1 /* Target-dependent code for SPARC.
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
23 #include "dwarf2-frame.h"
24 #include "floatformat.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
40 #include "sparc-tdep.h"
41 #include "sparc-ravenscar-thread.h"
45 /* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
48 lists changes with respect to the original 32-bit psABI as defined
49 in the "System V ABI, SPARC Processor Supplement".
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
59 /* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
64 /* The SPARC Floating-Point Quad-Precision format is similar to
65 big-endian IA-64 Quad-Precision format. */
66 #define floatformats_sparc_quad floatformats_ia64_quad
68 /* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
74 /* Macros to extract fields from SPARC instructions. */
75 #define X_OP(i) (((i) >> 30) & 0x3)
76 #define X_RD(i) (((i) >> 25) & 0x1f)
77 #define X_A(i) (((i) >> 29) & 1)
78 #define X_COND(i) (((i) >> 25) & 0xf)
79 #define X_OP2(i) (((i) >> 22) & 0x7)
80 #define X_IMM22(i) ((i) & 0x3fffff)
81 #define X_OP3(i) (((i) >> 19) & 0x3f)
82 #define X_RS1(i) (((i) >> 14) & 0x1f)
83 #define X_RS2(i) ((i) & 0x1f)
84 #define X_I(i) (((i) >> 13) & 1)
85 /* Sign extension macros. */
86 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
87 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
88 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90 /* Macros to identify some instructions. */
91 /* RETURN (RETT in V8) */
92 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
94 /* Fetch the instruction at PC. Instructions are always big-endian
95 even if the processor operates in little-endian mode. */
98 sparc_fetch_instruction (CORE_ADDR pc)
104 /* If we can't read the instruction at PC, return zero. */
105 if (target_read_memory (pc, buf, sizeof (buf)))
109 for (i = 0; i < sizeof (buf); i++)
110 insn = (insn << 8) | buf[i];
115 /* Return non-zero if the instruction corresponding to PC is an "unimp"
119 sparc_is_unimp_insn (CORE_ADDR pc)
121 const unsigned long insn = sparc_fetch_instruction (pc);
123 return ((insn & 0xc1c00000) == 0);
126 /* Return non-zero if the instruction corresponding to PC is an
127 "annulled" branch, i.e. the annul bit is set. */
130 sparc_is_annulled_branch_insn (CORE_ADDR pc)
132 /* The branch instructions featuring an annul bit can be identified
133 by the following bit patterns:
136 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
137 OP2=2: Branch on Integer Condition Codes (Bcc).
138 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
139 OP2=6: Branch on FP Condition Codes (FBcc).
141 Branch on Integer Register with Prediction (BPr).
143 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
144 coprocessor branch instructions (Op2=7). */
146 const unsigned long insn = sparc_fetch_instruction (pc);
147 const unsigned op2 = X_OP2 (insn);
149 if ((X_OP (insn) == 0)
150 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
151 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
157 /* OpenBSD/sparc includes StackGhost, which according to the author's
158 website http://stackghost.cerias.purdue.edu "... transparently and
159 automatically protects applications' stack frames; more
160 specifically, it guards the return pointers. The protection
161 mechanisms require no application source or binary modification and
162 imposes only a negligible performance penalty."
164 The same website provides the following description of how
167 "StackGhost interfaces with the kernel trap handler that would
168 normally write out registers to the stack and the handler that
169 would read them back in. By XORing a cookie into the
170 return-address saved in the user stack when it is actually written
171 to the stack, and then XOR it out when the return-address is pulled
172 from the stack, StackGhost can cause attacker corrupted return
173 pointers to behave in a manner the attacker cannot predict.
174 StackGhost can also use several unused bits in the return pointer
175 to detect a smashed return pointer and abort the process."
177 For GDB this means that whenever we're reading %i7 from a stack
178 frame's window save area, we'll have to XOR the cookie.
180 More information on StackGuard can be found on in:
182 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
183 Stack Protection." 2001. Published in USENIX Security Symposium
186 /* Fetch StackGhost Per-Process XOR cookie. */
189 sparc_fetch_wcookie (struct gdbarch *gdbarch)
191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
192 struct target_ops *ops = ¤t_target;
196 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
200 /* We should have either an 32-bit or an 64-bit cookie. */
201 gdb_assert (len == 4 || len == 8);
203 return extract_unsigned_integer (buf, len, byte_order);
207 /* The functions on this page are intended to be used to classify
208 function arguments. */
210 /* Check whether TYPE is "Integral or Pointer". */
213 sparc_integral_or_pointer_p (const struct type *type)
215 int len = TYPE_LENGTH (type);
217 switch (TYPE_CODE (type))
223 case TYPE_CODE_RANGE:
224 /* We have byte, half-word, word and extended-word/doubleword
225 integral types. The doubleword is an extension to the
226 original 32-bit ABI by the SCD 2.4.x. */
227 return (len == 1 || len == 2 || len == 4 || len == 8);
230 /* Allow either 32-bit or 64-bit pointers. */
231 return (len == 4 || len == 8);
239 /* Check whether TYPE is "Floating". */
242 sparc_floating_p (const struct type *type)
244 switch (TYPE_CODE (type))
248 int len = TYPE_LENGTH (type);
249 return (len == 4 || len == 8 || len == 16);
258 /* Check whether TYPE is "Complex Floating". */
261 sparc_complex_floating_p (const struct type *type)
263 switch (TYPE_CODE (type))
265 case TYPE_CODE_COMPLEX:
267 int len = TYPE_LENGTH (type);
268 return (len == 8 || len == 16 || len == 32);
277 /* Check whether TYPE is "Structure or Union".
