1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
39 #include "reggroups.h"
40 #include "floatformat.h"
45 #include "dwarf2-frame.h"
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
60 /* The tdep structure. */
63 /* The spufs ID identifying our address space. */
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
71 /* SPU-specific vector type. */
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77 if (!tdep->spu_builtin_type_vec128)
79 const struct builtin_type *bt = builtin_type (gdbarch);
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
101 tdep->spu_builtin_type_vec128 = t;
104 return tdep->spu_builtin_type_vec128;
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
116 static char *register_names[] =
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
142 return register_names[reg_nr];
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
154 return builtin_type (gdbarch)->builtin_uint32;
157 return builtin_type (gdbarch)->builtin_func_ptr;
160 return builtin_type (gdbarch)->builtin_data_ptr;
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
182 /* Pseudo registers for preferred slots - stack pointer. */
184 static enum register_status
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 enum register_status status;
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (¤t_target, TARGET_OBJECT_SPU, annex,
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
216 enum register_status status;
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
224 memcpy (buf, reg, 4);
227 case SPU_FPSCR_REGNUM:
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (¤t_target, TARGET_OBJECT_SPU, annex,
267 (gdb_byte *) reg, 0, strlen (reg));
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
314 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
336 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
358 /* Value conversion -- access scalar values at the preferred slot. */
360 static struct value *
361 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
364 struct value *value = default_value_from_register (gdbarch, type,
366 LONGEST len = TYPE_LENGTH (type);
368 if (regnum < SPU_NUM_GPRS && len < 16)
370 int preferred_slot = len < 4 ? 4 - len : 0;
371 set_value_offset (value, preferred_slot);
377 /* Register groups. */
380 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
396 return default_register_reggroup_p (gdbarch, regnum, group);
399 /* DWARF-2 register numbers. */
402 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
409 /* Address handling. */
412 spu_gdbarch_id (struct gdbarch *gdbarch)
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
417 /* The objfile architecture of a standalone SPU executable does not
418 provide an SPU ID. Retrieve it from the objfile's relocated
419 address range in this special case. */
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
430 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
439 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
448 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
451 if (strcmp (name, "__ea") == 0)
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
461 spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
470 spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
473 int id = spu_gdbarch_id (gdbarch);
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
482 return addr? SPUADDR (id, addr) : 0;
486 spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
489 int id = spu_gdbarch_id (gdbarch);
490 ULONGEST addr = unpack_long (type, buf);
492 return SPUADDR (id, addr);
496 /* Decoding SPU instructions. */
533 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
535 if ((insn >> 21) == op)
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
547 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
549 if ((insn >> 28) == op)
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
562 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
564 if ((insn >> 21) == op)
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
576 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
578 if ((insn >> 24) == op)
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
590 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
592 if ((insn >> 23) == op)
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
603 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
605 if ((insn >> 25) == op)
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
616 is_branch (unsigned int insn, int *offset, int *reg)
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
627 *reg = SPU_PC_REGNUM;
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
655 /* Prolog parsing. */
657 struct spu_prologue_data
659 /* Stack frame size. -1 if analysis was unsuccessful. */
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
671 spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
673 struct spu_prologue_data *data)
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
680 int reg_immed[SPU_NUM_GPRS];
682 CORE_ADDR prolog_pc = start_pc;
687 /* Initialize DATA to default values. */
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
701 /* Scan instructions until the first branch.
703 The following instructions are important prolog components:
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
708 - The first instruction to save the backchain.
710 We return the instruction after the latest of these four,
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
728 These are used to compute the CFA and REG_OFFSET output. */
730 for (pc = start_pc; pc < end_pc; pc += 4)
733 int rt, ra, rb, rc, immed;
735 if (target_read_memory (pc, buf, 4))
737 insn = extract_unsigned_integer (buf, 4, byte_order);
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
793 reg_immed[rt] = immed;
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
801 reg_immed[rt] = immed & 0x3ffff;
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
854 /* Return the first instruction after the prologue starting at PC. */
856 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
858 struct spu_prologue_data data;
859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
862 /* Return the frame pointer in use at address PC. */
864 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
867 struct spu_prologue_data data;
868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
870 if (data.size != -1 && data.cfa_reg != -1)
872 /* The 'frame pointer' address is CFA minus frame size. */
874 *offset = data.cfa_offset - data.size;
878 /* ??? We don't really know ... */
879 *reg = SPU_SP_REGNUM;
884 /* Implement the stack_frame_destroyed_p gdbarch method.
