1 /* Target-dependent code for UltraSPARC.
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
22 #include "dwarf2-frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
33 #include "target-descriptions.h"
37 #include "sparc64-tdep.h"
39 /* This file implements the SPARC 64-bit ABI as defined by the
40 section "Low-Level System Information" of the SPARC Compliance
41 Definition (SCD) 2.4.1, which is the 64-bit System V psABI for
44 /* Please use the sparc32_-prefix for 32-bit specific code, the
45 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
46 code can handle both. */
48 /* The M7 processor supports an Application Data Integrity (ADI) feature
49 that detects invalid data accesses. When software allocates memory and
50 enables ADI on the allocated memory, it chooses a 4-bit version number,
51 sets the version in the upper 4 bits of the 64-bit pointer to that data,
52 and stores the 4-bit version in every cacheline of the object. Hardware
53 saves the latter in spare bits in the cache and memory hierarchy. On each
54 load and store, the processor compares the upper 4 VA (virtual address) bits
55 to the cacheline's version. If there is a mismatch, the processor generates
56 a version mismatch trap which can be either precise or disrupting.
57 The trap is an error condition which the kernel delivers to the process
60 The upper 4 bits of the VA represent a version and are not part of the
61 true address. The processor clears these bits and sign extends bit 59
62 to generate the true address.
64 Note that 32-bit applications cannot use ADI. */
68 #include "cli/cli-utils.h"
72 #define MAX_PROC_NAME_SIZE sizeof("/proc/99999/lwp/9999/adi/lstatus")
74 /* ELF Auxiliary vectors */
76 #define AT_ADI_BLKSZ 34
79 #define AT_ADI_NBITS 35
81 #ifndef AT_ADI_UEONADI
82 #define AT_ADI_UEONADI 36
85 /* ADI command list. */
86 static struct cmd_list_element *sparc64adilist = NULL;
88 /* ADI stat settings. */
91 /* The ADI block size. */
92 unsigned long blksize;
94 /* Number of bits used for an ADI version tag which can be
95 used together with the shift value for an ADI version tag
96 to encode or extract the ADI version value in a pointer. */
99 /* The maximum ADI version tag value supported. */
102 /* ADI version tag file. */
105 /* ADI availability check has been done. */
106 bool checked_avail = false;
108 /* ADI is available. */
109 bool is_avail = false;
113 /* Per-process ADI stat info. */
115 typedef struct sparc64_adi_info
117 sparc64_adi_info (pid_t pid_)
121 /* The process identifier. */
125 adi_stat_t stat = {};
129 static std::forward_list<sparc64_adi_info> adi_proc_list;
132 /* Get ADI info for process PID, creating one if it doesn't exist. */
134 static sparc64_adi_info *
135 get_adi_info_proc (pid_t pid)
137 auto found = std::find_if (adi_proc_list.begin (), adi_proc_list.end (),
138 [&pid] (const sparc64_adi_info &info)
140 return info.pid == pid;
143 if (found == adi_proc_list.end ())
145 adi_proc_list.emplace_front (pid);
146 return &adi_proc_list.front ();
155 get_adi_info (pid_t pid)
157 sparc64_adi_info *proc;
159 proc = get_adi_info_proc (pid);
163 /* Is called when GDB is no longer debugging process PID. It
164 deletes data structure that keeps track of the ADI stat. */
167 sparc64_forget_process (pid_t pid)
171 for (auto pit = adi_proc_list.before_begin (),
172 it = std::next (pit);
173 it != adi_proc_list.end ();
176 if ((*it).pid == pid)
178 if ((*it).stat.tag_fd > 0)
179 target_fileio_close ((*it).stat.tag_fd, &target_errno);
180 adi_proc_list.erase_after (pit);
190 info_adi_command (const char *args, int from_tty)
192 printf_unfiltered ("\"adi\" must be followed by \"examine\" "
194 help_list (sparc64adilist, "adi ", all_commands, gdb_stdout);
197 /* Read attributes of a maps entry in /proc/[pid]/adi/maps. */
200 read_maps_entry (const char *line,
201 ULONGEST *addr, ULONGEST *endaddr)
203 const char *p = line;
205 *addr = strtoulst (p, &p, 16);
209 *endaddr = strtoulst (p, &p, 16);
212 /* Check if ADI is available. */
217 pid_t pid = inferior_ptid.pid ();
218 sparc64_adi_info *proc = get_adi_info_proc (pid);
221 if (proc->stat.checked_avail)
222 return proc->stat.is_avail;
224 proc->stat.checked_avail = true;
225 if (target_auxv_search (current_top_target (), AT_ADI_BLKSZ, &value) <= 0)
227 proc->stat.blksize = value;
228 target_auxv_search (current_top_target (), AT_ADI_NBITS, &value);
229 proc->stat.nbits = value;
230 proc->stat.max_version = (1 << proc->stat.nbits) - 2;
231 proc->stat.is_avail = true;
233 return proc->stat.is_avail;
236 /* Normalize a versioned address - a VA with ADI bits (63-60) set. */
239 adi_normalize_address (CORE_ADDR addr)
241 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
245 /* Clear upper bits. */
246 addr &= ((uint64_t) -1) >> ast.nbits;
249 CORE_ADDR signbit = (uint64_t) 1 << (64 - ast.nbits - 1);
250 return (addr ^ signbit) - signbit;
255 /* Align a normalized address - a VA with bit 59 sign extended into
259 adi_align_address (CORE_ADDR naddr)
261 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
263 return (naddr - (naddr % ast.blksize)) / ast.blksize;
266 /* Convert a byte count to count at a ratio of 1:adi_blksz. */
269 adi_convert_byte_count (CORE_ADDR naddr, int nbytes, CORE_ADDR locl)
271 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
273 return ((naddr + nbytes + ast.blksize - 1) / ast.blksize) - locl;
276 /* The /proc/[pid]/adi/tags file, which allows gdb to get/set ADI
277 version in a target process, maps linearly to the address space
278 of the target process at a ratio of 1:adi_blksz.