279 In terms of Ada subprogram calls, arrays are treated the same as
280 struct and union types. So this function also returns non-zero
284 sparc_structure_or_union_p (const struct type *type)
286 switch (TYPE_CODE (type))
288 case TYPE_CODE_STRUCT:
289 case TYPE_CODE_UNION:
290 case TYPE_CODE_ARRAY:
299 /* Register information. */
301 static const char *sparc32_register_names[] =
303 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
304 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
305 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
306 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
308 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
309 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
310 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
311 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
313 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
316 /* Total number of registers. */
317 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
319 /* We provide the aliases %d0..%d30 for the floating registers as
320 "psuedo" registers. */
322 static const char *sparc32_pseudo_register_names[] =
324 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
325 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
328 /* Total number of pseudo registers. */
329 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
331 /* Return the name of register REGNUM. */
334 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
336 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
337 return sparc32_register_names[regnum];
339 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
340 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
345 /* Construct types for ISA-specific registers. */
348 sparc_psr_type (struct gdbarch *gdbarch)
350 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
352 if (!tdep->sparc_psr_type)
356 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
357 append_flags_type_flag (type, 5, "ET");
358 append_flags_type_flag (type, 6, "PS");
359 append_flags_type_flag (type, 7, "S");
360 append_flags_type_flag (type, 12, "EF");
361 append_flags_type_flag (type, 13, "EC");
363 tdep->sparc_psr_type = type;
366 return tdep->sparc_psr_type;
370 sparc_fsr_type (struct gdbarch *gdbarch)
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374 if (!tdep->sparc_fsr_type)
378 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
379 append_flags_type_flag (type, 0, "NXA");
380 append_flags_type_flag (type, 1, "DZA");
381 append_flags_type_flag (type, 2, "UFA");
382 append_flags_type_flag (type, 3, "OFA");
383 append_flags_type_flag (type, 4, "NVA");
384 append_flags_type_flag (type, 5, "NXC");
385 append_flags_type_flag (type, 6, "DZC");
386 append_flags_type_flag (type, 7, "UFC");
387 append_flags_type_flag (type, 8, "OFC");
388 append_flags_type_flag (type, 9, "NVC");
389 append_flags_type_flag (type, 22, "NS");
390 append_flags_type_flag (type, 23, "NXM");
391 append_flags_type_flag (type, 24, "DZM");
392 append_flags_type_flag (type, 25, "UFM");
393 append_flags_type_flag (type, 26, "OFM");
394 append_flags_type_flag (type, 27, "NVM");
396 tdep->sparc_fsr_type = type;
399 return tdep->sparc_fsr_type;
402 /* Return the GDB type object for the "standard" data type of data in
406 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
408 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
409 return builtin_type (gdbarch)->builtin_float;
411 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
412 return builtin_type (gdbarch)->builtin_double;
414 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
415 return builtin_type (gdbarch)->builtin_data_ptr;
417 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
418 return builtin_type (gdbarch)->builtin_func_ptr;
420 if (regnum == SPARC32_PSR_REGNUM)
421 return sparc_psr_type (gdbarch);
423 if (regnum == SPARC32_FSR_REGNUM)
424 return sparc_fsr_type (gdbarch);
426 return builtin_type (gdbarch)->builtin_int32;
429 static enum register_status
430 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
431 struct regcache *regcache,
432 int regnum, gdb_byte *buf)
434 enum register_status status;
436 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
438 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
439 status = regcache_raw_read (regcache, regnum, buf);
440 if (status == REG_VALID)
441 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
446 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
447 struct regcache *regcache,
448 int regnum, const gdb_byte *buf)
450 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
452 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
453 regcache_raw_write (regcache, regnum, buf);
454 regcache_raw_write (regcache, regnum + 1, buf + 4);
457 /* Implement "in_function_epilogue_p". */
460 sparc_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
462 /* This function must return true if we are one instruction after an
463 instruction that destroyed the stack frame of the current
464 function. The SPARC instructions used to restore the callers
465 stack frame are RESTORE and RETURN/RETT.
467 Of these RETURN/RETT is a branch instruction and thus we return
468 true if we are in its delay slot.
470 RESTORE is almost always found in the delay slot of a branch
471 instruction that transfers control to the caller, such as JMPL.
