1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
40 #include "reggroups.h"
45 #include "dwarf2-frame.h"
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
60 /* The tdep structure. */
63 /* The spufs ID identifying our address space. */
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
71 /* SPU-specific vector type. */
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77 if (!tdep->spu_builtin_type_vec128)
79 const struct builtin_type *bt = builtin_type (gdbarch);
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
101 tdep->spu_builtin_type_vec128 = t;
104 return tdep->spu_builtin_type_vec128;
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
116 static const char *register_names[] =
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
142 return register_names[reg_nr];
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
154 return builtin_type (gdbarch)->builtin_uint32;
157 return builtin_type (gdbarch)->builtin_func_ptr;
160 return builtin_type (gdbarch)->builtin_data_ptr;
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
182 /* Pseudo registers for preferred slots - stack pointer. */
184 static enum register_status
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
188 struct gdbarch *gdbarch = regcache->arch ();
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 enum register_status status;
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (¤t_target, TARGET_OBJECT_SPU, annex,
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
216 enum register_status status;
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
224 memcpy (buf, reg, 4);
227 case SPU_FPSCR_REGNUM:
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
256 struct gdbarch *gdbarch = regcache->arch ();
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (¤t_target, TARGET_OBJECT_SPU, annex,
267 (gdb_byte *) reg, 0, strlen (reg));
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
314 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
336 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
358 /* Value conversion -- access scalar values at the preferred slot. */
360 static struct value *
361 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
364 struct value *value = default_value_from_register (gdbarch, type,
366 LONGEST len = TYPE_LENGTH (type);
368 if (regnum < SPU_NUM_GPRS && len < 16)
370 int preferred_slot = len < 4 ? 4 - len : 0;
371 set_value_offset (value, preferred_slot);
377 /* Register groups. */
380 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
396 return default_register_reggroup_p (gdbarch, regnum, group);
399 /* DWARF-2 register numbers. */
402 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
409 /* Address handling. */
412 spu_gdbarch_id (struct gdbarch *gdbarch)
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
417 /* The objfile architecture of a standalone SPU executable does not
418 provide an SPU ID. Retrieve it from the objfile's relocated
419 address range in this special case. */
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
430 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
439 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
448 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
451 if (strcmp (name, "__ea") == 0)
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
461 spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
470 spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
473 int id = spu_gdbarch_id (gdbarch);
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
482 return addr? SPUADDR (id, addr) : 0;
486 spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
489 int id = spu_gdbarch_id (gdbarch);
490 ULONGEST addr = unpack_long (type, buf);
492 return SPUADDR (id, addr);
496 /* Decoding SPU instructions. */
533 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
535 if ((insn >> 21) == op)
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
547 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
549 if ((insn >> 28) == op)
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
562 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
564 if ((insn >> 21) == op)
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
576 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
578 if ((insn >> 24) == op)
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
590 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
592 if ((insn >> 23) == op)
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
603 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
605 if ((insn >> 25) == op)
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
616 is_branch (unsigned int insn, int *offset, int *reg)
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
627 *reg = SPU_PC_REGNUM;
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
655 /* Prolog parsing. */
657 struct spu_prologue_data
659 /* Stack frame size. -1 if analysis was unsuccessful. */
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
671 spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
673 struct spu_prologue_data *data)
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
680 int reg_immed[SPU_NUM_GPRS];
682 CORE_ADDR prolog_pc = start_pc;
687 /* Initialize DATA to default values. */
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
701 /* Scan instructions until the first branch.
703 The following instructions are important prolog components:
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
708 - The first instruction to save the backchain.
710 We return the instruction after the latest of these four,
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
728 These are used to compute the CFA and REG_OFFSET output. */
730 for (pc = start_pc; pc < end_pc; pc += 4)
733 int rt, ra, rb, rc, immed;
735 if (target_read_memory (pc, buf, 4))
737 insn = extract_unsigned_integer (buf, 4, byte_order);
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
793 reg_immed[rt] = immed;
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
801 reg_immed[rt] = immed & 0x3ffff;
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
854 /* Return the first instruction after the prologue starting at PC. */
856 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
858 struct spu_prologue_data data;
859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
862 /* Return the frame pointer in use at address PC. */
864 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
867 struct spu_prologue_data data;
868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
870 if (data.size != -1 && data.cfa_reg != -1)
872 /* The 'frame pointer' address is CFA minus frame size. */
874 *offset = data.cfa_offset - data.size;
878 /* ??? We don't really know ... */
879 *reg = SPU_SP_REGNUM;
884 /* Implement the stack_frame_destroyed_p gdbarch method.