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
901 spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
907 int rt, ra, rb, immed;
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
912 const int spu_max_epilogue_size = 64 * 4;
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
920 epilogue_start = pc - spu_max_epilogue_size;
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
925 epilogue_end = pc + spu_max_epilogue_size;
927 /* Scan forward until next 'bi $0'. */
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
931 if (target_read_memory (scan_pc, buf, 4))
933 insn = extract_unsigned_integer (buf, 4, byte_order);
935 if (is_branch (insn, &immed, &ra))
937 if (immed == 0 && ra == SPU_LR_REGNUM)
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
947 if (rt == SPU_RAW_SP_REGNUM)
952 if (scan_pc >= epilogue_end)
955 /* Scan backward until adjustment to stack pointer (R1). */
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
959 if (target_read_memory (scan_pc, buf, 4))
961 insn = extract_unsigned_integer (buf, 4, byte_order);
963 if (is_branch (insn, &immed, &ra))
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
970 if (rt == SPU_RAW_SP_REGNUM)
979 /* Normal stack frames. */
981 struct spu_unwind_cache
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
987 struct trad_frame_saved_reg *saved_regs;
990 static struct spu_unwind_cache *
991 spu_frame_unwind_cache (struct frame_info *this_frame,
992 void **this_prologue_cache)
994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
999 CORE_ADDR id = tdep->id;
1002 if (*this_prologue_cache)
1003 return (struct spu_unwind_cache *) *this_prologue_cache;
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1008 info->frame_base = 0;
1009 info->local_base = 0;
1011 /* Find the start of the current function, and analyze its prologue. */
1012 info->func = get_frame_func (this_frame);
1013 if (info->func == 0)
1015 /* Fall back to using the current PC as frame ID. */
1016 info->func = get_frame_pc (this_frame);
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1030 get_frame_register (this_frame, data.cfa_reg, buf);
1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1032 cfa = SPUADDR (id, cfa);
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1046 /* Otherwise, fall back to reading the backchain link. */
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1057 lslr = (ULONGEST) -1;
1059 /* Get the backchain. */
1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
1066 if (status && backchain > 0 && backchain <= lslr)
1068 /* Assume the link register is saved into its slot. */
1069 if (backchain + 16 <= lslr)
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1083 /* The previous SP is equal to the CFA. */
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1102 extract_unsigned_integer (buf + 8, 4, byte_order));
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1105 extract_unsigned_integer (buf, 4, byte_order));
1111 spu_frame_this_id (struct frame_info *this_frame,
1112 void **this_prologue_cache, struct frame_id *this_id)
1114 struct spu_unwind_cache *info =
1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1117 if (info->frame_base == 0)
1120 *this_id = frame_id_build (info->frame_base, info->func);
1123 static struct value *
1124 spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
1127 struct spu_unwind_cache *info
1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1137 static const struct frame_unwind spu_frame_unwind = {
1139 default_frame_unwind_stop_reason,
1141 spu_frame_prev_register,
1143 default_frame_sniffer
1147 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1149 struct spu_unwind_cache *info
1150 = spu_frame_unwind_cache (this_frame, this_cache);
1151 return info->local_base;
1154 static const struct frame_base spu_frame_base = {
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1162 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
1167 return SPUADDR (tdep->id, pc & -4);
1171 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
1179 spu_read_pc (struct regcache *regcache)
1181 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1183 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1184 /* Mask off interrupt enable bit. */
1185 return SPUADDR (tdep->id, pc & -4);
1189 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1191 /* Keep interrupt enabled state unchanged. */
1194 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1195 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1196 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1200 /* Cell/B.E. cross-architecture unwinder support. */
1202 struct spu2ppu_cache
1204 struct frame_id frame_id;
1205 struct regcache *regcache;
1208 static struct gdbarch *
1209 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1211 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1212 return get_regcache_arch (cache->regcache);
1216 spu2ppu_this_id (struct frame_info *this_frame,
1217 void **this_cache, struct frame_id *this_id)
1219 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1220 *this_id = cache->frame_id;
1223 static struct value *
1224 spu2ppu_prev_register (struct frame_info *this_frame,
1225 void **this_cache, int regnum)
1227 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1228 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1231 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1232 regcache_cooked_read (cache->regcache, regnum, buf);
1233 return frame_unwind_got_bytes (this_frame, regnum, buf);
1237 spu2ppu_sniffer (const struct frame_unwind *self,
1238 struct frame_info *this_frame, void **this_prologue_cache)
1240 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1242 CORE_ADDR base, func, backchain;
1245 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1248 base = get_frame_sp (this_frame);
1249 func = get_frame_pc (this_frame);
1250 if (target_read_memory (base, buf, 4))
1252 backchain = extract_unsigned_integer (buf, 4, byte_order);
1256 struct frame_info *fi;
1258 struct spu2ppu_cache *cache
1259 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1261 cache->frame_id = frame_id_build (base + 16, func);
1263 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1264 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1269 cache->regcache = frame_save_as_regcache (fi);
1270 *this_prologue_cache = cache;
1275 struct regcache *regcache;
1276 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1277 cache->regcache = regcache_dup (regcache);
1278 *this_prologue_cache = cache;
1287 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1289 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
1290 regcache_xfree (cache->regcache);
1293 static const struct frame_unwind spu2ppu_unwind = {
1295 default_frame_unwind_stop_reason,
1297 spu2ppu_prev_register,
1300 spu2ppu_dealloc_cache,
1305 /* Function calling convention. */
1308 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1314 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1315 struct value **args, int nargs, struct type *value_type,
1316 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1317 struct regcache *regcache)
1319 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1320 sp = (sp - 4) & ~15;
1321 /* Store the address of that breakpoint */
1323 /* The call starts at the callee's entry point. */
1330 spu_scalar_value_p (struct type *type)
1332 switch (TYPE_CODE (type))
1335 case TYPE_CODE_ENUM:
1336 case TYPE_CODE_RANGE:
1337 case TYPE_CODE_CHAR:
1338 case TYPE_CODE_BOOL:
1341 return TYPE_LENGTH (type) <= 16;
1349 spu_value_to_regcache (struct regcache *regcache, int regnum,
1350 struct type *type, const gdb_byte *in)
1352 int len = TYPE_LENGTH (type);
1354 if (spu_scalar_value_p (type))
1356 int preferred_slot = len < 4 ? 4 - len : 0;
1357 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1363 regcache_cooked_write (regcache, regnum++, in);
1369 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1374 spu_regcache_to_value (struct regcache *regcache, int regnum,
1375 struct type *type, gdb_byte *out)
1377 int len = TYPE_LENGTH (type);
1379 if (spu_scalar_value_p (type))
1381 int preferred_slot = len < 4 ? 4 - len : 0;
1382 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1388 regcache_cooked_read (regcache, regnum++, out);
1394 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1399 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1400 struct regcache *regcache, CORE_ADDR bp_addr,
1401 int nargs, struct value **args, CORE_ADDR sp,
1402 int struct_return, CORE_ADDR struct_addr)
1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1407 int regnum = SPU_ARG1_REGNUM;
1411 /* Set the return address. */
1412 memset (buf, 0, sizeof buf);
1413 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1414 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1416 /* If STRUCT_RETURN is true, then the struct return address (in