472 Thus the next instruction is in the caller frame and we don't
473 need to do anything about it. */
475 unsigned int insn = sparc_fetch_instruction (pc - 4);
477 return X_RETTURN (insn);
482 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
484 /* The ABI requires double-word alignment. */
485 return address & ~0x7;
489 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
491 struct value **args, int nargs,
492 struct type *value_type,
493 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
494 struct regcache *regcache)
496 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
501 if (using_struct_return (gdbarch, NULL, value_type))
505 /* This is an UNIMP instruction. */
506 store_unsigned_integer (buf, 4, byte_order,
507 TYPE_LENGTH (value_type) & 0x1fff);
508 write_memory (sp - 8, buf, 4);
516 sparc32_store_arguments (struct regcache *regcache, int nargs,
517 struct value **args, CORE_ADDR sp,
518 int struct_return, CORE_ADDR struct_addr)
520 struct gdbarch *gdbarch = get_regcache_arch (regcache);
521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
522 /* Number of words in the "parameter array". */
523 int num_elements = 0;
527 for (i = 0; i < nargs; i++)
529 struct type *type = value_type (args[i]);
530 int len = TYPE_LENGTH (type);
532 if (sparc_structure_or_union_p (type)
533 || (sparc_floating_p (type) && len == 16)
534 || sparc_complex_floating_p (type))
536 /* Structure, Union and Quad-Precision Arguments. */
539 /* Use doubleword alignment for these values. That's always
540 correct, and wasting a few bytes shouldn't be a problem. */
543 write_memory (sp, value_contents (args[i]), len);
544 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
547 else if (sparc_floating_p (type))
549 /* Floating arguments. */
550 gdb_assert (len == 4 || len == 8);
551 num_elements += (len / 4);
555 /* Integral and pointer arguments. */
556 gdb_assert (sparc_integral_or_pointer_p (type));
559 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
561 num_elements += ((len + 3) / 4);
565 /* Always allocate at least six words. */
566 sp -= max (6, num_elements) * 4;
568 /* The psABI says that "Software convention requires space for the
569 struct/union return value pointer, even if the word is unused." */
572 /* The psABI says that "Although software convention and the
573 operating system require every stack frame to be doubleword
577 for (i = 0; i < nargs; i++)
579 const bfd_byte *valbuf = value_contents (args[i]);
580 struct type *type = value_type (args[i]);
581 int len = TYPE_LENGTH (type);
583 gdb_assert (len == 4 || len == 8);
587 int regnum = SPARC_O0_REGNUM + element;
589 regcache_cooked_write (regcache, regnum, valbuf);
590 if (len > 4 && element < 5)
591 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
594 /* Always store the argument in memory. */
595 write_memory (sp + 4 + element * 4, valbuf, len);
599 gdb_assert (element == num_elements);
605 store_unsigned_integer (buf, 4, byte_order, struct_addr);
606 write_memory (sp, buf, 4);
613 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
614 struct regcache *regcache, CORE_ADDR bp_addr,
615 int nargs, struct value **args, CORE_ADDR sp,
616 int struct_return, CORE_ADDR struct_addr)
618 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
620 /* Set return address. */
621 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
623 /* Set up function arguments. */
624 sp = sparc32_store_arguments (regcache, nargs, args, sp,
625 struct_return, struct_addr);
627 /* Allocate the 16-word window save area. */
630 /* Stack should be doubleword aligned at this point. */
631 gdb_assert (sp % 8 == 0);
633 /* Finally, update the stack pointer. */
634 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
640 /* Use the program counter to determine the contents and size of a
641 breakpoint instruction. Return a pointer to a string of bytes that
642 encode a breakpoint instruction, store the length of the string in
643 *LEN and optionally adjust *PC to point to the correct memory
644 location for inserting the breakpoint. */
646 static const gdb_byte *
647 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
649 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
651 *len = sizeof (break_insn);
656 /* Allocate and initialize a frame cache. */
658 static struct sparc_frame_cache *
659 sparc_alloc_frame_cache (void)
661 struct sparc_frame_cache *cache;
663 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
669 /* Frameless until proven otherwise. */
670 cache->frameless_p = 1;
671 cache->frame_offset = 0;
672 cache->saved_regs_mask = 0;
673 cache->copied_regs_mask = 0;
674 cache->struct_return_p = 0;
679 /* GCC generates several well-known sequences of instructions at the begining
680 of each function prologue when compiling with -fstack-check. If one of
681 such sequences starts at START_PC, then return the address of the
682 instruction immediately past this sequence. Otherwise, return START_PC. */
685 sparc_skip_stack_check (const CORE_ADDR start_pc)
687 CORE_ADDR pc = start_pc;
689 int offset_stack_checking_sequence = 0;
690 int probing_loop = 0;
692 /* With GCC, all stack checking sequences begin with the same two
693 instructions, plus an optional one in the case of a probing loop:
695 sethi <some immediate>, %g1
700 sethi <some immediate>, %g1
701 sethi <some immediate>, %g4
706 sethi <some immediate>, %g1
708 sethi <some immediate>, %g4
710 If the optional instruction is found (setting g4), assume that a
711 probing loop will follow. */
713 /* sethi <some immediate>, %g1 */
714 insn = sparc_fetch_instruction (pc);
716 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
719 /* optional: sethi <some immediate>, %g4 */
720 insn = sparc_fetch_instruction (pc);
722 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
725 insn = sparc_fetch_instruction (pc);
729 /* sub %sp, %g1, %g1 */
730 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
731 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
734 insn = sparc_fetch_instruction (pc);
737 /* optional: sethi <some immediate>, %g4 */
738 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
741 insn = sparc_fetch_instruction (pc);
745 /* First possible sequence:
746 [first two instructions above]
747 clr [%g1 - some immediate] */
749 /* clr [%g1 - some immediate] */
750 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
751 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
753 /* Valid stack-check sequence, return the new PC. */
757 /* Second possible sequence: A small number of probes.
