1 /* Target-dependent code for SPARC.
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "arch-utils.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
42 #include "sparc-tdep.h"
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
95 sparc_fetch_instruction (CORE_ADDR pc)
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
116 sparc_is_unimp_insn (CORE_ADDR pc)
118 const unsigned long insn = sparc_fetch_instruction (pc);
120 return ((insn & 0xc1c00000) == 0);
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
130 The same website provides the following description of how
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
146 More information on StackGuard can be found on in:
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
152 /* Fetch StackGhost Per-Process XOR cookie. */
155 sparc_fetch_wcookie (struct gdbarch *gdbarch)
157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
158 struct target_ops *ops = ¤t_target;
162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
169 return extract_unsigned_integer (buf, len, byte_order);
173 /* The functions on this page are intended to be used to classify
174 function arguments. */
176 /* Check whether TYPE is "Integral or Pointer". */
179 sparc_integral_or_pointer_p (const struct type *type)
181 int len = TYPE_LENGTH (type);
183 switch (TYPE_CODE (type))
189 case TYPE_CODE_RANGE:
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
205 /* Check whether TYPE is "Floating". */
208 sparc_floating_p (const struct type *type)
210 switch (TYPE_CODE (type))
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
224 /* Check whether TYPE is "Structure or Union". */
227 sparc_structure_or_union_p (const struct type *type)
229 switch (TYPE_CODE (type))
231 case TYPE_CODE_STRUCT:
232 case TYPE_CODE_UNION:
241 /* Register information. */
243 static const char *sparc32_register_names[] =
245 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
246 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
247 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
248 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
250 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
251 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
252 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
253 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
255 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
258 /* Total number of registers. */
259 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
261 /* We provide the aliases %d0..%d30 for the floating registers as
262 "psuedo" registers. */
264 static const char *sparc32_pseudo_register_names[] =
266 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
267 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
270 /* Total number of pseudo registers. */
271 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
273 /* Return the name of register REGNUM. */
276 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
278 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
279 return sparc32_register_names[regnum];
281 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
282 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
287 /* Construct types for ISA-specific registers. */
290 sparc_psr_type (struct gdbarch *gdbarch)
292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294 if (!tdep->sparc_psr_type)
298 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
299 append_flags_type_flag (type, 5, "ET");
300 append_flags_type_flag (type, 6, "PS");
301 append_flags_type_flag (type, 7, "S");
302 append_flags_type_flag (type, 12, "EF");
303 append_flags_type_flag (type, 13, "EC");
305 tdep->sparc_psr_type = type;
308 return tdep->sparc_psr_type;
312 sparc_fsr_type (struct gdbarch *gdbarch)
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 if (!tdep->sparc_fsr_type)
320 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
321 append_flags_type_flag (type, 0, "NXA");
322 append_flags_type_flag (type, 1, "DZA");
323 append_flags_type_flag (type, 2, "UFA");
324 append_flags_type_flag (type, 3, "OFA");
325 append_flags_type_flag (type, 4, "NVA");
326 append_flags_type_flag (type, 5, "NXC");
327 append_flags_type_flag (type, 6, "DZC");
328 append_flags_type_flag (type, 7, "UFC");
329 append_flags_type_flag (type, 8, "OFC");
330 append_flags_type_flag (type, 9, "NVC");
331 append_flags_type_flag (type, 22, "NS");
332 append_flags_type_flag (type, 23, "NXM");
333 append_flags_type_flag (type, 24, "DZM");
334 append_flags_type_flag (type, 25, "UFM");
335 append_flags_type_flag (type, 26, "OFM");
336 append_flags_type_flag (type, 27, "NVM");
338 tdep->sparc_fsr_type = type;
341 return tdep->sparc_fsr_type;
344 /* Return the GDB type object for the "standard" data type of data in
348 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
350 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
351 return builtin_type (gdbarch)->builtin_float;
353 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
354 return builtin_type (gdbarch)->builtin_double;
356 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
357 return builtin_type (gdbarch)->builtin_data_ptr;
359 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
360 return builtin_type (gdbarch)->builtin_func_ptr;
362 if (regnum == SPARC32_PSR_REGNUM)
363 return sparc_psr_type (gdbarch);
365 if (regnum == SPARC32_FSR_REGNUM)
366 return sparc_fsr_type (gdbarch);
368 return builtin_type (gdbarch)->builtin_int32;
372 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
373 struct regcache *regcache,