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
901 spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
907 int rt, ra, rb, immed;
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
912 const int spu_max_epilogue_size = 64 * 4;
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
920 epilogue_start = pc - spu_max_epilogue_size;
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
925 epilogue_end = pc + spu_max_epilogue_size;
927 /* Scan forward until next 'bi $0'. */
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
931 if (target_read_memory (scan_pc, buf, 4))
933 insn = extract_unsigned_integer (buf, 4, byte_order);
935 if (is_branch (insn, &immed, &ra))
937 if (immed == 0 && ra == SPU_LR_REGNUM)
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
947 if (rt == SPU_RAW_SP_REGNUM)
952 if (scan_pc >= epilogue_end)
955 /* Scan backward until adjustment to stack pointer (R1). */
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
959 if (target_read_memory (scan_pc, buf, 4))
961 insn = extract_unsigned_integer (buf, 4, byte_order);
963 if (is_branch (insn, &immed, &ra))
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
970 if (rt == SPU_RAW_SP_REGNUM)
979 /* Normal stack frames. */
981 struct spu_unwind_cache
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
987 struct trad_frame_saved_reg *saved_regs;
990 static struct spu_unwind_cache *
991 spu_frame_unwind_cache (struct frame_info *this_frame,
992 void **this_prologue_cache)
994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
999 CORE_ADDR id = tdep->id;
1002 if (*this_prologue_cache)
1003 return (struct spu_unwind_cache *) *this_prologue_cache;
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1008 info->frame_base = 0;
1009 info->local_base = 0;
1011 /* Find the start of the current function, and analyze its prologue. */
1012 info->func = get_frame_func (this_frame);
1013 if (info->func == 0)
1015 /* Fall back to using the current PC as frame ID. */
1016 info->func = get_frame_pc (this_frame);
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1030 get_frame_register (this_frame, data.cfa_reg, buf);
1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1032 cfa = SPUADDR (id, cfa);
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1046 /* Otherwise, fall back to reading the backchain link. */
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1057 lslr = (ULONGEST) -1;
1059 /* Get the backchain. */
1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
1066 if (status && backchain > 0 && backchain <= lslr)
1068 /* Assume the link register is saved into its slot. */
1069 if (backchain + 16 <= lslr)
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1083 /* The previous SP is equal to the CFA. */
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1102 extract_unsigned_integer (buf + 8, 4, byte_order));
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1105 extract_unsigned_integer (buf, 4, byte_order));
1111 spu_frame_this_id (struct frame_info *this_frame,
1112 void **this_prologue_cache, struct frame_id *this_id)
1114 struct spu_unwind_cache *info =
1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1117 if (info->frame_base == 0)
1120 *this_id = frame_id_build (info->frame_base, info->func);
1123 static struct value *
1124 spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
1127 struct spu_unwind_cache *info
1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1137 static const struct frame_unwind spu_frame_unwind = {
1139 default_frame_unwind_stop_reason,
1141 spu_frame_prev_register,
1143 default_frame_sniffer
1147 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1149 struct spu_unwind_cache *info
1150 = spu_frame_unwind_cache (this_frame, this_cache);
1151 return info->local_base;
1154 static const struct frame_base spu_frame_base = {
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1162 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
1167 return SPUADDR (tdep->id, pc & -4);
1171 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
1179 spu_read_pc (struct regcache *regcache)
1181 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
1183 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1184 /* Mask off interrupt enable bit. */
1185 return SPUADDR (tdep->id, pc & -4);
1189 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1191 /* Keep interrupt enabled state unchanged. */
1194 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1195 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1196 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1200 /* Cell/B.E. cross-architecture unwinder support. */
1202 struct spu2ppu_cache
1204 struct frame_id frame_id;
1205 struct regcache *regcache;
1208 static struct gdbarch *
1209 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1211 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1212 return cache->regcache->arch ();
1216 spu2ppu_this_id (struct frame_info *this_frame,
1217 void **this_cache, struct frame_id *this_id)
1219 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1220 *this_id = cache->frame_id;
1223 static struct value *
1224 spu2ppu_prev_register (struct frame_info *this_frame,
1225 void **this_cache, int regnum)
1227 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1228 struct gdbarch *gdbarch = cache->regcache->arch ();
1231 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1232 regcache_cooked_read (cache->regcache, regnum, buf);
1233 return frame_unwind_got_bytes (this_frame, regnum, buf);
1237 spu2ppu_sniffer (const struct frame_unwind *self,
1238 struct frame_info *this_frame, void **this_prologue_cache)
1240 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1242 CORE_ADDR base, func, backchain;
1245 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1248 base = get_frame_sp (this_frame);
1249 func = get_frame_pc (this_frame);
1250 if (target_read_memory (base, buf, 4))
1252 backchain = extract_unsigned_integer (buf, 4, byte_order);
1256 struct frame_info *fi;
1258 struct spu2ppu_cache *cache
1259 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1261 cache->frame_id = frame_id_build (base + 16, func);
1263 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1264 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1269 cache->regcache = frame_save_as_regcache (fi).release ();
1270 *this_prologue_cache = cache;
1275 struct regcache *regcache;
1276 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1277 cache->regcache = regcache_dup (regcache);
1278 *this_prologue_cache = cache;
1287 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1289 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
1290 delete cache->regcache;
1293 static const struct frame_unwind spu2ppu_unwind = {
1295 default_frame_unwind_stop_reason,
1297 spu2ppu_prev_register,
1300 spu2ppu_dealloc_cache,
1305 /* Function calling convention. */
1308 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1314 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1315 struct value **args, int nargs, struct type *value_type,
1316 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1317 struct regcache *regcache)
1319 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1320 sp = (sp - 4) & ~15;
1321 /* Store the address of that breakpoint */
1323 /* The call starts at the callee's entry point. */
1330 spu_scalar_value_p (struct type *type)
1332 switch (TYPE_CODE (type))
1335 case TYPE_CODE_ENUM:
1336 case TYPE_CODE_RANGE:
1337 case TYPE_CODE_CHAR:
1338 case TYPE_CODE_BOOL:
1341 case TYPE_CODE_RVALUE_REF:
1342 return TYPE_LENGTH (type) <= 16;
1350 spu_value_to_regcache (struct regcache *regcache, int regnum,
1351 struct type *type, const gdb_byte *in)
1353 int len = TYPE_LENGTH (type);
1355 if (spu_scalar_value_p (type))
1357 int preferred_slot = len < 4 ? 4 - len : 0;
1358 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1364 regcache_cooked_write (regcache, regnum++, in);
1370 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1375 spu_regcache_to_value (struct regcache *regcache, int regnum,
1376 struct type *type, gdb_byte *out)
1378 int len = TYPE_LENGTH (type);
1380 if (spu_scalar_value_p (type))
1382 int preferred_slot = len < 4 ? 4 - len : 0;
1383 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1389 regcache_cooked_read (regcache, regnum++, out);
1395 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1400 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1401 struct regcache *regcache, CORE_ADDR bp_addr,
1402 int nargs, struct value **args, CORE_ADDR sp,
1403 int struct_return, CORE_ADDR struct_addr)
1405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1408 int regnum = SPU_ARG1_REGNUM;
1412 /* Set the return address. */
1413 memset (buf, 0, sizeof buf);
1414 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1415 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1417 /* If STRUCT_RETURN is true, then the struct return address (in
