1 /* Target-dependent code for SPARC.
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
24 #include "dwarf2-frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
36 #include "target-descriptions.h"
39 #include "sparc-tdep.h"
40 #include "sparc-ravenscar-thread.h"
45 /* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
48 lists changes with respect to the original 32-bit psABI as defined
49 in the "System V ABI, SPARC Processor Supplement".
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
59 /* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
64 /* The SPARC Floating-Point Quad-Precision format is similar to
65 big-endian IA-64 Quad-Precision format. */
66 #define floatformats_sparc_quad floatformats_ia64_quad
68 /* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
74 /* Macros to extract fields from SPARC instructions. */
75 #define X_OP(i) (((i) >> 30) & 0x3)
76 #define X_RD(i) (((i) >> 25) & 0x1f)
77 #define X_A(i) (((i) >> 29) & 1)
78 #define X_COND(i) (((i) >> 25) & 0xf)
79 #define X_OP2(i) (((i) >> 22) & 0x7)
80 #define X_IMM22(i) ((i) & 0x3fffff)
81 #define X_OP3(i) (((i) >> 19) & 0x3f)
82 #define X_RS1(i) (((i) >> 14) & 0x1f)
83 #define X_RS2(i) ((i) & 0x1f)
84 #define X_I(i) (((i) >> 13) & 1)
85 /* Sign extension macros. */
86 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
87 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
88 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90 /* Macros to identify some instructions. */
91 /* RETURN (RETT in V8) */
92 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
94 /* Fetch the instruction at PC. Instructions are always big-endian
95 even if the processor operates in little-endian mode. */
98 sparc_fetch_instruction (CORE_ADDR pc)
104 /* If we can't read the instruction at PC, return zero. */
105 if (target_read_memory (pc, buf, sizeof (buf)))
109 for (i = 0; i < sizeof (buf); i++)
110 insn = (insn << 8) | buf[i];
115 /* Return non-zero if the instruction corresponding to PC is an "unimp"
119 sparc_is_unimp_insn (CORE_ADDR pc)
121 const unsigned long insn = sparc_fetch_instruction (pc);
123 return ((insn & 0xc1c00000) == 0);
126 /* Return non-zero if the instruction corresponding to PC is an
127 "annulled" branch, i.e. the annul bit is set. */
130 sparc_is_annulled_branch_insn (CORE_ADDR pc)
132 /* The branch instructions featuring an annul bit can be identified
133 by the following bit patterns:
136 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
137 OP2=2: Branch on Integer Condition Codes (Bcc).
138 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
139 OP2=6: Branch on FP Condition Codes (FBcc).
141 Branch on Integer Register with Prediction (BPr).
143 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
144 coprocessor branch instructions (Op2=7). */
146 const unsigned long insn = sparc_fetch_instruction (pc);
147 const unsigned op2 = X_OP2 (insn);
149 if ((X_OP (insn) == 0)
150 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
151 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
157 /* OpenBSD/sparc includes StackGhost, which according to the author's
158 website http://stackghost.cerias.purdue.edu "... transparently and
159 automatically protects applications' stack frames; more
160 specifically, it guards the return pointers. The protection
161 mechanisms require no application source or binary modification and
162 imposes only a negligible performance penalty."
164 The same website provides the following description of how
167 "StackGhost interfaces with the kernel trap handler that would
168 normally write out registers to the stack and the handler that
169 would read them back in. By XORing a cookie into the
170 return-address saved in the user stack when it is actually written
171 to the stack, and then XOR it out when the return-address is pulled
172 from the stack, StackGhost can cause attacker corrupted return
173 pointers to behave in a manner the attacker cannot predict.
174 StackGhost can also use several unused bits in the return pointer
175 to detect a smashed return pointer and abort the process."
177 For GDB this means that whenever we're reading %i7 from a stack
178 frame's window save area, we'll have to XOR the cookie.
180 More information on StackGuard can be found on in:
182 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
183 Stack Protection." 2001. Published in USENIX Security Symposium
186 /* Fetch StackGhost Per-Process XOR cookie. */
189 sparc_fetch_wcookie (struct gdbarch *gdbarch)
191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
192 struct target_ops *ops = current_top_target ();
196 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
200 /* We should have either an 32-bit or an 64-bit cookie. */
201 gdb_assert (len == 4 || len == 8);
203 return extract_unsigned_integer (buf, len, byte_order);
207 /* The functions on this page are intended to be used to classify
208 function arguments. */
210 /* Check whether TYPE is "Integral or Pointer". */
213 sparc_integral_or_pointer_p (const struct type *type)
215 int len = TYPE_LENGTH (type);
217 switch (TYPE_CODE (type))
223 case TYPE_CODE_RANGE:
224 /* We have byte, half-word, word and extended-word/doubleword
225 integral types. The doubleword is an extension to the
226 original 32-bit ABI by the SCD 2.4.x. */
227 return (len == 1 || len == 2 || len == 4 || len == 8);
230 case TYPE_CODE_RVALUE_REF:
231 /* Allow either 32-bit or 64-bit pointers. */
232 return (len == 4 || len == 8);
240 /* Check whether TYPE is "Floating". */
243 sparc_floating_p (const struct type *type)
245 switch (TYPE_CODE (type))
249 int len = TYPE_LENGTH (type);
250 return (len == 4 || len == 8 || len == 16);
259 /* Check whether TYPE is "Complex Floating". */
262 sparc_complex_floating_p (const struct type *type)
264 switch (TYPE_CODE (type))
266 case TYPE_CODE_COMPLEX:
268 int len = TYPE_LENGTH (type);
269 return (len == 8 || len == 16 || len == 32);
278 /* Check whether TYPE is "Structure or Union".