280 A read (or write) at offset K in the file returns (or modifies)
281 the ADI version tag stored in the cacheline containing address
282 K * adi_blksz, encoded as 1 version tag per byte. The allowed
283 version tag values are between 0 and adi_stat.max_version. */
288 pid_t pid = inferior_ptid.pid ();
289 sparc64_adi_info *proc = get_adi_info_proc (pid);
291 if (proc->stat.tag_fd != 0)
292 return proc->stat.tag_fd;
294 char cl_name[MAX_PROC_NAME_SIZE];
295 snprintf (cl_name, sizeof(cl_name), "/proc/%ld/adi/tags", (long) pid);
297 proc->stat.tag_fd = target_fileio_open (NULL, cl_name, O_RDWR|O_EXCL,
299 return proc->stat.tag_fd;
302 /* Check if an address set is ADI enabled, using /proc/[pid]/adi/maps
303 which was exported by the kernel and contains the currently ADI
304 mapped memory regions and their access permissions. */
307 adi_is_addr_mapped (CORE_ADDR vaddr, size_t cnt)
309 char filename[MAX_PROC_NAME_SIZE];
312 pid_t pid = inferior_ptid.pid ();
313 snprintf (filename, sizeof filename, "/proc/%ld/adi/maps", (long) pid);
314 gdb::unique_xmalloc_ptr<char> data
315 = target_fileio_read_stralloc (NULL, filename);
318 adi_stat_t adi_stat = get_adi_info (pid);
320 for (line = strtok (data.get (), "\n"); line; line = strtok (NULL, "\n"))
322 ULONGEST addr, endaddr;
324 read_maps_entry (line, &addr, &endaddr);
326 while (((vaddr + i) * adi_stat.blksize) >= addr
327 && ((vaddr + i) * adi_stat.blksize) < endaddr)
335 warning (_("unable to open /proc file '%s'"), filename);
340 /* Read ADI version tag value for memory locations starting at "VADDR"
341 for "SIZE" number of bytes. */
344 adi_read_versions (CORE_ADDR vaddr, size_t size, gdb_byte *tags)
346 int fd = adi_tag_fd ();
350 if (!adi_is_addr_mapped (vaddr, size))
352 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
353 error(_("Address at %s is not in ADI maps"),
354 paddress (target_gdbarch (), vaddr * ast.blksize));
358 return target_fileio_pread (fd, tags, size, vaddr, &target_errno);
361 /* Write ADI version tag for memory locations starting at "VADDR" for
362 "SIZE" number of bytes to "TAGS". */
365 adi_write_versions (CORE_ADDR vaddr, size_t size, unsigned char *tags)
367 int fd = adi_tag_fd ();
371 if (!adi_is_addr_mapped (vaddr, size))
373 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
374 error(_("Address at %s is not in ADI maps"),
375 paddress (target_gdbarch (), vaddr * ast.blksize));
379 return target_fileio_pwrite (fd, tags, size, vaddr, &target_errno);
382 /* Print ADI version tag value in "TAGS" for memory locations starting
383 at "VADDR" with number of "CNT". */
386 adi_print_versions (CORE_ADDR vaddr, size_t cnt, gdb_byte *tags)
389 const int maxelts = 8; /* # of elements per line */
391 adi_stat_t adi_stat = get_adi_info (inferior_ptid.pid ());
396 printf_filtered ("%s:\t",
397 paddress (target_gdbarch (), vaddr * adi_stat.blksize));
398 for (int i = maxelts; i > 0 && cnt > 0; i--, cnt--)
400 if (tags[v_idx] == 0xff) /* no version tag */
401 printf_filtered ("-");
403 printf_filtered ("%1X", tags[v_idx]);
405 printf_filtered (" ");
408 printf_filtered ("\n");
409 gdb_flush (gdb_stdout);
415 do_examine (CORE_ADDR start, int bcnt)
417 CORE_ADDR vaddr = adi_normalize_address (start);
419 CORE_ADDR vstart = adi_align_address (vaddr);
420 int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
421 gdb::def_vector<gdb_byte> buf (cnt);
422 int read_cnt = adi_read_versions (vstart, cnt, buf.data ());
424 error (_("No ADI information"));
425 else if (read_cnt < cnt)
426 error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
428 adi_print_versions (vstart, cnt, buf.data ());
432 do_assign (CORE_ADDR start, size_t bcnt, int version)
434 CORE_ADDR vaddr = adi_normalize_address (start);
436 CORE_ADDR vstart = adi_align_address (vaddr);
437 int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
438 std::vector<unsigned char> buf (cnt, version);
439 int set_cnt = adi_write_versions (vstart, cnt, buf.data ());
442 error (_("No ADI information"));
443 else if (set_cnt < cnt)
444 error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
448 /* ADI examine version tag command.
452 adi (examine|x)[/COUNT] [ADDR] */
455 adi_examine_command (const char *args, int from_tty)
457 /* make sure program is active and adi is available */
458 if (!target_has_execution)
459 error (_("ADI command requires a live process/thread"));
461 if (!adi_available ())
462 error (_("No ADI information"));
465 const char *p = args;
469 cnt = get_number (&p);
472 CORE_ADDR next_address = 0;
473 if (p != 0 && *p != 0)
474 next_address = parse_and_eval_address (p);
475 if (!cnt || !next_address)
476 error (_("Usage: adi examine|x[/COUNT] [ADDR]"));
478 do_examine (next_address, cnt);
481 /* ADI assign version tag command.
485 adi (assign|a)[/COUNT] ADDR = VERSION */
488 adi_assign_command (const char *args, int from_tty)
490 static const char *adi_usage
491 = N_("Usage: adi assign|a[/COUNT] ADDR = VERSION");
493 /* make sure program is active and adi is available */
494 if (!target_has_execution)
495 error (_("ADI command requires a live process/thread"));
497 if (!adi_available ())
498 error (_("No ADI information"));
500 const char *exp = args;
502 error_no_arg (_(adi_usage));
504 char *q = (char *) strchr (exp, '=');
508 error ("%s", _(adi_usage));
511 const char *p = args;
512 if (exp && *exp == '/')
515 cnt = get_number (&p);
518 CORE_ADDR next_address = 0;
519 if (p != 0 && *p != 0)
520 next_address = parse_and_eval_address (p);
522 error ("%s", _(adi_usage));
525 if (q != NULL) /* parse version tag */
527 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
528 version = parse_and_eval_long (q);
529 if (version < 0 || version > ast.max_version)
530 error (_("Invalid ADI version tag %d"), version);
533 do_assign (next_address, cnt, version);
537 _initialize_sparc64_adi_tdep (void)
540 add_prefix_cmd ("adi", class_support, info_adi_command,
541 _("ADI version related commands."),
542 &sparc64adilist, "adi ", 0, &cmdlist);
543 add_cmd ("examine", class_support, adi_examine_command,
544 _("Examine ADI versions."), &sparc64adilist);
545 add_alias_cmd ("x", "examine", no_class, 1, &sparc64adilist);
546 add_cmd ("assign", class_support, adi_assign_command,
547 _("Assign ADI versions."), &sparc64adilist);
552 /* The functions on this page are intended to be used to classify
553 function arguments. */
555 /* Check whether TYPE is "Integral or Pointer". */
558 sparc64_integral_or_pointer_p (const struct type *type)
560 switch (TYPE_CODE (type))
566 case TYPE_CODE_RANGE:
568 int len = TYPE_LENGTH (type);
569 gdb_assert (len == 1 || len == 2 || len == 4 || len == 8);
574 case TYPE_CODE_RVALUE_REF:
576 int len = TYPE_LENGTH (type);
577 gdb_assert (len == 8);
587 /* Check whether TYPE is "Floating". */
590 sparc64_floating_p (const struct type *type)
592 switch (TYPE_CODE (type))
596 int len = TYPE_LENGTH (type);
597 gdb_assert (len == 4 || len == 8 || len == 16);
607 /* Check whether TYPE is "Complex Floating". */
610 sparc64_complex_floating_p (const struct type *type)
612 switch (TYPE_CODE (type))
614 case TYPE_CODE_COMPLEX:
616 int len = TYPE_LENGTH (type);
617 gdb_assert (len == 8 || len == 16 || len == 32);
627 /* Check whether TYPE is "Structure or Union".