374 int regnum, gdb_byte *buf)
376 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
378 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
379 regcache_raw_read (regcache, regnum, buf);
380 regcache_raw_read (regcache, regnum + 1, buf + 4);
384 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
385 struct regcache *regcache,
386 int regnum, const gdb_byte *buf)
388 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
390 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
391 regcache_raw_write (regcache, regnum, buf);
392 regcache_raw_write (regcache, regnum + 1, buf + 4);
397 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
399 struct value **args, int nargs,
400 struct type *value_type,
401 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
402 struct regcache *regcache)
404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
409 if (using_struct_return (gdbarch, NULL, value_type))
413 /* This is an UNIMP instruction. */
414 store_unsigned_integer (buf, 4, byte_order,
415 TYPE_LENGTH (value_type) & 0x1fff);
416 write_memory (sp - 8, buf, 4);
424 sparc32_store_arguments (struct regcache *regcache, int nargs,
425 struct value **args, CORE_ADDR sp,
426 int struct_return, CORE_ADDR struct_addr)
428 struct gdbarch *gdbarch = get_regcache_arch (regcache);
429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
430 /* Number of words in the "parameter array". */
431 int num_elements = 0;
435 for (i = 0; i < nargs; i++)
437 struct type *type = value_type (args[i]);
438 int len = TYPE_LENGTH (type);
440 if (sparc_structure_or_union_p (type)
441 || (sparc_floating_p (type) && len == 16))
443 /* Structure, Union and Quad-Precision Arguments. */
446 /* Use doubleword alignment for these values. That's always
447 correct, and wasting a few bytes shouldn't be a problem. */
450 write_memory (sp, value_contents (args[i]), len);
451 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
454 else if (sparc_floating_p (type))
456 /* Floating arguments. */
457 gdb_assert (len == 4 || len == 8);
458 num_elements += (len / 4);
462 /* Integral and pointer arguments. */
463 gdb_assert (sparc_integral_or_pointer_p (type));
466 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
468 num_elements += ((len + 3) / 4);
472 /* Always allocate at least six words. */
473 sp -= max (6, num_elements) * 4;
475 /* The psABI says that "Software convention requires space for the
476 struct/union return value pointer, even if the word is unused." */
479 /* The psABI says that "Although software convention and the
480 operating system require every stack frame to be doubleword
484 for (i = 0; i < nargs; i++)
486 const bfd_byte *valbuf = value_contents (args[i]);
487 struct type *type = value_type (args[i]);
488 int len = TYPE_LENGTH (type);
490 gdb_assert (len == 4 || len == 8);
494 int regnum = SPARC_O0_REGNUM + element;
496 regcache_cooked_write (regcache, regnum, valbuf);
497 if (len > 4 && element < 5)
498 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
501 /* Always store the argument in memory. */
502 write_memory (sp + 4 + element * 4, valbuf, len);
506 gdb_assert (element == num_elements);
512 store_unsigned_integer (buf, 4, byte_order, struct_addr);
513 write_memory (sp, buf, 4);
520 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
521 struct regcache *regcache, CORE_ADDR bp_addr,
522 int nargs, struct value **args, CORE_ADDR sp,
523 int struct_return, CORE_ADDR struct_addr)
525 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
527 /* Set return address. */
528 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
530 /* Set up function arguments. */
531 sp = sparc32_store_arguments (regcache, nargs, args, sp,
532 struct_return, struct_addr);
534 /* Allocate the 16-word window save area. */
537 /* Stack should be doubleword aligned at this point. */
538 gdb_assert (sp % 8 == 0);
540 /* Finally, update the stack pointer. */
541 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
547 /* Use the program counter to determine the contents and size of a
548 breakpoint instruction. Return a pointer to a string of bytes that
549 encode a breakpoint instruction, store the length of the string in
550 *LEN and optionally adjust *PC to point to the correct memory
551 location for inserting the breakpoint. */
553 static const gdb_byte *
554 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
556 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
558 *len = sizeof (break_insn);
563 /* Allocate and initialize a frame cache. */
565 static struct sparc_frame_cache *
566 sparc_alloc_frame_cache (void)
568 struct sparc_frame_cache *cache;
571 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
577 /* Frameless until proven otherwise. */
578 cache->frameless_p = 1;
580 cache->struct_return_p = 0;
585 /* GCC generates several well-known sequences of instructions at the begining
586 of each function prologue when compiling with -fstack-check. If one of
587 such sequences starts at START_PC, then return the address of the
588 instruction immediately past this sequence. Otherwise, return START_PC. */
591 sparc_skip_stack_check (const CORE_ADDR start_pc)
593 CORE_ADDR pc = start_pc;
595 int offset_stack_checking_sequence = 0;
597 /* With GCC, all stack checking sequences begin with the same two
600 /* sethi <some immediate>,%g1 */
601 insn = sparc_fetch_instruction (pc);
603 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
606 /* sub %sp, %g1, %g1 */
607 insn = sparc_fetch_instruction (pc);
609 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