280 In terms of Ada subprogram calls, arrays are treated the same as
281 struct and union types. So this function also returns non-zero
285 sparc_structure_or_union_p (const struct type *type)
287 switch (TYPE_CODE (type))
289 case TYPE_CODE_STRUCT:
290 case TYPE_CODE_UNION:
291 case TYPE_CODE_ARRAY:
300 /* Return true if TYPE is returned by memory, false if returned by
304 sparc_structure_return_p (const struct type *type)
306 if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
308 /* Float vectors are always returned by memory. */
309 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
311 /* Integer vectors are returned by memory if the vector size
312 is greater than 8 bytes long. */
313 return (TYPE_LENGTH (type) > 8);
316 if (sparc_floating_p (type))
318 /* Floating point types are passed by register for size 4 and
319 8 bytes, and by memory for size 16 bytes. */
320 return (TYPE_LENGTH (type) == 16);
323 /* Other than that, only aggregates of all sizes get returned by
325 return sparc_structure_or_union_p (type);
328 /* Return true if arguments of the given TYPE are passed by
329 memory; false if returned by register. */
332 sparc_arg_by_memory_p (const struct type *type)
334 if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
336 /* Float vectors are always passed by memory. */
337 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
339 /* Integer vectors are passed by memory if the vector size
340 is greater than 8 bytes long. */
341 return (TYPE_LENGTH (type) > 8);
344 /* Floats are passed by register for size 4 and 8 bytes, and by memory
345 for size 16 bytes. */
346 if (sparc_floating_p (type))
347 return (TYPE_LENGTH (type) == 16);
349 /* Complex floats and aggregates of all sizes are passed by memory. */
350 if (sparc_complex_floating_p (type) || sparc_structure_or_union_p (type))
353 /* Everything else gets passed by register. */
357 /* Register information. */
358 #define SPARC32_FPU_REGISTERS \
359 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
360 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
361 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
362 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
363 #define SPARC32_CP0_REGISTERS \
364 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
366 static const char *sparc_core_register_names[] = { SPARC_CORE_REGISTERS };
367 static const char *sparc32_fpu_register_names[] = { SPARC32_FPU_REGISTERS };
368 static const char *sparc32_cp0_register_names[] = { SPARC32_CP0_REGISTERS };
370 static const char *sparc32_register_names[] =
372 SPARC_CORE_REGISTERS,
373 SPARC32_FPU_REGISTERS,
374 SPARC32_CP0_REGISTERS
377 /* Total number of registers. */
378 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
380 /* We provide the aliases %d0..%d30 for the floating registers as
381 "psuedo" registers. */
383 static const char *sparc32_pseudo_register_names[] =
385 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
386 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
389 /* Total number of pseudo registers. */
390 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
392 /* Return the name of pseudo register REGNUM. */
395 sparc32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
397 regnum -= gdbarch_num_regs (gdbarch);
399 if (regnum < SPARC32_NUM_PSEUDO_REGS)
400 return sparc32_pseudo_register_names[regnum];
402 internal_error (__FILE__, __LINE__,
403 _("sparc32_pseudo_register_name: bad register number %d"),
407 /* Return the name of register REGNUM. */
410 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
412 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
413 return tdesc_register_name (gdbarch, regnum);
415 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
416 return sparc32_register_names[regnum];
418 return sparc32_pseudo_register_name (gdbarch, regnum);
421 /* Construct types for ISA-specific registers. */
424 sparc_psr_type (struct gdbarch *gdbarch)
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
428 if (!tdep->sparc_psr_type)
432 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 32);
433 append_flags_type_flag (type, 5, "ET");
434 append_flags_type_flag (type, 6, "PS");
435 append_flags_type_flag (type, 7, "S");
436 append_flags_type_flag (type, 12, "EF");
437 append_flags_type_flag (type, 13, "EC");
439 tdep->sparc_psr_type = type;
442 return tdep->sparc_psr_type;
446 sparc_fsr_type (struct gdbarch *gdbarch)
448 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
450 if (!tdep->sparc_fsr_type)
454 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 32);
455 append_flags_type_flag (type, 0, "NXA");
456 append_flags_type_flag (type, 1, "DZA");
457 append_flags_type_flag (type, 2, "UFA");
458 append_flags_type_flag (type, 3, "OFA");
459 append_flags_type_flag (type, 4, "NVA");
460 append_flags_type_flag (type, 5, "NXC");
461 append_flags_type_flag (type, 6, "DZC");
462 append_flags_type_flag (type, 7, "UFC");
463 append_flags_type_flag (type, 8, "OFC");
464 append_flags_type_flag (type, 9, "NVC");
465 append_flags_type_flag (type, 22, "NS");
466 append_flags_type_flag (type, 23, "NXM");
467 append_flags_type_flag (type, 24, "DZM");