1417 STRUCT_ADDR) will consume the first argument-passing register.
1418 Both adjust the register count and store that value. */
1421 memset (buf, 0, sizeof buf);
1422 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1423 regcache_cooked_write (regcache, regnum++, buf);
1426 /* Fill in argument registers. */
1427 for (i = 0; i < nargs; i++)
1429 struct value *arg = args[i];
1430 struct type *type = check_typedef (value_type (arg));
1431 const gdb_byte *contents = value_contents (arg);
1432 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1434 /* If the argument doesn't wholly fit into registers, it and
1435 all subsequent arguments go to the stack. */
1436 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1442 spu_value_to_regcache (regcache, regnum, type, contents);
1446 /* Overflow arguments go to the stack. */
1447 if (stack_arg != -1)
1451 /* Allocate all required stack size. */
1452 for (i = stack_arg; i < nargs; i++)
1454 struct type *type = check_typedef (value_type (args[i]));
1455 sp -= align_up (TYPE_LENGTH (type), 16);
1458 /* Fill in stack arguments. */
1460 for (i = stack_arg; i < nargs; i++)
1462 struct value *arg = args[i];
1463 struct type *type = check_typedef (value_type (arg));
1464 int len = TYPE_LENGTH (type);
1467 if (spu_scalar_value_p (type))
1468 preferred_slot = len < 4 ? 4 - len : 0;
1472 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1473 ap += align_up (TYPE_LENGTH (type), 16);
1477 /* Allocate stack frame header. */
1480 /* Store stack back chain. */
1481 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1482 target_write_memory (sp, buf, 16);
1484 /* Finally, update all slots of the SP register. */
1485 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1486 for (i = 0; i < 4; i++)
1488 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1489 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1491 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1496 static struct frame_id
1497 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1499 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1500 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1501 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1502 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1505 /* Function return value access. */
1507 static enum return_value_convention
1508 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1509 struct type *type, struct regcache *regcache,
1510 gdb_byte *out, const gdb_byte *in)
1512 struct type *func_type = function ? value_type (function) : NULL;
1513 enum return_value_convention rvc;
1514 int opencl_vector = 0;
1518 func_type = check_typedef (func_type);
1520 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1521 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1523 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1524 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1525 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1526 && TYPE_VECTOR (type))
1530 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1531 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1533 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1539 case RETURN_VALUE_REGISTER_CONVENTION:
1540 if (opencl_vector && TYPE_LENGTH (type) == 2)
1541 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1543 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1546 case RETURN_VALUE_STRUCT_CONVENTION:
1547 error (_("Cannot set function return value."));
1555 case RETURN_VALUE_REGISTER_CONVENTION:
1556 if (opencl_vector && TYPE_LENGTH (type) == 2)
1557 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1559 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1562 case RETURN_VALUE_STRUCT_CONVENTION:
1563 error (_("Function return value unknown."));
1573 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1575 GDBARCH_BREAKPOINT_MANIPULATION (spu, breakpoint)
1578 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1579 struct bp_target_info *bp_tgt)
1581 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1582 that in a combined application, we have some breakpoints inserted in SPU
1583 code, and now the application forks (on the PPU side). GDB common code
1584 will assume that the fork system call copied all breakpoints into the new
1585 process' address space, and that all those copies now need to be removed
1586 (see breakpoint.c:detach_breakpoints).
1588 While this is certainly true for PPU side breakpoints, it is not true
1589 for SPU side breakpoints. fork will clone the SPU context file
1590 descriptors, so that all the existing SPU contexts are in accessible
1591 in the new process. However, the contents of the SPU contexts themselves
1592 are *not* cloned. Therefore the effect of detach_breakpoints is to
1593 remove SPU breakpoints from the *original* SPU context's local store
1594 -- this is not the correct behaviour.
1596 The workaround is to check whether the PID we are asked to remove this
1597 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1598 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1599 true in the context of detach_breakpoints. If so, we simply do nothing.
1600 [ Note that for the fork child process, it does not matter if breakpoints
1601 remain inserted, because those SPU contexts are not runnable anyway --
1602 the Linux kernel allows only the original process to invoke spu_run. */
1604 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1607 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1611 /* Software single-stepping support. */
1614 spu_software_single_step (struct frame_info *frame)
1616 struct gdbarch *gdbarch = get_frame_arch (frame);
1617 struct address_space *aspace = get_frame_address_space (frame);
1618 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1619 CORE_ADDR pc, next_pc;
1625 pc = get_frame_pc (frame);
1627 if (target_read_memory (pc, buf, 4))
1628 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1629 paddress (gdbarch, pc));
1631 insn = extract_unsigned_integer (buf, 4, byte_order);
1633 /* Get local store limit. */
1634 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1636 lslr = (ULONGEST) -1;
1638 /* Next sequential instruction is at PC + 4, except if the current
1639 instruction is a PPE-assisted call, in which case it is at PC + 8.