610 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
613 insn = sparc_fetch_instruction (pc);
616 /* First possible sequence:
617 [first two instructions above]
618 clr [%g1 - some immediate] */
620 /* clr [%g1 - some immediate] */
621 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
622 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
624 /* Valid stack-check sequence, return the new PC. */
628 /* Second possible sequence: A small number of probes.
629 [first two instructions above]
631 add %g1, -<some immediate>, %g1
633 [repeat the two instructions above any (small) number of times]
634 clr [%g1 - some immediate] */
637 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
638 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
642 /* add %g1, -<some immediate>, %g1 */
643 insn = sparc_fetch_instruction (pc);
645 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
646 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
650 insn = sparc_fetch_instruction (pc);
652 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
653 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
657 /* clr [%g1 - some immediate] */
658 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
659 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
662 /* We found a valid stack-check sequence, return the new PC. */
666 /* Third sequence: A probing loop.
667 [first two instructions above]
668 sethi <some immediate>, %g4
672 add %g1, -<some immediate>, %g1
675 clr [%g4 - some immediate] */
677 /* sethi <some immediate>, %g4 */
678 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
680 /* sub %g1, %g4, %g4 */
681 insn = sparc_fetch_instruction (pc);
683 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
684 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
688 insn = sparc_fetch_instruction (pc);
690 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
691 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
695 insn = sparc_fetch_instruction (pc);
697 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
700 /* add %g1, -<some immediate>, %g1 */
701 insn = sparc_fetch_instruction (pc);
703 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
704 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
708 insn = sparc_fetch_instruction (pc);
710 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
714 insn = sparc_fetch_instruction (pc);
716 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
717 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
720 /* clr [%g4 - some immediate] */
721 insn = sparc_fetch_instruction (pc);
723 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
724 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
727 /* We found a valid stack-check sequence, return the new PC. */
731 /* No stack check code in our prologue, return the start_pc. */
736 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
737 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
739 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
744 pc = sparc_skip_stack_check (pc);
746 if (current_pc <= pc)
749 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
750 SPARC the linker usually defines a symbol (typically
751 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
752 This symbol makes us end up here with PC pointing at the start of
753 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
754 would do our normal prologue analysis, we would probably conclude
755 that we've got a frame when in reality we don't, since the
756 dynamic linker patches up the first PLT with some code that
757 starts with a SAVE instruction. Patch up PC such that it points
758 at the start of our PLT entry. */
759 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
760 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
762 insn = sparc_fetch_instruction (pc);
764 /* Recognize a SETHI insn and record its destination. */
765 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
770 insn = sparc_fetch_instruction (pc + 4);
773 /* Allow for an arithmetic operation on DEST or %g1. */
774 if (X_OP (insn) == 2 && X_I (insn)
775 && (X_RD (insn) == 1 || X_RD (insn) == dest))
779 insn = sparc_fetch_instruction (pc + 8);
782 /* Check for the SAVE instruction that sets up the frame. */
783 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
785 cache->frameless_p = 0;
786 return pc + offset + 4;
793 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
795 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
796 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
799 /* Return PC of first real instruction of the function starting at
803 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
805 struct symtab_and_line sal;
806 CORE_ADDR func_start, func_end;
807 struct sparc_frame_cache cache;
809 /* This is the preferred method, find the end of the prologue by
810 using the debugging information. */
811 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
813 sal = find_pc_line (func_start, 0);
815 if (sal.end < func_end
816 && start_pc <= sal.end)
820 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
822 /* The psABI says that "Although the first 6 words of arguments
823 reside in registers, the standard stack frame reserves space for
824 them.". It also suggests that a function may use that space to
825 "write incoming arguments 0 to 5" into that space, and that's
826 indeed what GCC seems to be doing. In that case GCC will
827 generate debug information that points to the stack slots instead