468 append_flags_type_flag (type, 25, "UFM");
469 append_flags_type_flag (type, 26, "OFM");
470 append_flags_type_flag (type, 27, "NVM");
472 tdep->sparc_fsr_type = type;
475 return tdep->sparc_fsr_type;
478 /* Return the GDB type object for the "standard" data type of data in
479 pseudo register REGNUM. */
482 sparc32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
484 regnum -= gdbarch_num_regs (gdbarch);
486 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
487 return builtin_type (gdbarch)->builtin_double;
489 internal_error (__FILE__, __LINE__,
490 _("sparc32_pseudo_register_type: bad register number %d"),
494 /* Return the GDB type object for the "standard" data type of data in
498 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
500 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
501 return tdesc_register_type (gdbarch, regnum);
503 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
504 return builtin_type (gdbarch)->builtin_float;
506 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
507 return builtin_type (gdbarch)->builtin_data_ptr;
509 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
510 return builtin_type (gdbarch)->builtin_func_ptr;
512 if (regnum == SPARC32_PSR_REGNUM)
513 return sparc_psr_type (gdbarch);
515 if (regnum == SPARC32_FSR_REGNUM)
516 return sparc_fsr_type (gdbarch);
518 if (regnum >= gdbarch_num_regs (gdbarch))
519 return sparc32_pseudo_register_type (gdbarch, regnum);
521 return builtin_type (gdbarch)->builtin_int32;
524 static enum register_status
525 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
526 readable_regcache *regcache,
527 int regnum, gdb_byte *buf)
529 enum register_status status;
531 regnum -= gdbarch_num_regs (gdbarch);
532 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
534 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
535 status = regcache->raw_read (regnum, buf);
536 if (status == REG_VALID)
537 status = regcache->raw_read (regnum + 1, buf + 4);
542 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
543 struct regcache *regcache,
544 int regnum, const gdb_byte *buf)
546 regnum -= gdbarch_num_regs (gdbarch);
547 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
549 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
550 regcache->raw_write (regnum, buf);
551 regcache->raw_write (regnum + 1, buf + 4);
554 /* Implement the stack_frame_destroyed_p gdbarch method. */
557 sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
559 /* This function must return true if we are one instruction after an
560 instruction that destroyed the stack frame of the current
561 function. The SPARC instructions used to restore the callers
562 stack frame are RESTORE and RETURN/RETT.
564 Of these RETURN/RETT is a branch instruction and thus we return
565 true if we are in its delay slot.
567 RESTORE is almost always found in the delay slot of a branch
568 instruction that transfers control to the caller, such as JMPL.
569 Thus the next instruction is in the caller frame and we don't
570 need to do anything about it. */
572 unsigned int insn = sparc_fetch_instruction (pc - 4);
574 return X_RETTURN (insn);
579 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
581 /* The ABI requires double-word alignment. */
582 return address & ~0x7;
586 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
588 struct value **args, int nargs,
589 struct type *value_type,
590 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
591 struct regcache *regcache)
593 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
598 if (using_struct_return (gdbarch, NULL, value_type))
602 /* This is an UNIMP instruction. */
603 store_unsigned_integer (buf, 4, byte_order,
604 TYPE_LENGTH (value_type) & 0x1fff);
605 write_memory (sp - 8, buf, 4);
613 sparc32_store_arguments (struct regcache *regcache, int nargs,
614 struct value **args, CORE_ADDR sp,
615 function_call_return_method return_method,
616 CORE_ADDR struct_addr)
618 struct gdbarch *gdbarch = regcache->arch ();
619 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
620 /* Number of words in the "parameter array". */
621 int num_elements = 0;
625 for (i = 0; i < nargs; i++)
627 struct type *type = value_type (args[i]);
628 int len = TYPE_LENGTH (type);
630 if (sparc_arg_by_memory_p (type))
632 /* Structure, Union and Quad-Precision Arguments. */
635 /* Use doubleword alignment for these values. That's always
636 correct, and wasting a few bytes shouldn't be a problem. */
639 write_memory (sp, value_contents (args[i]), len);
640 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
643 else if (sparc_floating_p (type))
645 /* Floating arguments. */
646 gdb_assert (len == 4 || len == 8);
647 num_elements += (len / 4);
651 /* Arguments passed via the General Purpose Registers. */
652 num_elements += ((len + 3) / 4);
656 /* Always allocate at least six words. */
657 sp -= std::max (6, num_elements) * 4;
659 /* The psABI says that "Software convention requires space for the
660 struct/union return value pointer, even if the word is unused." */
663 /* The psABI says that "Although software convention and the
