1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
29 #include "gdb_obstack.h"
32 #include "expression.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
42 #include "gdb-demangle.h"
44 #include "target-float.h"
46 #include "cp-support.h"
49 #include "stabsread.h"
51 /* See stabsread.h for these globals. */
53 const char *(*next_symbol_text_func) (struct objfile *);
54 unsigned char processing_gcc_compilation;
56 struct symbol *global_sym_chain[HASHSIZE];
57 struct pending_stabs *global_stabs;
58 int previous_stab_code;
59 int *this_object_header_files;
60 int n_this_object_header_files;
61 int n_allocated_this_object_header_files;
65 struct nextfield *next;
67 /* This is the raw visibility from the stab. It is not checked
68 for being one of the visibilities we recognize, so code which
69 examines this field better be able to deal. */
75 struct next_fnfieldlist
77 struct next_fnfieldlist *next;
78 struct fn_fieldlist fn_fieldlist;
81 /* The routines that read and process a complete stabs for a C struct or
82 C++ class pass lists of data member fields and lists of member function
83 fields in an instance of a field_info structure, as defined below.
84 This is part of some reorganization of low level C++ support and is
85 expected to eventually go away... (FIXME) */
87 struct stab_field_info
89 struct nextfield *list = nullptr;
90 struct next_fnfieldlist *fnlist = nullptr;
96 read_one_struct_field (struct stab_field_info *, const char **, const char *,
97 struct type *, struct objfile *);
99 static struct type *dbx_alloc_type (int[2], struct objfile *);
101 static long read_huge_number (const char **, int, int *, int);
103 static struct type *error_type (const char **, struct objfile *);
106 patch_block_stabs (struct pending *, struct pending_stabs *,
109 static void fix_common_block (struct symbol *, CORE_ADDR);
111 static int read_type_number (const char **, int *);
113 static struct type *read_type (const char **, struct objfile *);
115 static struct type *read_range_type (const char **, int[2],
116 int, struct objfile *);
118 static struct type *read_sun_builtin_type (const char **,
119 int[2], struct objfile *);
121 static struct type *read_sun_floating_type (const char **, int[2],
124 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126 static struct type *rs6000_builtin_type (int, struct objfile *);
129 read_member_functions (struct stab_field_info *, const char **, struct type *,
133 read_struct_fields (struct stab_field_info *, const char **, struct type *,
137 read_baseclasses (struct stab_field_info *, const char **, struct type *,
141 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
144 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146 static int attach_fields_to_type (struct stab_field_info *, struct type *,
149 static struct type *read_struct_type (const char **, struct type *,
153 static struct type *read_array_type (const char **, struct type *,
156 static struct field *read_args (const char **, int, struct objfile *,
159 static void add_undefined_type (struct type *, int[2]);
162 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
165 static const char *find_name_end (const char *name);
167 static int process_reference (const char **string);
169 void stabsread_clear_cache (void);
171 static const char vptr_name[] = "_vptr$";
172 static const char vb_name[] = "_vb$";
175 invalid_cpp_abbrev_complaint (const char *arg1)
177 complaint (_("invalid C++ abbreviation `%s'"), arg1);
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 complaint (_("bad register number %d (max %d) in symbol %s"),
184 regnum, num_regs - 1, sym);
188 stabs_general_complaint (const char *arg1)
190 complaint ("%s", arg1);
193 /* Make a list of forward references which haven't been defined. */
195 static struct type **undef_types;
196 static int undef_types_allocated;
197 static int undef_types_length;
198 static struct symbol *current_symbol = NULL;
200 /* Make a list of nameless types that are undefined.
201 This happens when another type is referenced by its number
202 before this type is actually defined. For instance "t(0,1)=k(0,2)"
203 and type (0,2) is defined only later. */
210 static struct nat *noname_undefs;
211 static int noname_undefs_allocated;
212 static int noname_undefs_length;
214 /* Check for and handle cretinous stabs symbol name continuation! */
215 #define STABS_CONTINUE(pp,objfile) \
217 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
218 *(pp) = next_symbol_text (objfile); \
221 /* Vector of types defined so far, indexed by their type numbers.
222 (In newer sun systems, dbx uses a pair of numbers in parens,
223 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
224 Then these numbers must be translated through the type_translations
225 hash table to get the index into the type vector.) */
227 static struct type **type_vector;
229 /* Number of elements allocated for type_vector currently. */
231 static int type_vector_length;
233 /* Initial size of type vector. Is realloc'd larger if needed, and
234 realloc'd down to the size actually used, when completed. */
236 #define INITIAL_TYPE_VECTOR_LENGTH 160
239 /* Look up a dbx type-number pair. Return the address of the slot
240 where the type for that number-pair is stored.
241 The number-pair is in TYPENUMS.
243 This can be used for finding the type associated with that pair
244 or for associating a new type with the pair. */
246 static struct type **
247 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 int filenum = typenums[0];
250 int index = typenums[1];
253 struct header_file *f;
256 if (filenum == -1) /* -1,-1 is for temporary types. */
259 if (filenum < 0 || filenum >= n_this_object_header_files)
261 complaint (_("Invalid symbol data: type number "
262 "(%d,%d) out of range at symtab pos %d."),
263 filenum, index, symnum);
271 /* Caller wants address of address of type. We think
272 that negative (rs6k builtin) types will never appear as
273 "lvalues", (nor should they), so we stuff the real type
274 pointer into a temp, and return its address. If referenced,
275 this will do the right thing. */
276 static struct type *temp_type;
278 temp_type = rs6000_builtin_type (index, objfile);
282 /* Type is defined outside of header files.
283 Find it in this object file's type vector. */
284 if (index >= type_vector_length)
286 old_len = type_vector_length;
289 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
290 type_vector = XNEWVEC (struct type *, type_vector_length);
292 while (index >= type_vector_length)
294 type_vector_length *= 2;
296 type_vector = (struct type **)
297 xrealloc ((char *) type_vector,
298 (type_vector_length * sizeof (struct type *)));
299 memset (&type_vector[old_len], 0,
300 (type_vector_length - old_len) * sizeof (struct type *));
302 return (&type_vector[index]);
306 real_filenum = this_object_header_files[filenum];
308 if (real_filenum >= N_HEADER_FILES (objfile))
310 static struct type *temp_type;
312 warning (_("GDB internal error: bad real_filenum"));
315 temp_type = objfile_type (objfile)->builtin_error;
319 f = HEADER_FILES (objfile) + real_filenum;
321 f_orig_length = f->length;
322 if (index >= f_orig_length)
324 while (index >= f->length)
328 f->vector = (struct type **)
329 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
330 memset (&f->vector[f_orig_length], 0,
331 (f->length - f_orig_length) * sizeof (struct type *));
333 return (&f->vector[index]);
337 /* Make sure there is a type allocated for type numbers TYPENUMS
338 and return the type object.
339 This can create an empty (zeroed) type object.
340 TYPENUMS may be (-1, -1) to return a new type object that is not
341 put into the type vector, and so may not be referred to by number. */
344 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 struct type **type_addr;
348 if (typenums[0] == -1)
350 return (alloc_type (objfile));
353 type_addr = dbx_lookup_type (typenums, objfile);
355 /* If we are referring to a type not known at all yet,
356 allocate an empty type for it.
357 We will fill it in later if we find out how. */
360 *type_addr = alloc_type (objfile);
366 /* Allocate a floating-point type of size BITS. */
369 dbx_init_float_type (struct objfile *objfile, int bits)
371 struct gdbarch *gdbarch = get_objfile_arch (objfile);
372 const struct floatformat **format;
375 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 type = init_float_type (objfile, bits, NULL, format);
379 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
384 /* for all the stabs in a given stab vector, build appropriate types
385 and fix their symbols in given symbol vector. */
388 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
389 struct objfile *objfile)
398 /* for all the stab entries, find their corresponding symbols and
399 patch their types! */
401 for (ii = 0; ii < stabs->count; ++ii)
403 name = stabs->stab[ii];
404 pp = (char *) strchr (name, ':');
405 gdb_assert (pp); /* Must find a ':' or game's over. */
409 pp = (char *) strchr (pp, ':');
411 sym = find_symbol_in_list (symbols, name, pp - name);
414 /* FIXME-maybe: it would be nice if we noticed whether
415 the variable was defined *anywhere*, not just whether
416 it is defined in this compilation unit. But neither
417 xlc or GCC seem to need such a definition, and until
418 we do psymtabs (so that the minimal symbols from all
419 compilation units are available now), I'm not sure
420 how to get the information. */
422 /* On xcoff, if a global is defined and never referenced,
423 ld will remove it from the executable. There is then
424 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
425 sym = allocate_symbol (objfile);
426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
427 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
428 SYMBOL_SET_LINKAGE_NAME
429 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
438 lookup_function_type (read_type (&pp, objfile));
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
444 add_symbol_to_list (sym, get_global_symbols ());
449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
452 lookup_function_type (read_type (&pp, objfile));
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
470 Returns 0 for success, -1 for error. */
473 read_type_number (const char **pp, int *typenums)
480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
517 static struct ref_map *ref_map;
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count = 0;
522 /* Number of chunks malloced. */
523 static int ref_chunk = 0;
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
529 stabsread_clear_cache (void)
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
555 ref_chunk += new_chunks;
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
562 /* Return defined sym for the reference REFNUM. */
564 ref_search (int refnum)
566 if (refnum < 0 || refnum > ref_count)
568 return ref_map[refnum].sym;
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
575 process_reference (const char **string)
583 /* Advance beyond the initial '#'. */
586 /* Read number as reference id. */
587 while (*p && isdigit (*p))
589 refnum = refnum * 10 + *p - '0';
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
600 symbol_reference_defined (const char **string)
602 const char *p = *string;
605 refnum = process_reference (&p);
607 /* Defining symbols end in '='. */
610 /* Symbol is being defined here. */
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 SYMBOL_PRINT_NAME (sym));
633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
639 static const struct symbol_register_ops stab_register_funcs = {
643 /* The "aclass" indices for computed symbols. */
645 static int stab_register_index;
646 static int stab_regparm_index;
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 struct objfile *objfile)
652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
654 const char *p = find_name_end (string);
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
666 /* Ignore syms with empty names. */
670 /* Ignore old-style symbols from cc -go. */
681 _("Bad stabs string '%s'"), string);
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
690 current_symbol = sym = allocate_symbol (objfile);
692 if (processing_gcc_compilation)
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
700 SYMBOL_LINE (sym) = 0; /* unknown */
703 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
704 &objfile->objfile_obstack);
706 if (is_cplus_marker (string[0]))
708 /* Special GNU C++ names. */
712 SYMBOL_SET_LINKAGE_NAME (sym, "this");
715 case 'v': /* $vtbl_ptr_type */
719 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
723 /* This was an anonymous type that was never fixed up. */
727 /* SunPRO (3.0 at least) static variable encoding. */
728 if (gdbarch_static_transform_name_p (gdbarch))
733 complaint (_("Unknown C++ symbol name `%s'"),
735 goto normal; /* Do *something* with it. */
741 std::string new_name;
743 if (SYMBOL_LANGUAGE (sym) == language_cplus)
745 char *name = (char *) alloca (p - string + 1);
747 memcpy (name, string, p - string);
748 name[p - string] = '\0';
749 new_name = cp_canonicalize_string (name);
751 if (!new_name.empty ())
753 SYMBOL_SET_NAMES (sym,
754 new_name.c_str (), new_name.length (),
758 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
760 if (SYMBOL_LANGUAGE (sym) == language_cplus)
761 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
767 /* Determine the type of name being defined. */
769 /* Getting GDB to correctly skip the symbol on an undefined symbol
770 descriptor and not ever dump core is a very dodgy proposition if
771 we do things this way. I say the acorn RISC machine can just
772 fix their compiler. */
773 /* The Acorn RISC machine's compiler can put out locals that don't
774 start with "234=" or "(3,4)=", so assume anything other than the
775 deftypes we know how to handle is a local. */
776 if (!strchr ("cfFGpPrStTvVXCR", *p))
778 if (isdigit (*p) || *p == '(' || *p == '-')
787 /* c is a special case, not followed by a type-number.
