1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
39 #include "reggroups.h"
40 #include "floatformat.h"
45 #include "dwarf2-frame.h"
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
60 /* The tdep structure. */
63 /* The spufs ID identifying our address space. */
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
71 /* SPU-specific vector type. */
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77 if (!tdep->spu_builtin_type_vec128)
79 const struct builtin_type *bt = builtin_type (gdbarch);
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
101 tdep->spu_builtin_type_vec128 = t;
104 return tdep->spu_builtin_type_vec128;
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
116 static char *register_names[] =
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
142 return register_names[reg_nr];
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
154 return builtin_type (gdbarch)->builtin_uint32;
157 return builtin_type (gdbarch)->builtin_func_ptr;
160 return builtin_type (gdbarch)->builtin_data_ptr;
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
182 /* Pseudo registers for preferred slots - stack pointer. */
184 static enum register_status
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 enum register_status status;
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (¤t_target, TARGET_OBJECT_SPU, annex,
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
216 enum register_status status;
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
224 memcpy (buf, reg, 4);
227 case SPU_FPSCR_REGNUM:
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (¤t_target, TARGET_OBJECT_SPU, annex,
267 (gdb_byte *) reg, 0, strlen (reg));
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
314 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
336 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
358 /* Value conversion -- access scalar values at the preferred slot. */
360 static struct value *
361 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
364 struct value *value = default_value_from_register (gdbarch, type,
366 int len = TYPE_LENGTH (type);
368 if (regnum < SPU_NUM_GPRS && len < 16)
370 int preferred_slot = len < 4 ? 4 - len : 0;
371 set_value_offset (value, preferred_slot);
377 /* Register groups. */
380 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
396 return default_register_reggroup_p (gdbarch, regnum, group);
399 /* DWARF-2 register numbers. */
402 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
409 /* Address handling. */
412 spu_gdbarch_id (struct gdbarch *gdbarch)
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
417 /* The objfile architecture of a standalone SPU executable does not
418 provide an SPU ID. Retrieve it from the objfile's relocated
419 address range in this special case. */
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
430 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
439 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
448 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
451 if (strcmp (name, "__ea") == 0)
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
461 spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
470 spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
473 int id = spu_gdbarch_id (gdbarch);
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
482 return addr? SPUADDR (id, addr) : 0;
486 spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
489 int id = spu_gdbarch_id (gdbarch);
490 ULONGEST addr = unpack_long (type, buf);
492 return SPUADDR (id, addr);
496 /* Decoding SPU instructions. */
533 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
535 if ((insn >> 21) == op)
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
547 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
549 if ((insn >> 28) == op)
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
562 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
564 if ((insn >> 21) == op)
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
576 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
578 if ((insn >> 24) == op)
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
590 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
592 if ((insn >> 23) == op)
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
603 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
605 if ((insn >> 25) == op)
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
616 is_branch (unsigned int insn, int *offset, int *reg)
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
627 *reg = SPU_PC_REGNUM;
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
655 /* Prolog parsing. */
657 struct spu_prologue_data
659 /* Stack frame size. -1 if analysis was unsuccessful. */
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
671 spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
673 struct spu_prologue_data *data)
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
680 int reg_immed[SPU_NUM_GPRS];
682 CORE_ADDR prolog_pc = start_pc;
687 /* Initialize DATA to default values. */
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
701 /* Scan instructions until the first branch.
703 The following instructions are important prolog components:
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
708 - The first instruction to save the backchain.
710 We return the instruction after the latest of these four,
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
728 These are used to compute the CFA and REG_OFFSET output. */
730 for (pc = start_pc; pc < end_pc; pc += 4)
733 int rt, ra, rb, rc, immed;
735 if (target_read_memory (pc, buf, 4))
737 insn = extract_unsigned_integer (buf, 4, byte_order);
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
793 reg_immed[rt] = immed;
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
801 reg_immed[rt] = immed & 0x3ffff;
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
854 /* Return the first instruction after the prologue starting at PC. */
856 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
858 struct spu_prologue_data data;
859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
862 /* Return the frame pointer in use at address PC. */
864 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
867 struct spu_prologue_data data;
868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
870 if (data.size != -1 && data.cfa_reg != -1)
872 /* The 'frame pointer' address is CFA minus frame size. */
874 *offset = data.cfa_offset - data.size;
878 /* ??? We don't really know ... */
879 *reg = SPU_SP_REGNUM;
884 /* Implement the stack_frame_destroyed_p gdbarch method.