664 operating system require every stack frame to be doubleword
668 for (i = 0; i < nargs; i++)
670 const bfd_byte *valbuf = value_contents (args[i]);
671 struct type *type = value_type (args[i]);
672 int len = TYPE_LENGTH (type);
677 memset (buf, 0, 4 - len);
678 memcpy (buf + 4 - len, valbuf, len);
683 gdb_assert (len == 4 || len == 8);
687 int regnum = SPARC_O0_REGNUM + element;
689 regcache->cooked_write (regnum, valbuf);
690 if (len > 4 && element < 5)
691 regcache->cooked_write (regnum + 1, valbuf + 4);
694 /* Always store the argument in memory. */
695 write_memory (sp + 4 + element * 4, valbuf, len);
699 gdb_assert (element == num_elements);
701 if (return_method == return_method_struct)
705 store_unsigned_integer (buf, 4, byte_order, struct_addr);
706 write_memory (sp, buf, 4);
713 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
714 struct regcache *regcache, CORE_ADDR bp_addr,
715 int nargs, struct value **args, CORE_ADDR sp,
716 function_call_return_method return_method,
717 CORE_ADDR struct_addr)
719 CORE_ADDR call_pc = (return_method == return_method_struct
720 ? (bp_addr - 12) : (bp_addr - 8));
722 /* Set return address. */
723 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
725 /* Set up function arguments. */
726 sp = sparc32_store_arguments (regcache, nargs, args, sp, return_method,
729 /* Allocate the 16-word window save area. */
732 /* Stack should be doubleword aligned at this point. */
733 gdb_assert (sp % 8 == 0);
735 /* Finally, update the stack pointer. */
736 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
742 /* Use the program counter to determine the contents and size of a
743 breakpoint instruction. Return a pointer to a string of bytes that
744 encode a breakpoint instruction, store the length of the string in
745 *LEN and optionally adjust *PC to point to the correct memory
746 location for inserting the breakpoint. */
747 constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
749 typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
752 /* Allocate and initialize a frame cache. */
754 static struct sparc_frame_cache *
755 sparc_alloc_frame_cache (void)
757 struct sparc_frame_cache *cache;
759 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
765 /* Frameless until proven otherwise. */
766 cache->frameless_p = 1;
767 cache->frame_offset = 0;
768 cache->saved_regs_mask = 0;
769 cache->copied_regs_mask = 0;
770 cache->struct_return_p = 0;
775 /* GCC generates several well-known sequences of instructions at the begining
776 of each function prologue when compiling with -fstack-check. If one of
777 such sequences starts at START_PC, then return the address of the
778 instruction immediately past this sequence. Otherwise, return START_PC. */
781 sparc_skip_stack_check (const CORE_ADDR start_pc)
783 CORE_ADDR pc = start_pc;
785 int probing_loop = 0;
787 /* With GCC, all stack checking sequences begin with the same two
788 instructions, plus an optional one in the case of a probing loop:
790 sethi <some immediate>, %g1
795 sethi <some immediate>, %g1
796 sethi <some immediate>, %g4
801 sethi <some immediate>, %g1
803 sethi <some immediate>, %g4
805 If the optional instruction is found (setting g4), assume that a
806 probing loop will follow. */
808 /* sethi <some immediate>, %g1 */
809 insn = sparc_fetch_instruction (pc);
811 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
814 /* optional: sethi <some immediate>, %g4 */
815 insn = sparc_fetch_instruction (pc);
817 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
820 insn = sparc_fetch_instruction (pc);
824 /* sub %sp, %g1, %g1 */
825 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
826 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
829 insn = sparc_fetch_instruction (pc);
832 /* optional: sethi <some immediate>, %g4 */
833 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
836 insn = sparc_fetch_instruction (pc);
840 /* First possible sequence:
841 [first two instructions above]
842 clr [%g1 - some immediate] */
844 /* clr [%g1 - some immediate] */
845 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
846 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
848 /* Valid stack-check sequence, return the new PC. */
852 /* Second possible sequence: A small number of probes.
853 [first two instructions above]
855 add %g1, -<some immediate>, %g1
857 [repeat the two instructions above any (small) number of times]
858 clr [%g1 - some immediate] */
861 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
862 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
866 /* add %g1, -<some immediate>, %g1 */
867 insn = sparc_fetch_instruction (pc);
869 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
870 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
874 insn = sparc_fetch_instruction (pc);
876 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
877 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
881 /* clr [%g1 - some immediate] */
882 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
883 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
886 /* We found a valid stack-check sequence, return the new PC. */
890 /* Third sequence: A probing loop.