788 SYMBOL:c=iVALUE for an integer constant symbol.
789 SYMBOL:c=rVALUE for a floating constant symbol.
790 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
791 e.g. "b:c=e6,0" for "const b = blob1"
792 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
796 SYMBOL_TYPE (sym) = error_type (&p, objfile);
797 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
798 add_symbol_to_list (sym, get_file_symbols ());
807 struct type *dbl_type;
809 dbl_type = objfile_type (objfile)->builtin_double;
811 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
812 TYPE_LENGTH (dbl_type));
814 target_float_from_string (dbl_valu, dbl_type, std::string (p));
816 SYMBOL_TYPE (sym) = dbl_type;
817 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
818 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
823 /* Defining integer constants this way is kind of silly,
824 since 'e' constants allows the compiler to give not
825 only the value, but the type as well. C has at least
826 int, long, unsigned int, and long long as constant
827 types; other languages probably should have at least
828 unsigned as well as signed constants. */
830 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
831 SYMBOL_VALUE (sym) = atoi (p);
832 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
838 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
839 SYMBOL_VALUE (sym) = atoi (p);
840 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
846 struct type *range_type;
849 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
850 gdb_byte *string_value;
852 if (quote != '\'' && quote != '"')
854 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
855 SYMBOL_TYPE (sym) = error_type (&p, objfile);
856 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
857 add_symbol_to_list (sym, get_file_symbols ());
861 /* Find matching quote, rejecting escaped quotes. */
862 while (*p && *p != quote)
864 if (*p == '\\' && p[1] == quote)
866 string_local[ind] = (gdb_byte) quote;
872 string_local[ind] = (gdb_byte) (*p);
879 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
880 SYMBOL_TYPE (sym) = error_type (&p, objfile);
881 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
882 add_symbol_to_list (sym, get_file_symbols ());
886 /* NULL terminate the string. */
887 string_local[ind] = 0;
889 = create_static_range_type (NULL,
890 objfile_type (objfile)->builtin_int,
892 SYMBOL_TYPE (sym) = create_array_type (NULL,
893 objfile_type (objfile)->builtin_char,
896 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
897 memcpy (string_value, string_local, ind + 1);
900 SYMBOL_VALUE_BYTES (sym) = string_value;
901 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
906 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
907 can be represented as integral.
908 e.g. "b:c=e6,0" for "const b = blob1"
909 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
911 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
912 SYMBOL_TYPE (sym) = read_type (&p, objfile);
916 SYMBOL_TYPE (sym) = error_type (&p, objfile);
921 /* If the value is too big to fit in an int (perhaps because
922 it is unsigned), or something like that, we silently get
923 a bogus value. The type and everything else about it is
924 correct. Ideally, we should be using whatever we have
925 available for parsing unsigned and long long values,
927 SYMBOL_VALUE (sym) = atoi (p);
932 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
933 SYMBOL_TYPE (sym) = error_type (&p, objfile);
936 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
937 add_symbol_to_list (sym, get_file_symbols ());
941 /* The name of a caught exception. */
942 SYMBOL_TYPE (sym) = read_type (&p, objfile);
943 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
944 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
945 SYMBOL_VALUE_ADDRESS (sym) = valu;
946 add_symbol_to_list (sym, get_local_symbols ());
950 /* A static function definition. */
951 SYMBOL_TYPE (sym) = read_type (&p, objfile);
952 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
953 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
954 add_symbol_to_list (sym, get_file_symbols ());
955 /* fall into process_function_types. */
957 process_function_types:
958 /* Function result types are described as the result type in stabs.
959 We need to convert this to the function-returning-type-X type
960 in GDB. E.g. "int" is converted to "function returning int". */
961 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
962 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
964 /* All functions in C++ have prototypes. Stabs does not offer an
965 explicit way to identify prototyped or unprototyped functions,
966 but both GCC and Sun CC emit stabs for the "call-as" type rather
967 than the "declared-as" type for unprototyped functions, so
968 we treat all functions as if they were prototyped. This is used
969 primarily for promotion when calling the function from GDB. */
970 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
972 /* fall into process_prototype_types. */
974 process_prototype_types:
975 /* Sun acc puts declared types of arguments here. */
978 struct type *ftype = SYMBOL_TYPE (sym);
983 /* Obtain a worst case guess for the number of arguments
984 by counting the semicolons. */
991 /* Allocate parameter information fields and fill them in. */
992 TYPE_FIELDS (ftype) = (struct field *)
993 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
998 /* A type number of zero indicates the start of varargs.
999 FIXME: GDB currently ignores vararg functions. */
1000 if (p[0] == '0' && p[1] == '\0')
1002 ptype = read_type (&p, objfile);
1004 /* The Sun compilers mark integer arguments, which should
1005 be promoted to the width of the calling conventions, with
1006 a type which references itself. This type is turned into
1007 a TYPE_CODE_VOID type by read_type, and we have to turn
1008 it back into builtin_int here.
1009 FIXME: Do we need a new builtin_promoted_int_arg ? */
1010 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1011 ptype = objfile_type (objfile)->builtin_int;
1012 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1013 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1015 TYPE_NFIELDS (ftype) = nparams;
1016 TYPE_PROTOTYPED (ftype) = 1;
1021 /* A global function definition. */
1022 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1023 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1025 add_symbol_to_list (sym, get_global_symbols ());
1026 goto process_function_types;
1029 /* For a class G (global) symbol, it appears that the
1030 value is not correct. It is necessary to search for the
1031 corresponding linker definition to find the value.
1032 These definitions appear at the end of the namelist. */
1033 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1034 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1035 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1036 /* Don't add symbol references to global_sym_chain.
1037 Symbol references don't have valid names and wont't match up with
1038 minimal symbols when the global_sym_chain is relocated.
1039 We'll fixup symbol references when we fixup the defining symbol. */
1040 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1042 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1043 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1044 global_sym_chain[i] = sym;
1046 add_symbol_to_list (sym, get_global_symbols ());
1049 /* This case is faked by a conditional above,
1050 when there is no code letter in the dbx data.
1051 Dbx data never actually contains 'l'. */
1054 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1055 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1056 SYMBOL_VALUE (sym) = valu;
1057 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1058 add_symbol_to_list (sym, get_local_symbols ());
1063 /* pF is a two-letter code that means a function parameter in Fortran.
1064 The type-number specifies the type of the return value.
1065 Translate it into a pointer-to-function type. */
1069 = lookup_pointer_type
1070 (lookup_function_type (read_type (&p, objfile)));
1073 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1075 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1076 SYMBOL_VALUE (sym) = valu;
1077 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1078 SYMBOL_IS_ARGUMENT (sym) = 1;
1079 add_symbol_to_list (sym, get_local_symbols ());
1081 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1083 /* On little-endian machines, this crud is never necessary,
1084 and, if the extra bytes contain garbage, is harmful. */
1088 /* If it's gcc-compiled, if it says `short', believe it. */
1089 if (processing_gcc_compilation
1090 || gdbarch_believe_pcc_promotion (gdbarch))
1093 if (!gdbarch_believe_pcc_promotion (gdbarch))
1095 /* If PCC says a parameter is a short or a char, it is
1097 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1098 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1099 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1102 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1103 ? objfile_type (objfile)->builtin_unsigned_int
1104 : objfile_type (objfile)->builtin_int;
1111 /* acc seems to use P to declare the prototypes of functions that
1112 are referenced by this file. gdb is not prepared to deal
1113 with this extra information. FIXME, it ought to. */
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1117 goto process_prototype_types;
1122 /* Parameter which is in a register. */
1123 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1124 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1125 SYMBOL_IS_ARGUMENT (sym) = 1;
1126 SYMBOL_VALUE (sym) = valu;
1127 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1128 add_symbol_to_list (sym, get_local_symbols ());
1132 /* Register variable (either global or local). */
1133 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1134 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1135 SYMBOL_VALUE (sym) = valu;
1136 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1137 if (within_function)
1139 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1140 the same name to represent an argument passed in a
1141 register. GCC uses 'P' for the same case. So if we find
1142 such a symbol pair we combine it into one 'P' symbol.
1143 For Sun cc we need to do this regardless of
1144 stabs_argument_has_addr, because the compiler puts out
1145 the 'p' symbol even if it never saves the argument onto
1148 On most machines, we want to preserve both symbols, so
1149 that we can still get information about what is going on
1150 with the stack (VAX for computing args_printed, using
1151 stack slots instead of saved registers in backtraces,
1154 Note that this code illegally combines
1155 main(argc) struct foo argc; { register struct foo argc; }
1156 but this case is considered pathological and causes a warning
1157 from a decent compiler. */
1159 struct pending *local_symbols = *get_local_symbols ();
1161 && local_symbols->nsyms > 0
1162 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1164 struct symbol *prev_sym;
1166 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1167 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1168 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1169 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1170 SYMBOL_LINKAGE_NAME (sym)) == 0)
1172 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1173 /* Use the type from the LOC_REGISTER; that is the type
1174 that is actually in that register. */
1175 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1176 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1181 add_symbol_to_list (sym, get_local_symbols ());
1184 add_symbol_to_list (sym, get_file_symbols ());
1188 /* Static symbol at top level of file. */
1189 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1190 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1191 SYMBOL_VALUE_ADDRESS (sym) = valu;
1192 if (gdbarch_static_transform_name_p (gdbarch)
1193 && gdbarch_static_transform_name (gdbarch,
1194 SYMBOL_LINKAGE_NAME (sym))
1195 != SYMBOL_LINKAGE_NAME (sym))
1197 struct bound_minimal_symbol msym;
1199 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1201 if (msym.minsym != NULL)
1203 const char *new_name = gdbarch_static_transform_name
1204 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1206 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1207 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1210 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1211 add_symbol_to_list (sym, get_file_symbols ());
1215 /* In Ada, there is no distinction between typedef and non-typedef;
1216 any type declaration implicitly has the equivalent of a typedef,
1217 and thus 't' is in fact equivalent to 'Tt'.
1219 Therefore, for Ada units, we check the character immediately
1220 before the 't', and if we do not find a 'T', then make sure to
1221 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1222 will be stored in the VAR_DOMAIN). If the symbol was indeed
1223 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1224 elsewhere, so we don't need to take care of that.
1226 This is important to do, because of forward references:
1227 The cleanup of undefined types stored in undef_types only uses
1228 STRUCT_DOMAIN symbols to perform the replacement. */
1229 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1232 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1234 /* For a nameless type, we don't want a create a symbol, thus we
1235 did not use `sym'. Return without further processing. */
1239 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1240 SYMBOL_VALUE (sym) = valu;
1241 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1242 /* C++ vagaries: we may have a type which is derived from
1243 a base type which did not have its name defined when the
1244 derived class was output. We fill in the derived class's
1245 base part member's name here in that case. */
1246 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1247 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1249 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1253 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1254 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1255 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1256 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1259 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1261 /* gcc-2.6 or later (when using -fvtable-thunks)
1262 emits a unique named type for a vtable entry.
1263 Some gdb code depends on that specific name. */
1264 extern const char vtbl_ptr_name[];
1266 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1267 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1268 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1270 /* If we are giving a name to a type such as "pointer to
1271 foo" or "function returning foo", we better not set
1272 the TYPE_NAME. If the program contains "typedef char
1273 *caddr_t;", we don't want all variables of type char
1274 * to print as caddr_t. This is not just a
1275 consequence of GDB's type management; PCC and GCC (at
1276 least through version 2.4) both output variables of
1277 either type char * or caddr_t with the type number
1278 defined in the 't' symbol for caddr_t. If a future
1279 compiler cleans this up it GDB is not ready for it
1280 yet, but if it becomes ready we somehow need to
1281 disable this check (without breaking the PCC/GCC2.4
1286 Fortunately, this check seems not to be necessary
1287 for anything except pointers or functions. */
1288 /* ezannoni: 2000-10-26. This seems to apply for
1289 versions of gcc older than 2.8. This was the original
1290 problem: with the following code gdb would tell that
1291 the type for name1 is caddr_t, and func is char().