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
901 spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
907 int rt, ra, rb, immed;
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
912 const int spu_max_epilogue_size = 64 * 4;
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
920 epilogue_start = pc - spu_max_epilogue_size;
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
925 epilogue_end = pc + spu_max_epilogue_size;
927 /* Scan forward until next 'bi $0'. */
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
931 if (target_read_memory (scan_pc, buf, 4))
933 insn = extract_unsigned_integer (buf, 4, byte_order);
935 if (is_branch (insn, &immed, &ra))
937 if (immed == 0 && ra == SPU_LR_REGNUM)
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
947 if (rt == SPU_RAW_SP_REGNUM)
952 if (scan_pc >= epilogue_end)
955 /* Scan backward until adjustment to stack pointer (R1). */
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
959 if (target_read_memory (scan_pc, buf, 4))
961 insn = extract_unsigned_integer (buf, 4, byte_order);
963 if (is_branch (insn, &immed, &ra))
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
970 if (rt == SPU_RAW_SP_REGNUM)
979 /* Normal stack frames. */
981 struct spu_unwind_cache
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
987 struct trad_frame_saved_reg *saved_regs;
990 static struct spu_unwind_cache *
991 spu_frame_unwind_cache (struct frame_info *this_frame,
992 void **this_prologue_cache)
994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
999 CORE_ADDR id = tdep->id;
1002 if (*this_prologue_cache)
1003 return (struct spu_unwind_cache *) *this_prologue_cache;
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1008 info->frame_base = 0;
1009 info->local_base = 0;
1011 /* Find the start of the current function, and analyze its prologue. */
1012 info->func = get_frame_func (this_frame);
1013 if (info->func == 0)
1015 /* Fall back to using the current PC as frame ID. */
1016 info->func = get_frame_pc (this_frame);
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1030 get_frame_register (this_frame, data.cfa_reg, buf);
1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1032 cfa = SPUADDR (id, cfa);
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1046 /* Otherwise, fall back to reading the backchain link. */
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1057 lslr = (ULONGEST) -1;
1059 /* Get the backchain. */
1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
1066 if (status && backchain > 0 && backchain <= lslr)
1068 /* Assume the link register is saved into its slot. */
1069 if (backchain + 16 <= lslr)
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1083 /* The previous SP is equal to the CFA. */
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1102 extract_unsigned_integer (buf + 8, 4, byte_order));
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1105 extract_unsigned_integer (buf, 4, byte_order));
1111 spu_frame_this_id (struct frame_info *this_frame,
1112 void **this_prologue_cache, struct frame_id *this_id)
1114 struct spu_unwind_cache *info =
1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1117 if (info->frame_base == 0)
1120 *this_id = frame_id_build (info->frame_base, info->func);
1123 static struct value *
1124 spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
1127 struct spu_unwind_cache *info
1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1137 static const struct frame_unwind spu_frame_unwind = {
1139 default_frame_unwind_stop_reason,
1141 spu_frame_prev_register,
1143 default_frame_sniffer
1147 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1149 struct spu_unwind_cache *info
1150 = spu_frame_unwind_cache (this_frame, this_cache);
1151 return info->local_base;
1154 static const struct frame_base spu_frame_base = {
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1162 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
1167 return SPUADDR (tdep->id, pc & -4);
1171 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
1179 spu_read_pc (struct regcache *regcache)
1181 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1183 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1184 /* Mask off interrupt enable bit. */
1185 return SPUADDR (tdep->id, pc & -4);
1189 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1191 /* Keep interrupt enabled state unchanged. */
1194 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1195 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1196 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1200 /* Cell/B.E. cross-architecture unwinder support. */
1202 struct spu2ppu_cache
1204 struct frame_id frame_id;
1205 struct regcache *regcache;
1208 static struct gdbarch *
1209 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1211 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1212 return get_regcache_arch (cache->regcache);
1216 spu2ppu_this_id (struct frame_info *this_frame,
1217 void **this_cache, struct frame_id *this_id)
1219 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1220 *this_id = cache->frame_id;
1223 static struct value *
1224 spu2ppu_prev_register (struct frame_info *this_frame,
1225 void **this_cache, int regnum)
1227 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1228 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1231 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1232 regcache_cooked_read (cache->regcache, regnum, buf);
1233 return frame_unwind_got_bytes (this_frame, regnum, buf);
1237 spu2ppu_sniffer (const struct frame_unwind *self,
1238 struct frame_info *this_frame, void **this_prologue_cache)
1240 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1242 CORE_ADDR base, func, backchain;
1245 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1248 base = get_frame_sp (this_frame);
1249 func = get_frame_pc (this_frame);
1250 if (target_read_memory (base, buf, 4))
1252 backchain = extract_unsigned_integer (buf, 4, byte_order);
1256 struct frame_info *fi;
1258 struct spu2ppu_cache *cache
1259 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1261 cache->frame_id = frame_id_build (base + 16, func);
1263 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1264 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1269 cache->regcache = frame_save_as_regcache (fi);
1270 *this_prologue_cache = cache;
1275 struct regcache *regcache;
1276 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1277 cache->regcache = regcache_dup (regcache);
1278 *this_prologue_cache = cache;
1287 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1289 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
1290 regcache_xfree (cache->regcache);
1293 static const struct frame_unwind spu2ppu_unwind = {
1295 default_frame_unwind_stop_reason,
1297 spu2ppu_prev_register,
1300 spu2ppu_dealloc_cache,
1305 /* Function calling convention. */
1308 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1314 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1315 struct value **args, int nargs, struct type *value_type,
1316 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1317 struct regcache *regcache)
1319 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1320 sp = (sp - 4) & ~15;
1321 /* Store the address of that breakpoint */
1323 /* The call starts at the callee's entry point. */
1330 spu_scalar_value_p (struct type *type)
1332 switch (TYPE_CODE (type))
1335 case TYPE_CODE_ENUM:
1336 case TYPE_CODE_RANGE:
1337 case TYPE_CODE_CHAR:
1338 case TYPE_CODE_BOOL:
1341 return TYPE_LENGTH (type) <= 16;
1349 spu_value_to_regcache (struct regcache *regcache, int regnum,
1350 struct type *type, const gdb_byte *in)
1352 int len = TYPE_LENGTH (type);
1354 if (spu_scalar_value_p (type))
1356 int preferred_slot = len < 4 ? 4 - len : 0;
1357 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1363 regcache_cooked_write (regcache, regnum++, in);
1369 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1374 spu_regcache_to_value (struct regcache *regcache, int regnum,
1375 struct type *type, gdb_byte *out)
1377 int len = TYPE_LENGTH (type);
1379 if (spu_scalar_value_p (type))
1381 int preferred_slot = len < 4 ? 4 - len : 0;
1382 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1388 regcache_cooked_read (regcache, regnum++, out);
1394 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1399 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1400 struct regcache *regcache, CORE_ADDR bp_addr,
1401 int nargs, struct value **args, CORE_ADDR sp,
1402 int struct_return, CORE_ADDR struct_addr)
1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1407 int regnum = SPU_ARG1_REGNUM;
1411 /* Set the return address. */
1412 memset (buf, 0, sizeof buf);
1413 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1414 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1416 /* If STRUCT_RETURN is true, then the struct return address (in