828 of the registers, so we should consider the instructions that
829 write out these incoming arguments onto the stack. Of course we
830 only need to do this if we have a stack frame. */
832 while (!cache.frameless_p)
834 unsigned long insn = sparc_fetch_instruction (start_pc);
836 /* Recognize instructions that store incoming arguments in
837 %i0...%i5 into the corresponding stack slot. */
838 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
839 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
840 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
854 struct sparc_frame_cache *
855 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
857 struct sparc_frame_cache *cache;
862 cache = sparc_alloc_frame_cache ();
865 cache->pc = get_frame_func (this_frame);
867 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
868 get_frame_pc (this_frame), cache);
870 if (cache->frameless_p)
872 /* This function is frameless, so %fp (%i6) holds the frame
873 pointer for our calling frame. Use %sp (%o6) as this frame's
876 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
880 /* For normal frames, %fp (%i6) holds the frame pointer, the
881 base address for the current stack frame. */
883 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
893 sparc32_struct_return_from_sym (struct symbol *sym)
895 struct type *type = check_typedef (SYMBOL_TYPE (sym));
896 enum type_code code = TYPE_CODE (type);
898 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
900 type = check_typedef (TYPE_TARGET_TYPE (type));
901 if (sparc_structure_or_union_p (type)
902 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
909 struct sparc_frame_cache *
910 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
912 struct sparc_frame_cache *cache;
918 cache = sparc_frame_cache (this_frame, this_cache);
920 sym = find_pc_function (cache->pc);
923 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
927 /* There is no debugging information for this function to
928 help us determine whether this function returns a struct
929 or not. So we rely on another heuristic which is to check
930 the instruction at the return address and see if this is
931 an "unimp" instruction. If it is, then it is a struct-return
934 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
936 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
937 if (sparc_is_unimp_insn (pc))
938 cache->struct_return_p = 1;
945 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
946 struct frame_id *this_id)
948 struct sparc_frame_cache *cache =
949 sparc32_frame_cache (this_frame, this_cache);
951 /* This marks the outermost frame. */
952 if (cache->base == 0)
955 (*this_id) = frame_id_build (cache->base, cache->pc);
958 static struct value *
959 sparc32_frame_prev_register (struct frame_info *this_frame,
960 void **this_cache, int regnum)
962 struct gdbarch *gdbarch = get_frame_arch (this_frame);
963 struct sparc_frame_cache *cache =
964 sparc32_frame_cache (this_frame, this_cache);
966 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
968 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
970 /* If this functions has a Structure, Union or Quad-Precision
971 return value, we have to skip the UNIMP instruction that encodes
972 the size of the structure. */
973 if (cache->struct_return_p)
976 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
977 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
978 return frame_unwind_got_constant (this_frame, regnum, pc);
981 /* Handle StackGhost. */
983 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
985 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
987 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
990 /* Read the value in from memory. */
991 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
992 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
996 /* The previous frame's `local' and `in' registers have been saved
997 in the register save area. */
998 if (!cache->frameless_p
999 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
1001 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1003 return frame_unwind_got_memory (this_frame, regnum, addr);
1006 /* The previous frame's `out' registers are accessible as the
1007 current frame's `in' registers. */
1008 if (!cache->frameless_p
1009 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1010 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1012 return frame_unwind_got_register (this_frame, regnum, regnum);
1015 static const struct frame_unwind sparc32_frame_unwind =
1018 sparc32_frame_this_id,
1019 sparc32_frame_prev_register,
1021 default_frame_sniffer
1026 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1028 struct sparc_frame_cache *cache =
1029 sparc32_frame_cache (this_frame, this_cache);
1034 static const struct frame_base sparc32_frame_base =
1036 &sparc32_frame_unwind,
1037 sparc32_frame_base_address,
1038 sparc32_frame_base_address,
1039 sparc32_frame_base_address
1042 static struct frame_id
1043 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1047 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1050 return frame_id_build (sp, get_frame_pc (this_frame));
1054 /* Extract a function return value of TYPE from REGCACHE, and copy
1055 that into VALBUF. */
1058 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1061 int len = TYPE_LENGTH (type);
1064 gdb_assert (!sparc_structure_or_union_p (type));
1065 gdb_assert (!(sparc_floating_p (type) && len == 16));
1067 if (sparc_floating_p (type))
1069 /* Floating return values. */