758 [first two instructions above]
760 add %g1, -<some immediate>, %g1
762 [repeat the two instructions above any (small) number of times]
763 clr [%g1 - some immediate] */
766 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
767 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
771 /* add %g1, -<some immediate>, %g1 */
772 insn = sparc_fetch_instruction (pc);
774 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
775 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
779 insn = sparc_fetch_instruction (pc);
781 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
782 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
786 /* clr [%g1 - some immediate] */
787 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
788 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
791 /* We found a valid stack-check sequence, return the new PC. */
795 /* Third sequence: A probing loop.
796 [first three instructions above]
800 add %g1, -<some immediate>, %g1
804 And an optional last probe for the remainder:
806 clr [%g4 - some immediate] */
810 /* sub %g1, %g4, %g4 */
811 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
812 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
816 insn = sparc_fetch_instruction (pc);
818 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
819 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
823 insn = sparc_fetch_instruction (pc);
825 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
828 /* add %g1, -<some immediate>, %g1 */
829 insn = sparc_fetch_instruction (pc);
831 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
832 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
836 insn = sparc_fetch_instruction (pc);
838 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
841 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
842 insn = sparc_fetch_instruction (pc);
844 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
845 && X_RD (insn) == 0 && X_RS1 (insn) == 1
846 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
849 /* We found a valid stack-check sequence, return the new PC. */
851 /* optional: clr [%g4 - some immediate] */
852 insn = sparc_fetch_instruction (pc);
854 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
855 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
861 /* No stack check code in our prologue, return the start_pc. */
865 /* Record the effect of a SAVE instruction on CACHE. */
868 sparc_record_save_insn (struct sparc_frame_cache *cache)
870 /* The frame is set up. */
871 cache->frameless_p = 0;
873 /* The frame pointer contains the CFA. */
874 cache->frame_offset = 0;
876 /* The `local' and `in' registers are all saved. */
877 cache->saved_regs_mask = 0xffff;
879 /* The `out' registers are all renamed. */
880 cache->copied_regs_mask = 0xff;
883 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
884 Bail out early if CURRENT_PC is reached. Return the address where
885 the analysis stopped.
887 We handle both the traditional register window model and the single
888 register window (aka flat) model. */
891 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
892 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
894 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
899 pc = sparc_skip_stack_check (pc);
901 if (current_pc <= pc)
904 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
905 SPARC the linker usually defines a symbol (typically
906 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
907 This symbol makes us end up here with PC pointing at the start of
908 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
909 would do our normal prologue analysis, we would probably conclude
910 that we've got a frame when in reality we don't, since the
911 dynamic linker patches up the first PLT with some code that
912 starts with a SAVE instruction. Patch up PC such that it points
913 at the start of our PLT entry. */
914 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
915 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
917 insn = sparc_fetch_instruction (pc);
919 /* Recognize store insns and record their sources. */
920 while (X_OP (insn) == 3
921 && (X_OP3 (insn) == 0x4 /* stw */
922 || X_OP3 (insn) == 0x7 /* std */
923 || X_OP3 (insn) == 0xe) /* stx */
924 && X_RS1 (insn) == SPARC_SP_REGNUM)
926 int regnum = X_RD (insn);
928 /* Recognize stores into the corresponding stack slots. */
929 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
931 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
932 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
933 : (regnum - SPARC_L0_REGNUM) * 4))
934 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
936 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
937 if (X_OP3 (insn) == 0x7)
938 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
943 insn = sparc_fetch_instruction (pc + offset);
946 /* Recognize a SETHI insn and record its destination. */
947 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
952 insn = sparc_fetch_instruction (pc + offset);
955 /* Allow for an arithmetic operation on DEST or %g1. */
956 if (X_OP (insn) == 2 && X_I (insn)
957 && (X_RD (insn) == 1 || X_RD (insn) == dest))
961 insn = sparc_fetch_instruction (pc + offset);
964 /* Check for the SAVE instruction that sets up the frame. */
965 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
967 sparc_record_save_insn (cache);
972 /* Check for an arithmetic operation on %sp. */
974 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
975 && X_RS1 (insn) == SPARC_SP_REGNUM
976 && X_RD (insn) == SPARC_SP_REGNUM)
980 cache->frame_offset = X_SIMM13 (insn);
981 if (X_OP3 (insn) == 0)
982 cache->frame_offset = -cache->frame_offset;
986 insn = sparc_fetch_instruction (pc + offset);
988 /* Check for an arithmetic operation that sets up the frame. */
990 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
991 && X_RS1 (insn) == SPARC_SP_REGNUM
992 && X_RD (insn) == SPARC_FP_REGNUM)
994 cache->frameless_p = 0;
995 cache->frame_offset = 0;
996 /* We could check that the amount subtracted to %sp above is the
997 same as the one added here, but this seems superfluous. */
998 cache->copied_regs_mask |= 0x40;
1001 insn = sparc_fetch_instruction (pc + offset);
1004 /* Check for a move (or) operation that copies the return register. */
1005 if (X_OP (insn) == 2
1006 && X_OP3 (insn) == 0x2
1008 && X_RS1 (insn) == SPARC_G0_REGNUM
1009 && X_RS2 (insn) == SPARC_O7_REGNUM
1010 && X_RD (insn) == SPARC_I7_REGNUM)
