1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2012 Free Software Foundation, Inc.
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
47 #include "exceptions.h"
51 /* The list of available "set spu " and "show spu " commands. */
52 static struct cmd_list_element *setspucmdlist = NULL;
53 static struct cmd_list_element *showspucmdlist = NULL;
55 /* Whether to stop for new SPE contexts. */
56 static int spu_stop_on_load_p = 0;
57 /* Whether to automatically flush the SW-managed cache. */
58 static int spu_auto_flush_cache_p = 1;
61 /* The tdep structure. */
64 /* The spufs ID identifying our address space. */
67 /* SPU-specific vector type. */
68 struct type *spu_builtin_type_vec128;
72 /* SPU-specific vector type. */
74 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
78 if (!tdep->spu_builtin_type_vec128)
80 const struct builtin_type *bt = builtin_type (gdbarch);
83 t = arch_composite_type (gdbarch,
84 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
85 append_composite_type_field (t, "uint128", bt->builtin_int128);
86 append_composite_type_field (t, "v2_int64",
87 init_vector_type (bt->builtin_int64, 2));
88 append_composite_type_field (t, "v4_int32",
89 init_vector_type (bt->builtin_int32, 4));
90 append_composite_type_field (t, "v8_int16",
91 init_vector_type (bt->builtin_int16, 8));
92 append_composite_type_field (t, "v16_int8",
93 init_vector_type (bt->builtin_int8, 16));
94 append_composite_type_field (t, "v2_double",
95 init_vector_type (bt->builtin_double, 2));
96 append_composite_type_field (t, "v4_float",
97 init_vector_type (bt->builtin_float, 4));
100 TYPE_NAME (t) = "spu_builtin_type_vec128";
102 tdep->spu_builtin_type_vec128 = t;
105 return tdep->spu_builtin_type_vec128;
109 /* The list of available "info spu " commands. */
110 static struct cmd_list_element *infospucmdlist = NULL;
115 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
117 static char *register_names[] =
119 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
120 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
121 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
122 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
123 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
124 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
125 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
126 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
127 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
128 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
129 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
130 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
131 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
132 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
133 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
134 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
135 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
140 if (reg_nr >= sizeof register_names / sizeof *register_names)
143 return register_names[reg_nr];
147 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
149 if (reg_nr < SPU_NUM_GPRS)
150 return spu_builtin_type_vec128 (gdbarch);
155 return builtin_type (gdbarch)->builtin_uint32;
158 return builtin_type (gdbarch)->builtin_func_ptr;
161 return builtin_type (gdbarch)->builtin_data_ptr;
163 case SPU_FPSCR_REGNUM:
164 return builtin_type (gdbarch)->builtin_uint128;
166 case SPU_SRR0_REGNUM:
167 return builtin_type (gdbarch)->builtin_uint32;
169 case SPU_LSLR_REGNUM:
170 return builtin_type (gdbarch)->builtin_uint32;
172 case SPU_DECR_REGNUM:
173 return builtin_type (gdbarch)->builtin_uint32;
175 case SPU_DECR_STATUS_REGNUM:
176 return builtin_type (gdbarch)->builtin_uint32;
179 internal_error (__FILE__, __LINE__, _("invalid regnum"));
183 /* Pseudo registers for preferred slots - stack pointer. */
185 static enum register_status
186 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 enum register_status status;
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (¤t_target, TARGET_OBJECT_SPU, annex,
204 store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
208 static enum register_status
209 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
210 int regnum, gdb_byte *buf)
215 enum register_status status;
220 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
221 if (status != REG_VALID)
223 memcpy (buf, reg, 4);
226 case SPU_FPSCR_REGNUM:
227 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
228 if (status != REG_VALID)
230 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
231 target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
234 case SPU_SRR0_REGNUM:
235 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
237 case SPU_LSLR_REGNUM:
238 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
240 case SPU_DECR_REGNUM:
241 return spu_pseudo_register_read_spu (regcache, "decr", buf);
243 case SPU_DECR_STATUS_REGNUM:
244 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
247 internal_error (__FILE__, __LINE__, _("invalid regnum"));
252 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
255 struct gdbarch *gdbarch = get_regcache_arch (regcache);
256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
261 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
262 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
263 xsnprintf (reg, sizeof reg, "0x%s",
264 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
265 target_write (¤t_target, TARGET_OBJECT_SPU, annex,
266 reg, 0, strlen (reg));
270 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
271 int regnum, const gdb_byte *buf)
280 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
281 memcpy (reg, buf, 4);
282 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
285 case SPU_FPSCR_REGNUM:
286 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
287 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
288 target_write (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
291 case SPU_SRR0_REGNUM:
292 spu_pseudo_register_write_spu (regcache, "srr0", buf);
295 case SPU_LSLR_REGNUM:
296 spu_pseudo_register_write_spu (regcache, "lslr", buf);
299 case SPU_DECR_REGNUM:
300 spu_pseudo_register_write_spu (regcache, "decr", buf);
303 case SPU_DECR_STATUS_REGNUM:
304 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
308 internal_error (__FILE__, __LINE__, _("invalid regnum"));
312 /* Value conversion -- access scalar values at the preferred slot. */
314 static struct value *
315 spu_value_from_register (struct type *type, int regnum,
316 struct frame_info *frame)
318 struct value *value = default_value_from_register (type, regnum, frame);
319 int len = TYPE_LENGTH (type);
321 if (regnum < SPU_NUM_GPRS && len < 16)
323 int preferred_slot = len < 4 ? 4 - len : 0;
324 set_value_offset (value, preferred_slot);
330 /* Register groups. */
333 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
334 struct reggroup *group)
336 /* Registers displayed via 'info regs'. */
337 if (group == general_reggroup)
340 /* Registers displayed via 'info float'. */
341 if (group == float_reggroup)
344 /* Registers that need to be saved/restored in order to
345 push or pop frames. */
346 if (group == save_reggroup || group == restore_reggroup)
349 return default_register_reggroup_p (gdbarch, regnum, group);
353 /* Address handling. */
356 spu_gdbarch_id (struct gdbarch *gdbarch)
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
361 /* The objfile architecture of a standalone SPU executable does not
362 provide an SPU ID. Retrieve it from the objfile's relocated
363 address range in this special case. */
365 && symfile_objfile && symfile_objfile->obfd
366 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
367 && symfile_objfile->sections != symfile_objfile->sections_end)
368 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
374 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
376 if (dwarf2_addr_class == 1)
377 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
383 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
385 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