1417 STRUCT_ADDR) will consume the first argument-passing register.
1418 Both adjust the register count and store that value. */
1421 memset (buf, 0, sizeof buf);
1422 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1423 regcache_cooked_write (regcache, regnum++, buf);
1426 /* Fill in argument registers. */
1427 for (i = 0; i < nargs; i++)
1429 struct value *arg = args[i];
1430 struct type *type = check_typedef (value_type (arg));
1431 const gdb_byte *contents = value_contents (arg);
1432 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1434 /* If the argument doesn't wholly fit into registers, it and
1435 all subsequent arguments go to the stack. */
1436 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1442 spu_value_to_regcache (regcache, regnum, type, contents);
1446 /* Overflow arguments go to the stack. */
1447 if (stack_arg != -1)
1451 /* Allocate all required stack size. */
1452 for (i = stack_arg; i < nargs; i++)
1454 struct type *type = check_typedef (value_type (args[i]));
1455 sp -= align_up (TYPE_LENGTH (type), 16);
1458 /* Fill in stack arguments. */
1460 for (i = stack_arg; i < nargs; i++)
1462 struct value *arg = args[i];
1463 struct type *type = check_typedef (value_type (arg));
1464 int len = TYPE_LENGTH (type);
1467 if (spu_scalar_value_p (type))
1468 preferred_slot = len < 4 ? 4 - len : 0;
1472 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1473 ap += align_up (TYPE_LENGTH (type), 16);
1477 /* Allocate stack frame header. */
1480 /* Store stack back chain. */
1481 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1482 target_write_memory (sp, buf, 16);
1484 /* Finally, update all slots of the SP register. */
1485 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1486 for (i = 0; i < 4; i++)
1488 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1489 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1491 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1496 static struct frame_id
1497 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1499 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1500 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1501 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1502 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1505 /* Function return value access. */
1507 static enum return_value_convention
1508 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1509 struct type *type, struct regcache *regcache,
1510 gdb_byte *out, const gdb_byte *in)
1512 struct type *func_type = function ? value_type (function) : NULL;
1513 enum return_value_convention rvc;
1514 int opencl_vector = 0;
1518 func_type = check_typedef (func_type);
1520 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1521 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1523 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1524 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1525 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1526 && TYPE_VECTOR (type))
1530 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1531 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1533 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1539 case RETURN_VALUE_REGISTER_CONVENTION:
1540 if (opencl_vector && TYPE_LENGTH (type) == 2)
1541 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1543 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1546 case RETURN_VALUE_STRUCT_CONVENTION:
1547 error (_("Cannot set function return value."));
1555 case RETURN_VALUE_REGISTER_CONVENTION:
1556 if (opencl_vector && TYPE_LENGTH (type) == 2)
1557 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1559 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1562 case RETURN_VALUE_STRUCT_CONVENTION:
1563 error (_("Function return value unknown."));
1574 static const gdb_byte *
1575 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1576 CORE_ADDR * pcptr, int *lenptr)
1578 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1580 *lenptr = sizeof breakpoint;
1585 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1586 struct bp_target_info *bp_tgt)
1588 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1589 that in a combined application, we have some breakpoints inserted in SPU
1590 code, and now the application forks (on the PPU side). GDB common code
1591 will assume that the fork system call copied all breakpoints into the new
1592 process' address space, and that all those copies now need to be removed
1593 (see breakpoint.c:detach_breakpoints).
1595 While this is certainly true for PPU side breakpoints, it is not true
1596 for SPU side breakpoints. fork will clone the SPU context file
1597 descriptors, so that all the existing SPU contexts are in accessible
1598 in the new process. However, the contents of the SPU contexts themselves
1599 are *not* cloned. Therefore the effect of detach_breakpoints is to
1600 remove SPU breakpoints from the *original* SPU context's local store
1601 -- this is not the correct behaviour.
1603 The workaround is to check whether the PID we are asked to remove this
1604 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1605 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1606 true in the context of detach_breakpoints. If so, we simply do nothing.
1607 [ Note that for the fork child process, it does not matter if breakpoints
1608 remain inserted, because those SPU contexts are not runnable anyway --
1609 the Linux kernel allows only the original process to invoke spu_run. */
1611 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1614 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1618 /* Software single-stepping support. */
1621 spu_software_single_step (struct frame_info *frame)
1623 struct gdbarch *gdbarch = get_frame_arch (frame);
1624 struct address_space *aspace = get_frame_address_space (frame);
1625 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1626 CORE_ADDR pc, next_pc;
1632 pc = get_frame_pc (frame);
1634 if (target_read_memory (pc, buf, 4))
1635 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1636 paddress (gdbarch, pc));
1638 insn = extract_unsigned_integer (buf, 4, byte_order);
1640 /* Get local store limit. */
1641 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1643 lslr = (ULONGEST) -1;
1645 /* Next sequential instruction is at PC + 4, except if the current
1646 instruction is a PPE-assisted call, in which case it is at PC + 8.