1418 STRUCT_ADDR) will consume the first argument-passing register.
1419 Both adjust the register count and store that value. */
1422 memset (buf, 0, sizeof buf);
1423 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1424 regcache_cooked_write (regcache, regnum++, buf);
1427 /* Fill in argument registers. */
1428 for (i = 0; i < nargs; i++)
1430 struct value *arg = args[i];
1431 struct type *type = check_typedef (value_type (arg));
1432 const gdb_byte *contents = value_contents (arg);
1433 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1435 /* If the argument doesn't wholly fit into registers, it and
1436 all subsequent arguments go to the stack. */
1437 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1443 spu_value_to_regcache (regcache, regnum, type, contents);
1447 /* Overflow arguments go to the stack. */
1448 if (stack_arg != -1)
1452 /* Allocate all required stack size. */
1453 for (i = stack_arg; i < nargs; i++)
1455 struct type *type = check_typedef (value_type (args[i]));
1456 sp -= align_up (TYPE_LENGTH (type), 16);
1459 /* Fill in stack arguments. */
1461 for (i = stack_arg; i < nargs; i++)
1463 struct value *arg = args[i];
1464 struct type *type = check_typedef (value_type (arg));
1465 int len = TYPE_LENGTH (type);
1468 if (spu_scalar_value_p (type))
1469 preferred_slot = len < 4 ? 4 - len : 0;
1473 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1474 ap += align_up (TYPE_LENGTH (type), 16);
1478 /* Allocate stack frame header. */
1481 /* Store stack back chain. */
1482 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1483 target_write_memory (sp, buf, 16);
1485 /* Finally, update all slots of the SP register. */
1486 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1487 for (i = 0; i < 4; i++)
1489 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1490 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1492 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1497 static struct frame_id
1498 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1501 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1502 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1503 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1506 /* Function return value access. */
1508 static enum return_value_convention
1509 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1510 struct type *type, struct regcache *regcache,
1511 gdb_byte *out, const gdb_byte *in)
1513 struct type *func_type = function ? value_type (function) : NULL;
1514 enum return_value_convention rvc;
1515 int opencl_vector = 0;
1519 func_type = check_typedef (func_type);
1521 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1522 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1524 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1525 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1526 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1527 && TYPE_VECTOR (type))
1531 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1532 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1534 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1540 case RETURN_VALUE_REGISTER_CONVENTION:
1541 if (opencl_vector && TYPE_LENGTH (type) == 2)
1542 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1544 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1547 case RETURN_VALUE_STRUCT_CONVENTION:
1548 error (_("Cannot set function return value."));
1556 case RETURN_VALUE_REGISTER_CONVENTION:
1557 if (opencl_vector && TYPE_LENGTH (type) == 2)
1558 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1560 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1563 case RETURN_VALUE_STRUCT_CONVENTION:
1564 error (_("Function return value unknown."));
1574 constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
1576 typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
1579 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1580 struct bp_target_info *bp_tgt)
1582 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1583 that in a combined application, we have some breakpoints inserted in SPU
1584 code, and now the application forks (on the PPU side). GDB common code
1585 will assume that the fork system call copied all breakpoints into the new
1586 process' address space, and that all those copies now need to be removed
1587 (see breakpoint.c:detach_breakpoints).
1589 While this is certainly true for PPU side breakpoints, it is not true
1590 for SPU side breakpoints. fork will clone the SPU context file
1591 descriptors, so that all the existing SPU contexts are in accessible
1592 in the new process. However, the contents of the SPU contexts themselves
1593 are *not* cloned. Therefore the effect of detach_breakpoints is to
1594 remove SPU breakpoints from the *original* SPU context's local store
1595 -- this is not the correct behaviour.
1597 The workaround is to check whether the PID we are asked to remove this
1598 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1599 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1600 true in the context of detach_breakpoints. If so, we simply do nothing.
1601 [ Note that for the fork child process, it does not matter if breakpoints
1602 remain inserted, because those SPU contexts are not runnable anyway --
1603 the Linux kernel allows only the original process to invoke spu_run. */
1605 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1608 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1612 /* Software single-stepping support. */
1614 static std::vector<CORE_ADDR>
1615 spu_software_single_step (struct regcache *regcache)
1617 struct gdbarch *gdbarch = regcache->arch ();
1618 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1619 CORE_ADDR pc, next_pc;
1624 std::vector<CORE_ADDR> next_pcs;
1626 pc = regcache_read_pc (regcache);
1628 if (target_read_memory (pc, buf, 4))
1629 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1630 paddress (gdbarch, pc));
1632 insn = extract_unsigned_integer (buf, 4, byte_order);
1634 /* Get local store limit. */
1635 if ((regcache_cooked_read_unsigned (regcache, SPU_LSLR_REGNUM, &lslr)
1636 != REG_VALID) || !lslr)
1637 lslr = (ULONGEST) -1;
1639 /* Next sequential instruction is at PC + 4, except if the current
1640 instruction is a PPE-assisted call, in which case it is at PC + 8.