392 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
393 const char *name, int *type_flags_ptr)
395 if (strcmp (name, "__ea") == 0)
397 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
405 spu_address_to_pointer (struct gdbarch *gdbarch,
406 struct type *type, gdb_byte *buf, CORE_ADDR addr)
408 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
409 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
410 SPUADDR_ADDR (addr));
414 spu_pointer_to_address (struct gdbarch *gdbarch,
415 struct type *type, const gdb_byte *buf)
417 int id = spu_gdbarch_id (gdbarch);
418 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
420 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
422 /* Do not convert __ea pointers. */
423 if (TYPE_ADDRESS_CLASS_1 (type))
426 return addr? SPUADDR (id, addr) : 0;
430 spu_integer_to_address (struct gdbarch *gdbarch,
431 struct type *type, const gdb_byte *buf)
433 int id = spu_gdbarch_id (gdbarch);
434 ULONGEST addr = unpack_long (type, buf);
436 return SPUADDR (id, addr);
440 /* Decoding SPU instructions. */
477 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
479 if ((insn >> 21) == op)
482 *ra = (insn >> 7) & 127;
483 *rb = (insn >> 14) & 127;
491 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
493 if ((insn >> 28) == op)
495 *rt = (insn >> 21) & 127;
496 *ra = (insn >> 7) & 127;
497 *rb = (insn >> 14) & 127;
506 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
508 if ((insn >> 21) == op)
511 *ra = (insn >> 7) & 127;
512 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
520 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
522 if ((insn >> 24) == op)
525 *ra = (insn >> 7) & 127;
526 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
534 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
536 if ((insn >> 23) == op)
539 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
547 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
549 if ((insn >> 25) == op)
552 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
560 is_branch (unsigned int insn, int *offset, int *reg)
564 if (is_ri16 (insn, op_br, &rt, &i16)
565 || is_ri16 (insn, op_brsl, &rt, &i16)
566 || is_ri16 (insn, op_brnz, &rt, &i16)
567 || is_ri16 (insn, op_brz, &rt, &i16)
568 || is_ri16 (insn, op_brhnz, &rt, &i16)
569 || is_ri16 (insn, op_brhz, &rt, &i16))
571 *reg = SPU_PC_REGNUM;
576 if (is_ri16 (insn, op_bra, &rt, &i16)
577 || is_ri16 (insn, op_brasl, &rt, &i16))
584 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
585 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
586 || is_ri7 (insn, op_biz, &rt, reg, &i7)
587 || is_ri7 (insn, op_binz, &rt, reg, &i7)
588 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
589 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
599 /* Prolog parsing. */
601 struct spu_prologue_data
603 /* Stack frame size. -1 if analysis was unsuccessful. */
606 /* How to find the CFA. The CFA is equal to SP at function entry. */
610 /* Offset relative to CFA where a register is saved. -1 if invalid. */
611 int reg_offset[SPU_NUM_GPRS];
615 spu_analyze_prologue (struct gdbarch *gdbarch,
616 CORE_ADDR start_pc, CORE_ADDR end_pc,
617 struct spu_prologue_data *data)
619 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
624 int reg_immed[SPU_NUM_GPRS];
626 CORE_ADDR prolog_pc = start_pc;
631 /* Initialize DATA to default values. */
634 data->cfa_reg = SPU_RAW_SP_REGNUM;
635 data->cfa_offset = 0;
637 for (i = 0; i < SPU_NUM_GPRS; i++)
638 data->reg_offset[i] = -1;
640 /* Set up REG_IMMED array. This is non-zero for a register if we know its
641 preferred slot currently holds this immediate value. */
642 for (i = 0; i < SPU_NUM_GPRS; i++)
645 /* Scan instructions until the first branch.
647 The following instructions are important prolog components:
649 - The first instruction to set up the stack pointer.
650 - The first instruction to set up the frame pointer.
651 - The first instruction to save the link register.
652 - The first instruction to save the backchain.
654 We return the instruction after the latest of these four,
655 or the incoming PC if none is found. The first instruction
656 to set up the stack pointer also defines the frame size.
658 Note that instructions saving incoming arguments to their stack
659 slots are not counted as important, because they are hard to
660 identify with certainty. This should not matter much, because
661 arguments are relevant only in code compiled with debug data,
662 and in such code the GDB core will advance until the first source
663 line anyway, using SAL data.
665 For purposes of stack unwinding, we analyze the following types
666 of instructions in addition:
668 - Any instruction adding to the current frame pointer.
669 - Any instruction loading an immediate constant into a register.
670 - Any instruction storing a register onto the stack.
672 These are used to compute the CFA and REG_OFFSET output. */
674 for (pc = start_pc; pc < end_pc; pc += 4)
677 int rt, ra, rb, rc, immed;
679 if (target_read_memory (pc, buf, 4))
681 insn = extract_unsigned_integer (buf, 4, byte_order);
683 /* AI is the typical instruction to set up a stack frame.
684 It is also used to initialize the frame pointer. */
685 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
687 if (rt == data->cfa_reg && ra == data->cfa_reg)
688 data->cfa_offset -= immed;
690 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
698 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
704 data->cfa_reg = SPU_FP_REGNUM;
705 data->cfa_offset -= immed;
709 /* A is used to set up stack frames of size >= 512 bytes.
710 If we have tracked the contents of the addend register,
711 we can handle this as well. */
712 else if (is_rr (insn, op_a, &rt, &ra, &rb))
714 if (rt == data->cfa_reg && ra == data->cfa_reg)
716 if (reg_immed[rb] != 0)
717 data->cfa_offset -= reg_immed[rb];
719 data->cfa_reg = -1; /* We don't know the CFA any more. */
722 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
728 if (reg_immed[rb] != 0)
729 data->size = -reg_immed[rb];
733 /* We need to track IL and ILA used to load immediate constants
734 in case they are later used as input to an A instruction. */
735 else if (is_ri16 (insn, op_il, &rt, &immed))
737 reg_immed[rt] = immed;
739 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
743 else if (is_ri18 (insn, op_ila, &rt, &immed))
745 reg_immed[rt] = immed & 0x3ffff;
747 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
751 /* STQD is used to save registers to the stack. */
752 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
754 if (ra == data->cfa_reg)
755 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
757 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
764 if (ra == SPU_RAW_SP_REGNUM
765 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
773 /* _start uses SELB to set up the stack pointer. */
774 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
776 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
780 /* We terminate if we find a branch. */
781 else if (is_branch (insn, &immed, &ra))
786 /* If we successfully parsed until here, and didn't find any instruction
787 modifying SP, we assume we have a frameless function. */
791 /* Return cooked instead of raw SP. */
792 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
793 data->cfa_reg = SPU_SP_REGNUM;
798 /* Return the first instruction after the prologue starting at PC. */
800 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
802 struct spu_prologue_data data;
803 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
806 /* Return the frame pointer in use at address PC. */
808 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
809 int *reg, LONGEST *offset)
811 struct spu_prologue_data data;
812 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
814 if (data.size != -1 && data.cfa_reg != -1)
816 /* The 'frame pointer' address is CFA minus frame size. */
818 *offset = data.cfa_offset - data.size;
822 /* ??? We don't really know ... */
823 *reg = SPU_SP_REGNUM;
828 /* Return true if we are in the function's epilogue, i.e. after the
829 instruction that destroyed the function's stack frame.