1647 Wrap around LS limit to be on the safe side. */
1648 if ((insn & 0xffffff00) == 0x00002100)
1649 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1651 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1653 insert_single_step_breakpoint (gdbarch,
1654 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1656 if (is_branch (insn, &offset, ®))
1658 CORE_ADDR target = offset;
1660 if (reg == SPU_PC_REGNUM)
1661 target += SPUADDR_ADDR (pc);
1666 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1668 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1672 throw_error (OPTIMIZED_OUT_ERROR,
1673 _("Could not determine address of "
1674 "single-step breakpoint."));
1676 throw_error (NOT_AVAILABLE_ERROR,
1677 _("Could not determine address of "
1678 "single-step breakpoint."));
1682 target = target & lslr;
1683 if (target != next_pc)
1684 insert_single_step_breakpoint (gdbarch, aspace,
1685 SPUADDR (SPUADDR_SPU (pc), target));
1692 /* Longjmp support. */
1695 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1697 struct gdbarch *gdbarch = get_frame_arch (frame);
1698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1699 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1704 /* Jump buffer is pointed to by the argument register $r3. */
1705 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1709 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1710 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1713 *pc = extract_unsigned_integer (buf, 4, byte_order);
1714 *pc = SPUADDR (tdep->id, *pc);
1721 struct spu_dis_asm_data
1723 struct gdbarch *gdbarch;
1728 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1730 struct spu_dis_asm_data *data
1731 = (struct spu_dis_asm_data *) info->application_data;
1732 print_address (data->gdbarch, SPUADDR (data->id, addr),
1733 (struct ui_file *) info->stream);
1737 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1739 /* The opcodes disassembler does 18-bit address arithmetic. Make
1740 sure the SPU ID encoded in the high bits is added back when we
1741 call print_address. */
1742 struct disassemble_info spu_info = *info;
1743 struct spu_dis_asm_data data;
1744 data.gdbarch = (struct gdbarch *) info->application_data;
1745 data.id = SPUADDR_SPU (memaddr);
1747 spu_info.application_data = &data;
1748 spu_info.print_address_func = spu_dis_asm_print_address;
1749 return print_insn_spu (memaddr, &spu_info);
1753 /* Target overlays for the SPU overlay manager.
1755 See the documentation of simple_overlay_update for how the
1756 interface is supposed to work.
1758 Data structures used by the overlay manager:
1766 } _ovly_table[]; -- one entry per overlay section
1768 struct ovly_buf_table
1771 } _ovly_buf_table[]; -- one entry per overlay buffer
1773 _ovly_table should never change.
1775 Both tables are aligned to a 16-byte boundary, the symbols
1776 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1777 size set to the size of the respective array. buf in _ovly_table is
1778 an index into _ovly_buf_table.
1780 mapped is an index into _ovly_table. Both the mapped and buf indices start
1781 from one to reference the first entry in their respective tables. */
1783 /* Using the per-objfile private data mechanism, we store for each
1784 objfile an array of "struct spu_overlay_table" structures, one
1785 for each obj_section of the objfile. This structure holds two
1786 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1787 is *not* an overlay section. If it is non-zero, it represents
1788 a target address. The overlay section is mapped iff the target
1789 integer at this location equals MAPPED_VAL. */
1791 static const struct objfile_data *spu_overlay_data;
1793 struct spu_overlay_table
1795 CORE_ADDR mapped_ptr;
1796 CORE_ADDR mapped_val;
1799 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1800 the _ovly_table data structure from the target and initialize the
1801 spu_overlay_table data structure from it. */
1802 static struct spu_overlay_table *
1803 spu_get_overlay_table (struct objfile *objfile)
1805 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1806 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1807 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1808 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1809 unsigned ovly_table_size, ovly_buf_table_size;
1810 struct spu_overlay_table *tbl;
1811 struct obj_section *osect;
1812 gdb_byte *ovly_table;
1815 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
1819 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1820 if (!ovly_table_msym.minsym)
1823 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1825 if (!ovly_buf_table_msym.minsym)
1828 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1829 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1831 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1832 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1834 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
1835 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1837 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1838 objfile->sections_end - objfile->sections,
1839 struct spu_overlay_table);
1841 for (i = 0; i < ovly_table_size / 16; i++)
1843 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1845 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1847 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1849 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1852 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1855 ALL_OBJFILE_OSECTIONS (objfile, osect)
1856 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1857 && pos == osect->the_bfd_section->filepos)
1859 int ndx = osect - objfile->sections;
1860 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1861 tbl[ndx].mapped_val = i + 1;
1867 set_objfile_data (objfile, spu_overlay_data, tbl);
1871 /* Read _ovly_buf_table entry from the target to dermine whether
1872 OSECT is currently mapped, and update the mapped state. */
1874 spu_overlay_update_osect (struct obj_section *osect)
1876 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1877 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1878 struct spu_overlay_table *ovly_table;
1881 ovly_table = spu_get_overlay_table (osect->objfile);
1885 ovly_table += osect - osect->objfile->sections;
1886 if (ovly_table->mapped_ptr == 0)
1889 id = SPUADDR_SPU (obj_section_addr (osect));
1890 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1892 osect->ovly_mapped = (val == ovly_table->mapped_val);
1895 /* If OSECT is NULL, then update all sections' mapped state.
