrealloc ((char *) noname_undefs,
4389 noname_undefs_allocated * sizeof (struct nat));
4391 noname_undefs[noname_undefs_length++] = nat;
4394 /* Add TYPE to the UNDEF_TYPES vector.
4395 See add_undefined_type for more details. */
4398 add_undefined_type_1 (struct type *type)
4400 if (undef_types_length == undef_types_allocated)
4402 undef_types_allocated *= 2;
4403 undef_types = (struct type **)
4404 xrealloc ((char *) undef_types,
4405 undef_types_allocated * sizeof (struct type *));
4407 undef_types[undef_types_length++] = type;
4410 /* What about types defined as forward references inside of a small lexical
4412 /* Add a type to the list of undefined types to be checked through
4413 once this file has been read in.
4415 In practice, we actually maintain two such lists: The first list
4416 (UNDEF_TYPES) is used for types whose name has been provided, and
4417 concerns forward references (eg 'xs' or 'xu' forward references);
4418 the second list (NONAME_UNDEFS) is used for types whose name is
4419 unknown at creation time, because they were referenced through
4420 their type number before the actual type was declared.
4421 This function actually adds the given type to the proper list. */
4424 add_undefined_type (struct type *type, int typenums[2])
4426 if (TYPE_NAME (type) == NULL)
4427 add_undefined_type_noname (type, typenums);
4429 add_undefined_type_1 (type);
4432 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4435 cleanup_undefined_types_noname (struct objfile *objfile)
4439 for (i = 0; i < noname_undefs_length; i++)
4441 struct nat nat = noname_undefs[i];
4444 type = dbx_lookup_type (nat.typenums, objfile);
4445 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4447 /* The instance flags of the undefined type are still unset,
4448 and needs to be copied over from the reference type.
4449 Since replace_type expects them to be identical, we need
4450 to set these flags manually before hand. */
4451 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4452 replace_type (nat.type, *type);
4456 noname_undefs_length = 0;
4459 /* Go through each undefined type, see if it's still undefined, and fix it
4460 up if possible. We have two kinds of undefined types:
4462 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4463 Fix: update array length using the element bounds
4464 and the target type's length.
4465 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4466 yet defined at the time a pointer to it was made.
4467 Fix: Do a full lookup on the struct/union tag. */
4470 cleanup_undefined_types_1 (void)
4474 /* Iterate over every undefined type, and look for a symbol whose type
4475 matches our undefined type. The symbol matches if:
4476 1. It is a typedef in the STRUCT domain;
4477 2. It has the same name, and same type code;
4478 3. The instance flags are identical.
4480 It is important to check the instance flags, because we have seen
4481 examples where the debug info contained definitions such as:
4483 "foo_t:t30=B31=xefoo_t:"
4485 In this case, we have created an undefined type named "foo_t" whose
4486 instance flags is null (when processing "xefoo_t"), and then created
4487 another type with the same name, but with different instance flags
4488 ('B' means volatile). I think that the definition above is wrong,
4489 since the same type cannot be volatile and non-volatile at the same
4490 time, but we need to be able to cope with it when it happens. The
4491 approach taken here is to treat these two types as different. */
4493 for (type = undef_types; type < undef_types + undef_types_length; type++)
4495 switch (TYPE_CODE (*type))
4498 case TYPE_CODE_STRUCT:
4499 case TYPE_CODE_UNION:
4500 case TYPE_CODE_ENUM:
4502 /* Check if it has been defined since. Need to do this here
4503 as well as in check_typedef to deal with the (legitimate in
4504 C though not C++) case of several types with the same name
4505 in different source files. */
4506 if (TYPE_STUB (*type))
4508 struct pending *ppt;
4510 /* Name of the type, without "struct" or "union". */
4511 const char *type_name = TYPE_NAME (*type);
4513 if (type_name == NULL)
4515 complaint (_("need a type name"));
4518 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4520 for (i = 0; i < ppt->nsyms; i++)
4522 struct symbol *sym = ppt->symbol[i];
4524 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4525 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4526 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4528 && (TYPE_INSTANCE_FLAGS (*type) ==
4529 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4530 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4532 replace_type (*type, SYMBOL_TYPE (sym));
4541 complaint (_("forward-referenced types left unresolved, "
4549 undef_types_length = 0;
4552 /* Try to fix all the undefined types we ecountered while processing
4556 cleanup_undefined_stabs_types (struct objfile *objfile)
4558 cleanup_undefined_types_1 ();
4559 cleanup_undefined_types_noname (objfile);
4562 /* See stabsread.h. */
4565 scan_file_globals (struct objfile *objfile)
4568 struct symbol *sym, *prev;
4569 struct objfile *resolve_objfile;
4571 /* SVR4 based linkers copy referenced global symbols from shared
4572 libraries to the main executable.