629 In terms of Ada subprogram calls, arrays are treated the same as
630 struct and union types. So this function also returns non-zero
634 sparc64_structure_or_union_p (const struct type *type)
636 switch (TYPE_CODE (type))
638 case TYPE_CODE_STRUCT:
639 case TYPE_CODE_UNION:
640 case TYPE_CODE_ARRAY:
650 /* Construct types for ISA-specific registers. */
653 sparc64_pstate_type (struct gdbarch *gdbarch)
655 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
657 if (!tdep->sparc64_pstate_type)
661 type = arch_flags_type (gdbarch, "builtin_type_sparc64_pstate", 64);
662 append_flags_type_flag (type, 0, "AG");
663 append_flags_type_flag (type, 1, "IE");
664 append_flags_type_flag (type, 2, "PRIV");
665 append_flags_type_flag (type, 3, "AM");
666 append_flags_type_flag (type, 4, "PEF");
667 append_flags_type_flag (type, 5, "RED");
668 append_flags_type_flag (type, 8, "TLE");
669 append_flags_type_flag (type, 9, "CLE");
670 append_flags_type_flag (type, 10, "PID0");
671 append_flags_type_flag (type, 11, "PID1");
673 tdep->sparc64_pstate_type = type;
676 return tdep->sparc64_pstate_type;
680 sparc64_ccr_type (struct gdbarch *gdbarch)
682 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
684 if (tdep->sparc64_ccr_type == NULL)
688 type = arch_flags_type (gdbarch, "builtin_type_sparc64_ccr", 64);
689 append_flags_type_flag (type, 0, "icc.c");
690 append_flags_type_flag (type, 1, "icc.v");
691 append_flags_type_flag (type, 2, "icc.z");
692 append_flags_type_flag (type, 3, "icc.n");
693 append_flags_type_flag (type, 4, "xcc.c");
694 append_flags_type_flag (type, 5, "xcc.v");
695 append_flags_type_flag (type, 6, "xcc.z");
696 append_flags_type_flag (type, 7, "xcc.n");
698 tdep->sparc64_ccr_type = type;
701 return tdep->sparc64_ccr_type;
705 sparc64_fsr_type (struct gdbarch *gdbarch)
707 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
709 if (!tdep->sparc64_fsr_type)
713 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fsr", 64);
714 append_flags_type_flag (type, 0, "NXC");
715 append_flags_type_flag (type, 1, "DZC");
716 append_flags_type_flag (type, 2, "UFC");
717 append_flags_type_flag (type, 3, "OFC");
718 append_flags_type_flag (type, 4, "NVC");
719 append_flags_type_flag (type, 5, "NXA");
720 append_flags_type_flag (type, 6, "DZA");
721 append_flags_type_flag (type, 7, "UFA");
722 append_flags_type_flag (type, 8, "OFA");
723 append_flags_type_flag (type, 9, "NVA");
724 append_flags_type_flag (type, 22, "NS");
725 append_flags_type_flag (type, 23, "NXM");
726 append_flags_type_flag (type, 24, "DZM");
727 append_flags_type_flag (type, 25, "UFM");
728 append_flags_type_flag (type, 26, "OFM");
729 append_flags_type_flag (type, 27, "NVM");
731 tdep->sparc64_fsr_type = type;
734 return tdep->sparc64_fsr_type;
738 sparc64_fprs_type (struct gdbarch *gdbarch)
740 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
742 if (!tdep->sparc64_fprs_type)
746 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fprs", 64);
747 append_flags_type_flag (type, 0, "DL");
748 append_flags_type_flag (type, 1, "DU");
749 append_flags_type_flag (type, 2, "FEF");
751 tdep->sparc64_fprs_type = type;
754 return tdep->sparc64_fprs_type;
758 /* Register information. */
759 #define SPARC64_FPU_REGISTERS \
760 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
761 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
762 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
763 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
764 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", \
765 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62"
766 #define SPARC64_CP0_REGISTERS \
768 /* FIXME: Give "state" a name until we start using register groups. */ \
774 static const char *sparc64_fpu_register_names[] = { SPARC64_FPU_REGISTERS };
775 static const char *sparc64_cp0_register_names[] = { SPARC64_CP0_REGISTERS };
777 static const char *sparc64_register_names[] =
779 SPARC_CORE_REGISTERS,
780 SPARC64_FPU_REGISTERS,
781 SPARC64_CP0_REGISTERS
784 /* Total number of registers. */
785 #define SPARC64_NUM_REGS ARRAY_SIZE (sparc64_register_names)
787 /* We provide the aliases %d0..%d62 and %q0..%q60 for the floating
788 registers as "psuedo" registers. */
790 static const char *sparc64_pseudo_register_names[] =
792 "cwp", "pstate", "asi", "ccr",
794 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
795 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30",
796 "d32", "d34", "d36", "d38", "d40", "d42", "d44", "d46",
797 "d48", "d50", "d52", "d54", "d56", "d58", "d60", "d62",
799 "q0", "q4", "q8", "q12", "q16", "q20", "q24", "q28",
800 "q32", "q36", "q40", "q44", "q48", "q52", "q56", "q60",
803 /* Total number of pseudo registers. */
804 #define SPARC64_NUM_PSEUDO_REGS ARRAY_SIZE (sparc64_pseudo_register_names)
806 /* Return the name of pseudo register REGNUM. */
809 sparc64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
811 regnum -= gdbarch_num_regs (gdbarch);
813 if (regnum < SPARC64_NUM_PSEUDO_REGS)
814 return sparc64_pseudo_register_names[regnum];
816 internal_error (__FILE__, __LINE__,
817 _("sparc64_pseudo_register_name: bad register number %d"),
821 /* Return the name of register REGNUM. */
824 sparc64_register_name (struct gdbarch *gdbarch, int regnum)
826 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
827 return tdesc_register_name (gdbarch, regnum);
829 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
830 return sparc64_register_names[regnum];
832 return sparc64_pseudo_register_name (gdbarch, regnum);
835 /* Return the GDB type object for the "standard" data type of data in
836 pseudo register REGNUM. */
839 sparc64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
841 regnum -= gdbarch_num_regs (gdbarch);
843 if (regnum == SPARC64_CWP_REGNUM)
844 return builtin_type (gdbarch)->builtin_int64;
845 if (regnum == SPARC64_PSTATE_REGNUM)
846 return sparc64_pstate_type (gdbarch);
847 if (regnum == SPARC64_ASI_REGNUM)
848 return builtin_type (gdbarch)->builtin_int64;
849 if (regnum == SPARC64_CCR_REGNUM)
850 return sparc64_ccr_type (gdbarch);
851 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D62_REGNUM)
852 return builtin_type (gdbarch)->builtin_double;
853 if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q60_REGNUM)
854 return builtin_type (gdbarch)->builtin_long_double;
856 internal_error (__FILE__, __LINE__,
857 _("sparc64_pseudo_register_type: bad register number %d"),
861 /* Return the GDB type object for the "standard" data type of data in
865 sparc64_register_type (struct gdbarch *gdbarch, int regnum)
867 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
868 return tdesc_register_type (gdbarch, regnum);
871 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
872 return builtin_type (gdbarch)->builtin_data_ptr;
873 if (regnum >= SPARC_G0_REGNUM && regnum <= SPARC_I7_REGNUM)
874 return builtin_type (gdbarch)->builtin_int64;
875 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
876 return builtin_type (gdbarch)->builtin_float;