1896 If OSECT is non-NULL, then update only OSECT's mapped state. */
1898 spu_overlay_update (struct obj_section *osect)
1900 /* Just one section. */
1902 spu_overlay_update_osect (osect);
1907 struct objfile *objfile;
1909 ALL_OBJSECTIONS (objfile, osect)
1910 if (section_is_overlay (osect))
1911 spu_overlay_update_osect (osect);
1915 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1916 If there is one, go through all sections and make sure for non-
1917 overlay sections LMA equals VMA, while for overlay sections LMA
1918 is larger than SPU_OVERLAY_LMA. */
1920 spu_overlay_new_objfile (struct objfile *objfile)
1922 struct spu_overlay_table *ovly_table;
1923 struct obj_section *osect;
1925 /* If we've already touched this file, do nothing. */
1926 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1929 /* Consider only SPU objfiles. */
1930 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1933 /* Check if this objfile has overlays. */
1934 ovly_table = spu_get_overlay_table (objfile);
1938 /* Now go and fiddle with all the LMAs. */
1939 ALL_OBJFILE_OSECTIONS (objfile, osect)
1941 bfd *obfd = objfile->obfd;
1942 asection *bsect = osect->the_bfd_section;
1943 int ndx = osect - objfile->sections;
1945 if (ovly_table[ndx].mapped_ptr == 0)
1946 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1948 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1953 /* Insert temporary breakpoint on "main" function of newly loaded
1954 SPE context OBJFILE. */
1956 spu_catch_start (struct objfile *objfile)
1958 struct bound_minimal_symbol minsym;
1959 struct compunit_symtab *cust;
1961 struct event_location *location;
1962 struct cleanup *back_to;
1964 /* Do this only if requested by "set spu stop-on-load on". */
1965 if (!spu_stop_on_load_p)
1968 /* Consider only SPU objfiles. */
1969 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1972 /* The main objfile is handled differently. */
1973 if (objfile == symfile_objfile)
1976 /* There can be multiple symbols named "main". Search for the
1977 "main" in *this* objfile. */
1978 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1982 /* If we have debugging information, try to use it -- this
1983 will allow us to properly skip the prologue. */
1984 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1986 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1990 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1991 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1993 struct symtab_and_line sal;
1995 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
1998 fixup_symbol_section (sym, objfile);
1999 sal = find_function_start_sal (sym, 1);
2004 /* Use a numerical address for the set_breakpoint command to avoid having
2005 the breakpoint re-set incorrectly. */
2006 location = new_address_location (pc, NULL, 0);
2007 back_to = make_cleanup_delete_event_location (location);
2008 create_breakpoint (get_objfile_arch (objfile), location,
2009 NULL /* cond_string */, -1 /* thread */,
2010 NULL /* extra_string */,
2011 0 /* parse_condition_and_thread */, 1 /* tempflag */,
2012 bp_breakpoint /* type_wanted */,
2013 0 /* ignore_count */,
2014 AUTO_BOOLEAN_FALSE /* pending_break_support */,
2015 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
2016 1 /* enabled */, 0 /* internal */, 0);
2017 do_cleanups (back_to);
2021 /* Look up OBJFILE loaded into FRAME's SPU context. */
2022 static struct objfile *
2023 spu_objfile_from_frame (struct frame_info *frame)
2025 struct gdbarch *gdbarch = get_frame_arch (frame);
2026 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2027 struct objfile *obj;
2029 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2034 if (obj->sections != obj->sections_end
2035 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2042 /* Flush cache for ea pointer access if available. */
2044 flush_ea_cache (void)
2046 struct bound_minimal_symbol msymbol;
2047 struct objfile *obj;
2049 if (!has_stack_frames ())
2052 obj = spu_objfile_from_frame (get_current_frame ());
2056 /* Lookup inferior function __cache_flush. */
2057 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2058 if (msymbol.minsym != NULL)
2063 type = objfile_type (obj)->builtin_void;
2064 type = lookup_function_type (type);
2065 type = lookup_pointer_type (type);
2066 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2068 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2072 /* This handler is called when the inferior has stopped. If it is stopped in
2073 SPU architecture then flush the ea cache if used. */
2075 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2077 if (!spu_auto_flush_cache_p)
2080 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2081 re-entering this function when __cache_flush stops. */
2082 spu_auto_flush_cache_p = 0;
2084 spu_auto_flush_cache_p = 1;
2088 /* "info spu" commands. */
2091 info_spu_event_command (char *args, int from_tty)
2093 struct frame_info *frame = get_selected_frame (NULL);
2094 ULONGEST event_status = 0;
2095 ULONGEST event_mask = 0;
2096 struct cleanup *chain;
2102 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2103 error (_("\"info spu\" is only supported on the SPU architecture."));
2105 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2107 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2108 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2109 buf, 0, (sizeof (buf) - 1));
2111 error (_("Could not read event_status."));
2113 event_status = strtoulst ((char *) buf, NULL, 16);
2115 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2116 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2117 buf, 0, (sizeof (buf) - 1));
2119 error (_("Could not read event_mask."));
2121 event_mask = strtoulst ((char *) buf, NULL, 16);
2123 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2125 if (ui_out_is_mi_like_p (current_uiout))
2127 ui_out_field_fmt (current_uiout, "event_status",
2128 "0x%s", phex_nz (event_status, 4));
2129 ui_out_field_fmt (current_uiout, "event_mask",
2130 "0x%s", phex_nz (event_mask, 4));
2134 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2135 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2138 do_cleanups (chain);
2142 info_spu_signal_command (char *args, int from_tty)
2144 struct frame_info *frame = get_selected_frame (NULL);
2145 struct gdbarch *gdbarch = get_frame_arch (frame);
2146 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2147 ULONGEST signal1 = 0;
2148 ULONGEST signal1_type = 0;
2149 int signal1_pending = 0;
2150 ULONGEST signal2 = 0;
2151 ULONGEST signal2_type = 0;
2152 int signal2_pending = 0;
2153 struct cleanup *chain;
2159 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2160 error (_("\"info spu\" is only supported on the SPU architecture."));
2162 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2164 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2165 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2167 error (_("Could not read signal1."));
2170 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2171 signal1_pending = 1;
2174 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2175 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2176 buf, 0, (sizeof (buf) - 1));
2178 error (_("Could not read signal1_type."));
2180 signal1_type = strtoulst ((char *) buf, NULL, 16);
2182 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2183 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2185 error (_("Could not read signal2."));