1293 typedef char *caddr_t;
1305 /* Pascal accepts names for pointer types. */
1306 if (get_current_subfile ()->language == language_pascal)
1308 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1312 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1315 add_symbol_to_list (sym, get_file_symbols ());
1319 /* Create the STRUCT_DOMAIN clone. */
1320 struct symbol *struct_sym = allocate_symbol (objfile);
1323 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1324 SYMBOL_VALUE (struct_sym) = valu;
1325 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1326 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1327 TYPE_NAME (SYMBOL_TYPE (sym))
1328 = obconcat (&objfile->objfile_obstack,
1329 SYMBOL_LINKAGE_NAME (sym),
1331 add_symbol_to_list (struct_sym, get_file_symbols ());
1337 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1338 by 't' which means we are typedef'ing it as well. */
1339 synonym = *p == 't';
1344 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1346 /* For a nameless type, we don't want a create a symbol, thus we
1347 did not use `sym'. Return without further processing. */
1351 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1352 SYMBOL_VALUE (sym) = valu;
1353 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1354 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1355 TYPE_NAME (SYMBOL_TYPE (sym))
1356 = obconcat (&objfile->objfile_obstack,
1357 SYMBOL_LINKAGE_NAME (sym),
1359 add_symbol_to_list (sym, get_file_symbols ());
1363 /* Clone the sym and then modify it. */
1364 struct symbol *typedef_sym = allocate_symbol (objfile);
1366 *typedef_sym = *sym;
1367 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1368 SYMBOL_VALUE (typedef_sym) = valu;
1369 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1370 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1371 TYPE_NAME (SYMBOL_TYPE (sym))
1372 = obconcat (&objfile->objfile_obstack,
1373 SYMBOL_LINKAGE_NAME (sym),
1375 add_symbol_to_list (typedef_sym, get_file_symbols ());
1380 /* Static symbol of local scope. */
1381 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1382 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1383 SYMBOL_VALUE_ADDRESS (sym) = valu;
1384 if (gdbarch_static_transform_name_p (gdbarch)
1385 && gdbarch_static_transform_name (gdbarch,
1386 SYMBOL_LINKAGE_NAME (sym))
1387 != SYMBOL_LINKAGE_NAME (sym))
1389 struct bound_minimal_symbol msym;
1391 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1393 if (msym.minsym != NULL)
1395 const char *new_name = gdbarch_static_transform_name
1396 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1398 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1399 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1402 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1403 add_symbol_to_list (sym, get_local_symbols ());
1407 /* Reference parameter */
1408 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1409 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1410 SYMBOL_IS_ARGUMENT (sym) = 1;
1411 SYMBOL_VALUE (sym) = valu;
1412 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1413 add_symbol_to_list (sym, get_local_symbols ());
1417 /* Reference parameter which is in a register. */
1418 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1419 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1420 SYMBOL_IS_ARGUMENT (sym) = 1;
1421 SYMBOL_VALUE (sym) = valu;
1422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1423 add_symbol_to_list (sym, get_local_symbols ());
1427 /* This is used by Sun FORTRAN for "function result value".
1428 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1429 that Pascal uses it too, but when I tried it Pascal used
1430 "x:3" (local symbol) instead. */
1431 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1433 SYMBOL_VALUE (sym) = valu;
1434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1435 add_symbol_to_list (sym, get_local_symbols ());
1439 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1440 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1441 SYMBOL_VALUE (sym) = 0;
1442 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1443 add_symbol_to_list (sym, get_file_symbols ());
1447 /* Some systems pass variables of certain types by reference instead
1448 of by value, i.e. they will pass the address of a structure (in a
1449 register or on the stack) instead of the structure itself. */
1451 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1452 && SYMBOL_IS_ARGUMENT (sym))
1454 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1455 variables passed in a register). */
1456 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1457 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1458 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1459 and subsequent arguments on SPARC, for example). */
1460 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1461 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1467 /* Skip rest of this symbol and return an error type.
1469 General notes on error recovery: error_type always skips to the
1470 end of the symbol (modulo cretinous dbx symbol name continuation).
1471 Thus code like this:
1473 if (*(*pp)++ != ';')
1474 return error_type (pp, objfile);
1476 is wrong because if *pp starts out pointing at '\0' (typically as the
1477 result of an earlier error), it will be incremented to point to the
1478 start of the next symbol, which might produce strange results, at least
1479 if you run off the end of the string table. Instead use
1482 return error_type (pp, objfile);
1488 foo = error_type (pp, objfile);
1492 And in case it isn't obvious, the point of all this hair is so the compiler
1493 can define new types and new syntaxes, and old versions of the
1494 debugger will be able to read the new symbol tables. */
1496 static struct type *
1497 error_type (const char **pp, struct objfile *objfile)
1499 complaint (_("couldn't parse type; debugger out of date?"));
1502 /* Skip to end of symbol. */
1503 while (**pp != '\0')
1508 /* Check for and handle cretinous dbx symbol name continuation! */
1509 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1511 *pp = next_symbol_text (objfile);
1518 return objfile_type (objfile)->builtin_error;
1522 /* Read type information or a type definition; return the type. Even
1523 though this routine accepts either type information or a type
1524 definition, the distinction is relevant--some parts of stabsread.c
1525 assume that type information starts with a digit, '-', or '(' in
1526 deciding whether to call read_type. */
1528 static struct type *
1529 read_type (const char **pp, struct objfile *objfile)
1531 struct type *type = 0;
1534 char type_descriptor;
1536 /* Size in bits of type if specified by a type attribute, or -1 if
1537 there is no size attribute. */
1540 /* Used to distinguish string and bitstring from char-array and set. */
1543 /* Used to distinguish vector from array. */
1546 /* Read type number if present. The type number may be omitted.
1547 for instance in a two-dimensional array declared with type
1548 "ar1;1;10;ar1;1;10;4". */
1549 if ((**pp >= '0' && **pp <= '9')
1553 if (read_type_number (pp, typenums) != 0)
1554 return error_type (pp, objfile);
1558 /* Type is not being defined here. Either it already
1559 exists, or this is a forward reference to it.
1560 dbx_alloc_type handles both cases. */
1561 type = dbx_alloc_type (typenums, objfile);
1563 /* If this is a forward reference, arrange to complain if it
1564 doesn't get patched up by the time we're done
1566 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1567 add_undefined_type (type, typenums);
1572 /* Type is being defined here. */
1574 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1579 /* 'typenums=' not present, type is anonymous. Read and return
1580 the definition, but don't put it in the type vector. */
1581 typenums[0] = typenums[1] = -1;
1586 type_descriptor = (*pp)[-1];
1587 switch (type_descriptor)
1591 enum type_code code;
1593 /* Used to index through file_symbols. */
1594 struct pending *ppt;
1597 /* Name including "struct", etc. */
1601 const char *from, *p, *q1, *q2;
1603 /* Set the type code according to the following letter. */
1607 code = TYPE_CODE_STRUCT;
1610 code = TYPE_CODE_UNION;
1613 code = TYPE_CODE_ENUM;
1617 /* Complain and keep going, so compilers can invent new
1618 cross-reference types. */
1619 complaint (_("Unrecognized cross-reference type `%c'"),
1621 code = TYPE_CODE_STRUCT;
1626 q1 = strchr (*pp, '<');
1627 p = strchr (*pp, ':');
1629 return error_type (pp, objfile);
1630 if (q1 && p > q1 && p[1] == ':')
1632 int nesting_level = 0;
1634 for (q2 = q1; *q2; q2++)
1638 else if (*q2 == '>')
1640 else if (*q2 == ':' && nesting_level == 0)
1645 return error_type (pp, objfile);
1648 if (get_current_subfile ()->language == language_cplus)
1650 char *name = (char *) alloca (p - *pp + 1);
1652 memcpy (name, *pp, p - *pp);
1653 name[p - *pp] = '\0';
1655 std::string new_name = cp_canonicalize_string (name);
1656 if (!new_name.empty ())
1659 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1661 new_name.length ());
1664 if (type_name == NULL)
1666 char *to = type_name = (char *)
1667 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1669 /* Copy the name. */
1676 /* Set the pointer ahead of the name which we just read, and
1681 /* If this type has already been declared, then reuse the same
1682 type, rather than allocating a new one. This saves some
1685 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1686 for (i = 0; i < ppt->nsyms; i++)
1688 struct symbol *sym = ppt->symbol[i];
1690 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1691 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1692 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1693 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1695 obstack_free (&objfile->objfile_obstack, type_name);
1696 type = SYMBOL_TYPE (sym);
1697 if (typenums[0] != -1)
1698 *dbx_lookup_type (typenums, objfile) = type;
1703 /* Didn't find the type to which this refers, so we must
1704 be dealing with a forward reference. Allocate a type
1705 structure for it, and keep track of it so we can
1706 fill in the rest of the fields when we get the full
1708 type = dbx_alloc_type (typenums, objfile);
1709 TYPE_CODE (type) = code;
1710 TYPE_NAME (type) = type_name;
1711 INIT_CPLUS_SPECIFIC (type);
1712 TYPE_STUB (type) = 1;
1714 add_undefined_type (type, typenums);
1718 case '-': /* RS/6000 built-in type */
1732 /* We deal with something like t(1,2)=(3,4)=... which
1733 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1735 /* Allocate and enter the typedef type first.
1736 This handles recursive types. */
1737 type = dbx_alloc_type (typenums, objfile);
1738 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1740 struct type *xtype = read_type (pp, objfile);
1744 /* It's being defined as itself. That means it is "void". */
1745 TYPE_CODE (type) = TYPE_CODE_VOID;
1746 TYPE_LENGTH (type) = 1;
1748 else if (type_size >= 0 || is_string)
1750 /* This is the absolute wrong way to construct types. Every
1751 other debug format has found a way around this problem and
1752 the related problems with unnecessarily stubbed types;
1753 someone motivated should attempt to clean up the issue
1754 here as well. Once a type pointed to has been created it
1755 should not be modified.
1757 Well, it's not *absolutely* wrong. Constructing recursive
1758 types (trees, linked lists) necessarily entails modifying
1759 types after creating them. Constructing any loop structure
1760 entails side effects. The Dwarf 2 reader does handle this
1761 more gracefully (it never constructs more than once
1762 instance of a type object, so it doesn't have to copy type
1763 objects wholesale), but it still mutates type objects after
1764 other folks have references to them.
1766 Keep in mind that this circularity/mutation issue shows up
1767 at the source language level, too: C's "incomplete types",
1768 for example. So the proper cleanup, I think, would be to
1769 limit GDB's type smashing to match exactly those required
1770 by the source language. So GDB could have a
1771 "complete_this_type" function, but never create unnecessary
1772 copies of a type otherwise. */
1773 replace_type (type, xtype);
1774 TYPE_NAME (type) = NULL;
1778 TYPE_TARGET_STUB (type) = 1;
1779 TYPE_TARGET_TYPE (type) = xtype;
1784 /* In the following types, we must be sure to overwrite any existing
1785 type that the typenums refer to, rather than allocating a new one
1786 and making the typenums point to the new one. This is because there
1787 may already be pointers to the existing type (if it had been
1788 forward-referenced), and we must change it to a pointer, function,
1789 reference, or whatever, *in-place*. */
1791 case '*': /* Pointer to another type */
1792 type1 = read_type (pp, objfile);
1793 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1796 case '&': /* Reference to another type */
1797 type1 = read_type (pp, objfile);
1798 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1802 case 'f': /* Function returning another type */
1803 type1 = read_type (pp, objfile);
1804 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1807 case 'g': /* Prototyped function. (Sun) */
1809 /* Unresolved questions:
1811 - According to Sun's ``STABS Interface Manual'', for 'f'
1812 and 'F' symbol descriptors, a `0' in the argument type list
1813 indicates a varargs function. But it doesn't say how 'g'
1814 type descriptors represent that info. Someone with access
1815 to Sun's toolchain should try it out.