1012 cache->copied_regs_mask |= 0x80;
1023 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1025 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1026 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
1029 /* Return PC of first real instruction of the function starting at
1033 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1035 struct symtab_and_line sal;
1036 CORE_ADDR func_start, func_end;
1037 struct sparc_frame_cache cache;
1039 /* This is the preferred method, find the end of the prologue by
1040 using the debugging information. */
1041 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1043 sal = find_pc_line (func_start, 0);
1045 if (sal.end < func_end
1046 && start_pc <= sal.end)
1050 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1052 /* The psABI says that "Although the first 6 words of arguments
1053 reside in registers, the standard stack frame reserves space for
1054 them.". It also suggests that a function may use that space to
1055 "write incoming arguments 0 to 5" into that space, and that's
1056 indeed what GCC seems to be doing. In that case GCC will
1057 generate debug information that points to the stack slots instead
1058 of the registers, so we should consider the instructions that
1059 write out these incoming arguments onto the stack. */
1063 unsigned long insn = sparc_fetch_instruction (start_pc);
1065 /* Recognize instructions that store incoming arguments into the
1066 corresponding stack slots. */
1067 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1068 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1070 int regnum = X_RD (insn);
1072 /* Case of arguments still in %o[0..5]. */
1073 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1074 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1075 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1081 /* Case of arguments copied into %i[0..5]. */
1082 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1083 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1084 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1097 /* Normal frames. */
1099 struct sparc_frame_cache *
1100 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1102 struct sparc_frame_cache *cache;
1107 cache = sparc_alloc_frame_cache ();
1108 *this_cache = cache;
1110 cache->pc = get_frame_func (this_frame);
1112 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1113 get_frame_pc (this_frame), cache);
1115 if (cache->frameless_p)
1117 /* This function is frameless, so %fp (%i6) holds the frame
1118 pointer for our calling frame. Use %sp (%o6) as this frame's
1121 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1125 /* For normal frames, %fp (%i6) holds the frame pointer, the
1126 base address for the current stack frame. */
1128 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1131 cache->base += cache->frame_offset;
1133 if (cache->base & 1)
1134 cache->base += BIAS;
1140 sparc32_struct_return_from_sym (struct symbol *sym)
1142 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1143 enum type_code code = TYPE_CODE (type);
1145 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1147 type = check_typedef (TYPE_TARGET_TYPE (type));
1148 if (sparc_structure_or_union_p (type)
1149 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1156 struct sparc_frame_cache *
1157 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1159 struct sparc_frame_cache *cache;
1165 cache = sparc_frame_cache (this_frame, this_cache);
1167 sym = find_pc_function (cache->pc);
1170 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1174 /* There is no debugging information for this function to
1175 help us determine whether this function returns a struct
1176 or not. So we rely on another heuristic which is to check
1177 the instruction at the return address and see if this is
1178 an "unimp" instruction. If it is, then it is a struct-return
1182 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1184 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1185 if (sparc_is_unimp_insn (pc))
1186 cache->struct_return_p = 1;
1193 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1194 struct frame_id *this_id)
1196 struct sparc_frame_cache *cache =
1197 sparc32_frame_cache (this_frame, this_cache);
1199 /* This marks the outermost frame. */
1200 if (cache->base == 0)
1203 (*this_id) = frame_id_build (cache->base, cache->pc);
1206 static struct value *
1207 sparc32_frame_prev_register (struct frame_info *this_frame,
1208 void **this_cache, int regnum)
1210 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1211 struct sparc_frame_cache *cache =
1212 sparc32_frame_cache (this_frame, this_cache);
1214 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1216 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1218 /* If this functions has a Structure, Union or Quad-Precision
1219 return value, we have to skip the UNIMP instruction that encodes
1220 the size of the structure. */
1221 if (cache->struct_return_p)
1225 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1226 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1227 return frame_unwind_got_constant (this_frame, regnum, pc);
1230 /* Handle StackGhost. */
1232 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1234 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1236 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1239 /* Read the value in from memory. */
1240 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1241 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1245 /* The previous frame's `local' and `in' registers may have been saved
1246 in the register save area. */
1247 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1248 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1250 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1252 return frame_unwind_got_memory (this_frame, regnum, addr);
1255 /* The previous frame's `out' registers may be accessible as the current
1256 frame's `in' registers. */
1257 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1258 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1259 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1261 return frame_unwind_got_register (this_frame, regnum, regnum);
1264 static const struct frame_unwind sparc32_frame_unwind =
1267 default_frame_unwind_stop_reason,
1268 sparc32_frame_this_id,
1269 sparc32_frame_prev_register,
1271 default_frame_sniffer
1276 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1278 struct sparc_frame_cache *cache =