877 if (regnum >= SPARC64_F32_REGNUM && regnum <= SPARC64_F62_REGNUM)
878 return builtin_type (gdbarch)->builtin_double;
879 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
880 return builtin_type (gdbarch)->builtin_func_ptr;
881 /* This raw register contains the contents of %cwp, %pstate, %asi
882 and %ccr as laid out in a %tstate register. */
883 if (regnum == SPARC64_STATE_REGNUM)
884 return builtin_type (gdbarch)->builtin_int64;
885 if (regnum == SPARC64_FSR_REGNUM)
886 return sparc64_fsr_type (gdbarch);
887 if (regnum == SPARC64_FPRS_REGNUM)
888 return sparc64_fprs_type (gdbarch);
889 /* "Although Y is a 64-bit register, its high-order 32 bits are
890 reserved and always read as 0." */
891 if (regnum == SPARC64_Y_REGNUM)
892 return builtin_type (gdbarch)->builtin_int64;
894 /* Pseudo registers. */
895 if (regnum >= gdbarch_num_regs (gdbarch))
896 return sparc64_pseudo_register_type (gdbarch, regnum);
898 internal_error (__FILE__, __LINE__, _("invalid regnum"));
901 static enum register_status
902 sparc64_pseudo_register_read (struct gdbarch *gdbarch,
903 readable_regcache *regcache,
904 int regnum, gdb_byte *buf)
906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
907 enum register_status status;
909 regnum -= gdbarch_num_regs (gdbarch);
911 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
913 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
914 status = regcache->raw_read (regnum, buf);
915 if (status == REG_VALID)
916 status = regcache->raw_read (regnum + 1, buf + 4);
919 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
921 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
922 return regcache->raw_read (regnum, buf);
924 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
926 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
928 status = regcache->raw_read (regnum, buf);
929 if (status == REG_VALID)
930 status = regcache->raw_read (regnum + 1, buf + 4);
931 if (status == REG_VALID)
932 status = regcache->raw_read (regnum + 2, buf + 8);
933 if (status == REG_VALID)
934 status = regcache->raw_read (regnum + 3, buf + 12);
938 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
940 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
942 status = regcache->raw_read (regnum, buf);
943 if (status == REG_VALID)
944 status = regcache->raw_read (regnum + 1, buf + 8);
948 else if (regnum == SPARC64_CWP_REGNUM
949 || regnum == SPARC64_PSTATE_REGNUM
950 || regnum == SPARC64_ASI_REGNUM
951 || regnum == SPARC64_CCR_REGNUM)
955 status = regcache->raw_read (SPARC64_STATE_REGNUM, &state);
956 if (status != REG_VALID)
961 case SPARC64_CWP_REGNUM:
962 state = (state >> 0) & ((1 << 5) - 1);
964 case SPARC64_PSTATE_REGNUM:
965 state = (state >> 8) & ((1 << 12) - 1);
967 case SPARC64_ASI_REGNUM:
968 state = (state >> 24) & ((1 << 8) - 1);
970 case SPARC64_CCR_REGNUM:
971 state = (state >> 32) & ((1 << 8) - 1);
974 store_unsigned_integer (buf, 8, byte_order, state);
981 sparc64_pseudo_register_write (struct gdbarch *gdbarch,
982 struct regcache *regcache,
983 int regnum, const gdb_byte *buf)
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
987 regnum -= gdbarch_num_regs (gdbarch);
989 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
991 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
992 regcache->raw_write (regnum, buf);
993 regcache->raw_write (regnum + 1, buf + 4);
995 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
997 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
998 regcache->raw_write (regnum, buf);
1000 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
1002 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
1003 regcache->raw_write (regnum, buf);
1004 regcache->raw_write (regnum + 1, buf + 4);
1005 regcache->raw_write (regnum + 2, buf + 8);
1006 regcache->raw_write (regnum + 3, buf + 12);
1008 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
1010 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
1011 regcache->raw_write (regnum, buf);
1012 regcache->raw_write (regnum + 1, buf + 8);
1014 else if (regnum == SPARC64_CWP_REGNUM
1015 || regnum == SPARC64_PSTATE_REGNUM
1016 || regnum == SPARC64_ASI_REGNUM
1017 || regnum == SPARC64_CCR_REGNUM)
1019 ULONGEST state, bits;
1021 regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
1022 bits = extract_unsigned_integer (buf, 8, byte_order);
1025 case SPARC64_CWP_REGNUM:
1026 state |= ((bits & ((1 << 5) - 1)) << 0);
1028 case SPARC64_PSTATE_REGNUM:
1029 state |= ((bits & ((1 << 12) - 1)) << 8);
1031 case SPARC64_ASI_REGNUM:
1032 state |= ((bits & ((1 << 8) - 1)) << 24);
1034 case SPARC64_CCR_REGNUM:
1035 state |= ((bits & ((1 << 8) - 1)) << 32);
1038 regcache_raw_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
1043 /* Return PC of first real instruction of the function starting at
1047 sparc64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1049 struct symtab_and_line sal;
1050 CORE_ADDR func_start, func_end;
1051 struct sparc_frame_cache cache;
1053 /* This is the preferred method, find the end of the prologue by
1054 using the debugging information. */
1055 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1057 sal = find_pc_line (func_start, 0);
1059 if (sal.end < func_end
1060 && start_pc <= sal.end)
1064 return sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffULL,
1068 /* Normal frames. */
1070 static struct sparc_frame_cache *
1071 sparc64_frame_cache (struct frame_info *this_frame, void **this_cache)
1073 return sparc_frame_cache (this_frame, this_cache);
1077 sparc64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1078 struct frame_id *this_id)
1080 struct sparc_frame_cache *cache =
1081 sparc64_frame_cache (this_frame, this_cache);
1083 /* This marks the outermost frame. */
1084 if (cache->base == 0)
1087 (*this_id) = frame_id_build (cache->base, cache->pc);
1090 static struct value *
1091 sparc64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1094 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1095 struct sparc_frame_cache *cache =
1096 sparc64_frame_cache (this_frame, this_cache);
1098 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
1100 CORE_ADDR pc = (regnum == SPARC64_NPC_REGNUM) ? 4 : 0;
1103 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1104 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1105 return frame_unwind_got_constant (this_frame, regnum, pc);
1108 /* Handle StackGhost. */
1110 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1112 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1114 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
1117 /* Read the value in from memory. */
1118 i7 = get_frame_memory_unsigned (this_frame, addr, 8);
1119 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1123 /* The previous frame's `local' and `in' registers may have been saved
1124 in the register save area. */
1125 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1126 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1128 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