1817 - According to the comment in define_symbol (search for
1818 `process_prototype_types:'), Sun emits integer arguments as
1819 types which ref themselves --- like `void' types. Do we
1820 have to deal with that here, too? Again, someone with
1821 access to Sun's toolchain should try it out and let us
1824 const char *type_start = (*pp) - 1;
1825 struct type *return_type = read_type (pp, objfile);
1826 struct type *func_type
1827 = make_function_type (return_type,
1828 dbx_lookup_type (typenums, objfile));
1831 struct type_list *next;
1835 while (**pp && **pp != '#')
1837 struct type *arg_type = read_type (pp, objfile);
1838 struct type_list *newobj = XALLOCA (struct type_list);
1839 newobj->type = arg_type;
1840 newobj->next = arg_types;
1848 complaint (_("Prototyped function type didn't "
1849 "end arguments with `#':\n%s"),
1853 /* If there is just one argument whose type is `void', then
1854 that's just an empty argument list. */
1856 && ! arg_types->next
1857 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1860 TYPE_FIELDS (func_type)
1861 = (struct field *) TYPE_ALLOC (func_type,
1862 num_args * sizeof (struct field));
1863 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1866 struct type_list *t;
1868 /* We stuck each argument type onto the front of the list
1869 when we read it, so the list is reversed. Build the
1870 fields array right-to-left. */
1871 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1872 TYPE_FIELD_TYPE (func_type, i) = t->type;
1874 TYPE_NFIELDS (func_type) = num_args;
1875 TYPE_PROTOTYPED (func_type) = 1;
1881 case 'k': /* Const qualifier on some type (Sun) */
1882 type = read_type (pp, objfile);
1883 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1884 dbx_lookup_type (typenums, objfile));
1887 case 'B': /* Volatile qual on some type (Sun) */
1888 type = read_type (pp, objfile);
1889 type = make_cv_type (TYPE_CONST (type), 1, type,
1890 dbx_lookup_type (typenums, objfile));
1894 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1895 { /* Member (class & variable) type */
1896 /* FIXME -- we should be doing smash_to_XXX types here. */
1898 struct type *domain = read_type (pp, objfile);
1899 struct type *memtype;
1902 /* Invalid member type data format. */
1903 return error_type (pp, objfile);
1906 memtype = read_type (pp, objfile);
1907 type = dbx_alloc_type (typenums, objfile);
1908 smash_to_memberptr_type (type, domain, memtype);
1911 /* type attribute */
1913 const char *attr = *pp;
1915 /* Skip to the semicolon. */
1916 while (**pp != ';' && **pp != '\0')
1919 return error_type (pp, objfile);
1921 ++ * pp; /* Skip the semicolon. */
1925 case 's': /* Size attribute */
1926 type_size = atoi (attr + 1);
1931 case 'S': /* String attribute */
1932 /* FIXME: check to see if following type is array? */
1936 case 'V': /* Vector attribute */
1937 /* FIXME: check to see if following type is array? */
1942 /* Ignore unrecognized type attributes, so future compilers
1943 can invent new ones. */
1951 case '#': /* Method (class & fn) type */
1952 if ((*pp)[0] == '#')
1954 /* We'll get the parameter types from the name. */
1955 struct type *return_type;
1958 return_type = read_type (pp, objfile);
1959 if (*(*pp)++ != ';')
1960 complaint (_("invalid (minimal) member type "
1961 "data format at symtab pos %d."),
1963 type = allocate_stub_method (return_type);
1964 if (typenums[0] != -1)
1965 *dbx_lookup_type (typenums, objfile) = type;
1969 struct type *domain = read_type (pp, objfile);
1970 struct type *return_type;
1975 /* Invalid member type data format. */
1976 return error_type (pp, objfile);
1980 return_type = read_type (pp, objfile);
1981 args = read_args (pp, ';', objfile, &nargs, &varargs);
1983 return error_type (pp, objfile);
1984 type = dbx_alloc_type (typenums, objfile);
1985 smash_to_method_type (type, domain, return_type, args,
1990 case 'r': /* Range type */
1991 type = read_range_type (pp, typenums, type_size, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1998 /* Sun ACC builtin int type */
1999 type = read_sun_builtin_type (pp, typenums, objfile);
2000 if (typenums[0] != -1)
2001 *dbx_lookup_type (typenums, objfile) = type;
2005 case 'R': /* Sun ACC builtin float type */
2006 type = read_sun_floating_type (pp, typenums, objfile);
2007 if (typenums[0] != -1)
2008 *dbx_lookup_type (typenums, objfile) = type;
2011 case 'e': /* Enumeration type */
2012 type = dbx_alloc_type (typenums, objfile);
2013 type = read_enum_type (pp, type, objfile);
2014 if (typenums[0] != -1)
2015 *dbx_lookup_type (typenums, objfile) = type;
2018 case 's': /* Struct type */
2019 case 'u': /* Union type */
2021 enum type_code type_code = TYPE_CODE_UNDEF;
2022 type = dbx_alloc_type (typenums, objfile);
2023 switch (type_descriptor)
2026 type_code = TYPE_CODE_STRUCT;
2029 type_code = TYPE_CODE_UNION;
2032 type = read_struct_type (pp, type, type_code, objfile);
2036 case 'a': /* Array type */
2038 return error_type (pp, objfile);
2041 type = dbx_alloc_type (typenums, objfile);
2042 type = read_array_type (pp, type, objfile);
2044 TYPE_CODE (type) = TYPE_CODE_STRING;
2046 make_vector_type (type);
2049 case 'S': /* Set type */
2050 type1 = read_type (pp, objfile);
2051 type = create_set_type ((struct type *) NULL, type1);
2052 if (typenums[0] != -1)
2053 *dbx_lookup_type (typenums, objfile) = type;
2057 --*pp; /* Go back to the symbol in error. */
2058 /* Particularly important if it was \0! */
2059 return error_type (pp, objfile);
2064 warning (_("GDB internal error, type is NULL in stabsread.c."));
2065 return error_type (pp, objfile);
2068 /* Size specified in a type attribute overrides any other size. */
2069 if (type_size != -1)
2070 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2075 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2076 Return the proper type node for a given builtin type number. */
2078 static const struct objfile_data *rs6000_builtin_type_data;
2080 static struct type *
2081 rs6000_builtin_type (int typenum, struct objfile *objfile)
2083 struct type **negative_types
2084 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2086 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2087 #define NUMBER_RECOGNIZED 34
2088 struct type *rettype = NULL;
2090 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2092 complaint (_("Unknown builtin type %d"), typenum);
2093 return objfile_type (objfile)->builtin_error;
2096 if (!negative_types)
2098 /* This includes an empty slot for type number -0. */
2099 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2100 NUMBER_RECOGNIZED + 1, struct type *);
2101 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2104 if (negative_types[-typenum] != NULL)
2105 return negative_types[-typenum];
2107 #if TARGET_CHAR_BIT != 8
2108 #error This code wrong for TARGET_CHAR_BIT not 8
2109 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2110 that if that ever becomes not true, the correct fix will be to
2111 make the size in the struct type to be in bits, not in units of
2118 /* The size of this and all the other types are fixed, defined
2119 by the debugging format. If there is a type called "int" which
2120 is other than 32 bits, then it should use a new negative type
2121 number (or avoid negative type numbers for that case).
2122 See stabs.texinfo. */
2123 rettype = init_integer_type (objfile, 32, 0, "int");
2126 rettype = init_integer_type (objfile, 8, 0, "char");
2127 TYPE_NOSIGN (rettype) = 1;
2130 rettype = init_integer_type (objfile, 16, 0, "short");
2133 rettype = init_integer_type (objfile, 32, 0, "long");
2136 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2139 rettype = init_integer_type (objfile, 8, 0, "signed char");
2142 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2145 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2148 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2151 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2154 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2157 /* IEEE single precision (32 bit). */
2158 rettype = init_float_type (objfile, 32, "float",
2159 floatformats_ieee_single);
2162 /* IEEE double precision (64 bit). */
2163 rettype = init_float_type (objfile, 64, "double",
2164 floatformats_ieee_double);
2167 /* This is an IEEE double on the RS/6000, and different machines with
2168 different sizes for "long double" should use different negative
2169 type numbers. See stabs.texinfo. */
2170 rettype = init_float_type (objfile, 64, "long double",
2171 floatformats_ieee_double);
2174 rettype = init_integer_type (objfile, 32, 0, "integer");
2177 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2180 rettype = init_float_type (objfile, 32, "short real",
2181 floatformats_ieee_single);
2184 rettype = init_float_type (objfile, 64, "real",
2185 floatformats_ieee_double);
2188 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2191 rettype = init_character_type (objfile, 8, 1, "character");
2194 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2197 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2200 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2203 rettype = init_boolean_type (objfile, 32, 1, "logical");
2206 /* Complex type consisting of two IEEE single precision values. */
2207 rettype = init_complex_type (objfile, "complex",
2208 rs6000_builtin_type (12, objfile));
2211 /* Complex type consisting of two IEEE double precision values. */
2212 rettype = init_complex_type (objfile, "double complex",
2213 rs6000_builtin_type (13, objfile));
2216 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2219 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2222 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2225 rettype = init_character_type (objfile, 16, 0, "wchar");
2228 rettype = init_integer_type (objfile, 64, 0, "long long");
2231 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2234 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2237 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2240 negative_types[-typenum] = rettype;
2244 /* This page contains subroutines of read_type. */
2246 /* Wrapper around method_name_from_physname to flag a complaint
2247 if there is an error. */
2250 stabs_method_name_from_physname (const char *physname)
2254 method_name = method_name_from_physname (physname);
2256 if (method_name == NULL)
2258 complaint (_("Method has bad physname %s\n"), physname);
2265 /* Read member function stabs info for C++ classes. The form of each member
2268 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2270 An example with two member functions is:
2272 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2274 For the case of overloaded operators, the format is op$::*.funcs, where
2275 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2276 name (such as `+=') and `.' marks the end of the operator name.
2278 Returns 1 for success, 0 for failure. */
2281 read_member_functions (struct stab_field_info *fip, const char **pp,
2282 struct type *type, struct objfile *objfile)
2289 struct next_fnfield *next;
2290 struct fn_field fn_field;
2293 struct type *look_ahead_type;
2294 struct next_fnfieldlist *new_fnlist;
2295 struct next_fnfield *new_sublist;
2299 /* Process each list until we find something that is not a member function
2300 or find the end of the functions. */
2304 /* We should be positioned at the start of the function name.
2305 Scan forward to find the first ':' and if it is not the
2306 first of a "::" delimiter, then this is not a member function. */
2318 look_ahead_type = NULL;
2321 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2323 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2325 /* This is a completely wierd case. In order to stuff in the
2326 names that might contain colons (the usual name delimiter),
2327 Mike Tiemann defined a different name format which is
2328 signalled if the identifier is "op$". In that case, the
2329 format is "op$::XXXX." where XXXX is the name. This is
2330 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2331 /* This lets the user type "break operator+".
2332 We could just put in "+" as the name, but that wouldn't
2334 static char opname[32] = "op$";
2335 char *o = opname + 3;
2337 /* Skip past '::'. */
2340 STABS_CONTINUE (pp, objfile);
2346 main_fn_name = savestring (opname, o - opname);
2352 main_fn_name = savestring (*pp, p - *pp);
2353 /* Skip past '::'. */
2356 new_fnlist->fn_fieldlist.name = main_fn_name;
2360 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2362 /* Check for and handle cretinous dbx symbol name continuation! */
2363 if (look_ahead_type == NULL)
2366 STABS_CONTINUE (pp, objfile);
2368 new_sublist->fn_field.type = read_type (pp, objfile);
2371 /* Invalid symtab info for member function. */
2377 /* g++ version 1 kludge */
2378 new_sublist->fn_field.type = look_ahead_type;
2379 look_ahead_type = NULL;
2389 /* These are methods, not functions. */
2390 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2391 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2393 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2394 == TYPE_CODE_METHOD);
2396 /* If this is just a stub, then we don't have the real name here. */
2397 if (TYPE_STUB (new_sublist->fn_field.type))
2399 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2400 set_type_self_type (new_sublist->fn_field.type, type);
2401 new_sublist->fn_field.is_stub = 1;
2404 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2407 /* Set this member function's visibility fields. */
2410 case VISIBILITY_PRIVATE:
2411 new_sublist->fn_field.is_private = 1;
2413 case VISIBILITY_PROTECTED:
2414 new_sublist->fn_field.is_protected = 1;
2418 STABS_CONTINUE (pp, objfile);
2421 case 'A': /* Normal functions. */
2422 new_sublist->fn_field.is_const = 0;
2423 new_sublist->fn_field.is_volatile = 0;
2426 case 'B': /* `const' member functions. */
2427 new_sublist->fn_field.is_const = 1;
2428 new_sublist->fn_field.is_volatile = 0;
2431 case 'C': /* `volatile' member function. */
2432 new_sublist->fn_field.is_const = 0;
2433 new_sublist->fn_field.is_volatile = 1;
2436 case 'D': /* `const volatile' member function. */
2437 new_sublist->fn_field.is_const = 1;
2438 new_sublist->fn_field.is_volatile = 1;
2441 case '*': /* File compiled with g++ version 1 --
2447 complaint (_("const/volatile indicator missing, got '%c'"),
2457 /* virtual member function, followed by index.
2458 The sign bit is set to distinguish pointers-to-methods
2459 from virtual function indicies. Since the array is
2460 in words, the quantity must be shifted left by 1
2461 on 16 bit machine, and by 2 on 32 bit machine, forcing
2462 the sign bit out, and usable as a valid index into
2463 the array. Remove the sign bit here. */
2464 new_sublist->fn_field.voffset =
2465 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2469 STABS_CONTINUE (pp, objfile);
2470 if (**pp == ';' || **pp == '\0')
2472 /* Must be g++ version 1. */
2473 new_sublist->fn_field.fcontext = 0;
2477 /* Figure out from whence this virtual function came.