1640 Wrap around LS limit to be on the safe side. */
1641 if ((insn & 0xffffff00) == 0x00002100)
1642 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1644 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1646 insert_single_step_breakpoint (gdbarch,
1647 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1649 if (is_branch (insn, &offset, ®))
1651 CORE_ADDR target = offset;
1653 if (reg == SPU_PC_REGNUM)
1654 target += SPUADDR_ADDR (pc);
1659 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1661 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1665 throw_error (OPTIMIZED_OUT_ERROR,
1666 _("Could not determine address of "
1667 "single-step breakpoint."));
1669 throw_error (NOT_AVAILABLE_ERROR,
1670 _("Could not determine address of "
1671 "single-step breakpoint."));
1675 target = target & lslr;
1676 if (target != next_pc)
1677 insert_single_step_breakpoint (gdbarch, aspace,
1678 SPUADDR (SPUADDR_SPU (pc), target));
1685 /* Longjmp support. */
1688 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1690 struct gdbarch *gdbarch = get_frame_arch (frame);
1691 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1692 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1697 /* Jump buffer is pointed to by the argument register $r3. */
1698 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1702 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1703 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1706 *pc = extract_unsigned_integer (buf, 4, byte_order);
1707 *pc = SPUADDR (tdep->id, *pc);
1714 struct spu_dis_asm_data
1716 struct gdbarch *gdbarch;
1721 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1723 struct spu_dis_asm_data *data
1724 = (struct spu_dis_asm_data *) info->application_data;
1725 print_address (data->gdbarch, SPUADDR (data->id, addr),
1726 (struct ui_file *) info->stream);
1730 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1732 /* The opcodes disassembler does 18-bit address arithmetic. Make
1733 sure the SPU ID encoded in the high bits is added back when we
1734 call print_address. */
1735 struct disassemble_info spu_info = *info;
1736 struct spu_dis_asm_data data;
1737 data.gdbarch = (struct gdbarch *) info->application_data;
1738 data.id = SPUADDR_SPU (memaddr);
1740 spu_info.application_data = &data;
1741 spu_info.print_address_func = spu_dis_asm_print_address;
1742 return print_insn_spu (memaddr, &spu_info);
1746 /* Target overlays for the SPU overlay manager.
1748 See the documentation of simple_overlay_update for how the
1749 interface is supposed to work.
1751 Data structures used by the overlay manager:
1759 } _ovly_table[]; -- one entry per overlay section
1761 struct ovly_buf_table
1764 } _ovly_buf_table[]; -- one entry per overlay buffer
1766 _ovly_table should never change.
1768 Both tables are aligned to a 16-byte boundary, the symbols
1769 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1770 size set to the size of the respective array. buf in _ovly_table is
1771 an index into _ovly_buf_table.
1773 mapped is an index into _ovly_table. Both the mapped and buf indices start
1774 from one to reference the first entry in their respective tables. */
1776 /* Using the per-objfile private data mechanism, we store for each
1777 objfile an array of "struct spu_overlay_table" structures, one
1778 for each obj_section of the objfile. This structure holds two
1779 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1780 is *not* an overlay section. If it is non-zero, it represents
1781 a target address. The overlay section is mapped iff the target
1782 integer at this location equals MAPPED_VAL. */
1784 static const struct objfile_data *spu_overlay_data;
1786 struct spu_overlay_table
1788 CORE_ADDR mapped_ptr;
1789 CORE_ADDR mapped_val;
1792 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1793 the _ovly_table data structure from the target and initialize the
1794 spu_overlay_table data structure from it. */
1795 static struct spu_overlay_table *
1796 spu_get_overlay_table (struct objfile *objfile)
1798 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1799 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1800 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1801 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1802 unsigned ovly_table_size, ovly_buf_table_size;
1803 struct spu_overlay_table *tbl;
1804 struct obj_section *osect;
1805 gdb_byte *ovly_table;
1808 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
1812 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1813 if (!ovly_table_msym.minsym)
1816 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1818 if (!ovly_buf_table_msym.minsym)
1821 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1822 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1824 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1825 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1827 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
1828 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1830 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1831 objfile->sections_end - objfile->sections,
1832 struct spu_overlay_table);
1834 for (i = 0; i < ovly_table_size / 16; i++)
1836 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1838 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1840 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1842 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1845 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1848 ALL_OBJFILE_OSECTIONS (objfile, osect)
1849 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1850 && pos == osect->the_bfd_section->filepos)
1852 int ndx = osect - objfile->sections;
1853 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1854 tbl[ndx].mapped_val = i + 1;
1860 set_objfile_data (objfile, spu_overlay_data, tbl);
1864 /* Read _ovly_buf_table entry from the target to dermine whether
1865 OSECT is currently mapped, and update the mapped state. */
1867 spu_overlay_update_osect (struct obj_section *osect)
1869 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1870 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1871 struct spu_overlay_table *ovly_table;
1874 ovly_table = spu_get_overlay_table (osect->objfile);
1878 ovly_table += osect - osect->objfile->sections;
1879 if (ovly_table->mapped_ptr == 0)
1882 id = SPUADDR_SPU (obj_section_addr (osect));
1883 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1885 osect->ovly_mapped = (val == ovly_table->mapped_val);
1888 /* If OSECT is NULL, then update all sections' mapped state.