1070 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1072 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1073 memcpy (valbuf, buf, len);
1077 /* Integral and pointer return values. */
1078 gdb_assert (sparc_integral_or_pointer_p (type));
1080 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1083 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1084 gdb_assert (len == 8);
1085 memcpy (valbuf, buf, 8);
1089 /* Just stripping off any unused bytes should preserve the
1090 signed-ness just fine. */
1091 memcpy (valbuf, buf + 4 - len, len);
1096 /* Store the function return value of type TYPE from VALBUF into
1100 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1101 const gdb_byte *valbuf)
1103 int len = TYPE_LENGTH (type);
1106 gdb_assert (!sparc_structure_or_union_p (type));
1107 gdb_assert (!(sparc_floating_p (type) && len == 16));
1109 if (sparc_floating_p (type))
1111 /* Floating return values. */
1112 memcpy (buf, valbuf, len);
1113 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1115 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1119 /* Integral and pointer return values. */
1120 gdb_assert (sparc_integral_or_pointer_p (type));
1124 gdb_assert (len == 8);
1125 memcpy (buf, valbuf, 8);
1126 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1130 /* ??? Do we need to do any sign-extension here? */
1131 memcpy (buf + 4 - len, valbuf, len);
1133 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1137 static enum return_value_convention
1138 sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1139 struct type *type, struct regcache *regcache,
1140 gdb_byte *readbuf, const gdb_byte *writebuf)
1142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1144 /* The psABI says that "...every stack frame reserves the word at
1145 %fp+64. If a function returns a structure, union, or
1146 quad-precision value, this word should hold the address of the
1147 object into which the return value should be copied." This
1148 guarantees that we can always find the return value, not just
1149 before the function returns. */
1151 if (sparc_structure_or_union_p (type)
1152 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1159 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1160 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1161 read_memory (addr, readbuf, TYPE_LENGTH (type));
1164 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1168 sparc32_extract_return_value (type, regcache, readbuf);
1170 sparc32_store_return_value (type, regcache, writebuf);
1172 return RETURN_VALUE_REGISTER_CONVENTION;
1176 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1178 return (sparc_structure_or_union_p (type)
1179 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1183 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1185 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1186 struct symbol *sym = find_pc_function (pc);
1189 return sparc32_struct_return_from_sym (sym);
1194 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1195 struct dwarf2_frame_state_reg *reg,
1196 struct frame_info *this_frame)
1202 case SPARC_G0_REGNUM:
1203 /* Since %g0 is always zero, there is no point in saving it, and
1204 people will be inclined omit it from the CFI. Make sure we
1205 don't warn about that. */
1206 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1208 case SPARC_SP_REGNUM:
1209 reg->how = DWARF2_FRAME_REG_CFA;
1211 case SPARC32_PC_REGNUM:
1212 case SPARC32_NPC_REGNUM:
1213 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1215 if (sparc32_dwarf2_struct_return_p (this_frame))
1217 if (regnum == SPARC32_NPC_REGNUM)
1219 reg->loc.offset = off;
1225 /* The SPARC Architecture doesn't have hardware single-step support,
1226 and most operating systems don't implement it either, so we provide
1227 software single-step mechanism. */
1230 sparc_analyze_control_transfer (struct frame_info *frame,
1231 CORE_ADDR pc, CORE_ADDR *npc)
1233 unsigned long insn = sparc_fetch_instruction (pc);
1234 int conditional_p = X_COND (insn) & 0x7;
1236 long offset = 0; /* Must be signed for sign-extend. */
1238 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1240 /* Branch on Integer Register with Prediction (BPr). */
1244 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1246 /* Branch on Floating-Point Condition Codes (FBfcc). */
1248 offset = 4 * X_DISP22 (insn);
1250 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1252 /* Branch on Floating-Point Condition Codes with Prediction
1255 offset = 4 * X_DISP19 (insn);
1257 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1259 /* Branch on Integer Condition Codes (Bicc). */
1261 offset = 4 * X_DISP22 (insn);
1263 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1265 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1267 offset = 4 * X_DISP19 (insn);
1269 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1271 /* Trap instruction (TRAP). */
1272 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1275 /* FIXME: Handle DONE and RETRY instructions. */
1281 /* For conditional branches, return nPC + 4 iff the annul
1283 return (X_A (insn) ? *npc + 4 : 0);
1287 /* For unconditional branches, return the target if its
1288 specified condition is "always" and return nPC + 4 if the
1289 condition is "never". If the annul bit is 1, set *NPC to
1291 if (X_COND (insn) == 0x0)
1292 pc = *npc, offset = 4;
1296 gdb_assert (offset != 0);
1305 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1311 sparc_software_single_step (struct frame_info *frame)
1313 struct gdbarch *arch = get_frame_arch (frame);