831 1) scan forward from the point of execution:
832 a) If you find an instruction that modifies the stack pointer
833 or transfers control (except a return), execution is not in
835 b) Stop scanning if you find a return instruction or reach the
836 end of the function or reach the hard limit for the size of
838 2) scan backward from the point of execution:
839 a) If you find an instruction that modifies the stack pointer,
840 execution *is* in an epilogue, return.
841 b) Stop scanning if you reach an instruction that transfers
842 control or the beginning of the function or reach the hard
843 limit for the size of an epilogue. */
846 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
852 int rt, ra, rb, immed;
854 /* Find the search limits based on function boundaries and hard limit.
855 We assume the epilogue can be up to 64 instructions long. */
857 const int spu_max_epilogue_size = 64 * 4;
859 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
862 if (pc - func_start < spu_max_epilogue_size)
863 epilogue_start = func_start;
865 epilogue_start = pc - spu_max_epilogue_size;
867 if (func_end - pc < spu_max_epilogue_size)
868 epilogue_end = func_end;
870 epilogue_end = pc + spu_max_epilogue_size;
872 /* Scan forward until next 'bi $0'. */
874 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
876 if (target_read_memory (scan_pc, buf, 4))
878 insn = extract_unsigned_integer (buf, 4, byte_order);
880 if (is_branch (insn, &immed, &ra))
882 if (immed == 0 && ra == SPU_LR_REGNUM)
888 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
889 || is_rr (insn, op_a, &rt, &ra, &rb)
890 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
892 if (rt == SPU_RAW_SP_REGNUM)
897 if (scan_pc >= epilogue_end)
900 /* Scan backward until adjustment to stack pointer (R1). */
902 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
904 if (target_read_memory (scan_pc, buf, 4))
906 insn = extract_unsigned_integer (buf, 4, byte_order);
908 if (is_branch (insn, &immed, &ra))
911 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
912 || is_rr (insn, op_a, &rt, &ra, &rb)
913 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
915 if (rt == SPU_RAW_SP_REGNUM)
924 /* Normal stack frames. */
926 struct spu_unwind_cache
929 CORE_ADDR frame_base;
930 CORE_ADDR local_base;
932 struct trad_frame_saved_reg *saved_regs;
935 static struct spu_unwind_cache *
936 spu_frame_unwind_cache (struct frame_info *this_frame,
937 void **this_prologue_cache)
939 struct gdbarch *gdbarch = get_frame_arch (this_frame);
940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
941 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
942 struct spu_unwind_cache *info;
943 struct spu_prologue_data data;
944 CORE_ADDR id = tdep->id;
947 if (*this_prologue_cache)
948 return *this_prologue_cache;
950 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
951 *this_prologue_cache = info;
952 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
953 info->frame_base = 0;
954 info->local_base = 0;
956 /* Find the start of the current function, and analyze its prologue. */
957 info->func = get_frame_func (this_frame);
960 /* Fall back to using the current PC as frame ID. */
961 info->func = get_frame_pc (this_frame);
965 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
968 /* If successful, use prologue analysis data. */
969 if (data.size != -1 && data.cfa_reg != -1)
974 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
975 get_frame_register (this_frame, data.cfa_reg, buf);
976 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
977 cfa = SPUADDR (id, cfa);
979 /* Call-saved register slots. */
980 for (i = 0; i < SPU_NUM_GPRS; i++)
981 if (i == SPU_LR_REGNUM
982 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
983 if (data.reg_offset[i] != -1)
984 info->saved_regs[i].addr = cfa - data.reg_offset[i];
987 info->frame_base = cfa;
988 info->local_base = cfa - data.size;
991 /* Otherwise, fall back to reading the backchain link. */
999 /* Get local store limit. */
1000 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1002 lslr = (ULONGEST) -1;
1004 /* Get the backchain. */
1005 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1006 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1009 /* A zero backchain terminates the frame chain. Also, sanity
1010 check against the local store size limit. */
1011 if (status && backchain > 0 && backchain <= lslr)
1013 /* Assume the link register is saved into its slot. */
1014 if (backchain + 16 <= lslr)
1015 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1019 info->frame_base = SPUADDR (id, backchain);
1020 info->local_base = SPUADDR (id, reg);
1024 /* If we didn't find a frame, we cannot determine SP / return address. */
1025 if (info->frame_base == 0)
1028 /* The previous SP is equal to the CFA. */
1029 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1030 SPUADDR_ADDR (info->frame_base));
1032 /* Read full contents of the unwound link register in order to
1033 be able to determine the return address. */
1034 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1035 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1037 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1039 /* Normally, the return address is contained in the slot 0 of the
1040 link register, and slots 1-3 are zero. For an overlay return,
1041 slot 0 contains the address of the overlay manager return stub,
1042 slot 1 contains the partition number of the overlay section to
1043 be returned to, and slot 2 contains the return address within
1044 that section. Return the latter address in that case. */
1045 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1046 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1047 extract_unsigned_integer (buf + 8, 4, byte_order));
1049 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1050 extract_unsigned_integer (buf, 4, byte_order));
1056 spu_frame_this_id (struct frame_info *this_frame,
1057 void **this_prologue_cache, struct frame_id *this_id)
1059 struct spu_unwind_cache *info =
1060 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1062 if (info->frame_base == 0)
1065 *this_id = frame_id_build (info->frame_base, info->func);
1068 static struct value *
1069 spu_frame_prev_register (struct frame_info *this_frame,
1070 void **this_prologue_cache, int regnum)
1072 struct spu_unwind_cache *info
1073 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1075 /* Special-case the stack pointer. */
1076 if (regnum == SPU_RAW_SP_REGNUM)
1077 regnum = SPU_SP_REGNUM;
1079 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1082 static const struct frame_unwind spu_frame_unwind = {
1084 default_frame_unwind_stop_reason,
1086 spu_frame_prev_register,
1088 default_frame_sniffer
1092 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1094 struct spu_unwind_cache *info
1095 = spu_frame_unwind_cache (this_frame, this_cache);
1096 return info->local_base;
1099 static const struct frame_base spu_frame_base = {
1101 spu_frame_base_address,
1102 spu_frame_base_address,
1103 spu_frame_base_address
1107 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1110 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1111 /* Mask off interrupt enable bit. */
1112 return SPUADDR (tdep->id, pc & -4);
1116 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1118 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1119 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1120 return SPUADDR (tdep->id, sp);
1124 spu_read_pc (struct regcache *regcache)
1126 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1128 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1129 /* Mask off interrupt enable bit. */
1130 return SPUADDR (tdep->id, pc & -4);
1134 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1136 /* Keep interrupt enabled state unchanged. */
1138 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1139 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1140 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1144 /* Cell/B.E. cross-architecture unwinder support. */
1146 struct spu2ppu_cache
1148 struct frame_id frame_id;
1149 struct regcache *regcache;
1152 static struct gdbarch *
1153 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1155 struct spu2ppu_cache *cache = *this_cache;
1156 return get_regcache_arch (cache->regcache);
1160 spu2ppu_this_id (struct frame_info *this_frame,