891 [first three instructions above]
895 add %g1, -<some immediate>, %g1
899 And an optional last probe for the remainder:
901 clr [%g4 - some immediate] */
905 /* sub %g1, %g4, %g4 */
906 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
907 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
911 insn = sparc_fetch_instruction (pc);
913 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
914 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
918 insn = sparc_fetch_instruction (pc);
920 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
923 /* add %g1, -<some immediate>, %g1 */
924 insn = sparc_fetch_instruction (pc);
926 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
927 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
931 insn = sparc_fetch_instruction (pc);
933 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
936 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
937 insn = sparc_fetch_instruction (pc);
939 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
940 && X_RD (insn) == 0 && X_RS1 (insn) == 1
941 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
944 /* We found a valid stack-check sequence, return the new PC. */
946 /* optional: clr [%g4 - some immediate] */
947 insn = sparc_fetch_instruction (pc);
949 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
950 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
956 /* No stack check code in our prologue, return the start_pc. */
960 /* Record the effect of a SAVE instruction on CACHE. */
963 sparc_record_save_insn (struct sparc_frame_cache *cache)
965 /* The frame is set up. */
966 cache->frameless_p = 0;
968 /* The frame pointer contains the CFA. */
969 cache->frame_offset = 0;
971 /* The `local' and `in' registers are all saved. */
972 cache->saved_regs_mask = 0xffff;
974 /* The `out' registers are all renamed. */
975 cache->copied_regs_mask = 0xff;
978 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
979 Bail out early if CURRENT_PC is reached. Return the address where
980 the analysis stopped.
982 We handle both the traditional register window model and the single
983 register window (aka flat) model. */
986 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
987 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
989 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
994 pc = sparc_skip_stack_check (pc);
996 if (current_pc <= pc)
999 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
1000 SPARC the linker usually defines a symbol (typically
1001 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
1002 This symbol makes us end up here with PC pointing at the start of
1003 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
1004 would do our normal prologue analysis, we would probably conclude
1005 that we've got a frame when in reality we don't, since the
1006 dynamic linker patches up the first PLT with some code that
1007 starts with a SAVE instruction. Patch up PC such that it points
1008 at the start of our PLT entry. */
1009 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
1010 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
1012 insn = sparc_fetch_instruction (pc);
1014 /* Recognize store insns and record their sources. */
1015 while (X_OP (insn) == 3
1016 && (X_OP3 (insn) == 0x4 /* stw */
1017 || X_OP3 (insn) == 0x7 /* std */
1018 || X_OP3 (insn) == 0xe) /* stx */
1019 && X_RS1 (insn) == SPARC_SP_REGNUM)
1021 int regnum = X_RD (insn);
1023 /* Recognize stores into the corresponding stack slots. */
1024 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1026 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
1027 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
1028 : (regnum - SPARC_L0_REGNUM) * 4))
1029 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
1031 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
1032 if (X_OP3 (insn) == 0x7)
1033 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
1038 insn = sparc_fetch_instruction (pc + offset);
1041 /* Recognize a SETHI insn and record its destination. */
1042 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
1047 insn = sparc_fetch_instruction (pc + offset);
1050 /* Allow for an arithmetic operation on DEST or %g1. */
1051 if (X_OP (insn) == 2 && X_I (insn)
1052 && (X_RD (insn) == 1 || X_RD (insn) == dest))
1056 insn = sparc_fetch_instruction (pc + offset);
1059 /* Check for the SAVE instruction that sets up the frame. */
1060 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
1062 sparc_record_save_insn (cache);
1067 /* Check for an arithmetic operation on %sp. */
1068 if (X_OP (insn) == 2
1069 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1070 && X_RS1 (insn) == SPARC_SP_REGNUM
1071 && X_RD (insn) == SPARC_SP_REGNUM)
1075 cache->frame_offset = X_SIMM13 (insn);
1076 if (X_OP3 (insn) == 0)
1077 cache->frame_offset = -cache->frame_offset;
1081 insn = sparc_fetch_instruction (pc + offset);
1083 /* Check for an arithmetic operation that sets up the frame. */
1084 if (X_OP (insn) == 2
1085 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1086 && X_RS1 (insn) == SPARC_SP_REGNUM
1087 && X_RD (insn) == SPARC_FP_REGNUM)
1089 cache->frameless_p = 0;
1090 cache->frame_offset = 0;
1091 /* We could check that the amount subtracted to %sp above is the
1092 same as the one added here, but this seems superfluous. */
1093 cache->copied_regs_mask |= 0x40;
1096 insn = sparc_fetch_instruction (pc + offset);
1099 /* Check for a move (or) operation that copies the return register. */
1100 if (X_OP (insn) == 2