1314 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1315 CORE_ADDR npc, nnpc;
1317 CORE_ADDR pc, orig_npc;
1319 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1320 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1322 /* Analyze the instruction at PC. */
1323 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1325 insert_single_step_breakpoint (arch, npc);
1328 insert_single_step_breakpoint (arch, nnpc);
1330 /* Assert that we have set at least one breakpoint, and that
1331 they're not set at the same spot - unless we're going
1332 from here straight to NULL, i.e. a call or jump to 0. */
1333 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1334 gdb_assert (nnpc != npc || orig_npc == 0);
1340 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1342 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1344 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1345 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1349 /* Return the appropriate register set for the core section identified
1350 by SECT_NAME and SECT_SIZE. */
1352 static const struct regset *
1353 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1354 const char *sect_name, size_t sect_size)
1356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1358 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1359 return tdep->gregset;
1361 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1362 return tdep->fpregset;
1368 static struct gdbarch *
1369 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1371 struct gdbarch_tdep *tdep;
1372 struct gdbarch *gdbarch;
1374 /* If there is already a candidate, use it. */
1375 arches = gdbarch_list_lookup_by_info (arches, &info);
1377 return arches->gdbarch;
1379 /* Allocate space for the new architecture. */
1380 tdep = XZALLOC (struct gdbarch_tdep);
1381 gdbarch = gdbarch_alloc (&info, tdep);
1383 tdep->pc_regnum = SPARC32_PC_REGNUM;
1384 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1385 tdep->step_trap = sparc_step_trap;
1387 set_gdbarch_long_double_bit (gdbarch, 128);
1388 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1390 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1391 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1392 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1393 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1394 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1395 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1397 /* Register numbers of various important registers. */
1398 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1399 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1400 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1402 /* Call dummy code. */
1403 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1404 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1405 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1407 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1408 set_gdbarch_stabs_argument_has_addr
1409 (gdbarch, sparc32_stabs_argument_has_addr);
1411 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1413 /* Stack grows downward. */
1414 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1416 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1418 set_gdbarch_frame_args_skip (gdbarch, 8);
1420 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1422 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1423 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1425 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1427 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1429 frame_base_set_default (gdbarch, &sparc32_frame_base);
1431 /* Hook in the DWARF CFI frame unwinder. */
1432 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1433 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1434 StackGhost issues have been resolved. */
1436 /* Hook in ABI-specific overrides, if they have been registered. */
1437 gdbarch_init_osabi (info, gdbarch);
1439 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1441 /* If we have register sets, enable the generic core file support. */
1443 set_gdbarch_regset_from_core_section (gdbarch,
1444 sparc_regset_from_core_section);
1449 /* Helper functions for dealing with register windows. */
1452 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1454 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1462 /* Registers are 64-bit. */
1465 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1467 if (regnum == i || regnum == -1)
1469 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1471 /* Handle StackGhost. */
1472 if (i == SPARC_I7_REGNUM)
1474 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1477 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1478 store_unsigned_integer (buf + offset, 8, byte_order,
1482 regcache_raw_supply (regcache, i, buf);
1488 /* Registers are 32-bit. Toss any sign-extension of the stack
1492 /* Clear out the top half of the temporary buffer, and put the
1493 register value in the bottom half if we're in 64-bit mode. */
1494 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1500 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1502 if (regnum == i || regnum == -1)
1504 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1507 /* Handle StackGhost. */
1508 if (i == SPARC_I7_REGNUM)
1510 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1513 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1514 store_unsigned_integer (buf + offset, 4, byte_order,
1518 regcache_raw_supply (regcache, i, buf);
1525 sparc_collect_rwindow (const struct regcache *regcache,