1130 return frame_unwind_got_memory (this_frame, regnum, addr);
1133 /* The previous frame's `out' registers may be accessible as the current
1134 frame's `in' registers. */
1135 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1136 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1137 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1139 return frame_unwind_got_register (this_frame, regnum, regnum);
1142 static const struct frame_unwind sparc64_frame_unwind =
1145 default_frame_unwind_stop_reason,
1146 sparc64_frame_this_id,
1147 sparc64_frame_prev_register,
1149 default_frame_sniffer
1154 sparc64_frame_base_address (struct frame_info *this_frame, void **this_cache)
1156 struct sparc_frame_cache *cache =
1157 sparc64_frame_cache (this_frame, this_cache);
1162 static const struct frame_base sparc64_frame_base =
1164 &sparc64_frame_unwind,
1165 sparc64_frame_base_address,
1166 sparc64_frame_base_address,
1167 sparc64_frame_base_address
1170 /* Check whether TYPE must be 16-byte aligned. */
1173 sparc64_16_byte_align_p (struct type *type)
1175 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1177 struct type *t = check_typedef (TYPE_TARGET_TYPE (type));
1179 if (sparc64_floating_p (t))
1182 if (sparc64_floating_p (type) && TYPE_LENGTH (type) == 16)
1185 if (sparc64_structure_or_union_p (type))
1189 for (i = 0; i < TYPE_NFIELDS (type); i++)
1191 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1193 if (sparc64_16_byte_align_p (subtype))
1201 /* Store floating fields of element ELEMENT of an "parameter array"
1202 that has type TYPE and is stored at BITPOS in VALBUF in the
1203 apropriate registers of REGCACHE. This function can be called
1204 recursively and therefore handles floating types in addition to
1208 sparc64_store_floating_fields (struct regcache *regcache, struct type *type,
1209 const gdb_byte *valbuf, int element, int bitpos)
1211 struct gdbarch *gdbarch = regcache->arch ();
1212 int len = TYPE_LENGTH (type);
1214 gdb_assert (element < 16);
1216 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1219 int regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
1221 valbuf += bitpos / 8;
1224 memset (buf, 0, 8 - len);
1225 memcpy (buf + 8 - len, valbuf, len);
1229 for (int n = 0; n < (len + 3) / 4; n++)
1230 regcache->cooked_write (regnum + n, valbuf + n * 4);
1232 else if (sparc64_floating_p (type)
1233 || (sparc64_complex_floating_p (type) && len <= 16))
1239 gdb_assert (bitpos == 0);
1240 gdb_assert ((element % 2) == 0);
1242 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM + element / 2;
1243 regcache->cooked_write (regnum, valbuf);
1247 gdb_assert (bitpos == 0 || bitpos == 64);
1249 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1250 + element + bitpos / 64;
1251 regcache->cooked_write (regnum, valbuf + (bitpos / 8));
1255 gdb_assert (len == 4);
1256 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 128);
1258 regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
1259 regcache->cooked_write (regnum, valbuf + (bitpos / 8));
1262 else if (sparc64_structure_or_union_p (type))
1266 for (i = 0; i < TYPE_NFIELDS (type); i++)
1268 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1269 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
1271 sparc64_store_floating_fields (regcache, subtype, valbuf,
1275 /* GCC has an interesting bug. If TYPE is a structure that has
1276 a single `float' member, GCC doesn't treat it as a structure
1277 at all, but rather as an ordinary `float' argument. This
1278 argument will be stored in %f1, as required by the psABI.
1279 However, as a member of a structure the psABI requires it to
1280 be stored in %f0. This bug is present in GCC 3.3.2, but
1281 probably in older releases to. To appease GCC, if a
1282 structure has only a single `float' member, we store its
1283 value in %f1 too (we already have stored in %f0). */
1284 if (TYPE_NFIELDS (type) == 1)
1286 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, 0));
1288 if (sparc64_floating_p (subtype) && TYPE_LENGTH (subtype) == 4)
1289 regcache->cooked_write (SPARC_F1_REGNUM, valbuf);
1294 /* Fetch floating fields from a variable of type TYPE from the
1295 appropriate registers for BITPOS in REGCACHE and store it at BITPOS
1296 in VALBUF. This function can be called recursively and therefore
1297 handles floating types in addition to structures. */
1300 sparc64_extract_floating_fields (struct regcache *regcache, struct type *type,
1301 gdb_byte *valbuf, int bitpos)
1303 struct gdbarch *gdbarch = regcache->arch ();
1305 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1307 int len = TYPE_LENGTH (type);
1308 int regnum = SPARC_F0_REGNUM + bitpos / 32;
1310 valbuf += bitpos / 8;
1314 regcache->cooked_read (regnum, buf);
1315 memcpy (valbuf, buf + 4 - len, len);
1318 for (int i = 0; i < (len + 3) / 4; i++)
1319 regcache->cooked_read (regnum + i, valbuf + i * 4);
1321 else if (sparc64_floating_p (type))
1323 int len = TYPE_LENGTH (type);
1328 gdb_assert (bitpos == 0 || bitpos == 128);
1330 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
1332 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
1336 gdb_assert (bitpos % 64 == 0 && bitpos >= 0 && bitpos < 256);
1338 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + bitpos / 64;
1339 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
1343 gdb_assert (len == 4);
1344 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 256);
1346 regnum = SPARC_F0_REGNUM + bitpos / 32;
1347 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
1350 else if (sparc64_structure_or_union_p (type))
1354 for (i = 0; i < TYPE_NFIELDS (type); i++)
1356 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1357 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
1359 sparc64_extract_floating_fields (regcache, subtype, valbuf, subpos);
1364 /* Store the NARGS arguments ARGS and STRUCT_ADDR (if STRUCT_RETURN is
1365 non-zero) in REGCACHE and on the stack (starting from address SP). */
1368 sparc64_store_arguments (struct regcache *regcache, int nargs,
1369 struct value **args, CORE_ADDR sp,
1370 function_call_return_method return_method,
1371 CORE_ADDR struct_addr)
1373 struct gdbarch *gdbarch = regcache->arch ();
1374 /* Number of extended words in the "parameter array". */
1375 int num_elements = 0;
1379 /* Take BIAS into account. */
1382 /* First we calculate the number of extended words in the "parameter
1383 array". While doing so we also convert some of the arguments. */
1385 if (return_method == return_method_struct)
1388 for (i = 0; i < nargs; i++)
1390 struct type *type = value_type (args[i]);
1391 int len = TYPE_LENGTH (type);
1393 if (sparc64_structure_or_union_p (type)
1394 || (sparc64_complex_floating_p (type) && len == 32))
1396 /* Structure or Union arguments. */
1399 if (num_elements % 2 && sparc64_16_byte_align_p (type))
1401 num_elements += ((len + 7) / 8);
1405 /* The psABI says that "Structures or unions larger than
1406 sixteen bytes are copied by the caller and passed