2188 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2189 signal2_pending = 1;
2192 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2193 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2194 buf, 0, (sizeof (buf) - 1));
2196 error (_("Could not read signal2_type."));
2198 signal2_type = strtoulst ((char *) buf, NULL, 16);
2200 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2202 if (ui_out_is_mi_like_p (current_uiout))
2204 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2205 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2206 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2207 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2208 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2209 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2213 if (signal1_pending)
2214 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2216 printf_filtered (_("Signal 1 not pending "));
2219 printf_filtered (_("(Type Or)\n"));
2221 printf_filtered (_("(Type Overwrite)\n"));
2223 if (signal2_pending)
2224 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2226 printf_filtered (_("Signal 2 not pending "));
2229 printf_filtered (_("(Type Or)\n"));
2231 printf_filtered (_("(Type Overwrite)\n"));
2234 do_cleanups (chain);
2238 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2239 const char *field, const char *msg)
2241 struct cleanup *chain;
2247 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2249 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2250 ui_out_table_body (current_uiout);
2252 for (i = 0; i < nr; i++)
2254 struct cleanup *val_chain;
2256 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2257 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2258 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2259 do_cleanups (val_chain);
2261 if (!ui_out_is_mi_like_p (current_uiout))
2262 printf_filtered ("\n");
2265 do_cleanups (chain);
2269 info_spu_mailbox_command (char *args, int from_tty)
2271 struct frame_info *frame = get_selected_frame (NULL);
2272 struct gdbarch *gdbarch = get_frame_arch (frame);
2273 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2274 struct cleanup *chain;
2280 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2281 error (_("\"info spu\" is only supported on the SPU architecture."));
2283 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2285 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2287 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2288 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2289 buf, 0, sizeof buf);
2291 error (_("Could not read mbox_info."));
2293 info_spu_mailbox_list (buf, len / 4, byte_order,
2294 "mbox", "SPU Outbound Mailbox");
2296 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2297 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2298 buf, 0, sizeof buf);
2300 error (_("Could not read ibox_info."));
2302 info_spu_mailbox_list (buf, len / 4, byte_order,
2303 "ibox", "SPU Outbound Interrupt Mailbox");
2305 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2306 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2307 buf, 0, sizeof buf);
2309 error (_("Could not read wbox_info."));
2311 info_spu_mailbox_list (buf, len / 4, byte_order,
2312 "wbox", "SPU Inbound Mailbox");
2314 do_cleanups (chain);
2318 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2320 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2321 return (word >> (63 - last)) & mask;
2325 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2327 static char *spu_mfc_opcode[256] =
2329 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2330 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2331 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2332 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2333 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2334 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2335 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2336 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2338 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2339 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2340 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2341 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2342 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2343 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2344 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2345 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2346 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2347 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2348 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2349 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2350 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2352 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2353 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2354 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2355 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2356 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2357 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2358 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2359 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2360 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2363 int *seq = XALLOCAVEC (int, nr);
2365 struct cleanup *chain;
2369 /* Determine sequence in which to display (valid) entries. */
2370 for (i = 0; i < nr; i++)
2372 /* Search for the first valid entry all of whose
2373 dependencies are met. */
2374 for (j = 0; j < nr; j++)
2376 ULONGEST mfc_cq_dw3;
2377 ULONGEST dependencies;
2379 if (done & (1 << (nr - 1 - j)))
2383 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2384 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2387 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2388 if ((dependencies & done) != dependencies)
2392 done |= 1 << (nr - 1 - j);
2403 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2406 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2407 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2408 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2409 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2410 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2411 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2412 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2413 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2414 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2415 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2417 ui_out_table_body (current_uiout);
2419 for (i = 0; i < nr; i++)
2421 struct cleanup *cmd_chain;
2422 ULONGEST mfc_cq_dw0;
2423 ULONGEST mfc_cq_dw1;
2424 ULONGEST mfc_cq_dw2;
2425 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2426 int list_lsa, list_size, mfc_lsa, mfc_size;