2478 It may belong to virtual function table of
2479 one of its baseclasses. */
2480 look_ahead_type = read_type (pp, objfile);
2483 /* g++ version 1 overloaded methods. */
2487 new_sublist->fn_field.fcontext = look_ahead_type;
2496 look_ahead_type = NULL;
2502 /* static member function. */
2504 int slen = strlen (main_fn_name);
2506 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2508 /* For static member functions, we can't tell if they
2509 are stubbed, as they are put out as functions, and not as
2511 GCC v2 emits the fully mangled name if
2512 dbxout.c:flag_minimal_debug is not set, so we have to
2513 detect a fully mangled physname here and set is_stub
2514 accordingly. Fully mangled physnames in v2 start with
2515 the member function name, followed by two underscores.
2516 GCC v3 currently always emits stubbed member functions,
2517 but with fully mangled physnames, which start with _Z. */
2518 if (!(strncmp (new_sublist->fn_field.physname,
2519 main_fn_name, slen) == 0
2520 && new_sublist->fn_field.physname[slen] == '_'
2521 && new_sublist->fn_field.physname[slen + 1] == '_'))
2523 new_sublist->fn_field.is_stub = 1;
2530 complaint (_("member function type missing, got '%c'"),
2532 /* Normal member function. */
2536 /* normal member function. */
2537 new_sublist->fn_field.voffset = 0;
2538 new_sublist->fn_field.fcontext = 0;
2542 new_sublist->next = sublist;
2543 sublist = new_sublist;
2545 STABS_CONTINUE (pp, objfile);
2547 while (**pp != ';' && **pp != '\0');
2550 STABS_CONTINUE (pp, objfile);
2552 /* Skip GCC 3.X member functions which are duplicates of the callable
2553 constructor/destructor. */
2554 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2555 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2556 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2558 xfree (main_fn_name);
2562 int has_destructor = 0, has_other = 0;
2564 struct next_fnfield *tmp_sublist;
2566 /* Various versions of GCC emit various mostly-useless
2567 strings in the name field for special member functions.
2569 For stub methods, we need to defer correcting the name
2570 until we are ready to unstub the method, because the current
2571 name string is used by gdb_mangle_name. The only stub methods
2572 of concern here are GNU v2 operators; other methods have their
2573 names correct (see caveat below).
2575 For non-stub methods, in GNU v3, we have a complete physname.
2576 Therefore we can safely correct the name now. This primarily
2577 affects constructors and destructors, whose name will be
2578 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2579 operators will also have incorrect names; for instance,
2580 "operator int" will be named "operator i" (i.e. the type is
2583 For non-stub methods in GNU v2, we have no easy way to
2584 know if we have a complete physname or not. For most
2585 methods the result depends on the platform (if CPLUS_MARKER
2586 can be `$' or `.', it will use minimal debug information, or
2587 otherwise the full physname will be included).
2589 Rather than dealing with this, we take a different approach.
2590 For v3 mangled names, we can use the full physname; for v2,
2591 we use cplus_demangle_opname (which is actually v2 specific),
2592 because the only interesting names are all operators - once again
2593 barring the caveat below. Skip this process if any method in the
2594 group is a stub, to prevent our fouling up the workings of
2597 The caveat: GCC 2.95.x (and earlier?) put constructors and
2598 destructors in the same method group. We need to split this
2599 into two groups, because they should have different names.
2600 So for each method group we check whether it contains both
2601 routines whose physname appears to be a destructor (the physnames
2602 for and destructors are always provided, due to quirks in v2
2603 mangling) and routines whose physname does not appear to be a
2604 destructor. If so then we break up the list into two halves.
2605 Even if the constructors and destructors aren't in the same group
2606 the destructor will still lack the leading tilde, so that also
2609 So, to summarize what we expect and handle here:
2611 Given Given Real Real Action
2612 method name physname physname method name
2614 __opi [none] __opi__3Foo operator int opname
2616 Foo _._3Foo _._3Foo ~Foo separate and
2618 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2619 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2622 tmp_sublist = sublist;
2623 while (tmp_sublist != NULL)
2625 if (tmp_sublist->fn_field.physname[0] == '_'
2626 && tmp_sublist->fn_field.physname[1] == 'Z')
2629 if (is_destructor_name (tmp_sublist->fn_field.physname))
2634 tmp_sublist = tmp_sublist->next;
2637 if (has_destructor && has_other)
2639 struct next_fnfieldlist *destr_fnlist;
2640 struct next_fnfield *last_sublist;
2642 /* Create a new fn_fieldlist for the destructors. */
2644 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2645 struct next_fnfieldlist);
2647 destr_fnlist->fn_fieldlist.name
2648 = obconcat (&objfile->objfile_obstack, "~",
2649 new_fnlist->fn_fieldlist.name, (char *) NULL);
2651 destr_fnlist->fn_fieldlist.fn_fields =
2652 XOBNEWVEC (&objfile->objfile_obstack,
2653 struct fn_field, has_destructor);
2654 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2655 sizeof (struct fn_field) * has_destructor);
2656 tmp_sublist = sublist;
2657 last_sublist = NULL;
2659 while (tmp_sublist != NULL)
2661 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2663 tmp_sublist = tmp_sublist->next;
2667 destr_fnlist->fn_fieldlist.fn_fields[i++]
2668 = tmp_sublist->fn_field;
2670 last_sublist->next = tmp_sublist->next;
2672 sublist = tmp_sublist->next;
2673 last_sublist = tmp_sublist;
2674 tmp_sublist = tmp_sublist->next;
2677 destr_fnlist->fn_fieldlist.length = has_destructor;
2678 destr_fnlist->next = fip->fnlist;
2679 fip->fnlist = destr_fnlist;
2681 length -= has_destructor;
2685 /* v3 mangling prevents the use of abbreviated physnames,
2686 so we can do this here. There are stubbed methods in v3
2688 - in -gstabs instead of -gstabs+
2689 - or for static methods, which are output as a function type
2690 instead of a method type. */
2691 char *new_method_name =
2692 stabs_method_name_from_physname (sublist->fn_field.physname);
2694 if (new_method_name != NULL
2695 && strcmp (new_method_name,
2696 new_fnlist->fn_fieldlist.name) != 0)
2698 new_fnlist->fn_fieldlist.name = new_method_name;
2699 xfree (main_fn_name);
2702 xfree (new_method_name);
2704 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2706 new_fnlist->fn_fieldlist.name =
2707 obconcat (&objfile->objfile_obstack,
2708 "~", main_fn_name, (char *)NULL);
2709 xfree (main_fn_name);
2712 new_fnlist->fn_fieldlist.fn_fields
2713 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2714 for (i = length; (i--, sublist); sublist = sublist->next)
2716 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2719 new_fnlist->fn_fieldlist.length = length;
2720 new_fnlist->next = fip->fnlist;
2721 fip->fnlist = new_fnlist;
2728 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2729 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2730 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2731 memset (TYPE_FN_FIELDLISTS (type), 0,
2732 sizeof (struct fn_fieldlist) * nfn_fields);
2733 TYPE_NFN_FIELDS (type) = nfn_fields;
2739 /* Special GNU C++ name.
2741 Returns 1 for success, 0 for failure. "failure" means that we can't
2742 keep parsing and it's time for error_type(). */
2745 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2746 struct type *type, struct objfile *objfile)
2751 struct type *context;
2761 /* At this point, *pp points to something like "22:23=*22...",
2762 where the type number before the ':' is the "context" and
2763 everything after is a regular type definition. Lookup the
2764 type, find it's name, and construct the field name. */
2766 context = read_type (pp, objfile);
2770 case 'f': /* $vf -- a virtual function table pointer */
2771 name = TYPE_NAME (context);
2776 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2777 vptr_name, name, (char *) NULL);
2780 case 'b': /* $vb -- a virtual bsomethingorother */
2781 name = TYPE_NAME (context);
2784 complaint (_("C++ abbreviated type name "
2785 "unknown at symtab pos %d"),
2789 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2790 name, (char *) NULL);
2794 invalid_cpp_abbrev_complaint (*pp);
2795 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2796 "INVALID_CPLUSPLUS_ABBREV",
2801 /* At this point, *pp points to the ':'. Skip it and read the
2807 invalid_cpp_abbrev_complaint (*pp);
2810 fip->list->field.type = read_type (pp, objfile);
2812 (*pp)++; /* Skip the comma. */
2819 SET_FIELD_BITPOS (fip->list->field,
2820 read_huge_number (pp, ';', &nbits, 0));
2824 /* This field is unpacked. */
2825 FIELD_BITSIZE (fip->list->field) = 0;
2826 fip->list->visibility = VISIBILITY_PRIVATE;
2830 invalid_cpp_abbrev_complaint (*pp);
2831 /* We have no idea what syntax an unrecognized abbrev would have, so
2832 better return 0. If we returned 1, we would need to at least advance
2833 *pp to avoid an infinite loop. */
2840 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2841 const char *p, struct type *type,
2842 struct objfile *objfile)
2844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2846 fip->list->field.name
2847 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2850 /* This means we have a visibility for a field coming. */
2854 fip->list->visibility = *(*pp)++;
2858 /* normal dbx-style format, no explicit visibility */
2859 fip->list->visibility = VISIBILITY_PUBLIC;
2862 fip->list->field.type = read_type (pp, objfile);
2867 /* Possible future hook for nested types. */
2870 fip->list->field.bitpos = (long) -2; /* nested type */
2880 /* Static class member. */
2881 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2885 else if (**pp != ',')
2887 /* Bad structure-type format. */
2888 stabs_general_complaint ("bad structure-type format");
2892 (*pp)++; /* Skip the comma. */
2897 SET_FIELD_BITPOS (fip->list->field,
2898 read_huge_number (pp, ',', &nbits, 0));
2901 stabs_general_complaint ("bad structure-type format");
2904 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2907 stabs_general_complaint ("bad structure-type format");
2912 if (FIELD_BITPOS (fip->list->field) == 0
2913 && FIELD_BITSIZE (fip->list->field) == 0)
2915 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2916 it is a field which has been optimized out. The correct stab for
2917 this case is to use VISIBILITY_IGNORE, but that is a recent
2918 invention. (2) It is a 0-size array. For example
2919 union { int num; char str[0]; } foo. Printing _("<no value>" for
2920 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2921 will continue to work, and a 0-size array as a whole doesn't
2922 have any contents to print.
2924 I suspect this probably could also happen with gcc -gstabs (not
2925 -gstabs+) for static fields, and perhaps other C++ extensions.
2926 Hopefully few people use -gstabs with gdb, since it is intended
2927 for dbx compatibility. */
2929 /* Ignore this field. */
2930 fip->list->visibility = VISIBILITY_IGNORE;
2934 /* Detect an unpacked field and mark it as such.
2935 dbx gives a bit size for all fields.
2936 Note that forward refs cannot be packed,
2937 and treat enums as if they had the width of ints. */
2939 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2941 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2942 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2943 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2944 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2946 FIELD_BITSIZE (fip->list->field) = 0;
2948 if ((FIELD_BITSIZE (fip->list->field)
2949 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2950 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2951 && FIELD_BITSIZE (fip->list->field)
2952 == gdbarch_int_bit (gdbarch))
2955 FIELD_BITPOS (fip->list->field) % 8 == 0)
2957 FIELD_BITSIZE (fip->list->field) = 0;
2963 /* Read struct or class data fields. They have the form:
2965 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2967 At the end, we see a semicolon instead of a field.
2969 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2972 The optional VISIBILITY is one of:
2974 '/0' (VISIBILITY_PRIVATE)
2975 '/1' (VISIBILITY_PROTECTED)
2976 '/2' (VISIBILITY_PUBLIC)
2977 '/9' (VISIBILITY_IGNORE)
2979 or nothing, for C style fields with public visibility.