1407 indirectly; the caller will pass the address of a
1408 correctly aligned structure value. This sixty-four
1409 bit address will occupy one word in the parameter
1410 array, and may be promoted to an %o register like any
1411 other pointer value." Allocate memory for these
1412 values on the stack. */
1415 /* Use 16-byte alignment for these values. That's
1416 always correct, and wasting a few bytes shouldn't be
1420 write_memory (sp, value_contents (args[i]), len);
1421 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
1425 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
1427 /* Floating arguments. */
1430 /* The psABI says that "Each quad-precision parameter
1431 value will be assigned to two extended words in the
1435 /* The psABI says that "Long doubles must be
1436 quad-aligned, and thus a hole might be introduced
1437 into the parameter array to force alignment." Skip
1438 an element if necessary. */
1439 if ((num_elements % 2) && sparc64_16_byte_align_p (type))
1447 /* Integral and pointer arguments. */
1448 gdb_assert (sparc64_integral_or_pointer_p (type));
1450 /* The psABI says that "Each argument value of integral type
1451 smaller than an extended word will be widened by the
1452 caller to an extended word according to the signed-ness
1453 of the argument type." */
1455 args[i] = value_cast (builtin_type (gdbarch)->builtin_int64,
1461 /* Allocate the "parameter array". */
1462 sp -= num_elements * 8;
1464 /* The psABI says that "Every stack frame must be 16-byte aligned." */
1467 /* Now we store the arguments in to the "paramater array". Some
1468 Integer or Pointer arguments and Structure or Union arguments
1469 will be passed in %o registers. Some Floating arguments and
1470 floating members of structures are passed in floating-point
1471 registers. However, for functions with variable arguments,
1472 floating arguments are stored in an %0 register, and for
1473 functions without a prototype floating arguments are stored in
1474 both a floating-point and an %o registers, or a floating-point
1475 register and memory. To simplify the logic here we always pass
1476 arguments in memory, an %o register, and a floating-point
1477 register if appropriate. This should be no problem since the
1478 contents of any unused memory or registers in the "parameter
1479 array" are undefined. */
1481 if (return_method == return_method_struct)
1483 regcache_cooked_write_unsigned (regcache, SPARC_O0_REGNUM, struct_addr);
1487 for (i = 0; i < nargs; i++)
1489 const gdb_byte *valbuf = value_contents (args[i]);
1490 struct type *type = value_type (args[i]);
1491 int len = TYPE_LENGTH (type);
1495 if (sparc64_structure_or_union_p (type)
1496 || (sparc64_complex_floating_p (type) && len == 32))
1498 /* Structure, Union or long double Complex arguments. */
1499 gdb_assert (len <= 16);
1500 memset (buf, 0, sizeof (buf));
1501 memcpy (buf, valbuf, len);
1504 if (element % 2 && sparc64_16_byte_align_p (type))
1509 regnum = SPARC_O0_REGNUM + element;
1510 if (len > 8 && element < 5)
1511 regcache->cooked_write (regnum + 1, valbuf + 8);
1515 sparc64_store_floating_fields (regcache, type, valbuf, element, 0);
1517 else if (sparc64_complex_floating_p (type))
1519 /* Float Complex or double Complex arguments. */
1522 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + element;
1526 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D30_REGNUM)
1527 regcache->cooked_write (regnum + 1, valbuf + 8);
1528 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D10_REGNUM)
1529 regcache->cooked_write (SPARC_O0_REGNUM + element + 1,
1534 else if (sparc64_floating_p (type))
1536 /* Floating arguments. */
1542 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
1548 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1553 /* The psABI says "Each single-precision parameter value
1554 will be assigned to one extended word in the
1555 parameter array, and right-justified within that
1556 word; the left half (even float register) is
1557 undefined." Even though the psABI says that "the
1558 left half is undefined", set it to zero here. */
1560 memcpy (buf + 4, valbuf, 4);
1564 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1570 /* Integral and pointer arguments. */
1571 gdb_assert (len == 8);
1573 regnum = SPARC_O0_REGNUM + element;
1578 regcache->cooked_write (regnum, valbuf);
1580 /* If we're storing the value in a floating-point register,
1581 also store it in the corresponding %0 register(s). */
1582 if (regnum >= gdbarch_num_regs (gdbarch))
1584 regnum -= gdbarch_num_regs (gdbarch);
1586 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D10_REGNUM)
1588 gdb_assert (element < 6);
1589 regnum = SPARC_O0_REGNUM + element;
1590 regcache->cooked_write (regnum, valbuf);
1592 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q8_REGNUM)
1594 gdb_assert (element < 5);
1595 regnum = SPARC_O0_REGNUM + element;
1596 regcache->cooked_write (regnum, valbuf);
1597 regcache->cooked_write (regnum + 1, valbuf + 8);
1602 /* Always store the argument in memory. */
1603 write_memory (sp + element * 8, valbuf, len);
1604 element += ((len + 7) / 8);
1607 gdb_assert (element == num_elements);
1609 /* Take BIAS into account. */
1615 sparc64_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1617 /* The ABI requires 16-byte alignment. */
1618 return address & ~0xf;
1622 sparc64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1623 struct regcache *regcache, CORE_ADDR bp_addr,
1624 int nargs, struct value **args, CORE_ADDR sp,
1625 function_call_return_method return_method,
1626 CORE_ADDR struct_addr)
1628 /* Set return address. */
1629 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, bp_addr - 8);
1631 /* Set up function arguments. */
1632 sp = sparc64_store_arguments (regcache, nargs, args, sp, return_method,
1635 /* Allocate the register save area. */
1638 /* Stack should be 16-byte aligned at this point. */
1639 gdb_assert ((sp + BIAS) % 16 == 0);
1641 /* Finally, update the stack pointer. */
1642 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
1648 /* Extract from an array REGBUF containing the (raw) register state, a
1649 function return value of TYPE, and copy that into VALBUF. */
1652 sparc64_extract_return_value (struct type *type, struct regcache *regcache,
1655 int len = TYPE_LENGTH (type);
1659 if (sparc64_structure_or_union_p (type))
1661 /* Structure or Union return values. */
1662 gdb_assert (len <= 32);
1664 for (i = 0; i < ((len + 7) / 8); i++)
1665 regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
1666 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1667 sparc64_extract_floating_fields (regcache, type, buf, 0);
1668 memcpy (valbuf, buf, len);
1670 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
1672 /* Floating return values. */
1673 for (i = 0; i < len / 4; i++)
1674 regcache->cooked_read (SPARC_F0_REGNUM + i, buf + i * 4);
1675 memcpy (valbuf, buf, len);
1677 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1679 /* Small arrays are returned the same way as small structures. */