1889 If OSECT is non-NULL, then update only OSECT's mapped state. */
1891 spu_overlay_update (struct obj_section *osect)
1893 /* Just one section. */
1895 spu_overlay_update_osect (osect);
1900 struct objfile *objfile;
1902 ALL_OBJSECTIONS (objfile, osect)
1903 if (section_is_overlay (osect))
1904 spu_overlay_update_osect (osect);
1908 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1909 If there is one, go through all sections and make sure for non-
1910 overlay sections LMA equals VMA, while for overlay sections LMA
1911 is larger than SPU_OVERLAY_LMA. */
1913 spu_overlay_new_objfile (struct objfile *objfile)
1915 struct spu_overlay_table *ovly_table;
1916 struct obj_section *osect;
1918 /* If we've already touched this file, do nothing. */
1919 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1922 /* Consider only SPU objfiles. */
1923 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1926 /* Check if this objfile has overlays. */
1927 ovly_table = spu_get_overlay_table (objfile);
1931 /* Now go and fiddle with all the LMAs. */
1932 ALL_OBJFILE_OSECTIONS (objfile, osect)
1934 bfd *obfd = objfile->obfd;
1935 asection *bsect = osect->the_bfd_section;
1936 int ndx = osect - objfile->sections;
1938 if (ovly_table[ndx].mapped_ptr == 0)
1939 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1941 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1946 /* Insert temporary breakpoint on "main" function of newly loaded
1947 SPE context OBJFILE. */
1949 spu_catch_start (struct objfile *objfile)
1951 struct bound_minimal_symbol minsym;
1952 struct compunit_symtab *cust;
1954 struct event_location *location;
1955 struct cleanup *back_to;
1957 /* Do this only if requested by "set spu stop-on-load on". */
1958 if (!spu_stop_on_load_p)
1961 /* Consider only SPU objfiles. */
1962 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1965 /* The main objfile is handled differently. */
1966 if (objfile == symfile_objfile)
1969 /* There can be multiple symbols named "main". Search for the
1970 "main" in *this* objfile. */
1971 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1975 /* If we have debugging information, try to use it -- this
1976 will allow us to properly skip the prologue. */
1977 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1979 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1983 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1984 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1986 struct symtab_and_line sal;
1988 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
1991 fixup_symbol_section (sym, objfile);
1992 sal = find_function_start_sal (sym, 1);
1997 /* Use a numerical address for the set_breakpoint command to avoid having
1998 the breakpoint re-set incorrectly. */
1999 location = new_address_location (pc, NULL, 0);
2000 back_to = make_cleanup_delete_event_location (location);
2001 create_breakpoint (get_objfile_arch (objfile), location,
2002 NULL /* cond_string */, -1 /* thread */,
2003 NULL /* extra_string */,
2004 0 /* parse_condition_and_thread */, 1 /* tempflag */,
2005 bp_breakpoint /* type_wanted */,
2006 0 /* ignore_count */,
2007 AUTO_BOOLEAN_FALSE /* pending_break_support */,
2008 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
2009 1 /* enabled */, 0 /* internal */, 0);
2010 do_cleanups (back_to);
2014 /* Look up OBJFILE loaded into FRAME's SPU context. */
2015 static struct objfile *
2016 spu_objfile_from_frame (struct frame_info *frame)
2018 struct gdbarch *gdbarch = get_frame_arch (frame);
2019 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2020 struct objfile *obj;
2022 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2027 if (obj->sections != obj->sections_end
2028 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2035 /* Flush cache for ea pointer access if available. */
2037 flush_ea_cache (void)
2039 struct bound_minimal_symbol msymbol;
2040 struct objfile *obj;
2042 if (!has_stack_frames ())
2045 obj = spu_objfile_from_frame (get_current_frame ());
2049 /* Lookup inferior function __cache_flush. */
2050 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2051 if (msymbol.minsym != NULL)
2056 type = objfile_type (obj)->builtin_void;
2057 type = lookup_function_type (type);
2058 type = lookup_pointer_type (type);
2059 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2061 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2065 /* This handler is called when the inferior has stopped. If it is stopped in
2066 SPU architecture then flush the ea cache if used. */
2068 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2070 if (!spu_auto_flush_cache_p)
2073 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2074 re-entering this function when __cache_flush stops. */
2075 spu_auto_flush_cache_p = 0;
2077 spu_auto_flush_cache_p = 1;
2081 /* "info spu" commands. */
2084 info_spu_event_command (char *args, int from_tty)
2086 struct frame_info *frame = get_selected_frame (NULL);
2087 ULONGEST event_status = 0;
2088 ULONGEST event_mask = 0;
2089 struct cleanup *chain;
2095 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2096 error (_("\"info spu\" is only supported on the SPU architecture."));
2098 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2100 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2101 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2102 buf, 0, (sizeof (buf) - 1));
2104 error (_("Could not read event_status."));
2106 event_status = strtoulst ((char *) buf, NULL, 16);
2108 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2109 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2110 buf, 0, (sizeof (buf) - 1));
2112 error (_("Could not read event_mask."));
2114 event_mask = strtoulst ((char *) buf, NULL, 16);
2116 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2118 if (ui_out_is_mi_like_p (current_uiout))
2120 ui_out_field_fmt (current_uiout, "event_status",
2121 "0x%s", phex_nz (event_status, 4));
2122 ui_out_field_fmt (current_uiout, "event_mask",
2123 "0x%s", phex_nz (event_mask, 4));
2127 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2128 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2131 do_cleanups (chain);
2135 info_spu_signal_command (char *args, int from_tty)
2137 struct frame_info *frame = get_selected_frame (NULL);
2138 struct gdbarch *gdbarch = get_frame_arch (frame);
2139 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2140 ULONGEST signal1 = 0;
2141 ULONGEST signal1_type = 0;
2142 int signal1_pending = 0;
2143 ULONGEST signal2 = 0;
2144 ULONGEST signal2_type = 0;
2145 int signal2_pending = 0;
2146 struct cleanup *chain;
2152 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2153 error (_("\"info spu\" is only supported on the SPU architecture."));
2155 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2157 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2158 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2160 error (_("Could not read signal1."));
2163 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2164 signal1_pending = 1;
2167 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2168 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2169 buf, 0, (sizeof (buf) - 1));
2171 error (_("Could not read signal1_type."));
2173 signal1_type = strtoulst ((char *) buf, NULL, 16);