1279 sparc32_frame_cache (this_frame, this_cache);
1284 static const struct frame_base sparc32_frame_base =
1286 &sparc32_frame_unwind,
1287 sparc32_frame_base_address,
1288 sparc32_frame_base_address,
1289 sparc32_frame_base_address
1292 static struct frame_id
1293 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1297 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1300 return frame_id_build (sp, get_frame_pc (this_frame));
1304 /* Extract a function return value of TYPE from REGCACHE, and copy
1305 that into VALBUF. */
1308 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1311 int len = TYPE_LENGTH (type);
1314 gdb_assert (!sparc_structure_or_union_p (type));
1315 gdb_assert (!(sparc_floating_p (type) && len == 16));
1317 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1319 /* Floating return values. */
1320 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1322 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1325 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1326 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1330 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1331 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1332 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1333 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1335 memcpy (valbuf, buf, len);
1339 /* Integral and pointer return values. */
1340 gdb_assert (sparc_integral_or_pointer_p (type));
1342 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1345 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1346 gdb_assert (len == 8);
1347 memcpy (valbuf, buf, 8);
1351 /* Just stripping off any unused bytes should preserve the
1352 signed-ness just fine. */
1353 memcpy (valbuf, buf + 4 - len, len);
1358 /* Store the function return value of type TYPE from VALBUF into
1362 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1363 const gdb_byte *valbuf)
1365 int len = TYPE_LENGTH (type);
1368 gdb_assert (!sparc_structure_or_union_p (type));
1369 gdb_assert (!(sparc_floating_p (type) && len == 16));
1370 gdb_assert (len <= 8);
1372 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1374 /* Floating return values. */
1375 memcpy (buf, valbuf, len);
1376 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1378 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1381 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1382 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1386 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1387 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1388 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1389 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1394 /* Integral and pointer return values. */
1395 gdb_assert (sparc_integral_or_pointer_p (type));
1399 gdb_assert (len == 8);
1400 memcpy (buf, valbuf, 8);
1401 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1405 /* ??? Do we need to do any sign-extension here? */
1406 memcpy (buf + 4 - len, valbuf, len);
1408 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1412 static enum return_value_convention
1413 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1414 struct type *type, struct regcache *regcache,
1415 gdb_byte *readbuf, const gdb_byte *writebuf)
1417 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1419 /* The psABI says that "...every stack frame reserves the word at
1420 %fp+64. If a function returns a structure, union, or
1421 quad-precision value, this word should hold the address of the
1422 object into which the return value should be copied." This
1423 guarantees that we can always find the return value, not just
1424 before the function returns. */
1426 if (sparc_structure_or_union_p (type)
1427 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1434 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1435 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1436 read_memory (addr, readbuf, TYPE_LENGTH (type));
1440 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1441 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1442 write_memory (addr, writebuf, TYPE_LENGTH (type));
1445 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1449 sparc32_extract_return_value (type, regcache, readbuf);
1451 sparc32_store_return_value (type, regcache, writebuf);
1453 return RETURN_VALUE_REGISTER_CONVENTION;
1457 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1459 return (sparc_structure_or_union_p (type)
1460 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1461 || sparc_complex_floating_p (type));
1465 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1467 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1468 struct symbol *sym = find_pc_function (pc);
1471 return sparc32_struct_return_from_sym (sym);
1476 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1477 struct dwarf2_frame_state_reg *reg,
1478 struct frame_info *this_frame)
1484 case SPARC_G0_REGNUM:
1485 /* Since %g0 is always zero, there is no point in saving it, and
1486 people will be inclined omit it from the CFI. Make sure we
1487 don't warn about that. */
1488 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1490 case SPARC_SP_REGNUM:
1491 reg->how = DWARF2_FRAME_REG_CFA;
1493 case SPARC32_PC_REGNUM:
1494 case SPARC32_NPC_REGNUM:
1495 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1497 if (sparc32_dwarf2_struct_return_p (this_frame))
1499 if (regnum == SPARC32_NPC_REGNUM)
1501 reg->loc.offset = off;
1507 /* The SPARC Architecture doesn't have hardware single-step support,
1508 and most operating systems don't implement it either, so we provide
1509 software single-step mechanism. */
1512 sparc_analyze_control_transfer (struct frame_info *frame,
1513 CORE_ADDR pc, CORE_ADDR *npc)
1515 unsigned long insn = sparc_fetch_instruction (pc);
1516 int conditional_p = X_COND (insn) & 0x7;
1517 int branch_p = 0, fused_p = 0;
1518 long offset = 0; /* Must be signed for sign-extend. */
1520 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1522 if ((insn & 0x10000000) == 0)
1524 /* Branch on Integer Register with Prediction (BPr). */
1530 /* Compare and Branch */
1533 offset = 4 * X_DISP10 (insn);
1536 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1538 /* Branch on Floating-Point Condition Codes (FBfcc). */
1540 offset = 4 * X_DISP22 (insn);
1542 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1544 /* Branch on Floating-Point Condition Codes with Prediction
1547 offset = 4 * X_DISP19 (insn);