2981 Returns 1 for success, 0 for failure. */
2984 read_struct_fields (struct stab_field_info *fip, const char **pp,
2985 struct type *type, struct objfile *objfile)
2988 struct nextfield *newobj;
2990 /* We better set p right now, in case there are no fields at all... */
2994 /* Read each data member type until we find the terminating ';' at the end of
2995 the data member list, or break for some other reason such as finding the
2996 start of the member function list. */
2997 /* Stab string for structure/union does not end with two ';' in
2998 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3000 while (**pp != ';' && **pp != '\0')
3002 STABS_CONTINUE (pp, objfile);
3003 /* Get space to record the next field's data. */
3004 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3006 newobj->next = fip->list;
3009 /* Get the field name. */
3012 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3013 unless the CPLUS_MARKER is followed by an underscore, in
3014 which case it is just the name of an anonymous type, which we
3015 should handle like any other type name. */
3017 if (is_cplus_marker (p[0]) && p[1] != '_')
3019 if (!read_cpp_abbrev (fip, pp, type, objfile))
3024 /* Look for the ':' that separates the field name from the field
3025 values. Data members are delimited by a single ':', while member
3026 functions are delimited by a pair of ':'s. When we hit the member
3027 functions (if any), terminate scan loop and return. */
3029 while (*p != ':' && *p != '\0')
3036 /* Check to see if we have hit the member functions yet. */
3041 read_one_struct_field (fip, pp, p, type, objfile);
3043 if (p[0] == ':' && p[1] == ':')
3045 /* (the deleted) chill the list of fields: the last entry (at
3046 the head) is a partially constructed entry which we now
3048 fip->list = fip->list->next;
3053 /* The stabs for C++ derived classes contain baseclass information which
3054 is marked by a '!' character after the total size. This function is
3055 called when we encounter the baseclass marker, and slurps up all the
3056 baseclass information.
3058 Immediately following the '!' marker is the number of base classes that
3059 the class is derived from, followed by information for each base class.
3060 For each base class, there are two visibility specifiers, a bit offset
3061 to the base class information within the derived class, a reference to
3062 the type for the base class, and a terminating semicolon.
3064 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3066 Baseclass information marker __________________|| | | | | | |
3067 Number of baseclasses __________________________| | | | | | |
3068 Visibility specifiers (2) ________________________| | | | | |
3069 Offset in bits from start of class _________________| | | | |
3070 Type number for base class ___________________________| | | |
3071 Visibility specifiers (2) _______________________________| | |
3072 Offset in bits from start of class ________________________| |
3073 Type number of base class ____________________________________|
3075 Return 1 for success, 0 for (error-type-inducing) failure. */
3081 read_baseclasses (struct stab_field_info *fip, const char **pp,
3082 struct type *type, struct objfile *objfile)
3085 struct nextfield *newobj;
3093 /* Skip the '!' baseclass information marker. */
3097 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3101 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3107 /* Some stupid compilers have trouble with the following, so break
3108 it up into simpler expressions. */
3109 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3110 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3113 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3116 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3117 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3121 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3123 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3125 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3127 newobj->next = fip->list;
3129 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3132 STABS_CONTINUE (pp, objfile);
3136 /* Nothing to do. */
3139 SET_TYPE_FIELD_VIRTUAL (type, i);
3142 /* Unknown character. Complain and treat it as non-virtual. */
3144 complaint (_("Unknown virtual character `%c' for baseclass"),
3150 newobj->visibility = *(*pp)++;
3151 switch (newobj->visibility)
3153 case VISIBILITY_PRIVATE:
3154 case VISIBILITY_PROTECTED:
3155 case VISIBILITY_PUBLIC:
3158 /* Bad visibility format. Complain and treat it as
3161 complaint (_("Unknown visibility `%c' for baseclass"),
3162 newobj->visibility);
3163 newobj->visibility = VISIBILITY_PUBLIC;
3170 /* The remaining value is the bit offset of the portion of the object
3171 corresponding to this baseclass. Always zero in the absence of
3172 multiple inheritance. */
3174 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3179 /* The last piece of baseclass information is the type of the
3180 base class. Read it, and remember it's type name as this
3183 newobj->field.type = read_type (pp, objfile);
3184 newobj->field.name = TYPE_NAME (newobj->field.type);
3186 /* Skip trailing ';' and bump count of number of fields seen. */
3195 /* The tail end of stabs for C++ classes that contain a virtual function
3196 pointer contains a tilde, a %, and a type number.
3197 The type number refers to the base class (possibly this class itself) which
3198 contains the vtable pointer for the current class.
3200 This function is called when we have parsed all the method declarations,
3201 so we can look for the vptr base class info. */
3204 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3205 struct type *type, struct objfile *objfile)
3209 STABS_CONTINUE (pp, objfile);
3211 /* If we are positioned at a ';', then skip it. */
3221 if (**pp == '=' || **pp == '+' || **pp == '-')
3223 /* Obsolete flags that used to indicate the presence
3224 of constructors and/or destructors. */
3228 /* Read either a '%' or the final ';'. */
3229 if (*(*pp)++ == '%')
3231 /* The next number is the type number of the base class
3232 (possibly our own class) which supplies the vtable for
3233 this class. Parse it out, and search that class to find
3234 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3235 and TYPE_VPTR_FIELDNO. */
3240 t = read_type (pp, objfile);
3242 while (*p != '\0' && *p != ';')
3248 /* Premature end of symbol. */
3252 set_type_vptr_basetype (type, t);
3253 if (type == t) /* Our own class provides vtbl ptr. */
3255 for (i = TYPE_NFIELDS (t) - 1;
3256 i >= TYPE_N_BASECLASSES (t);
3259 const char *name = TYPE_FIELD_NAME (t, i);
3261 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3262 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3264 set_type_vptr_fieldno (type, i);
3268 /* Virtual function table field not found. */
3269 complaint (_("virtual function table pointer "
3270 "not found when defining class `%s'"),
3276 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3287 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3291 for (n = TYPE_NFN_FIELDS (type);
3292 fip->fnlist != NULL;
3293 fip->fnlist = fip->fnlist->next)
3295 --n; /* Circumvent Sun3 compiler bug. */
3296 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3301 /* Create the vector of fields, and record how big it is.
3302 We need this info to record proper virtual function table information
3303 for this class's virtual functions. */
3306 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3307 struct objfile *objfile)
3310 int non_public_fields = 0;
3311 struct nextfield *scan;
3313 /* Count up the number of fields that we have, as well as taking note of
3314 whether or not there are any non-public fields, which requires us to
3315 allocate and build the private_field_bits and protected_field_bits
3318 for (scan = fip->list; scan != NULL; scan = scan->next)
3321 if (scan->visibility != VISIBILITY_PUBLIC)
3323 non_public_fields++;
3327 /* Now we know how many fields there are, and whether or not there are any
3328 non-public fields. Record the field count, allocate space for the
3329 array of fields, and create blank visibility bitfields if necessary. */
3331 TYPE_NFIELDS (type) = nfields;
3332 TYPE_FIELDS (type) = (struct field *)
3333 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3334 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3336 if (non_public_fields)
3338 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3340 TYPE_FIELD_PRIVATE_BITS (type) =
3341 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3342 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3344 TYPE_FIELD_PROTECTED_BITS (type) =
3345 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3346 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3348 TYPE_FIELD_IGNORE_BITS (type) =
3349 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3350 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3353 /* Copy the saved-up fields into the field vector. Start from the
3354 head of the list, adding to the tail of the field array, so that
3355 they end up in the same order in the array in which they were
3356 added to the list. */
3358 while (nfields-- > 0)
3360 TYPE_FIELD (type, nfields) = fip->list->field;
3361 switch (fip->list->visibility)
3363 case VISIBILITY_PRIVATE:
3364 SET_TYPE_FIELD_PRIVATE (type, nfields);
3367 case VISIBILITY_PROTECTED:
3368 SET_TYPE_FIELD_PROTECTED (type, nfields);
3371 case VISIBILITY_IGNORE:
3372 SET_TYPE_FIELD_IGNORE (type, nfields);
3375 case VISIBILITY_PUBLIC:
3379 /* Unknown visibility. Complain and treat it as public. */
3381 complaint (_("Unknown visibility `%c' for field"),
3382 fip->list->visibility);
3386 fip->list = fip->list->next;
3392 /* Complain that the compiler has emitted more than one definition for the
3393 structure type TYPE. */
3395 complain_about_struct_wipeout (struct type *type)
3397 const char *name = "";
3398 const char *kind = "";
3400 if (TYPE_NAME (type))
3402 name = TYPE_NAME (type);
3403 switch (TYPE_CODE (type))
3405 case TYPE_CODE_STRUCT: kind = "struct "; break;
3406 case TYPE_CODE_UNION: kind = "union "; break;
3407 case TYPE_CODE_ENUM: kind = "enum "; break;
3417 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3420 /* Set the length for all variants of a same main_type, which are
3421 connected in the closed chain.
3423 This is something that needs to be done when a type is defined *after*
3424 some cross references to this type have already been read. Consider
3425 for instance the following scenario where we have the following two
3428 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3429 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3431 A stubbed version of type dummy is created while processing the first
3432 stabs entry. The length of that type is initially set to zero, since
3433 it is unknown at this point. Also, a "constant" variation of type
3434 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3437 The second stabs entry allows us to replace the stubbed definition
3438 with the real definition. However, we still need to adjust the length
3439 of the "constant" variation of that type, as its length was left
3440 untouched during the main type replacement... */
3443 set_length_in_type_chain (struct type *type)
3445 struct type *ntype = TYPE_CHAIN (type);
3447 while (ntype != type)
3449 if (TYPE_LENGTH(ntype) == 0)
3450 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3452 complain_about_struct_wipeout (ntype);
3453 ntype = TYPE_CHAIN (ntype);
3457 /* Read the description of a structure (or union type) and return an object
3458 describing the type.
3460 PP points to a character pointer that points to the next unconsumed token
3461 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3462 *PP will point to "4a:1,0,32;;".
3464 TYPE points to an incomplete type that needs to be filled in.
3466 OBJFILE points to the current objfile from which the stabs information is
3467 being read. (Note that it is redundant in that TYPE also contains a pointer
3468 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3471 static struct type *
3472 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3473 struct objfile *objfile)
3475 struct stab_field_info fi;
3477 /* When describing struct/union/class types in stabs, G++ always drops
3478 all qualifications from the name. So if you've got:
3479 struct A { ... struct B { ... }; ... };
3480 then G++ will emit stabs for `struct A::B' that call it simply
3481 `struct B'. Obviously, if you've got a real top-level definition for
3482 `struct B', or other nested definitions, this is going to cause
3485 Obviously, GDB can't fix this by itself, but it can at least avoid
3486 scribbling on existing structure type objects when new definitions
3488 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3489 || TYPE_STUB (type)))
3491 complain_about_struct_wipeout (type);
3493 /* It's probably best to return the type unchanged. */
3497 INIT_CPLUS_SPECIFIC (type);
3498 TYPE_CODE (type) = type_code;
3499 TYPE_STUB (type) = 0;
3501 /* First comes the total size in bytes. */
3506 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3508 return error_type (pp, objfile);
3509 set_length_in_type_chain (type);
3512 /* Now read the baseclasses, if any, read the regular C struct or C++
3513 class member fields, attach the fields to the type, read the C++
3514 member functions, attach them to the type, and then read any tilde
3515 field (baseclass specifier for the class holding the main vtable). */
3517 if (!read_baseclasses (&fi, pp, type, objfile)
3518 || !read_struct_fields (&fi, pp, type, objfile)
3519 || !attach_fields_to_type (&fi, type, objfile)
3520 || !read_member_functions (&fi, pp, type, objfile)
3521 || !attach_fn_fields_to_type (&fi, type)
3522 || !read_tilde_fields (&fi, pp, type, objfile))
3524 type = error_type (pp, objfile);
3530 /* Read a definition of an array type,
3531 and create and return a suitable type object.
3532 Also creates a range type which represents the bounds of that
3535 static struct type *
3536 read_array_type (const char **pp, struct type *type,
3537 struct objfile *objfile)
3539 struct type *index_type, *element_type, *range_type;
3544 /* Format of an array type:
3545 "ar<index type>;lower;upper;<array_contents_type>".
3546 OS9000: "arlower,upper;<array_contents_type>".
3548 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3549 for these, produce a type like float[][]. */
3552 index_type = read_type (pp, objfile);
3554 /* Improper format of array type decl. */
3555 return error_type (pp, objfile);
3559 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3564 lower = read_huge_number (pp, ';', &nbits, 0);
3567 return error_type (pp, objfile);
3569 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3574 upper = read_huge_number (pp, ';', &nbits, 0);
3576 return error_type (pp, objfile);
3578 element_type = read_type (pp, objfile);
3587 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3588 type = create_array_type (type, element_type, range_type);
3594 /* Read a definition of an enumeration type,
3595 and create and return a suitable type object.