2175 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2176 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2178 error (_("Could not read signal2."));
2181 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2182 signal2_pending = 1;
2185 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2186 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2187 buf, 0, (sizeof (buf) - 1));
2189 error (_("Could not read signal2_type."));
2191 signal2_type = strtoulst ((char *) buf, NULL, 16);
2193 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2195 if (ui_out_is_mi_like_p (current_uiout))
2197 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2198 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2199 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2200 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2201 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2202 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2206 if (signal1_pending)
2207 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2209 printf_filtered (_("Signal 1 not pending "));
2212 printf_filtered (_("(Type Or)\n"));
2214 printf_filtered (_("(Type Overwrite)\n"));
2216 if (signal2_pending)
2217 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2219 printf_filtered (_("Signal 2 not pending "));
2222 printf_filtered (_("(Type Or)\n"));
2224 printf_filtered (_("(Type Overwrite)\n"));
2227 do_cleanups (chain);
2231 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2232 const char *field, const char *msg)
2234 struct cleanup *chain;
2240 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2242 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2243 ui_out_table_body (current_uiout);
2245 for (i = 0; i < nr; i++)
2247 struct cleanup *val_chain;
2249 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2250 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2251 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2252 do_cleanups (val_chain);
2254 if (!ui_out_is_mi_like_p (current_uiout))
2255 printf_filtered ("\n");
2258 do_cleanups (chain);
2262 info_spu_mailbox_command (char *args, int from_tty)
2264 struct frame_info *frame = get_selected_frame (NULL);
2265 struct gdbarch *gdbarch = get_frame_arch (frame);
2266 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2267 struct cleanup *chain;
2273 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2274 error (_("\"info spu\" is only supported on the SPU architecture."));
2276 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2278 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2280 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2281 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2282 buf, 0, sizeof buf);
2284 error (_("Could not read mbox_info."));
2286 info_spu_mailbox_list (buf, len / 4, byte_order,
2287 "mbox", "SPU Outbound Mailbox");
2289 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2290 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2291 buf, 0, sizeof buf);
2293 error (_("Could not read ibox_info."));
2295 info_spu_mailbox_list (buf, len / 4, byte_order,
2296 "ibox", "SPU Outbound Interrupt Mailbox");
2298 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2299 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2300 buf, 0, sizeof buf);
2302 error (_("Could not read wbox_info."));
2304 info_spu_mailbox_list (buf, len / 4, byte_order,
2305 "wbox", "SPU Inbound Mailbox");
2307 do_cleanups (chain);
2311 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2313 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2314 return (word >> (63 - last)) & mask;
2318 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2320 static char *spu_mfc_opcode[256] =
2322 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2323 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2325 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2326 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2327 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2328 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2329 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2330 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2331 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2332 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2333 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2334 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2336 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2338 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2339 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2340 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2341 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2342 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2343 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2344 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2345 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2346 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2347 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2348 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2349 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2350 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2352 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2353 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2356 int *seq = XALLOCAVEC (int, nr);
2358 struct cleanup *chain;
2362 /* Determine sequence in which to display (valid) entries. */
2363 for (i = 0; i < nr; i++)
2365 /* Search for the first valid entry all of whose
2366 dependencies are met. */
2367 for (j = 0; j < nr; j++)
2369 ULONGEST mfc_cq_dw3;
2370 ULONGEST dependencies;
2372 if (done & (1 << (nr - 1 - j)))
2376 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2377 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2380 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2381 if ((dependencies & done) != dependencies)
2385 done |= 1 << (nr - 1 - j);
2396 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2399 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2400 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2401 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2402 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2403 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2404 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2405 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2406 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2407 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2408 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2410 ui_out_table_body (current_uiout);
2412 for (i = 0; i < nr; i++)
2414 struct cleanup *cmd_chain;
2415 ULONGEST mfc_cq_dw0;
2416 ULONGEST mfc_cq_dw1;
2417 ULONGEST mfc_cq_dw2;
2418 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2419 int list_lsa, list_size, mfc_lsa, mfc_size;