1161 void **this_cache, struct frame_id *this_id)
1163 struct spu2ppu_cache *cache = *this_cache;
1164 *this_id = cache->frame_id;
1167 static struct value *
1168 spu2ppu_prev_register (struct frame_info *this_frame,
1169 void **this_cache, int regnum)
1171 struct spu2ppu_cache *cache = *this_cache;
1172 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1175 buf = alloca (register_size (gdbarch, regnum));
1176 regcache_cooked_read (cache->regcache, regnum, buf);
1177 return frame_unwind_got_bytes (this_frame, regnum, buf);
1181 spu2ppu_sniffer (const struct frame_unwind *self,
1182 struct frame_info *this_frame, void **this_prologue_cache)
1184 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1185 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1186 CORE_ADDR base, func, backchain;
1189 if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
1192 base = get_frame_sp (this_frame);
1193 func = get_frame_pc (this_frame);
1194 if (target_read_memory (base, buf, 4))
1196 backchain = extract_unsigned_integer (buf, 4, byte_order);
1200 struct frame_info *fi;
1202 struct spu2ppu_cache *cache
1203 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1205 cache->frame_id = frame_id_build (base + 16, func);
1207 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1208 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1213 cache->regcache = frame_save_as_regcache (fi);
1214 *this_prologue_cache = cache;
1219 struct regcache *regcache;
1220 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1221 cache->regcache = regcache_dup (regcache);
1222 *this_prologue_cache = cache;
1231 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1233 struct spu2ppu_cache *cache = this_cache;
1234 regcache_xfree (cache->regcache);
1237 static const struct frame_unwind spu2ppu_unwind = {
1239 default_frame_unwind_stop_reason,
1241 spu2ppu_prev_register,
1244 spu2ppu_dealloc_cache,
1249 /* Function calling convention. */
1252 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1258 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1259 struct value **args, int nargs, struct type *value_type,
1260 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1261 struct regcache *regcache)
1263 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1264 sp = (sp - 4) & ~15;
1265 /* Store the address of that breakpoint */
1267 /* The call starts at the callee's entry point. */
1274 spu_scalar_value_p (struct type *type)
1276 switch (TYPE_CODE (type))
1279 case TYPE_CODE_ENUM:
1280 case TYPE_CODE_RANGE:
1281 case TYPE_CODE_CHAR:
1282 case TYPE_CODE_BOOL:
1285 return TYPE_LENGTH (type) <= 16;
1293 spu_value_to_regcache (struct regcache *regcache, int regnum,
1294 struct type *type, const gdb_byte *in)
1296 int len = TYPE_LENGTH (type);
1298 if (spu_scalar_value_p (type))
1300 int preferred_slot = len < 4 ? 4 - len : 0;
1301 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1307 regcache_cooked_write (regcache, regnum++, in);
1313 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1318 spu_regcache_to_value (struct regcache *regcache, int regnum,
1319 struct type *type, gdb_byte *out)
1321 int len = TYPE_LENGTH (type);
1323 if (spu_scalar_value_p (type))
1325 int preferred_slot = len < 4 ? 4 - len : 0;
1326 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1332 regcache_cooked_read (regcache, regnum++, out);
1338 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1343 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1344 struct regcache *regcache, CORE_ADDR bp_addr,
1345 int nargs, struct value **args, CORE_ADDR sp,
1346 int struct_return, CORE_ADDR struct_addr)
1348 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1351 int regnum = SPU_ARG1_REGNUM;
1355 /* Set the return address. */
1356 memset (buf, 0, sizeof buf);
1357 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1358 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1360 /* If STRUCT_RETURN is true, then the struct return address (in
1361 STRUCT_ADDR) will consume the first argument-passing register.
1362 Both adjust the register count and store that value. */
1365 memset (buf, 0, sizeof buf);
1366 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1367 regcache_cooked_write (regcache, regnum++, buf);
1370 /* Fill in argument registers. */
1371 for (i = 0; i < nargs; i++)
1373 struct value *arg = args[i];
1374 struct type *type = check_typedef (value_type (arg));
1375 const gdb_byte *contents = value_contents (arg);
1376 int len = TYPE_LENGTH (type);
1377 int n_regs = align_up (len, 16) / 16;
1379 /* If the argument doesn't wholly fit into registers, it and
1380 all subsequent arguments go to the stack. */
1381 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1387 spu_value_to_regcache (regcache, regnum, type, contents);
1391 /* Overflow arguments go to the stack. */
1392 if (stack_arg != -1)
1396 /* Allocate all required stack size. */
1397 for (i = stack_arg; i < nargs; i++)
1399 struct type *type = check_typedef (value_type (args[i]));
1400 sp -= align_up (TYPE_LENGTH (type), 16);
1403 /* Fill in stack arguments. */
1405 for (i = stack_arg; i < nargs; i++)
1407 struct value *arg = args[i];
1408 struct type *type = check_typedef (value_type (arg));
1409 int len = TYPE_LENGTH (type);
1412 if (spu_scalar_value_p (type))
1413 preferred_slot = len < 4 ? 4 - len : 0;
1417 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1418 ap += align_up (TYPE_LENGTH (type), 16);
1422 /* Allocate stack frame header. */
1425 /* Store stack back chain. */
1426 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1427 target_write_memory (sp, buf, 16);
1429 /* Finally, update all slots of the SP register. */
1430 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1431 for (i = 0; i < 4; i++)
1433 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1434 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1436 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1441 static struct frame_id
1442 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1445 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1446 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1447 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1450 /* Function return value access. */
1452 static enum return_value_convention
1453 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1454 struct type *type, struct regcache *regcache,
1455 gdb_byte *out, const gdb_byte *in)
1457 struct type *func_type = function ? value_type (function) : NULL;
1458 enum return_value_convention rvc;
1459 int opencl_vector = 0;
1463 func_type = check_typedef (func_type);
1465 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1466 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1468 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1469 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1470 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1471 && TYPE_VECTOR (type))
1475 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1476 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1478 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1484 case RETURN_VALUE_REGISTER_CONVENTION:
1485 if (opencl_vector && TYPE_LENGTH (type) == 2)
1486 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1488 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1491 case RETURN_VALUE_STRUCT_CONVENTION:
1492 error (_("Cannot set function return value."));
1500 case RETURN_VALUE_REGISTER_CONVENTION:
1501 if (opencl_vector && TYPE_LENGTH (type) == 2)
1502 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1504 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1507 case RETURN_VALUE_STRUCT_CONVENTION:
1508 error (_("Function return value unknown."));
1519 static const gdb_byte *
1520 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1521 CORE_ADDR * pcptr, int *lenptr)
1523 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1525 *lenptr = sizeof breakpoint;
1530 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1531 struct bp_target_info *bp_tgt)
1533 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1534 that in a combined application, we have some breakpoints inserted in SPU
1535 code, and now the application forks (on the PPU side). GDB common code
1536 will assume that the fork system call copied all breakpoints into the new
1537 process' address space, and that all those copies now need to be removed
1538 (see breakpoint.c:detach_breakpoints).