1680 gdb_assert (len <= 32);
1682 for (i = 0; i < ((len + 7) / 8); i++)
1683 regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
1684 memcpy (valbuf, buf, len);
1688 /* Integral and pointer return values. */
1689 gdb_assert (sparc64_integral_or_pointer_p (type));
1691 /* Just stripping off any unused bytes should preserve the
1692 signed-ness just fine. */
1693 regcache->cooked_read (SPARC_O0_REGNUM, buf);
1694 memcpy (valbuf, buf + 8 - len, len);
1698 /* Write into the appropriate registers a function return value stored
1699 in VALBUF of type TYPE. */
1702 sparc64_store_return_value (struct type *type, struct regcache *regcache,
1703 const gdb_byte *valbuf)
1705 int len = TYPE_LENGTH (type);
1709 if (sparc64_structure_or_union_p (type))
1711 /* Structure or Union return values. */
1712 gdb_assert (len <= 32);
1714 /* Simplify matters by storing the complete value (including
1715 floating members) into %o0 and %o1. Floating members are
1716 also store in the appropriate floating-point registers. */
1717 memset (buf, 0, sizeof (buf));
1718 memcpy (buf, valbuf, len);
1719 for (i = 0; i < ((len + 7) / 8); i++)
1720 regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
1721 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1722 sparc64_store_floating_fields (regcache, type, buf, 0, 0);
1724 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
1726 /* Floating return values. */
1727 memcpy (buf, valbuf, len);
1728 for (i = 0; i < len / 4; i++)
1729 regcache->cooked_write (SPARC_F0_REGNUM + i, buf + i * 4);
1731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1733 /* Small arrays are returned the same way as small structures. */
1734 gdb_assert (len <= 32);
1736 memset (buf, 0, sizeof (buf));
1737 memcpy (buf, valbuf, len);
1738 for (i = 0; i < ((len + 7) / 8); i++)
1739 regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
1743 /* Integral and pointer return values. */
1744 gdb_assert (sparc64_integral_or_pointer_p (type));
1746 /* ??? Do we need to do any sign-extension here? */
1748 memcpy (buf + 8 - len, valbuf, len);
1749 regcache->cooked_write (SPARC_O0_REGNUM, buf);
1753 static enum return_value_convention
1754 sparc64_return_value (struct gdbarch *gdbarch, struct value *function,
1755 struct type *type, struct regcache *regcache,
1756 gdb_byte *readbuf, const gdb_byte *writebuf)
1758 if (TYPE_LENGTH (type) > 32)
1759 return RETURN_VALUE_STRUCT_CONVENTION;
1762 sparc64_extract_return_value (type, regcache, readbuf);
1764 sparc64_store_return_value (type, regcache, writebuf);
1766 return RETURN_VALUE_REGISTER_CONVENTION;
1771 sparc64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1772 struct dwarf2_frame_state_reg *reg,
1773 struct frame_info *this_frame)
1777 case SPARC_G0_REGNUM:
1778 /* Since %g0 is always zero, there is no point in saving it, and
1779 people will be inclined omit it from the CFI. Make sure we
1780 don't warn about that. */
1781 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1783 case SPARC_SP_REGNUM:
1784 reg->how = DWARF2_FRAME_REG_CFA;
1786 case SPARC64_PC_REGNUM:
1787 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1788 reg->loc.offset = 8;
1790 case SPARC64_NPC_REGNUM:
1791 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1792 reg->loc.offset = 12;
1797 /* sparc64_addr_bits_remove - remove useless address bits */
1800 sparc64_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1802 return adi_normalize_address (addr);
1806 sparc64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1808 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1810 tdep->pc_regnum = SPARC64_PC_REGNUM;
1811 tdep->npc_regnum = SPARC64_NPC_REGNUM;
1812 tdep->fpu_register_names = sparc64_fpu_register_names;
1813 tdep->fpu_registers_num = ARRAY_SIZE (sparc64_fpu_register_names);
1814 tdep->cp0_register_names = sparc64_cp0_register_names;
1815 tdep->cp0_registers_num = ARRAY_SIZE (sparc64_cp0_register_names);
1817 /* This is what all the fuss is about. */
1818 set_gdbarch_long_bit (gdbarch, 64);
1819 set_gdbarch_long_long_bit (gdbarch, 64);
1820 set_gdbarch_ptr_bit (gdbarch, 64);
1822 set_gdbarch_wchar_bit (gdbarch, 16);
1823 set_gdbarch_wchar_signed (gdbarch, 0);
1825 set_gdbarch_num_regs (gdbarch, SPARC64_NUM_REGS);
1826 set_gdbarch_register_name (gdbarch, sparc64_register_name);
1827 set_gdbarch_register_type (gdbarch, sparc64_register_type);
1828 set_gdbarch_num_pseudo_regs (gdbarch, SPARC64_NUM_PSEUDO_REGS);
1829 set_tdesc_pseudo_register_name (gdbarch, sparc64_pseudo_register_name);
1830 set_tdesc_pseudo_register_type (gdbarch, sparc64_pseudo_register_type);
1831 set_gdbarch_pseudo_register_read (gdbarch, sparc64_pseudo_register_read);
1832 set_gdbarch_pseudo_register_write (gdbarch, sparc64_pseudo_register_write);
1834 /* Register numbers of various important registers. */
1835 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); /* %pc */
1837 /* Call dummy code. */
1838 set_gdbarch_frame_align (gdbarch, sparc64_frame_align);
1839 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1840 set_gdbarch_push_dummy_code (gdbarch, NULL);
1841 set_gdbarch_push_dummy_call (gdbarch, sparc64_push_dummy_call);
1843 set_gdbarch_return_value (gdbarch, sparc64_return_value);
1844 set_gdbarch_stabs_argument_has_addr
1845 (gdbarch, default_stabs_argument_has_addr);
1847 set_gdbarch_skip_prologue (gdbarch, sparc64_skip_prologue);
1848 set_gdbarch_stack_frame_destroyed_p (gdbarch, sparc_stack_frame_destroyed_p);
1850 /* Hook in the DWARF CFI frame unwinder. */
1851 dwarf2_frame_set_init_reg (gdbarch, sparc64_dwarf2_frame_init_reg);
1852 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1853 StackGhost issues have been resolved. */
1855 frame_unwind_append_unwinder (gdbarch, &sparc64_frame_unwind);
1856 frame_base_set_default (gdbarch, &sparc64_frame_base);
1858 set_gdbarch_addr_bits_remove (gdbarch, sparc64_addr_bits_remove);
1862 /* Helper functions for dealing with register sets. */
1864 #define TSTATE_CWP 0x000000000000001fULL
1865 #define TSTATE_ICC 0x0000000f00000000ULL
1866 #define TSTATE_XCC 0x000000f000000000ULL
1868 #define PSR_S 0x00000080
1870 #define PSR_ICC 0x00f00000
1872 #define PSR_VERS 0x0f000000
1874 #define PSR_IMPL 0xf0000000
1876 #define PSR_V8PLUS 0xff000000
1877 #define PSR_XCC 0x000f0000
1880 sparc64_supply_gregset (const struct sparc_gregmap *gregmap,
1881 struct regcache *regcache,
1882 int regnum, const void *gregs)
1884 struct gdbarch *gdbarch = regcache->arch ();
1885 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1886 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
1887 const gdb_byte *regs = (const gdb_byte *) gregs;
1888 gdb_byte zero[8] = { 0 };
1893 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1895 int offset = gregmap->r_tstate_offset;
1896 ULONGEST tstate, psr;
1899 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
1900 psr = ((tstate & TSTATE_CWP) | PSR_S | ((tstate & TSTATE_ICC) >> 12)
1901 | ((tstate & TSTATE_XCC) >> 20) | PSR_V8PLUS);