1641 Wrap around LS limit to be on the safe side. */
1642 if ((insn & 0xffffff00) == 0x00002100)
1643 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1645 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1647 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), next_pc));
1649 if (is_branch (insn, &offset, ®))
1651 CORE_ADDR target = offset;
1653 if (reg == SPU_PC_REGNUM)
1654 target += SPUADDR_ADDR (pc);
1657 regcache_raw_read_part (regcache, reg, 0, 4, buf);
1658 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1661 target = target & lslr;
1662 if (target != next_pc)
1663 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), target));
1670 /* Longjmp support. */
1673 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1675 struct gdbarch *gdbarch = get_frame_arch (frame);
1676 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1682 /* Jump buffer is pointed to by the argument register $r3. */
1683 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1687 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1688 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1691 *pc = extract_unsigned_integer (buf, 4, byte_order);
1692 *pc = SPUADDR (tdep->id, *pc);
1699 struct spu_dis_asm_info : disassemble_info
1705 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1707 struct spu_dis_asm_info *data = (struct spu_dis_asm_info *) info;
1708 gdb_disassembler *di
1709 = static_cast<gdb_disassembler *>(info->application_data);
1711 print_address (di->arch (), SPUADDR (data->id, addr),
1712 (struct ui_file *) info->stream);
1716 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1718 /* The opcodes disassembler does 18-bit address arithmetic. Make
1719 sure the SPU ID encoded in the high bits is added back when we
1720 call print_address. */
1721 struct spu_dis_asm_info spu_info;
1723 memcpy (&spu_info, info, sizeof (*info));
1724 spu_info.id = SPUADDR_SPU (memaddr);
1725 spu_info.print_address_func = spu_dis_asm_print_address;
1726 return default_print_insn (memaddr, &spu_info);
1730 /* Target overlays for the SPU overlay manager.
1732 See the documentation of simple_overlay_update for how the
1733 interface is supposed to work.
1735 Data structures used by the overlay manager:
1743 } _ovly_table[]; -- one entry per overlay section
1745 struct ovly_buf_table
1748 } _ovly_buf_table[]; -- one entry per overlay buffer
1750 _ovly_table should never change.
1752 Both tables are aligned to a 16-byte boundary, the symbols
1753 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1754 size set to the size of the respective array. buf in _ovly_table is
1755 an index into _ovly_buf_table.
1757 mapped is an index into _ovly_table. Both the mapped and buf indices start
1758 from one to reference the first entry in their respective tables. */
1760 /* Using the per-objfile private data mechanism, we store for each
1761 objfile an array of "struct spu_overlay_table" structures, one
1762 for each obj_section of the objfile. This structure holds two
1763 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1764 is *not* an overlay section. If it is non-zero, it represents
1765 a target address. The overlay section is mapped iff the target
1766 integer at this location equals MAPPED_VAL. */
1768 static const struct objfile_data *spu_overlay_data;
1770 struct spu_overlay_table
1772 CORE_ADDR mapped_ptr;
1773 CORE_ADDR mapped_val;
1776 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1777 the _ovly_table data structure from the target and initialize the
1778 spu_overlay_table data structure from it. */
1779 static struct spu_overlay_table *
1780 spu_get_overlay_table (struct objfile *objfile)
1782 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1783 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1784 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1785 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1786 unsigned ovly_table_size, ovly_buf_table_size;
1787 struct spu_overlay_table *tbl;
1788 struct obj_section *osect;
1789 gdb_byte *ovly_table;
1792 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
1796 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1797 if (!ovly_table_msym.minsym)
1800 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1802 if (!ovly_buf_table_msym.minsym)
1805 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1806 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1808 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1809 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1811 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
1812 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1814 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1815 objfile->sections_end - objfile->sections,
1816 struct spu_overlay_table);
1818 for (i = 0; i < ovly_table_size / 16; i++)
1820 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1822 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1824 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1826 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1829 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1832 ALL_OBJFILE_OSECTIONS (objfile, osect)
1833 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1834 && pos == osect->the_bfd_section->filepos)
1836 int ndx = osect - objfile->sections;
1837 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1838 tbl[ndx].mapped_val = i + 1;
1844 set_objfile_data (objfile, spu_overlay_data, tbl);
1848 /* Read _ovly_buf_table entry from the target to dermine whether
1849 OSECT is currently mapped, and update the mapped state. */
1851 spu_overlay_update_osect (struct obj_section *osect)
1853 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1854 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1855 struct spu_overlay_table *ovly_table;
1858 ovly_table = spu_get_overlay_table (osect->objfile);
1862 ovly_table += osect - osect->objfile->sections;
1863 if (ovly_table->mapped_ptr == 0)
1866 id = SPUADDR_SPU (obj_section_addr (osect));
1867 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1869 osect->ovly_mapped = (val == ovly_table->mapped_val);
1872 /* If OSECT is NULL, then update all sections' mapped state.