3596 Also defines the symbols that represent the values of the type. */
3598 static struct type *
3599 read_enum_type (const char **pp, struct type *type,
3600 struct objfile *objfile)
3602 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3608 struct pending **symlist;
3609 struct pending *osyms, *syms;
3612 int unsigned_enum = 1;
3615 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3616 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3617 to do? For now, force all enum values to file scope. */
3618 if (within_function)
3619 symlist = get_local_symbols ();
3622 symlist = get_file_symbols ();
3624 o_nsyms = osyms ? osyms->nsyms : 0;
3626 /* The aix4 compiler emits an extra field before the enum members;
3627 my guess is it's a type of some sort. Just ignore it. */
3630 /* Skip over the type. */
3634 /* Skip over the colon. */
3638 /* Read the value-names and their values.
3639 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3640 A semicolon or comma instead of a NAME means the end. */
3641 while (**pp && **pp != ';' && **pp != ',')
3643 STABS_CONTINUE (pp, objfile);
3647 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3649 n = read_huge_number (pp, ',', &nbits, 0);
3651 return error_type (pp, objfile);
3653 sym = allocate_symbol (objfile);
3654 SYMBOL_SET_LINKAGE_NAME (sym, name);
3655 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3656 &objfile->objfile_obstack);
3657 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3658 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3659 SYMBOL_VALUE (sym) = n;
3662 add_symbol_to_list (sym, symlist);
3667 (*pp)++; /* Skip the semicolon. */
3669 /* Now fill in the fields of the type-structure. */
3671 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3672 set_length_in_type_chain (type);
3673 TYPE_CODE (type) = TYPE_CODE_ENUM;
3674 TYPE_STUB (type) = 0;
3676 TYPE_UNSIGNED (type) = 1;
3677 TYPE_NFIELDS (type) = nsyms;
3678 TYPE_FIELDS (type) = (struct field *)
3679 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3680 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3682 /* Find the symbols for the values and put them into the type.
3683 The symbols can be found in the symlist that we put them on
3684 to cause them to be defined. osyms contains the old value
3685 of that symlist; everything up to there was defined by us. */
3686 /* Note that we preserve the order of the enum constants, so
3687 that in something like "enum {FOO, LAST_THING=FOO}" we print
3688 FOO, not LAST_THING. */
3690 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3692 int last = syms == osyms ? o_nsyms : 0;
3693 int j = syms->nsyms;
3695 for (; --j >= last; --n)
3697 struct symbol *xsym = syms->symbol[j];
3699 SYMBOL_TYPE (xsym) = type;
3700 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3701 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3702 TYPE_FIELD_BITSIZE (type, n) = 0;
3711 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3712 typedefs in every file (for int, long, etc):
3714 type = b <signed> <width> <format type>; <offset>; <nbits>
3716 optional format type = c or b for char or boolean.
3717 offset = offset from high order bit to start bit of type.
3718 width is # bytes in object of this type, nbits is # bits in type.
3720 The width/offset stuff appears to be for small objects stored in
3721 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3724 static struct type *
3725 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3730 int boolean_type = 0;
3741 return error_type (pp, objfile);
3745 /* For some odd reason, all forms of char put a c here. This is strange
3746 because no other type has this honor. We can safely ignore this because
3747 we actually determine 'char'acterness by the number of bits specified in
3749 Boolean forms, e.g Fortran logical*X, put a b here. */
3753 else if (**pp == 'b')
3759 /* The first number appears to be the number of bytes occupied
3760 by this type, except that unsigned short is 4 instead of 2.
3761 Since this information is redundant with the third number,
3762 we will ignore it. */
3763 read_huge_number (pp, ';', &nbits, 0);
3765 return error_type (pp, objfile);
3767 /* The second number is always 0, so ignore it too. */
3768 read_huge_number (pp, ';', &nbits, 0);
3770 return error_type (pp, objfile);
3772 /* The third number is the number of bits for this type. */
3773 type_bits = read_huge_number (pp, 0, &nbits, 0);
3775 return error_type (pp, objfile);
3776 /* The type *should* end with a semicolon. If it are embedded
3777 in a larger type the semicolon may be the only way to know where
3778 the type ends. If this type is at the end of the stabstring we
3779 can deal with the omitted semicolon (but we don't have to like
3780 it). Don't bother to complain(), Sun's compiler omits the semicolon
3787 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3788 TARGET_CHAR_BIT, NULL);
3790 TYPE_UNSIGNED (type) = 1;
3795 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3797 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3800 static struct type *
3801 read_sun_floating_type (const char **pp, int typenums[2],
3802 struct objfile *objfile)
3807 struct type *rettype;
3809 /* The first number has more details about the type, for example
3811 details = read_huge_number (pp, ';', &nbits, 0);
3813 return error_type (pp, objfile);
3815 /* The second number is the number of bytes occupied by this type. */
3816 nbytes = read_huge_number (pp, ';', &nbits, 0);
3818 return error_type (pp, objfile);
3820 nbits = nbytes * TARGET_CHAR_BIT;
3822 if (details == NF_COMPLEX || details == NF_COMPLEX16
3823 || details == NF_COMPLEX32)
3825 rettype = dbx_init_float_type (objfile, nbits / 2);
3826 return init_complex_type (objfile, NULL, rettype);
3829 return dbx_init_float_type (objfile, nbits);
3832 /* Read a number from the string pointed to by *PP.
3833 The value of *PP is advanced over the number.
3834 If END is nonzero, the character that ends the
3835 number must match END, or an error happens;
3836 and that character is skipped if it does match.
3837 If END is zero, *PP is left pointing to that character.
3839 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3840 the number is represented in an octal representation, assume that
3841 it is represented in a 2's complement representation with a size of
3842 TWOS_COMPLEMENT_BITS.
3844 If the number fits in a long, set *BITS to 0 and return the value.
3845 If not, set *BITS to be the number of bits in the number and return 0.
3847 If encounter garbage, set *BITS to -1 and return 0. */
3850 read_huge_number (const char **pp, int end, int *bits,
3851 int twos_complement_bits)
3853 const char *p = *pp;
3862 int twos_complement_representation = 0;
3870 /* Leading zero means octal. GCC uses this to output values larger
3871 than an int (because that would be hard in decimal). */
3878 /* Skip extra zeros. */
3882 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3884 /* Octal, possibly signed. Check if we have enough chars for a
3890 while ((c = *p1) >= '0' && c < '8')
3894 if (len > twos_complement_bits / 3
3895 || (twos_complement_bits % 3 == 0
3896 && len == twos_complement_bits / 3))
3898 /* Ok, we have enough characters for a signed value, check
3899 for signness by testing if the sign bit is set. */
3900 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3902 if (c & (1 << sign_bit))
3904 /* Definitely signed. */
3905 twos_complement_representation = 1;
3911 upper_limit = LONG_MAX / radix;
3913 while ((c = *p++) >= '0' && c < ('0' + radix))
3915 if (n <= upper_limit)
3917 if (twos_complement_representation)
3919 /* Octal, signed, twos complement representation. In
3920 this case, n is the corresponding absolute value. */
3923 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3935 /* unsigned representation */
3937 n += c - '0'; /* FIXME this overflows anyway. */
3943 /* This depends on large values being output in octal, which is
3950 /* Ignore leading zeroes. */
3954 else if (c == '2' || c == '3')
3975 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3977 /* We were supposed to parse a number with maximum
3978 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3989 /* Large decimal constants are an error (because it is hard to
3990 count how many bits are in them). */
3996 /* -0x7f is the same as 0x80. So deal with it by adding one to
3997 the number of bits. Two's complement represention octals
3998 can't have a '-' in front. */
3999 if (sign == -1 && !twos_complement_representation)
4010 /* It's *BITS which has the interesting information. */
4014 static struct type *
4015 read_range_type (const char **pp, int typenums[2], int type_size,
4016 struct objfile *objfile)
4018 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4019 const char *orig_pp = *pp;
4024 struct type *result_type;
4025 struct type *index_type = NULL;
4027 /* First comes a type we are a subrange of.
4028 In C it is usually 0, 1 or the type being defined. */
4029 if (read_type_number (pp, rangenums) != 0)
4030 return error_type (pp, objfile);
4031 self_subrange = (rangenums[0] == typenums[0] &&
4032 rangenums[1] == typenums[1]);
4037 index_type = read_type (pp, objfile);
4040 /* A semicolon should now follow; skip it. */
4044 /* The remaining two operands are usually lower and upper bounds
4045 of the range. But in some special cases they mean something else. */
4046 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4047 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4049 if (n2bits == -1 || n3bits == -1)
4050 return error_type (pp, objfile);
4053 goto handle_true_range;
4055 /* If limits are huge, must be large integral type. */
4056 if (n2bits != 0 || n3bits != 0)
4058 char got_signed = 0;
4059 char got_unsigned = 0;
4060 /* Number of bits in the type. */
4063 /* If a type size attribute has been specified, the bounds of
4064 the range should fit in this size. If the lower bounds needs
4065 more bits than the upper bound, then the type is signed. */
4066 if (n2bits <= type_size && n3bits <= type_size)
4068 if (n2bits == type_size && n2bits > n3bits)
4074 /* Range from 0 to <large number> is an unsigned large integral type. */
4075 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4080 /* Range from <large number> to <large number>-1 is a large signed
4081 integral type. Take care of the case where <large number> doesn't
4082 fit in a long but <large number>-1 does. */
4083 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4084 || (n2bits != 0 && n3bits == 0
4085 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4092 if (got_signed || got_unsigned)
4093 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4095 return error_type (pp, objfile);
4098 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4099 if (self_subrange && n2 == 0 && n3 == 0)
4100 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4102 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4103 is the width in bytes.