1540 While this is certainly true for PPU side breakpoints, it is not true
1541 for SPU side breakpoints. fork will clone the SPU context file
1542 descriptors, so that all the existing SPU contexts are in accessible
1543 in the new process. However, the contents of the SPU contexts themselves
1544 are *not* cloned. Therefore the effect of detach_breakpoints is to
1545 remove SPU breakpoints from the *original* SPU context's local store
1546 -- this is not the correct behaviour.
1548 The workaround is to check whether the PID we are asked to remove this
1549 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1550 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1551 true in the context of detach_breakpoints. If so, we simply do nothing.
1552 [ Note that for the fork child process, it does not matter if breakpoints
1553 remain inserted, because those SPU contexts are not runnable anyway --
1554 the Linux kernel allows only the original process to invoke spu_run. */
1556 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1559 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1563 /* Software single-stepping support. */
1566 spu_software_single_step (struct frame_info *frame)
1568 struct gdbarch *gdbarch = get_frame_arch (frame);
1569 struct address_space *aspace = get_frame_address_space (frame);
1570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1571 CORE_ADDR pc, next_pc;
1577 pc = get_frame_pc (frame);
1579 if (target_read_memory (pc, buf, 4))
1581 insn = extract_unsigned_integer (buf, 4, byte_order);
1583 /* Get local store limit. */
1584 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1586 lslr = (ULONGEST) -1;
1588 /* Next sequential instruction is at PC + 4, except if the current
1589 instruction is a PPE-assisted call, in which case it is at PC + 8.
1590 Wrap around LS limit to be on the safe side. */
1591 if ((insn & 0xffffff00) == 0x00002100)
1592 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1594 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1596 insert_single_step_breakpoint (gdbarch,
1597 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1599 if (is_branch (insn, &offset, ®))
1601 CORE_ADDR target = offset;
1603 if (reg == SPU_PC_REGNUM)
1604 target += SPUADDR_ADDR (pc);
1609 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1611 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1615 error (_("Could not determine address of "
1616 "single-step breakpoint."));
1618 throw_error (NOT_AVAILABLE_ERROR,
1619 _("Could not determine address of "
1620 "single-step breakpoint."));
1624 target = target & lslr;
1625 if (target != next_pc)
1626 insert_single_step_breakpoint (gdbarch, aspace,
1627 SPUADDR (SPUADDR_SPU (pc), target));
1634 /* Longjmp support. */
1637 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1639 struct gdbarch *gdbarch = get_frame_arch (frame);
1640 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1641 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1646 /* Jump buffer is pointed to by the argument register $r3. */
1647 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1651 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1652 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1655 *pc = extract_unsigned_integer (buf, 4, byte_order);
1656 *pc = SPUADDR (tdep->id, *pc);
1663 struct spu_dis_asm_data
1665 struct gdbarch *gdbarch;
1670 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1672 struct spu_dis_asm_data *data = info->application_data;
1673 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1677 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1679 /* The opcodes disassembler does 18-bit address arithmetic. Make
1680 sure the SPU ID encoded in the high bits is added back when we
1681 call print_address. */
1682 struct disassemble_info spu_info = *info;
1683 struct spu_dis_asm_data data;
1684 data.gdbarch = info->application_data;
1685 data.id = SPUADDR_SPU (memaddr);
1687 spu_info.application_data = &data;
1688 spu_info.print_address_func = spu_dis_asm_print_address;
1689 return print_insn_spu (memaddr, &spu_info);
1693 /* Target overlays for the SPU overlay manager.
1695 See the documentation of simple_overlay_update for how the
1696 interface is supposed to work.
1698 Data structures used by the overlay manager:
1706 } _ovly_table[]; -- one entry per overlay section
1708 struct ovly_buf_table
1711 } _ovly_buf_table[]; -- one entry per overlay buffer
1713 _ovly_table should never change.
1715 Both tables are aligned to a 16-byte boundary, the symbols
1716 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1717 size set to the size of the respective array. buf in _ovly_table is
1718 an index into _ovly_buf_table.
1720 mapped is an index into _ovly_table. Both the mapped and buf indices start
1721 from one to reference the first entry in their respective tables. */
1723 /* Using the per-objfile private data mechanism, we store for each
1724 objfile an array of "struct spu_overlay_table" structures, one
1725 for each obj_section of the objfile. This structure holds two
1726 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1727 is *not* an overlay section. If it is non-zero, it represents
1728 a target address. The overlay section is mapped iff the target
1729 integer at this location equals MAPPED_VAL. */
1731 static const struct objfile_data *spu_overlay_data;
1733 struct spu_overlay_table
1735 CORE_ADDR mapped_ptr;
1736 CORE_ADDR mapped_val;
1739 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1740 the _ovly_table data structure from the target and initialize the
1741 spu_overlay_table data structure from it. */
1742 static struct spu_overlay_table *
1743 spu_get_overlay_table (struct objfile *objfile)
1745 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1746 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1747 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1748 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1749 unsigned ovly_table_size, ovly_buf_table_size;
1750 struct spu_overlay_table *tbl;
1751 struct obj_section *osect;
1755 tbl = objfile_data (objfile, spu_overlay_data);
1759 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1760 if (!ovly_table_msym)
1763 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1765 if (!ovly_buf_table_msym)
1768 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1769 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1771 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1772 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1774 ovly_table = xmalloc (ovly_table_size);
1775 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1777 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1778 objfile->sections_end - objfile->sections,
1779 struct spu_overlay_table);
1781 for (i = 0; i < ovly_table_size / 16; i++)
1783 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1785 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1787 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1789 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1792 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1795 ALL_OBJFILE_OSECTIONS (objfile, osect)
1796 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1797 && pos == osect->the_bfd_section->filepos)
1799 int ndx = osect - objfile->sections;
1800 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1801 tbl[ndx].mapped_val = i + 1;
1807 set_objfile_data (objfile, spu_overlay_data, tbl);
1811 /* Read _ovly_buf_table entry from the target to dermine whether
1812 OSECT is currently mapped, and update the mapped state. */
1814 spu_overlay_update_osect (struct obj_section *osect)
1816 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1817 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1818 struct spu_overlay_table *ovly_table;
1821 ovly_table = spu_get_overlay_table (osect->objfile);
1825 ovly_table += osect - osect->objfile->sections;
1826 if (ovly_table->mapped_ptr == 0)
1829 id = SPUADDR_SPU (obj_section_addr (osect));
1830 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1832 osect->ovly_mapped = (val == ovly_table->mapped_val);
1835 /* If OSECT is NULL, then update all sections' mapped state.