1873 If OSECT is non-NULL, then update only OSECT's mapped state. */
1875 spu_overlay_update (struct obj_section *osect)
1877 /* Just one section. */
1879 spu_overlay_update_osect (osect);
1884 struct objfile *objfile;
1886 ALL_OBJSECTIONS (objfile, osect)
1887 if (section_is_overlay (osect))
1888 spu_overlay_update_osect (osect);
1892 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1893 If there is one, go through all sections and make sure for non-
1894 overlay sections LMA equals VMA, while for overlay sections LMA
1895 is larger than SPU_OVERLAY_LMA. */
1897 spu_overlay_new_objfile (struct objfile *objfile)
1899 struct spu_overlay_table *ovly_table;
1900 struct obj_section *osect;
1902 /* If we've already touched this file, do nothing. */
1903 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1906 /* Consider only SPU objfiles. */
1907 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1910 /* Check if this objfile has overlays. */
1911 ovly_table = spu_get_overlay_table (objfile);
1915 /* Now go and fiddle with all the LMAs. */
1916 ALL_OBJFILE_OSECTIONS (objfile, osect)
1918 bfd *obfd = objfile->obfd;
1919 asection *bsect = osect->the_bfd_section;
1920 int ndx = osect - objfile->sections;
1922 if (ovly_table[ndx].mapped_ptr == 0)
1923 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1925 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1930 /* Insert temporary breakpoint on "main" function of newly loaded
1931 SPE context OBJFILE. */
1933 spu_catch_start (struct objfile *objfile)
1935 struct bound_minimal_symbol minsym;
1936 struct compunit_symtab *cust;
1939 /* Do this only if requested by "set spu stop-on-load on". */
1940 if (!spu_stop_on_load_p)
1943 /* Consider only SPU objfiles. */
1944 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1947 /* The main objfile is handled differently. */
1948 if (objfile == symfile_objfile)
1951 /* There can be multiple symbols named "main". Search for the
1952 "main" in *this* objfile. */
1953 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1957 /* If we have debugging information, try to use it -- this
1958 will allow us to properly skip the prologue. */
1959 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1961 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1965 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1966 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1968 struct symtab_and_line sal;
1970 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
1973 fixup_symbol_section (sym, objfile);
1974 sal = find_function_start_sal (sym, 1);
1979 /* Use a numerical address for the set_breakpoint command to avoid having
1980 the breakpoint re-set incorrectly. */
1981 event_location_up location = new_address_location (pc, NULL, 0);
1982 create_breakpoint (get_objfile_arch (objfile), location.get (),
1983 NULL /* cond_string */, -1 /* thread */,
1984 NULL /* extra_string */,
1985 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1986 bp_breakpoint /* type_wanted */,
1987 0 /* ignore_count */,
1988 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1989 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
1990 1 /* enabled */, 0 /* internal */, 0);
1994 /* Look up OBJFILE loaded into FRAME's SPU context. */
1995 static struct objfile *
1996 spu_objfile_from_frame (struct frame_info *frame)
1998 struct gdbarch *gdbarch = get_frame_arch (frame);
1999 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2000 struct objfile *obj;
2002 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2007 if (obj->sections != obj->sections_end
2008 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2015 /* Flush cache for ea pointer access if available. */
2017 flush_ea_cache (void)
2019 struct bound_minimal_symbol msymbol;
2020 struct objfile *obj;
2022 if (!has_stack_frames ())
2025 obj = spu_objfile_from_frame (get_current_frame ());
2029 /* Lookup inferior function __cache_flush. */
2030 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2031 if (msymbol.minsym != NULL)
2036 type = objfile_type (obj)->builtin_void;
2037 type = lookup_function_type (type);
2038 type = lookup_pointer_type (type);
2039 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2041 call_function_by_hand (value_from_pointer (type, addr), NULL, 0, NULL);
2045 /* This handler is called when the inferior has stopped. If it is stopped in
2046 SPU architecture then flush the ea cache if used. */
2048 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2050 if (!spu_auto_flush_cache_p)
2053 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2054 re-entering this function when __cache_flush stops. */
2055 spu_auto_flush_cache_p = 0;
2057 spu_auto_flush_cache_p = 1;
2061 /* "info spu" commands. */
2064 info_spu_event_command (const char *args, int from_tty)
2066 struct frame_info *frame = get_selected_frame (NULL);
2067 ULONGEST event_status = 0;
2068 ULONGEST event_mask = 0;
2074 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2075 error (_("\"info spu\" is only supported on the SPU architecture."));
2077 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2079 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2080 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2081 buf, 0, (sizeof (buf) - 1));
2083 error (_("Could not read event_status."));
2085 event_status = strtoulst ((char *) buf, NULL, 16);
2087 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2088 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2089 buf, 0, (sizeof (buf) - 1));
2091 error (_("Could not read event_mask."));
2093 event_mask = strtoulst ((char *) buf, NULL, 16);
2095 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoEvent");
2097 if (current_uiout->is_mi_like_p ())
2099 current_uiout->field_fmt ("event_status",
2100 "0x%s", phex_nz (event_status, 4));
2101 current_uiout->field_fmt ("event_mask",
2102 "0x%s", phex_nz (event_mask, 4));
2106 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2107 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2112 info_spu_signal_command (const char *args, int from_tty)
2114 struct frame_info *frame = get_selected_frame (NULL);
2115 struct gdbarch *gdbarch = get_frame_arch (frame);
2116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2117 ULONGEST signal1 = 0;
2118 ULONGEST signal1_type = 0;
2119 int signal1_pending = 0;
2120 ULONGEST signal2 = 0;
2121 ULONGEST signal2_type = 0;
2122 int signal2_pending = 0;
2128 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2129 error (_("\"info spu\" is only supported on the SPU architecture."));
2131 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2133 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2134 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2136 error (_("Could not read signal1."));
2139 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2140 signal1_pending = 1;
2143 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2144 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2145 buf, 0, (sizeof (buf) - 1));
2147 error (_("Could not read signal1_type."));
2149 signal1_type = strtoulst ((char *) buf, NULL, 16);
2151 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2152 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2154 error (_("Could not read signal2."));