1101 && X_OP3 (insn) == 0x2
1103 && X_RS1 (insn) == SPARC_G0_REGNUM
1104 && X_RS2 (insn) == SPARC_O7_REGNUM
1105 && X_RD (insn) == SPARC_I7_REGNUM)
1107 cache->copied_regs_mask |= 0x80;
1118 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1121 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
1124 /* Return PC of first real instruction of the function starting at
1128 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1130 struct symtab_and_line sal;
1131 CORE_ADDR func_start, func_end;
1132 struct sparc_frame_cache cache;
1134 /* This is the preferred method, find the end of the prologue by
1135 using the debugging information. */
1136 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1138 sal = find_pc_line (func_start, 0);
1140 if (sal.end < func_end
1141 && start_pc <= sal.end)
1145 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1147 /* The psABI says that "Although the first 6 words of arguments
1148 reside in registers, the standard stack frame reserves space for
1149 them.". It also suggests that a function may use that space to
1150 "write incoming arguments 0 to 5" into that space, and that's
1151 indeed what GCC seems to be doing. In that case GCC will
1152 generate debug information that points to the stack slots instead
1153 of the registers, so we should consider the instructions that
1154 write out these incoming arguments onto the stack. */
1158 unsigned long insn = sparc_fetch_instruction (start_pc);
1160 /* Recognize instructions that store incoming arguments into the
1161 corresponding stack slots. */
1162 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1163 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1165 int regnum = X_RD (insn);
1167 /* Case of arguments still in %o[0..5]. */
1168 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1169 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1170 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1176 /* Case of arguments copied into %i[0..5]. */
1177 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1178 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1179 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1192 /* Normal frames. */
1194 struct sparc_frame_cache *
1195 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1197 struct sparc_frame_cache *cache;
1200 return (struct sparc_frame_cache *) *this_cache;
1202 cache = sparc_alloc_frame_cache ();
1203 *this_cache = cache;
1205 cache->pc = get_frame_func (this_frame);
1207 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1208 get_frame_pc (this_frame), cache);
1210 if (cache->frameless_p)
1212 /* This function is frameless, so %fp (%i6) holds the frame
1213 pointer for our calling frame. Use %sp (%o6) as this frame's
1216 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1220 /* For normal frames, %fp (%i6) holds the frame pointer, the
1221 base address for the current stack frame. */
1223 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1226 cache->base += cache->frame_offset;
1228 if (cache->base & 1)
1229 cache->base += BIAS;
1235 sparc32_struct_return_from_sym (struct symbol *sym)
1237 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1238 enum type_code code = TYPE_CODE (type);
1240 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1242 type = check_typedef (TYPE_TARGET_TYPE (type));
1243 if (sparc_structure_or_union_p (type)
1244 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1251 struct sparc_frame_cache *
1252 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1254 struct sparc_frame_cache *cache;
1258 return (struct sparc_frame_cache *) *this_cache;
1260 cache = sparc_frame_cache (this_frame, this_cache);
1262 sym = find_pc_function (cache->pc);
1265 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1269 /* There is no debugging information for this function to
1270 help us determine whether this function returns a struct
1271 or not. So we rely on another heuristic which is to check
1272 the instruction at the return address and see if this is
1273 an "unimp" instruction. If it is, then it is a struct-return
1277 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1279 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1280 if (sparc_is_unimp_insn (pc))
1281 cache->struct_return_p = 1;
1288 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1289 struct frame_id *this_id)
1291 struct sparc_frame_cache *cache =
1292 sparc32_frame_cache (this_frame, this_cache);
1294 /* This marks the outermost frame. */
1295 if (cache->base == 0)
1298 (*this_id) = frame_id_build (cache->base, cache->pc);
1301 static struct value *
1302 sparc32_frame_prev_register (struct frame_info *this_frame,
1303 void **this_cache, int regnum)
1305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1306 struct sparc_frame_cache *cache =
1307 sparc32_frame_cache (this_frame, this_cache);
1309 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1311 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1313 /* If this functions has a Structure, Union or Quad-Precision
1314 return value, we have to skip the UNIMP instruction that encodes
1315 the size of the structure. */
1316 if (cache->struct_return_p)
1320 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1321 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1322 return frame_unwind_got_constant (this_frame, regnum, pc);
1325 /* Handle StackGhost. */
1327 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1329 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1331 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1334 /* Read the value in from memory. */