1836 If OSECT is non-NULL, then update only OSECT's mapped state. */
1838 spu_overlay_update (struct obj_section *osect)
1840 /* Just one section. */
1842 spu_overlay_update_osect (osect);
1847 struct objfile *objfile;
1849 ALL_OBJSECTIONS (objfile, osect)
1850 if (section_is_overlay (osect))
1851 spu_overlay_update_osect (osect);
1855 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1856 If there is one, go through all sections and make sure for non-
1857 overlay sections LMA equals VMA, while for overlay sections LMA
1858 is larger than SPU_OVERLAY_LMA. */
1860 spu_overlay_new_objfile (struct objfile *objfile)
1862 struct spu_overlay_table *ovly_table;
1863 struct obj_section *osect;
1865 /* If we've already touched this file, do nothing. */
1866 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1869 /* Consider only SPU objfiles. */
1870 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1873 /* Check if this objfile has overlays. */
1874 ovly_table = spu_get_overlay_table (objfile);
1878 /* Now go and fiddle with all the LMAs. */
1879 ALL_OBJFILE_OSECTIONS (objfile, osect)
1881 bfd *obfd = objfile->obfd;
1882 asection *bsect = osect->the_bfd_section;
1883 int ndx = osect - objfile->sections;
1885 if (ovly_table[ndx].mapped_ptr == 0)
1886 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1888 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1893 /* Insert temporary breakpoint on "main" function of newly loaded
1894 SPE context OBJFILE. */
1896 spu_catch_start (struct objfile *objfile)
1898 struct minimal_symbol *minsym;
1899 struct symtab *symtab;
1903 /* Do this only if requested by "set spu stop-on-load on". */
1904 if (!spu_stop_on_load_p)
1907 /* Consider only SPU objfiles. */
1908 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1911 /* The main objfile is handled differently. */
1912 if (objfile == symfile_objfile)
1915 /* There can be multiple symbols named "main". Search for the
1916 "main" in *this* objfile. */
1917 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1921 /* If we have debugging information, try to use it -- this
1922 will allow us to properly skip the prologue. */
1923 pc = SYMBOL_VALUE_ADDRESS (minsym);
1924 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
1927 struct blockvector *bv = BLOCKVECTOR (symtab);
1928 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1930 struct symtab_and_line sal;
1932 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
1935 fixup_symbol_section (sym, objfile);
1936 sal = find_function_start_sal (sym, 1);
1941 /* Use a numerical address for the set_breakpoint command to avoid having
1942 the breakpoint re-set incorrectly. */
1943 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
1944 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
1945 NULL /* cond_string */, -1 /* thread */,
1946 NULL /* extra_string */,
1947 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1948 bp_breakpoint /* type_wanted */,
1949 0 /* ignore_count */,
1950 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1951 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
1952 1 /* enabled */, 0 /* internal */, 0);
1956 /* Look up OBJFILE loaded into FRAME's SPU context. */
1957 static struct objfile *
1958 spu_objfile_from_frame (struct frame_info *frame)
1960 struct gdbarch *gdbarch = get_frame_arch (frame);
1961 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1962 struct objfile *obj;
1964 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1969 if (obj->sections != obj->sections_end
1970 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1977 /* Flush cache for ea pointer access if available. */
1979 flush_ea_cache (void)
1981 struct minimal_symbol *msymbol;
1982 struct objfile *obj;
1984 if (!has_stack_frames ())
1987 obj = spu_objfile_from_frame (get_current_frame ());
1991 /* Lookup inferior function __cache_flush. */
1992 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1993 if (msymbol != NULL)
1998 type = objfile_type (obj)->builtin_void;
1999 type = lookup_function_type (type);
2000 type = lookup_pointer_type (type);
2001 addr = SYMBOL_VALUE_ADDRESS (msymbol);
2003 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2007 /* This handler is called when the inferior has stopped. If it is stopped in
2008 SPU architecture then flush the ea cache if used. */
2010 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2012 if (!spu_auto_flush_cache_p)
2015 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2016 re-entering this function when __cache_flush stops. */
2017 spu_auto_flush_cache_p = 0;
2019 spu_auto_flush_cache_p = 1;
2023 /* "info spu" commands. */
2026 info_spu_event_command (char *args, int from_tty)
2028 struct frame_info *frame = get_selected_frame (NULL);
2029 ULONGEST event_status = 0;
2030 ULONGEST event_mask = 0;
2031 struct cleanup *chain;
2037 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2038 error (_("\"info spu\" is only supported on the SPU architecture."));
2040 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2042 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2043 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2044 buf, 0, (sizeof (buf) - 1));
2046 error (_("Could not read event_status."));
2048 event_status = strtoulst (buf, NULL, 16);
2050 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2051 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2052 buf, 0, (sizeof (buf) - 1));
2054 error (_("Could not read event_mask."));
2056 event_mask = strtoulst (buf, NULL, 16);
2058 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2060 if (ui_out_is_mi_like_p (current_uiout))
2062 ui_out_field_fmt (current_uiout, "event_status",
2063 "0x%s", phex_nz (event_status, 4));
2064 ui_out_field_fmt (current_uiout, "event_mask",
2065 "0x%s", phex_nz (event_mask, 4));
2069 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2070 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2073 do_cleanups (chain);
2077 info_spu_signal_command (char *args, int from_tty)
2079 struct frame_info *frame = get_selected_frame (NULL);
2080 struct gdbarch *gdbarch = get_frame_arch (frame);
2081 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2082 ULONGEST signal1 = 0;
2083 ULONGEST signal1_type = 0;
2084 int signal1_pending = 0;
2085 ULONGEST signal2 = 0;
2086 ULONGEST signal2_type = 0;
2087 int signal2_pending = 0;
2088 struct cleanup *chain;
2094 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2095 error (_("\"info spu\" is only supported on the SPU architecture."));
2097 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2099 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2100 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2102 error (_("Could not read signal1."));
2105 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2106 signal1_pending = 1;
2109 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2110 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2111 buf, 0, (sizeof (buf) - 1));
2113 error (_("Could not read signal1_type."));
2115 signal1_type = strtoulst (buf, NULL, 16);
2117 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2118 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2120 error (_("Could not read signal2."));
2123 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2124 signal2_pending = 1;
2127 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2128 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2129 buf, 0, (sizeof (buf) - 1));
2131 error (_("Could not read signal2_type."));
2133 signal2_type = strtoulst (buf, NULL, 16);
2135 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2137 if (ui_out_is_mi_like_p (current_uiout))
2139 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2140 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2141 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2142 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2143 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2144 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2148 if (signal1_pending)
2149 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2151 printf_filtered (_("Signal 1 not pending "));
2154 printf_filtered (_("(Type Or)\n"));
2156 printf_filtered (_("(Type Overwrite)\n"));
2158 if (signal2_pending)
2159 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2161 printf_filtered (_("Signal 2 not pending "));
2164 printf_filtered (_("(Type Or)\n"));
2166 printf_filtered (_("(Type Overwrite)\n"));
2169 do_cleanups (chain);
2173 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2174 const char *field, const char *msg)
2176 struct cleanup *chain;
2182 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2184 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2185 ui_out_table_body (current_uiout);
2187 for (i = 0; i < nr; i++)
2189 struct cleanup *val_chain;
2191 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2192 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2193 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2194 do_cleanups (val_chain);
2196 if (!ui_out_is_mi_like_p (current_uiout))
2197 printf_filtered ("\n");
2200 do_cleanups (chain);
2204 info_spu_mailbox_command (char *args, int from_tty)
2206 struct frame_info *frame = get_selected_frame (NULL);
2207 struct gdbarch *gdbarch = get_frame_arch (frame);
2208 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2209 struct cleanup *chain;
2215 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2216 error (_("\"info spu\" is only supported on the SPU architecture."));
2218 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2220 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2222 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2223 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2224 buf, 0, sizeof buf);
2226 error (_("Could not read mbox_info."));
2228 info_spu_mailbox_list (buf, len / 4, byte_order,
2229 "mbox", "SPU Outbound Mailbox");
2231 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2232 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2233 buf, 0, sizeof buf);
2235 error (_("Could not read ibox_info."));
2237 info_spu_mailbox_list (buf, len / 4, byte_order,
2238 "ibox", "SPU Outbound Interrupt Mailbox");
2240 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2241 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2242 buf, 0, sizeof buf);
2244 error (_("Could not read wbox_info."));
2246 info_spu_mailbox_list (buf, len / 4, byte_order,
2247 "wbox", "SPU Inbound Mailbox");
2249 do_cleanups (chain);
2253 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2255 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2256 return (word >> (63 - last)) & mask;
2260 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2262 static char *spu_mfc_opcode[256] =