2157 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2158 signal2_pending = 1;
2161 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2162 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2163 buf, 0, (sizeof (buf) - 1));
2165 error (_("Could not read signal2_type."));
2167 signal2_type = strtoulst ((char *) buf, NULL, 16);
2169 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoSignal");
2171 if (current_uiout->is_mi_like_p ())
2173 current_uiout->field_int ("signal1_pending", signal1_pending);
2174 current_uiout->field_fmt ("signal1", "0x%s", phex_nz (signal1, 4));
2175 current_uiout->field_int ("signal1_type", signal1_type);
2176 current_uiout->field_int ("signal2_pending", signal2_pending);
2177 current_uiout->field_fmt ("signal2", "0x%s", phex_nz (signal2, 4));
2178 current_uiout->field_int ("signal2_type", signal2_type);
2182 if (signal1_pending)
2183 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2185 printf_filtered (_("Signal 1 not pending "));
2188 printf_filtered (_("(Type Or)\n"));
2190 printf_filtered (_("(Type Overwrite)\n"));
2192 if (signal2_pending)
2193 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2195 printf_filtered (_("Signal 2 not pending "));
2198 printf_filtered (_("(Type Or)\n"));
2200 printf_filtered (_("(Type Overwrite)\n"));
2205 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2206 const char *field, const char *msg)
2213 ui_out_emit_table table_emitter (current_uiout, 1, nr, "mbox");
2215 current_uiout->table_header (32, ui_left, field, msg);
2216 current_uiout->table_body ();
2218 for (i = 0; i < nr; i++)
2222 ui_out_emit_tuple tuple_emitter (current_uiout, "mbox");
2223 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2224 current_uiout->field_fmt (field, "0x%s", phex (val, 4));
2227 if (!current_uiout->is_mi_like_p ())
2228 printf_filtered ("\n");
2233 info_spu_mailbox_command (const char *args, int from_tty)
2235 struct frame_info *frame = get_selected_frame (NULL);
2236 struct gdbarch *gdbarch = get_frame_arch (frame);
2237 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2243 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2244 error (_("\"info spu\" is only supported on the SPU architecture."));
2246 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2248 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoMailbox");
2250 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2251 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2252 buf, 0, sizeof buf);
2254 error (_("Could not read mbox_info."));
2256 info_spu_mailbox_list (buf, len / 4, byte_order,
2257 "mbox", "SPU Outbound Mailbox");
2259 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2260 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2261 buf, 0, sizeof buf);
2263 error (_("Could not read ibox_info."));
2265 info_spu_mailbox_list (buf, len / 4, byte_order,
2266 "ibox", "SPU Outbound Interrupt Mailbox");
2268 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2269 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2270 buf, 0, sizeof buf);
2272 error (_("Could not read wbox_info."));
2274 info_spu_mailbox_list (buf, len / 4, byte_order,
2275 "wbox", "SPU Inbound Mailbox");
2279 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2281 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2282 return (word >> (63 - last)) & mask;
2286 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2288 static const char *spu_mfc_opcode[256] =
2290 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2291 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2292 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2293 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2294 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2295 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2296 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2297 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2298 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2299 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2300 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2301 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2302 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2303 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2304 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2305 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2306 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2307 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2308 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2309 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2310 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2311 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2312 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2313 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2314 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2315 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2316 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2317 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2318 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2319 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2320 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2321 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 int *seq = XALLOCAVEC (int, nr);
2329 /* Determine sequence in which to display (valid) entries. */
2330 for (i = 0; i < nr; i++)
2332 /* Search for the first valid entry all of whose
2333 dependencies are met. */
2334 for (j = 0; j < nr; j++)
2336 ULONGEST mfc_cq_dw3;
2337 ULONGEST dependencies;
2339 if (done & (1 << (nr - 1 - j)))
2343 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2344 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2347 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2348 if ((dependencies & done) != dependencies)
2352 done |= 1 << (nr - 1 - j);
2363 ui_out_emit_table table_emitter (current_uiout, 10, nr, "dma_cmd");
2365 current_uiout->table_header (7, ui_left, "opcode", "Opcode");
2366 current_uiout->table_header (3, ui_left, "tag", "Tag");
2367 current_uiout->table_header (3, ui_left, "tid", "TId");
2368 current_uiout->table_header (3, ui_left, "rid", "RId");
2369 current_uiout->table_header (18, ui_left, "ea", "EA");
2370 current_uiout->table_header (7, ui_left, "lsa", "LSA");
2371 current_uiout->table_header (7, ui_left, "size", "Size");
2372 current_uiout->table_header (7, ui_left, "lstaddr", "LstAddr");
2373 current_uiout->table_header (7, ui_left, "lstsize", "LstSize");
2374 current_uiout->table_header (1, ui_left, "error_p", "E");
2376 current_uiout->table_body ();
2378 for (i = 0; i < nr; i++)
2380 ULONGEST mfc_cq_dw0;
2381 ULONGEST mfc_cq_dw1;
2382 ULONGEST mfc_cq_dw2;
2383 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2384 int list_lsa, list_size, mfc_lsa, mfc_size;