2428 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2430 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2431 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2434 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2436 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2438 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2440 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2441 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2442 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2443 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2444 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2445 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2446 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2448 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2449 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2451 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2452 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2453 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2454 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2455 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2456 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2458 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2460 if (spu_mfc_opcode[mfc_cmd_opcode])
2461 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2463 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2465 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2466 ui_out_field_int (current_uiout, "tid", tclass_id);
2467 ui_out_field_int (current_uiout, "rid", rclass_id);
2470 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2472 ui_out_field_skip (current_uiout, "ea");
2474 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2476 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2478 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2482 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2483 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2487 ui_out_field_skip (current_uiout, "lstaddr");
2488 ui_out_field_skip (current_uiout, "lstsize");
2492 ui_out_field_string (current_uiout, "error_p", "*");
2494 ui_out_field_skip (current_uiout, "error_p");
2496 do_cleanups (cmd_chain);
2498 if (!ui_out_is_mi_like_p (current_uiout))
2499 printf_filtered ("\n");
2502 do_cleanups (chain);
2506 info_spu_dma_command (char *args, int from_tty)
2508 struct frame_info *frame = get_selected_frame (NULL);
2509 struct gdbarch *gdbarch = get_frame_arch (frame);
2510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2511 ULONGEST dma_info_type;
2512 ULONGEST dma_info_mask;
2513 ULONGEST dma_info_status;
2514 ULONGEST dma_info_stall_and_notify;
2515 ULONGEST dma_info_atomic_command_status;
2516 struct cleanup *chain;
2522 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2523 error (_("\"info spu\" is only supported on the SPU architecture."));
2525 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2527 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2528 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2529 buf, 0, 40 + 16 * 32);
2531 error (_("Could not read dma_info."));
2534 = extract_unsigned_integer (buf, 8, byte_order);
2536 = extract_unsigned_integer (buf + 8, 8, byte_order);
2538 = extract_unsigned_integer (buf + 16, 8, byte_order);
2539 dma_info_stall_and_notify
2540 = extract_unsigned_integer (buf + 24, 8, byte_order);
2541 dma_info_atomic_command_status
2542 = extract_unsigned_integer (buf + 32, 8, byte_order);
2544 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2546 if (ui_out_is_mi_like_p (current_uiout))
2548 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2549 phex_nz (dma_info_type, 4));
2550 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2551 phex_nz (dma_info_mask, 4));
2552 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2553 phex_nz (dma_info_status, 4));
2554 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2555 phex_nz (dma_info_stall_and_notify, 4));
2556 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2557 phex_nz (dma_info_atomic_command_status, 4));
2561 const char *query_msg = _("no query pending");
2563 if (dma_info_type & 4)
2564 switch (dma_info_type & 3)
2566 case 1: query_msg = _("'any' query pending"); break;
2567 case 2: query_msg = _("'all' query pending"); break;
2568 default: query_msg = _("undefined query type"); break;
2571 printf_filtered (_("Tag-Group Status 0x%s\n"),
2572 phex (dma_info_status, 4));
2573 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2574 phex (dma_info_mask, 4), query_msg);
2575 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2576 phex (dma_info_stall_and_notify, 4));
2577 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2578 phex (dma_info_atomic_command_status, 4));
2579 printf_filtered ("\n");
2582 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2583 do_cleanups (chain);
2587 info_spu_proxydma_command (char *args, int from_tty)
2589 struct frame_info *frame = get_selected_frame (NULL);
2590 struct gdbarch *gdbarch = get_frame_arch (frame);
2591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2592 ULONGEST dma_info_type;
2593 ULONGEST dma_info_mask;
2594 ULONGEST dma_info_status;
2595 struct cleanup *chain;
2601 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2602 error (_("\"info spu\" is only supported on the SPU architecture."));
2604 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2606 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2607 len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
2608 buf, 0, 24 + 8 * 32);
2610 error (_("Could not read proxydma_info."));
2612 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2613 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2614 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2616 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2619 if (ui_out_is_mi_like_p (current_uiout))
2621 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2622 phex_nz (dma_info_type, 4));
2623 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2624 phex_nz (dma_info_mask, 4));
2625 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2626 phex_nz (dma_info_status, 4));
2630 const char *query_msg;
2632 switch (dma_info_type & 3)
2634 case 0: query_msg = _("no query pending"); break;
2635 case 1: query_msg = _("'any' query pending"); break;
2636 case 2: query_msg = _("'all' query pending"); break;
2637 default: query_msg = _("undefined query type"); break;
2640 printf_filtered (_("Tag-Group Status 0x%s\n"),
2641 phex (dma_info_status, 4));
2642 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2643 phex (dma_info_mask, 4), query_msg);
2644 printf_filtered ("\n");
2647 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2648 do_cleanups (chain);
2652 info_spu_command (char *args, int from_tty)
2654 printf_unfiltered (_("\"info spu\" must be followed by "
2655 "the name of an SPU facility.\n"));
2656 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2660 /* Root of all "set spu "/"show spu " commands. */
2663 show_spu_command (char *args, int from_tty)
2665 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2669 set_spu_command (char *args, int from_tty)
2671 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2675 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2676 struct cmd_list_element *c, const char *value)
2678 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2683 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2684 struct cmd_list_element *c, const char *value)
2686 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2691 /* Set up gdbarch struct. */
2693 static struct gdbarch *
2694 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2696 struct gdbarch *gdbarch;
2697 struct gdbarch_tdep *tdep;
2700 /* Which spufs ID was requested as address space? */
2702 id = *(int *)info.tdep_info;
2703 /* For objfile architectures of SPU solibs, decode the ID from the name.