2264 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2265 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2266 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2267 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2268 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2269 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2270 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2271 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2272 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2273 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2274 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2275 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2276 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2277 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2278 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2279 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2280 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2281 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2282 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2283 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2284 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2285 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2286 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2287 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2288 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2289 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2290 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2291 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2292 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2293 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2294 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2295 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2298 int *seq = alloca (nr * sizeof (int));
2300 struct cleanup *chain;
2304 /* Determine sequence in which to display (valid) entries. */
2305 for (i = 0; i < nr; i++)
2307 /* Search for the first valid entry all of whose
2308 dependencies are met. */
2309 for (j = 0; j < nr; j++)
2311 ULONGEST mfc_cq_dw3;
2312 ULONGEST dependencies;
2314 if (done & (1 << (nr - 1 - j)))
2318 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2319 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2322 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2323 if ((dependencies & done) != dependencies)
2327 done |= 1 << (nr - 1 - j);
2338 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2341 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2342 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2343 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2344 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2345 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2346 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2347 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2348 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2349 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2350 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2352 ui_out_table_body (current_uiout);
2354 for (i = 0; i < nr; i++)
2356 struct cleanup *cmd_chain;
2357 ULONGEST mfc_cq_dw0;
2358 ULONGEST mfc_cq_dw1;
2359 ULONGEST mfc_cq_dw2;
2360 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2361 int list_lsa, list_size, mfc_lsa, mfc_size;
2363 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2365 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2366 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2369 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2371 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2373 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2375 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2376 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2377 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2378 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2379 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2380 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2381 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2383 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2384 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2386 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2387 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2388 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2389 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2390 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2391 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2393 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2395 if (spu_mfc_opcode[mfc_cmd_opcode])
2396 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2398 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2400 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2401 ui_out_field_int (current_uiout, "tid", tclass_id);
2402 ui_out_field_int (current_uiout, "rid", rclass_id);
2405 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2407 ui_out_field_skip (current_uiout, "ea");
2409 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2411 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2413 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2417 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2418 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2422 ui_out_field_skip (current_uiout, "lstaddr");
2423 ui_out_field_skip (current_uiout, "lstsize");
2427 ui_out_field_string (current_uiout, "error_p", "*");
2429 ui_out_field_skip (current_uiout, "error_p");
2431 do_cleanups (cmd_chain);
2433 if (!ui_out_is_mi_like_p (current_uiout))
2434 printf_filtered ("\n");
2437 do_cleanups (chain);
2441 info_spu_dma_command (char *args, int from_tty)
2443 struct frame_info *frame = get_selected_frame (NULL);
2444 struct gdbarch *gdbarch = get_frame_arch (frame);
2445 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2446 ULONGEST dma_info_type;
2447 ULONGEST dma_info_mask;
2448 ULONGEST dma_info_status;
2449 ULONGEST dma_info_stall_and_notify;
2450 ULONGEST dma_info_atomic_command_status;
2451 struct cleanup *chain;
2457 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2458 error (_("\"info spu\" is only supported on the SPU architecture."));
2460 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2462 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2463 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2464 buf, 0, 40 + 16 * 32);
2466 error (_("Could not read dma_info."));
2469 = extract_unsigned_integer (buf, 8, byte_order);
2471 = extract_unsigned_integer (buf + 8, 8, byte_order);
2473 = extract_unsigned_integer (buf + 16, 8, byte_order);
2474 dma_info_stall_and_notify
2475 = extract_unsigned_integer (buf + 24, 8, byte_order);
2476 dma_info_atomic_command_status
2477 = extract_unsigned_integer (buf + 32, 8, byte_order);
2479 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2481 if (ui_out_is_mi_like_p (current_uiout))
2483 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2484 phex_nz (dma_info_type, 4));
2485 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2486 phex_nz (dma_info_mask, 4));
2487 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2488 phex_nz (dma_info_status, 4));
2489 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2490 phex_nz (dma_info_stall_and_notify, 4));
2491 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2492 phex_nz (dma_info_atomic_command_status, 4));
2496 const char *query_msg = _("no query pending");
2498 if (dma_info_type & 4)
2499 switch (dma_info_type & 3)
2501 case 1: query_msg = _("'any' query pending"); break;
2502 case 2: query_msg = _("'all' query pending"); break;
2503 default: query_msg = _("undefined query type"); break;
2506 printf_filtered (_("Tag-Group Status 0x%s\n"),
2507 phex (dma_info_status, 4));
2508 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2509 phex (dma_info_mask, 4), query_msg);
2510 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2511 phex (dma_info_stall_and_notify, 4));
2512 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2513 phex (dma_info_atomic_command_status, 4));
2514 printf_filtered ("\n");
2517 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2518 do_cleanups (chain);
2522 info_spu_proxydma_command (char *args, int from_tty)
2524 struct frame_info *frame = get_selected_frame (NULL);
2525 struct gdbarch *gdbarch = get_frame_arch (frame);
2526 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2527 ULONGEST dma_info_type;
2528 ULONGEST dma_info_mask;
2529 ULONGEST dma_info_status;
2530 struct cleanup *chain;
2536 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2537 error (_("\"info spu\" is only supported on the SPU architecture."));
2539 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2541 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2542 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2543 buf, 0, 24 + 8 * 32);
2545 error (_("Could not read proxydma_info."));
2547 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2548 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2549 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2551 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2554 if (ui_out_is_mi_like_p (current_uiout))
2556 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2557 phex_nz (dma_info_type, 4));
2558 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2559 phex_nz (dma_info_mask, 4));
2560 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2561 phex_nz (dma_info_status, 4));
2565 const char *query_msg;
2567 switch (dma_info_type & 3)
2569 case 0: query_msg = _("no query pending"); break;
2570 case 1: query_msg = _("'any' query pending"); break;
2571 case 2: query_msg = _("'all' query pending"); break;
2572 default: query_msg = _("undefined query type"); break;
2575 printf_filtered (_("Tag-Group Status 0x%s\n"),
2576 phex (dma_info_status, 4));
2577 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2578 phex (dma_info_mask, 4), query_msg);
2579 printf_filtered ("\n");
2582 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2583 do_cleanups (chain);
2587 info_spu_command (char *args, int from_tty)
2589 printf_unfiltered (_("\"info spu\" must be followed by "
2590 "the name of an SPU facility.\n"));
2591 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2595 /* Root of all "set spu "/"show spu " commands. */
2598 show_spu_command (char *args, int from_tty)
2600 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2604 set_spu_command (char *args, int from_tty)
2606 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2610 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2611 struct cmd_list_element *c, const char *value)
2613 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2618 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2619 struct cmd_list_element *c, const char *value)
2621 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2626 /* Set up gdbarch struct. */
2628 static struct gdbarch *
2629 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2631 struct gdbarch *gdbarch;
2632 struct gdbarch_tdep *tdep;
2635 /* Which spufs ID was requested as address space? */
2637 id = *(int *)info.tdep_info;
2638 /* For objfile architectures of SPU solibs, decode the ID from the name.