1902 store_unsigned_integer (buf, 4, byte_order, psr);
1903 regcache->raw_supply (SPARC32_PSR_REGNUM, buf);
1906 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1907 regcache->raw_supply (SPARC32_PC_REGNUM,
1908 regs + gregmap->r_pc_offset + 4);
1910 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1911 regcache->raw_supply (SPARC32_NPC_REGNUM,
1912 regs + gregmap->r_npc_offset + 4);
1914 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1916 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
1917 regcache->raw_supply (SPARC32_Y_REGNUM, regs + offset);
1922 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
1923 regcache->raw_supply (SPARC64_STATE_REGNUM,
1924 regs + gregmap->r_tstate_offset);
1926 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
1927 regcache->raw_supply (SPARC64_PC_REGNUM,
1928 regs + gregmap->r_pc_offset);
1930 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
1931 regcache->raw_supply (SPARC64_NPC_REGNUM,
1932 regs + gregmap->r_npc_offset);
1934 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
1939 memcpy (buf + 8 - gregmap->r_y_size,
1940 regs + gregmap->r_y_offset, gregmap->r_y_size);
1941 regcache->raw_supply (SPARC64_Y_REGNUM, buf);
1944 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
1945 && gregmap->r_fprs_offset != -1)
1946 regcache->raw_supply (SPARC64_FPRS_REGNUM,
1947 regs + gregmap->r_fprs_offset);
1950 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1951 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
1953 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1955 int offset = gregmap->r_g1_offset;
1960 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1962 if (regnum == i || regnum == -1)
1963 regcache->raw_supply (i, regs + offset);
1968 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1970 /* Not all of the register set variants include Locals and
1971 Inputs. For those that don't, we read them off the stack. */
1972 if (gregmap->r_l0_offset == -1)
1976 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1977 sparc_supply_rwindow (regcache, sp, regnum);
1981 int offset = gregmap->r_l0_offset;
1986 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1988 if (regnum == i || regnum == -1)
1989 regcache->raw_supply (i, regs + offset);
1997 sparc64_collect_gregset (const struct sparc_gregmap *gregmap,
1998 const struct regcache *regcache,
1999 int regnum, void *gregs)
2001 struct gdbarch *gdbarch = regcache->arch ();
2002 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2003 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
2004 gdb_byte *regs = (gdb_byte *) gregs;
2009 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2011 int offset = gregmap->r_tstate_offset;
2012 ULONGEST tstate, psr;
2015 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
2016 regcache->raw_collect (SPARC32_PSR_REGNUM, buf);
2017 psr = extract_unsigned_integer (buf, 4, byte_order);
2018 tstate |= (psr & PSR_ICC) << 12;
2019 if ((psr & (PSR_VERS | PSR_IMPL)) == PSR_V8PLUS)
2020 tstate |= (psr & PSR_XCC) << 20;
2021 store_unsigned_integer (buf, 8, byte_order, tstate);
2022 memcpy (regs + offset, buf, 8);
2025 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2026 regcache->raw_collect (SPARC32_PC_REGNUM,
2027 regs + gregmap->r_pc_offset + 4);
2029 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2030 regcache->raw_collect (SPARC32_NPC_REGNUM,
2031 regs + gregmap->r_npc_offset + 4);
2033 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2035 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
2036 regcache->raw_collect (SPARC32_Y_REGNUM, regs + offset);
2041 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
2042 regcache->raw_collect (SPARC64_STATE_REGNUM,
2043 regs + gregmap->r_tstate_offset);
2045 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
2046 regcache->raw_collect (SPARC64_PC_REGNUM,
2047 regs + gregmap->r_pc_offset);
2049 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
2050 regcache->raw_collect (SPARC64_NPC_REGNUM,
2051 regs + gregmap->r_npc_offset);
2053 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
2057 regcache->raw_collect (SPARC64_Y_REGNUM, buf);
2058 memcpy (regs + gregmap->r_y_offset,
2059 buf + 8 - gregmap->r_y_size, gregmap->r_y_size);
2062 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
2063 && gregmap->r_fprs_offset != -1)
2064 regcache->raw_collect (SPARC64_FPRS_REGNUM,
2065 regs + gregmap->r_fprs_offset);
2069 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2071 int offset = gregmap->r_g1_offset;
2076 /* %g0 is always zero. */
2077 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2079 if (regnum == i || regnum == -1)
2080 regcache->raw_collect (i, regs + offset);
2085 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2087 /* Not all of the register set variants include Locals and
2088 Inputs. For those that don't, we read them off the stack. */
2089 if (gregmap->r_l0_offset != -1)
2091 int offset = gregmap->r_l0_offset;
2096 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2098 if (regnum == i || regnum == -1)
2099 regcache->raw_collect (i, regs + offset);
2107 sparc64_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2108 struct regcache *regcache,
2109 int regnum, const void *fpregs)
2111 int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
2112 const gdb_byte *regs = (const gdb_byte *) fpregs;
2115 for (i = 0; i < 32; i++)
2117 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2118 regcache->raw_supply (SPARC_F0_REGNUM + i,
2119 regs + fpregmap->r_f0_offset + (i * 4));
2124 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2125 regcache->raw_supply (SPARC32_FSR_REGNUM,
2126 regs + fpregmap->r_fsr_offset);
2130 for (i = 0; i < 16; i++)
2132 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
2133 regcache->raw_supply
2134 (SPARC64_F32_REGNUM + i,
2135 regs + fpregmap->r_f0_offset + (32 * 4) + (i * 8));
2138 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
2139 regcache->raw_supply (SPARC64_FSR_REGNUM,
2140 regs + fpregmap->r_fsr_offset);
2145 sparc64_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2146 const struct regcache *regcache,
2147 int regnum, void *fpregs)
2149 int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
2150 gdb_byte *regs = (gdb_byte *) fpregs;
2153 for (i = 0; i < 32; i++)
2155 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2156 regcache->raw_collect (SPARC_F0_REGNUM + i,
2157 regs + fpregmap->r_f0_offset + (i * 4));
2162 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2163 regcache->raw_collect (SPARC32_FSR_REGNUM,
2164 regs + fpregmap->r_fsr_offset);
2168 for (i = 0; i < 16; i++)
2170 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
2171 regcache->raw_collect (SPARC64_F32_REGNUM + i,
2172 (regs + fpregmap->r_f0_offset
2173 + (32 * 4) + (i * 8)));
2176 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
2177 regcache->raw_collect (SPARC64_FSR_REGNUM,
2178 regs + fpregmap->r_fsr_offset);
2182 const struct sparc_fpregmap sparc64_bsd_fpregmap =