1549 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1551 /* Branch on Integer Condition Codes (Bicc). */
1553 offset = 4 * X_DISP22 (insn);
1555 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1557 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1559 offset = 4 * X_DISP19 (insn);
1561 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1563 /* Trap instruction (TRAP). */
1564 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1567 /* FIXME: Handle DONE and RETRY instructions. */
1573 /* Fused compare-and-branch instructions are non-delayed,
1574 and do not have an annuling capability. So we need to
1575 always set a breakpoint on both the NPC and the branch
1577 gdb_assert (offset != 0);
1580 else if (conditional_p)
1582 /* For conditional branches, return nPC + 4 iff the annul
1584 return (X_A (insn) ? *npc + 4 : 0);
1588 /* For unconditional branches, return the target if its
1589 specified condition is "always" and return nPC + 4 if the
1590 condition is "never". If the annul bit is 1, set *NPC to
1592 if (X_COND (insn) == 0x0)
1593 pc = *npc, offset = 4;
1605 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1611 sparc_software_single_step (struct frame_info *frame)
1613 struct gdbarch *arch = get_frame_arch (frame);
1614 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1615 struct address_space *aspace = get_frame_address_space (frame);
1616 CORE_ADDR npc, nnpc;
1618 CORE_ADDR pc, orig_npc;
1620 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1621 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1623 /* Analyze the instruction at PC. */
1624 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1626 insert_single_step_breakpoint (arch, aspace, npc);
1629 insert_single_step_breakpoint (arch, aspace, nnpc);
1631 /* Assert that we have set at least one breakpoint, and that
1632 they're not set at the same spot - unless we're going
1633 from here straight to NULL, i.e. a call or jump to 0. */
1634 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1635 gdb_assert (nnpc != npc || orig_npc == 0);
1641 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1643 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1645 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1646 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1650 /* Return the appropriate register set for the core section identified
1651 by SECT_NAME and SECT_SIZE. */
1653 static const struct regset *
1654 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1655 const char *sect_name, size_t sect_size)
1657 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1659 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1660 return tdep->gregset;
1662 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1663 return tdep->fpregset;
1669 static struct gdbarch *
1670 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1672 struct gdbarch_tdep *tdep;
1673 struct gdbarch *gdbarch;
1675 /* If there is already a candidate, use it. */
1676 arches = gdbarch_list_lookup_by_info (arches, &info);
1678 return arches->gdbarch;
1680 /* Allocate space for the new architecture. */
1681 tdep = XCNEW (struct gdbarch_tdep);
1682 gdbarch = gdbarch_alloc (&info, tdep);
1684 tdep->pc_regnum = SPARC32_PC_REGNUM;
1685 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1686 tdep->step_trap = sparc_step_trap;
1688 set_gdbarch_long_double_bit (gdbarch, 128);
1689 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1691 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1692 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1693 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1694 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1695 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1696 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1698 /* Register numbers of various important registers. */
1699 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1700 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1701 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1703 /* Call dummy code. */
1704 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1705 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1706 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1707 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1709 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1710 set_gdbarch_stabs_argument_has_addr
1711 (gdbarch, sparc32_stabs_argument_has_addr);
1713 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1715 /* Stack grows downward. */
1716 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1718 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1720 set_gdbarch_frame_args_skip (gdbarch, 8);
1722 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1724 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1725 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1727 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1729 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1731 frame_base_set_default (gdbarch, &sparc32_frame_base);
1733 /* Hook in the DWARF CFI frame unwinder. */
1734 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1735 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1736 StackGhost issues have been resolved. */
1738 /* Hook in ABI-specific overrides, if they have been registered. */
1739 gdbarch_init_osabi (info, gdbarch);
1741 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1743 /* If we have register sets, enable the generic core file support. */
1745 set_gdbarch_regset_from_core_section (gdbarch,
1746 sparc_regset_from_core_section);
1748 register_sparc_ravenscar_ops (gdbarch);
1753 /* Helper functions for dealing with register windows. */
1756 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1758 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1759 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1766 /* Registers are 64-bit. */
1769 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1771 if (regnum == i || regnum == -1)
1773 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1775 /* Handle StackGhost. */
1776 if (i == SPARC_I7_REGNUM)
1778 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1781 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1782 store_unsigned_integer (buf + offset, 8, byte_order,
1786 regcache_raw_supply (regcache, i, buf);
1792 /* Registers are 32-bit. Toss any sign-extension of the stack
1796 /* Clear out the top half of the temporary buffer, and put the
1797 register value in the bottom half if we're in 64-bit mode. */