1526 CORE_ADDR sp, int regnum)
1528 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1529 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1536 /* Registers are 64-bit. */
1539 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1541 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1543 regcache_raw_collect (regcache, i, buf);
1545 /* Handle StackGhost. */
1546 if (i == SPARC_I7_REGNUM)
1548 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1551 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1552 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1555 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1561 /* Registers are 32-bit. Toss any sign-extension of the stack
1565 /* Only use the bottom half if we're in 64-bit mode. */
1566 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1569 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1571 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1573 regcache_raw_collect (regcache, i, buf);
1575 /* Handle StackGhost. */
1576 if (i == SPARC_I7_REGNUM)
1578 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1581 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1582 store_unsigned_integer (buf + offset, 4, byte_order,
1586 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1593 /* Helper functions for dealing with register sets. */
1596 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1597 struct regcache *regcache,
1598 int regnum, const void *gregs)
1600 const gdb_byte *regs = gregs;
1603 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1604 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1605 regs + gregset->r_psr_offset);
1607 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1608 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1609 regs + gregset->r_pc_offset);
1611 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1612 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1613 regs + gregset->r_npc_offset);
1615 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1616 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1617 regs + gregset->r_y_offset);
1619 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1620 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1622 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1624 int offset = gregset->r_g1_offset;
1626 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1628 if (regnum == i || regnum == -1)
1629 regcache_raw_supply (regcache, i, regs + offset);
1634 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1636 /* Not all of the register set variants include Locals and
1637 Inputs. For those that don't, we read them off the stack. */
1638 if (gregset->r_l0_offset == -1)
1642 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1643 sparc_supply_rwindow (regcache, sp, regnum);
1647 int offset = gregset->r_l0_offset;
1649 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1651 if (regnum == i || regnum == -1)
1652 regcache_raw_supply (regcache, i, regs + offset);
1660 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1661 const struct regcache *regcache,
1662 int regnum, void *gregs)
1664 gdb_byte *regs = gregs;
1667 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1668 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1669 regs + gregset->r_psr_offset);
1671 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1672 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1673 regs + gregset->r_pc_offset);
1675 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1676 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1677 regs + gregset->r_npc_offset);
1679 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1680 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1681 regs + gregset->r_y_offset);
1683 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1685 int offset = gregset->r_g1_offset;
1687 /* %g0 is always zero. */
1688 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1690 if (regnum == i || regnum == -1)
1691 regcache_raw_collect (regcache, i, regs + offset);
1696 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1698 /* Not all of the register set variants include Locals and
1699 Inputs. For those that don't, we read them off the stack. */
1700 if (gregset->r_l0_offset != -1)
1702 int offset = gregset->r_l0_offset;
1704 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1706 if (regnum == i || regnum == -1)
1707 regcache_raw_collect (regcache, i, regs + offset);
1715 sparc32_supply_fpregset (struct regcache *regcache,
1716 int regnum, const void *fpregs)
1718 const gdb_byte *regs = fpregs;
1721 for (i = 0; i < 32; i++)
1723 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1724 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1727 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1728 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1732 sparc32_collect_fpregset (const struct regcache *regcache,
1733 int regnum, void *fpregs)
1735 gdb_byte *regs = fpregs;
1738 for (i = 0; i < 32; i++)
1740 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1741 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1744 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1745 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1751 /* From <machine/reg.h>. */
1752 const struct sparc_gregset sparc32_sunos4_gregset =
1765 /* Provide a prototype to silence -Wmissing-prototypes. */
1766 void _initialize_sparc_tdep (void);
1769 _initialize_sparc_tdep (void)
1771 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);