2386 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2388 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2389 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2392 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2394 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2396 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2398 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2399 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2400 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2401 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2402 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2403 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2404 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2406 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2407 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2409 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2410 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2411 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2412 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2413 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2416 ui_out_emit_tuple tuple_emitter (current_uiout, "cmd");
2418 if (spu_mfc_opcode[mfc_cmd_opcode])
2419 current_uiout->field_string ("opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2421 current_uiout->field_int ("opcode", mfc_cmd_opcode);
2423 current_uiout->field_int ("tag", mfc_cmd_tag);
2424 current_uiout->field_int ("tid", tclass_id);
2425 current_uiout->field_int ("rid", rclass_id);
2428 current_uiout->field_fmt ("ea", "0x%s", phex (mfc_ea, 8));
2430 current_uiout->field_skip ("ea");
2432 current_uiout->field_fmt ("lsa", "0x%05x", mfc_lsa << 4);
2434 current_uiout->field_fmt ("size", "0x%05x", mfc_size << 4);
2436 current_uiout->field_fmt ("size", "0x%05x", mfc_size);
2440 current_uiout->field_fmt ("lstaddr", "0x%05x", list_lsa << 3);
2441 current_uiout->field_fmt ("lstsize", "0x%05x", list_size << 3);
2445 current_uiout->field_skip ("lstaddr");
2446 current_uiout->field_skip ("lstsize");
2450 current_uiout->field_string ("error_p", "*");
2452 current_uiout->field_skip ("error_p");
2455 if (!current_uiout->is_mi_like_p ())
2456 printf_filtered ("\n");
2461 info_spu_dma_command (const char *args, int from_tty)
2463 struct frame_info *frame = get_selected_frame (NULL);
2464 struct gdbarch *gdbarch = get_frame_arch (frame);
2465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2466 ULONGEST dma_info_type;
2467 ULONGEST dma_info_mask;
2468 ULONGEST dma_info_status;
2469 ULONGEST dma_info_stall_and_notify;
2470 ULONGEST dma_info_atomic_command_status;
2476 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2477 error (_("\"info spu\" is only supported on the SPU architecture."));
2479 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2481 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2482 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2483 buf, 0, 40 + 16 * 32);
2485 error (_("Could not read dma_info."));
2488 = extract_unsigned_integer (buf, 8, byte_order);
2490 = extract_unsigned_integer (buf + 8, 8, byte_order);
2492 = extract_unsigned_integer (buf + 16, 8, byte_order);
2493 dma_info_stall_and_notify
2494 = extract_unsigned_integer (buf + 24, 8, byte_order);
2495 dma_info_atomic_command_status
2496 = extract_unsigned_integer (buf + 32, 8, byte_order);
2498 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoDMA");
2500 if (current_uiout->is_mi_like_p ())
2502 current_uiout->field_fmt ("dma_info_type", "0x%s",
2503 phex_nz (dma_info_type, 4));
2504 current_uiout->field_fmt ("dma_info_mask", "0x%s",
2505 phex_nz (dma_info_mask, 4));
2506 current_uiout->field_fmt ("dma_info_status", "0x%s",
2507 phex_nz (dma_info_status, 4));
2508 current_uiout->field_fmt ("dma_info_stall_and_notify", "0x%s",
2509 phex_nz (dma_info_stall_and_notify, 4));
2510 current_uiout->field_fmt ("dma_info_atomic_command_status", "0x%s",
2511 phex_nz (dma_info_atomic_command_status, 4));
2515 const char *query_msg = _("no query pending");
2517 if (dma_info_type & 4)
2518 switch (dma_info_type & 3)
2520 case 1: query_msg = _("'any' query pending"); break;
2521 case 2: query_msg = _("'all' query pending"); break;
2522 default: query_msg = _("undefined query type"); break;
2525 printf_filtered (_("Tag-Group Status 0x%s\n"),
2526 phex (dma_info_status, 4));
2527 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2528 phex (dma_info_mask, 4), query_msg);
2529 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2530 phex (dma_info_stall_and_notify, 4));
2531 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2532 phex (dma_info_atomic_command_status, 4));
2533 printf_filtered ("\n");
2536 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2540 info_spu_proxydma_command (const char *args, int from_tty)
2542 struct frame_info *frame = get_selected_frame (NULL);
2543 struct gdbarch *gdbarch = get_frame_arch (frame);
2544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2545 ULONGEST dma_info_type;
2546 ULONGEST dma_info_mask;
2547 ULONGEST dma_info_status;
2553 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2554 error (_("\"info spu\" is only supported on the SPU architecture."));
2556 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2558 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2559 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2560 buf, 0, 24 + 8 * 32);
2562 error (_("Could not read proxydma_info."));
2564 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2565 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2566 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2568 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoProxyDMA");
2570 if (current_uiout->is_mi_like_p ())
2572 current_uiout->field_fmt ("proxydma_info_type", "0x%s",
2573 phex_nz (dma_info_type, 4));
2574 current_uiout->field_fmt ("proxydma_info_mask", "0x%s",
2575 phex_nz (dma_info_mask, 4));
2576 current_uiout->field_fmt ("proxydma_info_status", "0x%s",
2577 phex_nz (dma_info_status, 4));
2581 const char *query_msg;
2583 switch (dma_info_type & 3)
2585 case 0: query_msg = _("no query pending"); break;
2586 case 1: query_msg = _("'any' query pending"); break;
2587 case 2: query_msg = _("'all' query pending"); break;
2588 default: query_msg = _("undefined query type"); break;
2591 printf_filtered (_("Tag-Group Status 0x%s\n"),
2592 phex (dma_info_status, 4));
2593 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2594 phex (dma_info_mask, 4), query_msg);
2595 printf_filtered ("\n");
2598 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2602 info_spu_command (const char *args, int from_tty)
2604 printf_unfiltered (_("\"info spu\" must be followed by "
2605 "the name of an SPU facility.\n"));
2606 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2610 /* Root of all "set spu "/"show spu " commands. */
2613 show_spu_command (const char *args, int from_tty)
2615 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2619 set_spu_command (const char *args, int from_tty)
2621 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2625 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2626 struct cmd_list_element *c, const char *value)
2628 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2633 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2634 struct cmd_list_element *c, const char *value)
2636 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2641 /* Set up gdbarch struct. */
2643 static struct gdbarch *
2644 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2646 struct gdbarch *gdbarch;
2647 struct gdbarch_tdep *tdep;
2650 /* Which spufs ID was requested as address space? */
2653 /* For objfile architectures of SPU solibs, decode the ID from the name.