2421 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2423 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2424 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2427 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2429 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2431 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2433 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2434 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2435 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2436 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2437 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2438 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2439 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2441 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2442 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2444 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2445 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2446 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2447 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2448 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2450 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2452 if (spu_mfc_opcode[mfc_cmd_opcode])
2453 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2455 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2457 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2458 ui_out_field_int (current_uiout, "tid", tclass_id);
2459 ui_out_field_int (current_uiout, "rid", rclass_id);
2462 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2464 ui_out_field_skip (current_uiout, "ea");
2466 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2468 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2470 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2474 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2475 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2479 ui_out_field_skip (current_uiout, "lstaddr");
2480 ui_out_field_skip (current_uiout, "lstsize");
2484 ui_out_field_string (current_uiout, "error_p", "*");
2486 ui_out_field_skip (current_uiout, "error_p");
2488 do_cleanups (cmd_chain);
2490 if (!ui_out_is_mi_like_p (current_uiout))
2491 printf_filtered ("\n");
2494 do_cleanups (chain);
2498 info_spu_dma_command (char *args, int from_tty)
2500 struct frame_info *frame = get_selected_frame (NULL);
2501 struct gdbarch *gdbarch = get_frame_arch (frame);
2502 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2503 ULONGEST dma_info_type;
2504 ULONGEST dma_info_mask;
2505 ULONGEST dma_info_status;
2506 ULONGEST dma_info_stall_and_notify;
2507 ULONGEST dma_info_atomic_command_status;
2508 struct cleanup *chain;
2514 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2515 error (_("\"info spu\" is only supported on the SPU architecture."));
2517 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2519 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2520 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2521 buf, 0, 40 + 16 * 32);
2523 error (_("Could not read dma_info."));
2526 = extract_unsigned_integer (buf, 8, byte_order);
2528 = extract_unsigned_integer (buf + 8, 8, byte_order);
2530 = extract_unsigned_integer (buf + 16, 8, byte_order);
2531 dma_info_stall_and_notify
2532 = extract_unsigned_integer (buf + 24, 8, byte_order);
2533 dma_info_atomic_command_status
2534 = extract_unsigned_integer (buf + 32, 8, byte_order);
2536 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2538 if (ui_out_is_mi_like_p (current_uiout))
2540 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2541 phex_nz (dma_info_type, 4));
2542 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2543 phex_nz (dma_info_mask, 4));
2544 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2545 phex_nz (dma_info_status, 4));
2546 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2547 phex_nz (dma_info_stall_and_notify, 4));
2548 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2549 phex_nz (dma_info_atomic_command_status, 4));
2553 const char *query_msg = _("no query pending");
2555 if (dma_info_type & 4)
2556 switch (dma_info_type & 3)
2558 case 1: query_msg = _("'any' query pending"); break;
2559 case 2: query_msg = _("'all' query pending"); break;
2560 default: query_msg = _("undefined query type"); break;
2563 printf_filtered (_("Tag-Group Status 0x%s\n"),
2564 phex (dma_info_status, 4));
2565 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2566 phex (dma_info_mask, 4), query_msg);
2567 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2568 phex (dma_info_stall_and_notify, 4));
2569 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2570 phex (dma_info_atomic_command_status, 4));
2571 printf_filtered ("\n");
2574 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2575 do_cleanups (chain);
2579 info_spu_proxydma_command (char *args, int from_tty)
2581 struct frame_info *frame = get_selected_frame (NULL);
2582 struct gdbarch *gdbarch = get_frame_arch (frame);
2583 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2584 ULONGEST dma_info_type;
2585 ULONGEST dma_info_mask;
2586 ULONGEST dma_info_status;
2587 struct cleanup *chain;
2593 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2594 error (_("\"info spu\" is only supported on the SPU architecture."));
2596 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2598 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2599 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2600 buf, 0, 24 + 8 * 32);
2602 error (_("Could not read proxydma_info."));
2604 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2605 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2606 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2608 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2611 if (ui_out_is_mi_like_p (current_uiout))
2613 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2614 phex_nz (dma_info_type, 4));
2615 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2616 phex_nz (dma_info_mask, 4));
2617 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2618 phex_nz (dma_info_status, 4));
2622 const char *query_msg;
2624 switch (dma_info_type & 3)
2626 case 0: query_msg = _("no query pending"); break;
2627 case 1: query_msg = _("'any' query pending"); break;
2628 case 2: query_msg = _("'all' query pending"); break;
2629 default: query_msg = _("undefined query type"); break;
2632 printf_filtered (_("Tag-Group Status 0x%s\n"),
2633 phex (dma_info_status, 4));
2634 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2635 phex (dma_info_mask, 4), query_msg);
2636 printf_filtered ("\n");
2639 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2640 do_cleanups (chain);
2644 info_spu_command (char *args, int from_tty)
2646 printf_unfiltered (_("\"info spu\" must be followed by "
2647 "the name of an SPU facility.\n"));
2648 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2652 /* Root of all "set spu "/"show spu " commands. */
2655 show_spu_command (char *args, int from_tty)
2657 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2661 set_spu_command (char *args, int from_tty)
2663 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2667 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2668 struct cmd_list_element *c, const char *value)
2670 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2675 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2676 struct cmd_list_element *c, const char *value)
2678 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2683 /* Set up gdbarch struct. */
2685 static struct gdbarch *
2686 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2688 struct gdbarch *gdbarch;
2689 struct gdbarch_tdep *tdep;
2692 /* Which spufs ID was requested as address space? */
2694 id = *(int *)info.tdep_info;
2695 /* For objfile architectures of SPU solibs, decode the ID from the name.