4105 Fortran programs appear to use this for complex types also. To
4106 distinguish between floats and complex, g77 (and others?) seem
4107 to use self-subranges for the complexes, and subranges of int for
4110 Also note that for complexes, g77 sets n2 to the size of one of
4111 the member floats, not the whole complex beast. My guess is that
4112 this was to work well with pre-COMPLEX versions of gdb. */
4114 if (n3 == 0 && n2 > 0)
4116 struct type *float_type
4117 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4120 return init_complex_type (objfile, NULL, float_type);
4125 /* If the upper bound is -1, it must really be an unsigned integral. */
4127 else if (n2 == 0 && n3 == -1)
4129 int bits = type_size;
4133 /* We don't know its size. It is unsigned int or unsigned
4134 long. GCC 2.3.3 uses this for long long too, but that is
4135 just a GDB 3.5 compatibility hack. */
4136 bits = gdbarch_int_bit (gdbarch);
4139 return init_integer_type (objfile, bits, 1, NULL);
4142 /* Special case: char is defined (Who knows why) as a subrange of
4143 itself with range 0-127. */
4144 else if (self_subrange && n2 == 0 && n3 == 127)
4146 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4148 TYPE_NOSIGN (type) = 1;
4151 /* We used to do this only for subrange of self or subrange of int. */
4154 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4155 "unsigned long", and we already checked for that,
4156 so don't need to test for it here. */
4159 /* n3 actually gives the size. */
4160 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4162 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4163 unsigned n-byte integer. But do require n to be a power of
4164 two; we don't want 3- and 5-byte integers flying around. */
4170 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4173 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4174 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4177 /* I think this is for Convex "long long". Since I don't know whether
4178 Convex sets self_subrange, I also accept that particular size regardless
4179 of self_subrange. */
4180 else if (n3 == 0 && n2 < 0
4182 || n2 == -gdbarch_long_long_bit
4183 (gdbarch) / TARGET_CHAR_BIT))
4184 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4185 else if (n2 == -n3 - 1)
4188 return init_integer_type (objfile, 8, 0, NULL);
4190 return init_integer_type (objfile, 16, 0, NULL);
4191 if (n3 == 0x7fffffff)
4192 return init_integer_type (objfile, 32, 0, NULL);
4195 /* We have a real range type on our hands. Allocate space and
4196 return a real pointer. */
4200 index_type = objfile_type (objfile)->builtin_int;
4202 index_type = *dbx_lookup_type (rangenums, objfile);
4203 if (index_type == NULL)
4205 /* Does this actually ever happen? Is that why we are worrying
4206 about dealing with it rather than just calling error_type? */
4208 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4210 index_type = objfile_type (objfile)->builtin_int;
4214 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4215 return (result_type);
4218 /* Read in an argument list. This is a list of types, separated by commas
4219 and terminated with END. Return the list of types read in, or NULL
4220 if there is an error. */
4222 static struct field *
4223 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4226 /* FIXME! Remove this arbitrary limit! */
4227 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4234 /* Invalid argument list: no ','. */
4237 STABS_CONTINUE (pp, objfile);
4238 types[n++] = read_type (pp, objfile);
4240 (*pp)++; /* get past `end' (the ':' character). */
4244 /* We should read at least the THIS parameter here. Some broken stabs
4245 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4246 have been present ";-16,(0,43)" reference instead. This way the
4247 excessive ";" marker prematurely stops the parameters parsing. */
4249 complaint (_("Invalid (empty) method arguments"));
4252 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4260 rval = XCNEWVEC (struct field, n);
4261 for (i = 0; i < n; i++)
4262 rval[i].type = types[i];
4267 /* Common block handling. */
4269 /* List of symbols declared since the last BCOMM. This list is a tail
4270 of local_symbols. When ECOMM is seen, the symbols on the list
4271 are noted so their proper addresses can be filled in later,
4272 using the common block base address gotten from the assembler
4275 static struct pending *common_block;
4276 static int common_block_i;
4278 /* Name of the current common block. We get it from the BCOMM instead of the
4279 ECOMM to match IBM documentation (even though IBM puts the name both places
4280 like everyone else). */
4281 static char *common_block_name;
4283 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4284 to remain after this function returns. */
4287 common_block_start (const char *name, struct objfile *objfile)
4289 if (common_block_name != NULL)
4291 complaint (_("Invalid symbol data: common block within common block"));
4293 common_block = *get_local_symbols ();
4294 common_block_i = common_block ? common_block->nsyms : 0;
4295 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4299 /* Process a N_ECOMM symbol. */
4302 common_block_end (struct objfile *objfile)
4304 /* Symbols declared since the BCOMM are to have the common block
4305 start address added in when we know it. common_block and
4306 common_block_i point to the first symbol after the BCOMM in
4307 the local_symbols list; copy the list and hang it off the
4308 symbol for the common block name for later fixup. */
4311 struct pending *newobj = 0;
4312 struct pending *next;
4315 if (common_block_name == NULL)
4317 complaint (_("ECOMM symbol unmatched by BCOMM"));
4321 sym = allocate_symbol (objfile);
4322 /* Note: common_block_name already saved on objfile_obstack. */
4323 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4324 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4326 /* Now we copy all the symbols which have been defined since the BCOMM. */
4328 /* Copy all the struct pendings before common_block. */
4329 for (next = *get_local_symbols ();
4330 next != NULL && next != common_block;
4333 for (j = 0; j < next->nsyms; j++)
4334 add_symbol_to_list (next->symbol[j], &newobj);
4337 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4338 NULL, it means copy all the local symbols (which we already did
4341 if (common_block != NULL)
4342 for (j = common_block_i; j < common_block->nsyms; j++)
4343 add_symbol_to_list (common_block->symbol[j], &newobj);
4345 SYMBOL_TYPE (sym) = (struct type *) newobj;
4347 /* Should we be putting local_symbols back to what it was?
4350 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4351 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4352 global_sym_chain[i] = sym;
4353 common_block_name = NULL;
4356 /* Add a common block's start address to the offset of each symbol
4357 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4358 the common block name). */
4361 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4363 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4365 for (; next; next = next->next)
4369 for (j = next->nsyms - 1; j >= 0; j--)
4370 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4376 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4377 See add_undefined_type for more details. */
4380 add_undefined_type_noname (struct type *type, int typenums[2])
4384 nat.typenums[0] = typenums [0];
4385 nat.typenums[1] = typenums [1];
4388 if (noname_undefs_length == noname_undefs_allocated)
4390 noname_undefs_allocated *= 2;
4391 noname_undefs = (struct nat *)
4392 xrealloc ((char *) noname_undefs,
4393 noname_undefs_allocated * sizeof (struct nat));
4395 noname_undefs[noname_undefs_length++] = nat;
4398 /* Add TYPE to the UNDEF_TYPES vector.
4399 See add_undefined_type for more details. */
4402 add_undefined_type_1 (struct type *type)
4404 if (undef_types_length == undef_types_allocated)
4406 undef_types_allocated *= 2;
4407 undef_types = (struct type **)
4408 xrealloc ((char *) undef_types,
4409 undef_types_allocated * sizeof (struct type *));
4411 undef_types[undef_types_length++] = type;
4414 /* What about types defined as forward references inside of a small lexical
4416 /* Add a type to the list of undefined types to be checked through
4417 once this file has been read in.
4419 In practice, we actually maintain two such lists: The first list
4420 (UNDEF_TYPES) is used for types whose name has been provided, and
4421 concerns forward references (eg 'xs' or 'xu' forward references);
4422 the second list (NONAME_UNDEFS) is used for types whose name is
4423 unknown at creation time, because they were referenced through
4424 their type number before the actual type was declared.
4425 This function actually adds the given type to the proper list. */
4428 add_undefined_type (struct type *type, int typenums[2])
4430 if (TYPE_NAME (type) == NULL)
4431 add_undefined_type_noname (type, typenums);
4433 add_undefined_type_1 (type);
4436 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4439 cleanup_undefined_types_noname (struct objfile *objfile)
4443 for (i = 0; i < noname_undefs_length; i++)
4445 struct nat nat = noname_undefs[i];
4448 type = dbx_lookup_type (nat.typenums, objfile);
4449 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4451 /* The instance flags of the undefined type are still unset,
4452 and needs to be copied over from the reference type.
4453 Since replace_type expects them to be identical, we need
4454 to set these flags manually before hand. */
4455 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4456 replace_type (nat.type, *type);
4460 noname_undefs_length = 0;
4463 /* Go through each undefined type, see if it's still undefined, and fix it
4464 up if possible. We have two kinds of undefined types:
4466 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4467 Fix: update array length using the element bounds
4468 and the target type's length.
4469 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4470 yet defined at the time a pointer to it was made.
4471 Fix: Do a full lookup on the struct/union tag. */
4474 cleanup_undefined_types_1 (void)
4478 /* Iterate over every undefined type, and look for a symbol whose type
4479 matches our undefined type. The symbol matches if:
4480 1. It is a typedef in the STRUCT domain;
4481 2. It has the same name, and same type code;
4482 3. The instance flags are identical.
4484 It is important to check the instance flags, because we have seen
4485 examples where the debug info contained definitions such as:
4487 "foo_t:t30=B31=xefoo_t:"
4489 In this case, we have created an undefined type named "foo_t" whose
4490 instance flags is null (when processing "xefoo_t"), and then created
4491 another type with the same name, but with different instance flags
4492 ('B' means volatile). I think that the definition above is wrong,
4493 since the same type cannot be volatile and non-volatile at the same
4494 time, but we need to be able to cope with it when it happens. The
4495 approach taken here is to treat these two types as different. */
4497 for (type = undef_types; type < undef_types + undef_types_length; type++)
4499 switch (TYPE_CODE (*type))
4502 case TYPE_CODE_STRUCT:
4503 case TYPE_CODE_UNION:
4504 case TYPE_CODE_ENUM:
4506 /* Check if it has been defined since. Need to do this here
4507 as well as in check_typedef to deal with the (legitimate in
4508 C though not C++) case of several types with the same name
4509 in different source files. */
4510 if (TYPE_STUB (*type))
4512 struct pending *ppt;
4514 /* Name of the type, without "struct" or "union". */
4515 const char *type_name = TYPE_NAME (*type);
4517 if (type_name == NULL)
4519 complaint (_("need a type name"));
4522 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4524 for (i = 0; i < ppt->nsyms; i++)
4526 struct symbol *sym = ppt->symbol[i];
4528 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4529 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4530 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4532 && (TYPE_INSTANCE_FLAGS (*type) ==
4533 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4534 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4536 replace_type (*type, SYMBOL_TYPE (sym));
4545 complaint (_("forward-referenced types left unresolved, "
4553 undef_types_length = 0;
4556 /* Try to fix all the undefined types we ecountered while processing
4560 cleanup_undefined_stabs_types (struct objfile *objfile)
4562 cleanup_undefined_types_1 ();
4563 cleanup_undefined_types_noname (objfile);
4566 /* See stabsread.h. */
4569 scan_file_globals (struct objfile *objfile)
4572 struct symbol *sym, *prev;
4573 struct objfile *resolve_objfile;
4575 /* SVR4 based linkers copy referenced global symbols from shared
4576 libraries to the main executable.
4577 If we are scanning the symbols for a shared library, try to resolve
4578 them from the minimal symbols of the main executable first. */
4580 if (symfile_objfile && objfile != symfile_objfile)
4581 resolve_objfile = symfile_objfile;
4583 resolve_objfile = objfile;
4587 /* Avoid expensive loop through all minimal symbols if there are
4588 no unresolved symbols. */
4589 for (hash = 0; hash < HASHSIZE; hash++)
4591 if (global_sym_chain[hash])
4594 if (hash >= HASHSIZE)
4597 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4601 /* Skip static symbols. */
4602 switch (MSYMBOL_TYPE (msymbol))
4614 /* Get the hash index and check all the symbols
4615 under that hash index. */
4617 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4619 for (sym = global_sym_chain[hash]; sym;)
4621 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4622 SYMBOL_LINKAGE_NAME (sym)) == 0)
4624 /* Splice this symbol out of the hash chain and
4625 assign the value we have to it. */
4628 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4632 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4635 /* Check to see whether we need to fix up a common block. */
4636 /* Note: this code might be executed several times for
4637 the same symbol if there are multiple references. */
4640 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4642 fix_common_block (sym,
4643 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4648 SYMBOL_VALUE_ADDRESS (sym)
4649 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4651 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4656 sym = SYMBOL_VALUE_CHAIN (prev);
4660 sym = global_sym_chain[hash];
4666 sym = SYMBOL_VALUE_CHAIN (sym);
4670 if (resolve_objfile == objfile)
4672 resolve_objfile = objfile;
4675 /* Change the storage class of any remaining unresolved globals to
4676 LOC_UNRESOLVED and remove them from the chain. */
4677 for (hash = 0; hash < HASHSIZE; hash++)
4679 sym = global_sym_chain[hash];
4683 sym = SYMBOL_VALUE_CHAIN (sym);
4685 /* Change the symbol address from the misleading chain value
4687 SYMBOL_VALUE_ADDRESS (prev) = 0;
4689 /* Complain about unresolved common block symbols. */
4690 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4691 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4693 complaint (_("%s: common block `%s' from "
4694 "global_sym_chain unresolved"),
4695 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4698 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4701 /* Initialize anything that needs initializing when starting to read
4702 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4706 stabsread_init (void)
4710 /* Initialize anything that needs initializing when a completely new
4711 symbol file is specified (not just adding some symbols from another
4712 file, e.g. a shared library). */
4715 stabsread_new_init (void)
4717 /* Empty the hash table of global syms looking for values. */
4718 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4721 /* Initialize anything that needs initializing at the same time as
4722 start_symtab() is called. */
4727 global_stabs = NULL; /* AIX COFF */
4728 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4729 n_this_object_header_files = 1;
4730 type_vector_length = 0;
4731 type_vector = (struct type **) 0;
4732 within_function = 0;
4734 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4735 common_block_name = NULL;
4738 /* Call after end_symtab(). */
4745 xfree (type_vector);
4748 type_vector_length = 0;
4749 previous_stab_code = 0;
4753 finish_global_stabs (struct objfile *objfile)
4757 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4758 xfree (global_stabs);
4759 global_stabs = NULL;
4763 /* Find the end of the name, delimited by a ':', but don't match
4764 ObjC symbols which look like -[Foo bar::]:bla. */
4766 find_name_end (const char *name)
4768 const char *s = name;
4770 if (s[0] == '-' || *s == '+')
4772 /* Must be an ObjC method symbol. */
4775 error (_("invalid symbol name \"%s\""), name);
4777 s = strchr (s, ']');
4780 error (_("invalid symbol name \"%s\""), name);
4782 return strchr (s, ':');
4786 return strchr (s, ':');
4790 /* See stabsread.h. */
4793 hashname (const char *name)
4795 return hash (name, strlen (name)) % HASHSIZE;
4798 /* Initializer for this module. */
4801 _initialize_stabsread (void)
4803 rs6000_builtin_type_data = register_objfile_data ();
4805 undef_types_allocated = 20;
4806 undef_types_length = 0;
4807 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4809 noname_undefs_allocated = 20;
4810 noname_undefs_length = 0;
4811 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4813 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4814 &stab_register_funcs);
4815 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4816 &stab_register_funcs);