1335 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1336 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1340 /* The previous frame's `local' and `in' registers may have been saved
1341 in the register save area. */
1342 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1343 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1345 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1347 return frame_unwind_got_memory (this_frame, regnum, addr);
1350 /* The previous frame's `out' registers may be accessible as the current
1351 frame's `in' registers. */
1352 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1353 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1354 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1356 return frame_unwind_got_register (this_frame, regnum, regnum);
1359 static const struct frame_unwind sparc32_frame_unwind =
1362 default_frame_unwind_stop_reason,
1363 sparc32_frame_this_id,
1364 sparc32_frame_prev_register,
1366 default_frame_sniffer
1371 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1373 struct sparc_frame_cache *cache =
1374 sparc32_frame_cache (this_frame, this_cache);
1379 static const struct frame_base sparc32_frame_base =
1381 &sparc32_frame_unwind,
1382 sparc32_frame_base_address,
1383 sparc32_frame_base_address,
1384 sparc32_frame_base_address
1387 static struct frame_id
1388 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1392 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1395 return frame_id_build (sp, get_frame_pc (this_frame));
1399 /* Extract a function return value of TYPE from REGCACHE, and copy
1400 that into VALBUF. */
1403 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1406 int len = TYPE_LENGTH (type);
1409 gdb_assert (!sparc_structure_return_p (type));
1411 if (sparc_floating_p (type) || sparc_complex_floating_p (type)
1412 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
1414 /* Floating return values. */
1415 regcache->cooked_read (SPARC_F0_REGNUM, buf);
1417 regcache->cooked_read (SPARC_F1_REGNUM, buf + 4);
1420 regcache->cooked_read (SPARC_F2_REGNUM, buf + 8);
1421 regcache->cooked_read (SPARC_F3_REGNUM, buf + 12);
1425 regcache->cooked_read (SPARC_F4_REGNUM, buf + 16);
1426 regcache->cooked_read (SPARC_F5_REGNUM, buf + 20);
1427 regcache->cooked_read (SPARC_F6_REGNUM, buf + 24);
1428 regcache->cooked_read (SPARC_F7_REGNUM, buf + 28);
1430 memcpy (valbuf, buf, len);
1434 /* Integral and pointer return values. */
1435 gdb_assert (sparc_integral_or_pointer_p (type));
1437 regcache->cooked_read (SPARC_O0_REGNUM, buf);
1440 regcache->cooked_read (SPARC_O1_REGNUM, buf + 4);
1441 gdb_assert (len == 8);
1442 memcpy (valbuf, buf, 8);
1446 /* Just stripping off any unused bytes should preserve the
1447 signed-ness just fine. */
1448 memcpy (valbuf, buf + 4 - len, len);
1453 /* Store the function return value of type TYPE from VALBUF into
1457 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1458 const gdb_byte *valbuf)
1460 int len = TYPE_LENGTH (type);
1463 gdb_assert (!sparc_structure_return_p (type));
1465 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1467 /* Floating return values. */
1468 memcpy (buf, valbuf, len);
1469 regcache->cooked_write (SPARC_F0_REGNUM, buf);
1471 regcache->cooked_write (SPARC_F1_REGNUM, buf + 4);
1474 regcache->cooked_write (SPARC_F2_REGNUM, buf + 8);
1475 regcache->cooked_write (SPARC_F3_REGNUM, buf + 12);
1479 regcache->cooked_write (SPARC_F4_REGNUM, buf + 16);
1480 regcache->cooked_write (SPARC_F5_REGNUM, buf + 20);
1481 regcache->cooked_write (SPARC_F6_REGNUM, buf + 24);
1482 regcache->cooked_write (SPARC_F7_REGNUM, buf + 28);
1487 /* Integral and pointer return values. */
1488 gdb_assert (sparc_integral_or_pointer_p (type));
1492 gdb_assert (len == 8);
1493 memcpy (buf, valbuf, 8);
1494 regcache->cooked_write (SPARC_O1_REGNUM, buf + 4);
1498 /* ??? Do we need to do any sign-extension here? */
1499 memcpy (buf + 4 - len, valbuf, len);
1501 regcache->cooked_write (SPARC_O0_REGNUM, buf);
1505 static enum return_value_convention
1506 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1507 struct type *type, struct regcache *regcache,
1508 gdb_byte *readbuf, const gdb_byte *writebuf)
1510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1512 /* The psABI says that "...every stack frame reserves the word at
1513 %fp+64. If a function returns a structure, union, or
1514 quad-precision value, this word should hold the address of the
1515 object into which the return value should be copied." This
1516 guarantees that we can always find the return value, not just
1517 before the function returns. */
1519 if (sparc_structure_return_p (type))
1526 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1527 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1528 read_memory (addr, readbuf, TYPE_LENGTH (type));
1532 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1533 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1534 write_memory (addr, writebuf, TYPE_LENGTH (type));
1537 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1541 sparc32_extract_return_value (type, regcache, readbuf);
1543 sparc32_store_return_value (type, regcache, writebuf);
1545 return RETURN_VALUE_REGISTER_CONVENTION;
1549 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1551 return (sparc_structure_or_union_p (type)
1552 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1553 || sparc_complex_floating_p (type));