2696 This assumes the filename convention employed by solib-spu.c. */
2699 const char *name = strrchr (info.abfd->filename, '@');
2701 sscanf (name, "@0x%*x <%d>", &id);
2704 /* Find a candidate among extant architectures. */
2705 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2707 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2709 tdep = gdbarch_tdep (arches->gdbarch);
2710 if (tdep && tdep->id == id)
2711 return arches->gdbarch;
2714 /* None found, so create a new architecture. */
2715 tdep = XCNEW (struct gdbarch_tdep);
2717 gdbarch = gdbarch_alloc (&info, tdep);
2720 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2723 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2724 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2725 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2726 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2727 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2728 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2729 set_gdbarch_register_name (gdbarch, spu_register_name);
2730 set_gdbarch_register_type (gdbarch, spu_register_type);
2731 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2732 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2733 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2734 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2735 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2736 set_gdbarch_ax_pseudo_register_collect
2737 (gdbarch, spu_ax_pseudo_register_collect);
2738 set_gdbarch_ax_pseudo_register_push_stack
2739 (gdbarch, spu_ax_pseudo_register_push_stack);
2742 set_gdbarch_char_signed (gdbarch, 0);
2743 set_gdbarch_ptr_bit (gdbarch, 32);
2744 set_gdbarch_addr_bit (gdbarch, 32);
2745 set_gdbarch_short_bit (gdbarch, 16);
2746 set_gdbarch_int_bit (gdbarch, 32);
2747 set_gdbarch_long_bit (gdbarch, 32);
2748 set_gdbarch_long_long_bit (gdbarch, 64);
2749 set_gdbarch_float_bit (gdbarch, 32);
2750 set_gdbarch_double_bit (gdbarch, 64);
2751 set_gdbarch_long_double_bit (gdbarch, 64);
2752 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2753 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2754 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2756 /* Address handling. */
2757 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2758 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2759 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2760 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2761 set_gdbarch_address_class_type_flags_to_name
2762 (gdbarch, spu_address_class_type_flags_to_name);
2763 set_gdbarch_address_class_name_to_type_flags
2764 (gdbarch, spu_address_class_name_to_type_flags);
2767 /* Inferior function calls. */
2768 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2769 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2770 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2771 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2772 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2773 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2774 set_gdbarch_return_value (gdbarch, spu_return_value);
2776 /* Frame handling. */
2777 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2778 dwarf2_append_unwinders (gdbarch);
2779 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2780 frame_base_set_default (gdbarch, &spu_frame_base);
2781 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2782 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2783 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2784 set_gdbarch_frame_args_skip (gdbarch, 0);
2785 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2786 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
2788 /* Cell/B.E. cross-architecture unwinder support. */
2789 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2792 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2793 SET_GDBARCH_BREAKPOINT_MANIPULATION (spu);
2794 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2795 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2796 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2799 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2804 /* Provide a prototype to silence -Wmissing-prototypes. */
2805 extern initialize_file_ftype _initialize_spu_tdep;
2808 _initialize_spu_tdep (void)
2810 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2812 /* Add ourselves to objfile event chain. */
2813 observer_attach_new_objfile (spu_overlay_new_objfile);
2814 spu_overlay_data = register_objfile_data ();
2816 /* Install spu stop-on-load handler. */
2817 observer_attach_new_objfile (spu_catch_start);
2819 /* Add ourselves to normal_stop event chain. */
2820 observer_attach_normal_stop (spu_attach_normal_stop);
2822 /* Add root prefix command for all "set spu"/"show spu" commands. */
2823 add_prefix_cmd ("spu", no_class, set_spu_command,
2824 _("Various SPU specific commands."),
2825 &setspucmdlist, "set spu ", 0, &setlist);
2826 add_prefix_cmd ("spu", no_class, show_spu_command,
2827 _("Various SPU specific commands."),
2828 &showspucmdlist, "show spu ", 0, &showlist);
2830 /* Toggle whether or not to add a temporary breakpoint at the "main"
2831 function of new SPE contexts. */
2832 add_setshow_boolean_cmd ("stop-on-load", class_support,
2833 &spu_stop_on_load_p, _("\
2834 Set whether to stop for new SPE threads."),
2836 Show whether to stop for new SPE threads."),
2838 Use \"on\" to give control to the user when a new SPE thread\n\
2839 enters its \"main\" function.\n\
2840 Use \"off\" to disable stopping for new SPE threads."),
2842 show_spu_stop_on_load,
2843 &setspucmdlist, &showspucmdlist);
2845 /* Toggle whether or not to automatically flush the software-managed
2846 cache whenever SPE execution stops. */
2847 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2848 &spu_auto_flush_cache_p, _("\
2849 Set whether to automatically flush the software-managed cache."),
2851 Show whether to automatically flush the software-managed cache."),
2853 Use \"on\" to automatically flush the software-managed cache\n\
2854 whenever SPE execution stops.\n\
2855 Use \"off\" to never automatically flush the software-managed cache."),
2857 show_spu_auto_flush_cache,
2858 &setspucmdlist, &showspucmdlist);
2860 /* Add root prefix command for all "info spu" commands. */
2861 add_prefix_cmd ("spu", class_info, info_spu_command,
2862 _("Various SPU specific commands."),
2863 &infospucmdlist, "info spu ", 0, &infolist);
2865 /* Add various "info spu" commands. */
2866 add_cmd ("event", class_info, info_spu_event_command,
2867 _("Display SPU event facility status.\n"),
2869 add_cmd ("signal", class_info, info_spu_signal_command,
2870 _("Display SPU signal notification facility status.\n"),
2872 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2873 _("Display SPU mailbox facility status.\n"),
2875 add_cmd ("dma", class_info, info_spu_dma_command,
2876 _("Display MFC DMA status.\n"),
2878 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2879 _("Display MFC Proxy-DMA status.\n"),