1798 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1804 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1806 if (regnum == i || regnum == -1)
1808 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1811 /* Handle StackGhost. */
1812 if (i == SPARC_I7_REGNUM)
1814 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1817 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1818 store_unsigned_integer (buf + offset, 4, byte_order,
1822 regcache_raw_supply (regcache, i, buf);
1829 sparc_collect_rwindow (const struct regcache *regcache,
1830 CORE_ADDR sp, int regnum)
1832 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1833 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1840 /* Registers are 64-bit. */
1843 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1845 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1847 regcache_raw_collect (regcache, i, buf);
1849 /* Handle StackGhost. */
1850 if (i == SPARC_I7_REGNUM)
1852 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1855 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1856 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1859 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1865 /* Registers are 32-bit. Toss any sign-extension of the stack
1869 /* Only use the bottom half if we're in 64-bit mode. */
1870 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1873 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1875 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1877 regcache_raw_collect (regcache, i, buf);
1879 /* Handle StackGhost. */
1880 if (i == SPARC_I7_REGNUM)
1882 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1885 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1886 store_unsigned_integer (buf + offset, 4, byte_order,
1890 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1897 /* Helper functions for dealing with register sets. */
1900 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
1901 struct regcache *regcache,
1902 int regnum, const void *gregs)
1904 const gdb_byte *regs = gregs;
1905 gdb_byte zero[4] = { 0 };
1908 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1909 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1910 regs + gregmap->r_psr_offset);
1912 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1913 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1914 regs + gregmap->r_pc_offset);
1916 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1917 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1918 regs + gregmap->r_npc_offset);
1920 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1921 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1922 regs + gregmap->r_y_offset);
1924 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1925 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1927 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1929 int offset = gregmap->r_g1_offset;
1931 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1933 if (regnum == i || regnum == -1)
1934 regcache_raw_supply (regcache, i, regs + offset);
1939 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1941 /* Not all of the register set variants include Locals and
1942 Inputs. For those that don't, we read them off the stack. */
1943 if (gregmap->r_l0_offset == -1)
1947 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1948 sparc_supply_rwindow (regcache, sp, regnum);
1952 int offset = gregmap->r_l0_offset;
1954 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1956 if (regnum == i || regnum == -1)
1957 regcache_raw_supply (regcache, i, regs + offset);
1965 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
1966 const struct regcache *regcache,
1967 int regnum, void *gregs)
1969 gdb_byte *regs = gregs;
1972 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1973 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1974 regs + gregmap->r_psr_offset);
1976 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1977 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1978 regs + gregmap->r_pc_offset);
1980 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1981 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1982 regs + gregmap->r_npc_offset);
1984 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1985 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1986 regs + gregmap->r_y_offset);
1988 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1990 int offset = gregmap->r_g1_offset;
1992 /* %g0 is always zero. */
1993 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1995 if (regnum == i || regnum == -1)
1996 regcache_raw_collect (regcache, i, regs + offset);
2001 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2003 /* Not all of the register set variants include Locals and
2004 Inputs. For those that don't, we read them off the stack. */
2005 if (gregmap->r_l0_offset != -1)
2007 int offset = gregmap->r_l0_offset;
2009 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2011 if (regnum == i || regnum == -1)
2012 regcache_raw_collect (regcache, i, regs + offset);
2020 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2021 struct regcache *regcache,
2022 int regnum, const void *fpregs)
2024 const gdb_byte *regs = fpregs;
2027 for (i = 0; i < 32; i++)
2029 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2030 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
2031 regs + fpregmap->r_f0_offset + (i * 4));
2034 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2035 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
2036 regs + fpregmap->r_fsr_offset);
2040 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2041 const struct regcache *regcache,
2042 int regnum, void *fpregs)
2044 gdb_byte *regs = fpregs;
2047 for (i = 0; i < 32; i++)
2049 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2050 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
2051 regs + fpregmap->r_f0_offset + (i * 4));
2054 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2055 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
2056 regs + fpregmap->r_fsr_offset);
2062 /* From <machine/reg.h>. */
2063 const struct sparc_gregmap sparc32_sunos4_gregmap =
2075 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2081 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2088 /* Provide a prototype to silence -Wmissing-prototypes. */
2089 void _initialize_sparc_tdep (void);
2092 _initialize_sparc_tdep (void)
2094 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);