2654 This assumes the filename convention employed by solib-spu.c. */
2657 const char *name = strrchr (info.abfd->filename, '@');
2659 sscanf (name, "@0x%*x <%d>", &id);
2662 /* Find a candidate among extant architectures. */
2663 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2665 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2667 tdep = gdbarch_tdep (arches->gdbarch);
2668 if (tdep && tdep->id == id)
2669 return arches->gdbarch;
2672 /* None found, so create a new architecture. */
2673 tdep = XCNEW (struct gdbarch_tdep);
2675 gdbarch = gdbarch_alloc (&info, tdep);
2678 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2681 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2682 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2683 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2684 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2685 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2686 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2687 set_gdbarch_register_name (gdbarch, spu_register_name);
2688 set_gdbarch_register_type (gdbarch, spu_register_type);
2689 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2690 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2691 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2692 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2693 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2694 set_gdbarch_ax_pseudo_register_collect
2695 (gdbarch, spu_ax_pseudo_register_collect);
2696 set_gdbarch_ax_pseudo_register_push_stack
2697 (gdbarch, spu_ax_pseudo_register_push_stack);
2700 set_gdbarch_char_signed (gdbarch, 0);
2701 set_gdbarch_ptr_bit (gdbarch, 32);
2702 set_gdbarch_addr_bit (gdbarch, 32);
2703 set_gdbarch_short_bit (gdbarch, 16);
2704 set_gdbarch_int_bit (gdbarch, 32);
2705 set_gdbarch_long_bit (gdbarch, 32);
2706 set_gdbarch_long_long_bit (gdbarch, 64);
2707 set_gdbarch_float_bit (gdbarch, 32);
2708 set_gdbarch_double_bit (gdbarch, 64);
2709 set_gdbarch_long_double_bit (gdbarch, 64);
2710 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2711 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2712 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2714 /* Address handling. */
2715 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2716 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2717 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2718 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2719 set_gdbarch_address_class_type_flags_to_name
2720 (gdbarch, spu_address_class_type_flags_to_name);
2721 set_gdbarch_address_class_name_to_type_flags
2722 (gdbarch, spu_address_class_name_to_type_flags);
2725 /* Inferior function calls. */
2726 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2727 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2728 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2729 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2730 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2731 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2732 set_gdbarch_return_value (gdbarch, spu_return_value);
2734 /* Frame handling. */
2735 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2736 dwarf2_append_unwinders (gdbarch);
2737 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2738 frame_base_set_default (gdbarch, &spu_frame_base);
2739 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2740 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2741 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2742 set_gdbarch_frame_args_skip (gdbarch, 0);
2743 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2744 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
2746 /* Cell/B.E. cross-architecture unwinder support. */
2747 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2750 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2751 set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
2752 set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
2753 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2754 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2755 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2758 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2764 _initialize_spu_tdep (void)
2766 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2768 /* Add ourselves to objfile event chain. */
2769 observer_attach_new_objfile (spu_overlay_new_objfile);
2770 spu_overlay_data = register_objfile_data ();
2772 /* Install spu stop-on-load handler. */
2773 observer_attach_new_objfile (spu_catch_start);
2775 /* Add ourselves to normal_stop event chain. */
2776 observer_attach_normal_stop (spu_attach_normal_stop);
2778 /* Add root prefix command for all "set spu"/"show spu" commands. */
2779 add_prefix_cmd ("spu", no_class, set_spu_command,
2780 _("Various SPU specific commands."),
2781 &setspucmdlist, "set spu ", 0, &setlist);
2782 add_prefix_cmd ("spu", no_class, show_spu_command,
2783 _("Various SPU specific commands."),
2784 &showspucmdlist, "show spu ", 0, &showlist);
2786 /* Toggle whether or not to add a temporary breakpoint at the "main"
2787 function of new SPE contexts. */
2788 add_setshow_boolean_cmd ("stop-on-load", class_support,
2789 &spu_stop_on_load_p, _("\
2790 Set whether to stop for new SPE threads."),
2792 Show whether to stop for new SPE threads."),
2794 Use \"on\" to give control to the user when a new SPE thread\n\
2795 enters its \"main\" function.\n\
2796 Use \"off\" to disable stopping for new SPE threads."),
2798 show_spu_stop_on_load,
2799 &setspucmdlist, &showspucmdlist);
2801 /* Toggle whether or not to automatically flush the software-managed
2802 cache whenever SPE execution stops. */
2803 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2804 &spu_auto_flush_cache_p, _("\
2805 Set whether to automatically flush the software-managed cache."),
2807 Show whether to automatically flush the software-managed cache."),
2809 Use \"on\" to automatically flush the software-managed cache\n\
2810 whenever SPE execution stops.\n\
2811 Use \"off\" to never automatically flush the software-managed cache."),
2813 show_spu_auto_flush_cache,
2814 &setspucmdlist, &showspucmdlist);
2816 /* Add root prefix command for all "info spu" commands. */
2817 add_prefix_cmd ("spu", class_info, info_spu_command,
2818 _("Various SPU specific commands."),
2819 &infospucmdlist, "info spu ", 0, &infolist);
2821 /* Add various "info spu" commands. */
2822 add_cmd ("event", class_info, info_spu_event_command,
2823 _("Display SPU event facility status.\n"),
2825 add_cmd ("signal", class_info, info_spu_signal_command,
2826 _("Display SPU signal notification facility status.\n"),
2828 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2829 _("Display SPU mailbox facility status.\n"),
2831 add_cmd ("dma", class_info, info_spu_dma_command,
2832 _("Display MFC DMA status.\n"),
2834 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2835 _("Display MFC Proxy-DMA status.\n"),