4573 If we are scanning the symbols for a shared library, try to resolve
4574 them from the minimal symbols of the main executable first. */
4576 if (symfile_objfile && objfile != symfile_objfile)
4577 resolve_objfile = symfile_objfile;
4579 resolve_objfile = objfile;
4583 /* Avoid expensive loop through all minimal symbols if there are
4584 no unresolved symbols. */
4585 for (hash = 0; hash < HASHSIZE; hash++)
4587 if (global_sym_chain[hash])
4590 if (hash >= HASHSIZE)
4593 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4597 /* Skip static symbols. */
4598 switch (MSYMBOL_TYPE (msymbol))
4610 /* Get the hash index and check all the symbols
4611 under that hash index. */
4613 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4615 for (sym = global_sym_chain[hash]; sym;)
4617 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4618 SYMBOL_LINKAGE_NAME (sym)) == 0)
4620 /* Splice this symbol out of the hash chain and
4621 assign the value we have to it. */
4624 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4628 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4631 /* Check to see whether we need to fix up a common block. */
4632 /* Note: this code might be executed several times for
4633 the same symbol if there are multiple references. */
4636 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4638 fix_common_block (sym,
4639 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4644 SYMBOL_VALUE_ADDRESS (sym)
4645 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4647 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4652 sym = SYMBOL_VALUE_CHAIN (prev);
4656 sym = global_sym_chain[hash];
4662 sym = SYMBOL_VALUE_CHAIN (sym);
4666 if (resolve_objfile == objfile)
4668 resolve_objfile = objfile;
4671 /* Change the storage class of any remaining unresolved globals to
4672 LOC_UNRESOLVED and remove them from the chain. */
4673 for (hash = 0; hash < HASHSIZE; hash++)
4675 sym = global_sym_chain[hash];
4679 sym = SYMBOL_VALUE_CHAIN (sym);
4681 /* Change the symbol address from the misleading chain value
4683 SYMBOL_VALUE_ADDRESS (prev) = 0;
4685 /* Complain about unresolved common block symbols. */
4686 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4687 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4689 complaint (_("%s: common block `%s' from "
4690 "global_sym_chain unresolved"),
4691 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4694 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4697 /* Initialize anything that needs initializing when starting to read
4698 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4702 stabsread_init (void)
4706 /* Initialize anything that needs initializing when a completely new
4707 symbol file is specified (not just adding some symbols from another
4708 file, e.g. a shared library). */
4711 stabsread_new_init (void)
4713 /* Empty the hash table of global syms looking for values. */
4714 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4717 /* Initialize anything that needs initializing at the same time as
4718 start_symtab() is called. */
4723 global_stabs = NULL; /* AIX COFF */
4724 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4725 n_this_object_header_files = 1;
4726 type_vector_length = 0;
4727 type_vector = (struct type **) 0;
4728 within_function = 0;
4730 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4731 common_block_name = NULL;
4734 /* Call after end_symtab(). */
4741 xfree (type_vector);
4744 type_vector_length = 0;
4745 previous_stab_code = 0;
4749 finish_global_stabs (struct objfile *objfile)
4753 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4754 xfree (global_stabs);
4755 global_stabs = NULL;
4759 /* Find the end of the name, delimited by a ':', but don't match
4760 ObjC symbols which look like -[Foo bar::]:bla. */
4762 find_name_end (const char *name)
4764 const char *s = name;
4766 if (s[0] == '-' || *s == '+')
4768 /* Must be an ObjC method symbol. */
4771 error (_("invalid symbol name \"%s\""), name);
4773 s = strchr (s, ']');
4776 error (_("invalid symbol name \"%s\""), name);
4778 return strchr (s, ':');
4782 return strchr (s, ':');
4786 /* See stabsread.h. */
4789 hashname (const char *name)
4791 return hash (name, strlen (name)) % HASHSIZE;
4794 /* Initializer for this module. */
4797 _initialize_stabsread (void)
4799 undef_types_allocated = 20;
4800 undef_types_length = 0;
4801 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4803 noname_undefs_allocated = 20;
4804 noname_undefs_length = 0;
4805 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4807 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4808 &stab_register_funcs);
4809 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4810 &stab_register_funcs);