2704 This assumes the filename convention employed by solib-spu.c. */
2707 const char *name = strrchr (info.abfd->filename, '@');
2709 sscanf (name, "@0x%*x <%d>", &id);
2712 /* Find a candidate among extant architectures. */
2713 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2715 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2717 tdep = gdbarch_tdep (arches->gdbarch);
2718 if (tdep && tdep->id == id)
2719 return arches->gdbarch;
2722 /* None found, so create a new architecture. */
2723 tdep = XCNEW (struct gdbarch_tdep);
2725 gdbarch = gdbarch_alloc (&info, tdep);
2728 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2731 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2732 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2733 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2734 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2735 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2736 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2737 set_gdbarch_register_name (gdbarch, spu_register_name);
2738 set_gdbarch_register_type (gdbarch, spu_register_type);
2739 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2740 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2741 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2742 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2743 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2744 set_gdbarch_ax_pseudo_register_collect
2745 (gdbarch, spu_ax_pseudo_register_collect);
2746 set_gdbarch_ax_pseudo_register_push_stack
2747 (gdbarch, spu_ax_pseudo_register_push_stack);
2750 set_gdbarch_char_signed (gdbarch, 0);
2751 set_gdbarch_ptr_bit (gdbarch, 32);
2752 set_gdbarch_addr_bit (gdbarch, 32);
2753 set_gdbarch_short_bit (gdbarch, 16);
2754 set_gdbarch_int_bit (gdbarch, 32);
2755 set_gdbarch_long_bit (gdbarch, 32);
2756 set_gdbarch_long_long_bit (gdbarch, 64);
2757 set_gdbarch_float_bit (gdbarch, 32);
2758 set_gdbarch_double_bit (gdbarch, 64);
2759 set_gdbarch_long_double_bit (gdbarch, 64);
2760 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2761 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2762 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2764 /* Address handling. */
2765 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2766 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2767 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2768 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2769 set_gdbarch_address_class_type_flags_to_name
2770 (gdbarch, spu_address_class_type_flags_to_name);
2771 set_gdbarch_address_class_name_to_type_flags
2772 (gdbarch, spu_address_class_name_to_type_flags);
2775 /* Inferior function calls. */
2776 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2777 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2778 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2779 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2780 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2781 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2782 set_gdbarch_return_value (gdbarch, spu_return_value);
2784 /* Frame handling. */
2785 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2786 dwarf2_append_unwinders (gdbarch);
2787 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2788 frame_base_set_default (gdbarch, &spu_frame_base);
2789 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2790 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2791 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2792 set_gdbarch_frame_args_skip (gdbarch, 0);
2793 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2794 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
2796 /* Cell/B.E. cross-architecture unwinder support. */
2797 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2800 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2801 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2802 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2803 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2804 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2807 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2812 /* Provide a prototype to silence -Wmissing-prototypes. */
2813 extern initialize_file_ftype _initialize_spu_tdep;
2816 _initialize_spu_tdep (void)
2818 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2820 /* Add ourselves to objfile event chain. */
2821 observer_attach_new_objfile (spu_overlay_new_objfile);
2822 spu_overlay_data = register_objfile_data ();
2824 /* Install spu stop-on-load handler. */
2825 observer_attach_new_objfile (spu_catch_start);
2827 /* Add ourselves to normal_stop event chain. */
2828 observer_attach_normal_stop (spu_attach_normal_stop);
2830 /* Add root prefix command for all "set spu"/"show spu" commands. */
2831 add_prefix_cmd ("spu", no_class, set_spu_command,
2832 _("Various SPU specific commands."),
2833 &setspucmdlist, "set spu ", 0, &setlist);
2834 add_prefix_cmd ("spu", no_class, show_spu_command,
2835 _("Various SPU specific commands."),
2836 &showspucmdlist, "show spu ", 0, &showlist);
2838 /* Toggle whether or not to add a temporary breakpoint at the "main"
2839 function of new SPE contexts. */
2840 add_setshow_boolean_cmd ("stop-on-load", class_support,
2841 &spu_stop_on_load_p, _("\
2842 Set whether to stop for new SPE threads."),
2844 Show whether to stop for new SPE threads."),
2846 Use \"on\" to give control to the user when a new SPE thread\n\
2847 enters its \"main\" function.\n\
2848 Use \"off\" to disable stopping for new SPE threads."),
2850 show_spu_stop_on_load,
2851 &setspucmdlist, &showspucmdlist);
2853 /* Toggle whether or not to automatically flush the software-managed
2854 cache whenever SPE execution stops. */
2855 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2856 &spu_auto_flush_cache_p, _("\
2857 Set whether to automatically flush the software-managed cache."),
2859 Show whether to automatically flush the software-managed cache."),
2861 Use \"on\" to automatically flush the software-managed cache\n\
2862 whenever SPE execution stops.\n\
2863 Use \"off\" to never automatically flush the software-managed cache."),
2865 show_spu_auto_flush_cache,
2866 &setspucmdlist, &showspucmdlist);
2868 /* Add root prefix command for all "info spu" commands. */
2869 add_prefix_cmd ("spu", class_info, info_spu_command,
2870 _("Various SPU specific commands."),
2871 &infospucmdlist, "info spu ", 0, &infolist);
2873 /* Add various "info spu" commands. */
2874 add_cmd ("event", class_info, info_spu_event_command,
2875 _("Display SPU event facility status.\n"),
2877 add_cmd ("signal", class_info, info_spu_signal_command,
2878 _("Display SPU signal notification facility status.\n"),
2880 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2881 _("Display SPU mailbox facility status.\n"),
2883 add_cmd ("dma", class_info, info_spu_dma_command,
2884 _("Display MFC DMA status.\n"),
2886 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2887 _("Display MFC Proxy-DMA status.\n"),