2639 This assumes the filename convention employed by solib-spu.c. */
2642 char *name = strrchr (info.abfd->filename, '@');
2644 sscanf (name, "@0x%*x <%d>", &id);
2647 /* Find a candidate among extant architectures. */
2648 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2650 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2652 tdep = gdbarch_tdep (arches->gdbarch);
2653 if (tdep && tdep->id == id)
2654 return arches->gdbarch;
2657 /* None found, so create a new architecture. */
2658 tdep = XCALLOC (1, struct gdbarch_tdep);
2660 gdbarch = gdbarch_alloc (&info, tdep);
2663 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2666 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2667 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2668 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2669 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2670 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2671 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2672 set_gdbarch_register_name (gdbarch, spu_register_name);
2673 set_gdbarch_register_type (gdbarch, spu_register_type);
2674 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2675 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2676 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2677 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2680 set_gdbarch_char_signed (gdbarch, 0);
2681 set_gdbarch_ptr_bit (gdbarch, 32);
2682 set_gdbarch_addr_bit (gdbarch, 32);
2683 set_gdbarch_short_bit (gdbarch, 16);
2684 set_gdbarch_int_bit (gdbarch, 32);
2685 set_gdbarch_long_bit (gdbarch, 32);
2686 set_gdbarch_long_long_bit (gdbarch, 64);
2687 set_gdbarch_float_bit (gdbarch, 32);
2688 set_gdbarch_double_bit (gdbarch, 64);
2689 set_gdbarch_long_double_bit (gdbarch, 64);
2690 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2691 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2692 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2694 /* Address handling. */
2695 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2696 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2697 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2698 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2699 set_gdbarch_address_class_type_flags_to_name
2700 (gdbarch, spu_address_class_type_flags_to_name);
2701 set_gdbarch_address_class_name_to_type_flags
2702 (gdbarch, spu_address_class_name_to_type_flags);
2705 /* Inferior function calls. */
2706 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2707 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2708 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2709 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2710 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2711 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2712 set_gdbarch_return_value (gdbarch, spu_return_value);
2714 /* Frame handling. */
2715 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2716 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2717 frame_base_set_default (gdbarch, &spu_frame_base);
2718 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2719 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2720 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2721 set_gdbarch_frame_args_skip (gdbarch, 0);
2722 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2723 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2725 /* Cell/B.E. cross-architecture unwinder support. */
2726 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2729 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2730 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2731 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2732 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2733 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2734 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2737 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2742 /* Provide a prototype to silence -Wmissing-prototypes. */
2743 extern initialize_file_ftype _initialize_spu_tdep;
2746 _initialize_spu_tdep (void)
2748 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2750 /* Add ourselves to objfile event chain. */
2751 observer_attach_new_objfile (spu_overlay_new_objfile);
2752 spu_overlay_data = register_objfile_data ();
2754 /* Install spu stop-on-load handler. */
2755 observer_attach_new_objfile (spu_catch_start);
2757 /* Add ourselves to normal_stop event chain. */
2758 observer_attach_normal_stop (spu_attach_normal_stop);
2760 /* Add root prefix command for all "set spu"/"show spu" commands. */
2761 add_prefix_cmd ("spu", no_class, set_spu_command,
2762 _("Various SPU specific commands."),
2763 &setspucmdlist, "set spu ", 0, &setlist);
2764 add_prefix_cmd ("spu", no_class, show_spu_command,
2765 _("Various SPU specific commands."),
2766 &showspucmdlist, "show spu ", 0, &showlist);
2768 /* Toggle whether or not to add a temporary breakpoint at the "main"
2769 function of new SPE contexts. */
2770 add_setshow_boolean_cmd ("stop-on-load", class_support,
2771 &spu_stop_on_load_p, _("\
2772 Set whether to stop for new SPE threads."),
2774 Show whether to stop for new SPE threads."),
2776 Use \"on\" to give control to the user when a new SPE thread\n\
2777 enters its \"main\" function.\n\
2778 Use \"off\" to disable stopping for new SPE threads."),
2780 show_spu_stop_on_load,
2781 &setspucmdlist, &showspucmdlist);
2783 /* Toggle whether or not to automatically flush the software-managed
2784 cache whenever SPE execution stops. */
2785 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2786 &spu_auto_flush_cache_p, _("\
2787 Set whether to automatically flush the software-managed cache."),
2789 Show whether to automatically flush the software-managed cache."),
2791 Use \"on\" to automatically flush the software-managed cache\n\
2792 whenever SPE execution stops.\n\
2793 Use \"off\" to never automatically flush the software-managed cache."),
2795 show_spu_auto_flush_cache,
2796 &setspucmdlist, &showspucmdlist);
2798 /* Add root prefix command for all "info spu" commands. */
2799 add_prefix_cmd ("spu", class_info, info_spu_command,
2800 _("Various SPU specific commands."),
2801 &infospucmdlist, "info spu ", 0, &infolist);
2803 /* Add various "info spu" commands. */
2804 add_cmd ("event", class_info, info_spu_event_command,
2805 _("Display SPU event facility status.\n"),
2807 add_cmd ("signal", class_info, info_spu_signal_command,
2808 _("Display SPU signal notification facility status.\n"),
2810 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2811 _("Display SPU mailbox facility status.\n"),
2813 add_cmd ("dma", class_info, info_spu_dma_command,
2814 _("Display MFC DMA status.\n"),
2816 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2817 _("Display MFC Proxy-DMA status.\n"),