1557 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1559 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1560 struct symbol *sym = find_pc_function (pc);
1563 return sparc32_struct_return_from_sym (sym);
1568 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1569 struct dwarf2_frame_state_reg *reg,
1570 struct frame_info *this_frame)
1576 case SPARC_G0_REGNUM:
1577 /* Since %g0 is always zero, there is no point in saving it, and
1578 people will be inclined omit it from the CFI. Make sure we
1579 don't warn about that. */
1580 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1582 case SPARC_SP_REGNUM:
1583 reg->how = DWARF2_FRAME_REG_CFA;
1585 case SPARC32_PC_REGNUM:
1586 case SPARC32_NPC_REGNUM:
1587 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1589 if (sparc32_dwarf2_struct_return_p (this_frame))
1591 if (regnum == SPARC32_NPC_REGNUM)
1593 reg->loc.offset = off;
1598 /* Implement the execute_dwarf_cfa_vendor_op method. */
1601 sparc_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1602 struct dwarf2_frame_state *fs)
1604 /* Only DW_CFA_GNU_window_save is expected on SPARC. */
1605 if (op != DW_CFA_GNU_window_save)
1609 int size = register_size (gdbarch, 0);
1611 fs->regs.alloc_regs (32);
1612 for (reg = 8; reg < 16; reg++)
1614 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
1615 fs->regs.reg[reg].loc.reg = reg + 16;
1617 for (reg = 16; reg < 32; reg++)
1619 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
1620 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
1627 /* The SPARC Architecture doesn't have hardware single-step support,
1628 and most operating systems don't implement it either, so we provide
1629 software single-step mechanism. */
1632 sparc_analyze_control_transfer (struct regcache *regcache,
1633 CORE_ADDR pc, CORE_ADDR *npc)
1635 unsigned long insn = sparc_fetch_instruction (pc);
1636 int conditional_p = X_COND (insn) & 0x7;
1637 int branch_p = 0, fused_p = 0;
1638 long offset = 0; /* Must be signed for sign-extend. */
1640 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1642 if ((insn & 0x10000000) == 0)
1644 /* Branch on Integer Register with Prediction (BPr). */
1650 /* Compare and Branch */
1653 offset = 4 * X_DISP10 (insn);
1656 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1658 /* Branch on Floating-Point Condition Codes (FBfcc). */
1660 offset = 4 * X_DISP22 (insn);
1662 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1664 /* Branch on Floating-Point Condition Codes with Prediction
1667 offset = 4 * X_DISP19 (insn);
1669 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1671 /* Branch on Integer Condition Codes (Bicc). */
1673 offset = 4 * X_DISP22 (insn);
1675 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1677 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1679 offset = 4 * X_DISP19 (insn);
1681 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1683 struct frame_info *frame = get_current_frame ();
1685 /* Trap instruction (TRAP). */
1686 return gdbarch_tdep (regcache->arch ())->step_trap (frame,
1690 /* FIXME: Handle DONE and RETRY instructions. */
1696 /* Fused compare-and-branch instructions are non-delayed,
1697 and do not have an annuling capability. So we need to
1698 always set a breakpoint on both the NPC and the branch
1700 gdb_assert (offset != 0);
1703 else if (conditional_p)
1705 /* For conditional branches, return nPC + 4 iff the annul
1707 return (X_A (insn) ? *npc + 4 : 0);
1711 /* For unconditional branches, return the target if its
1712 specified condition is "always" and return nPC + 4 if the
1713 condition is "never". If the annul bit is 1, set *NPC to
1715 if (X_COND (insn) == 0x0)
1716 pc = *npc, offset = 4;
1728 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1733 static std::vector<CORE_ADDR>
1734 sparc_software_single_step (struct regcache *regcache)
1736 struct gdbarch *arch = regcache->arch ();
1737 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1738 CORE_ADDR npc, nnpc;
1740 CORE_ADDR pc, orig_npc;
1741 std::vector<CORE_ADDR> next_pcs;
1743 pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
1744 orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);
1746 /* Analyze the instruction at PC. */
1747 nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
1749 next_pcs.push_back (npc);
1752 next_pcs.push_back (nnpc);
1754 /* Assert that we have set at least one breakpoint, and that
1755 they're not set at the same spot - unless we're going
1756 from here straight to NULL, i.e. a call or jump to 0. */
1757 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1758 gdb_assert (nnpc != npc || orig_npc == 0);
1764 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1766 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
1768 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1769 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1773 /* Iterate over core file register note sections. */
1776 sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1777 iterate_over_regset_sections_cb *cb,
1779 const struct regcache *regcache)
1781 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1783 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, tdep->gregset, NULL,
1785 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
1791 validate_tdesc_registers (const struct target_desc *tdesc,
1792 struct tdesc_arch_data *tdesc_data,
1793 const char *feature_name,
1794 const char *register_names[],
1795 unsigned int registers_num,
1796 unsigned int reg_start)
1799 const struct tdesc_feature *feature;
1801 feature = tdesc_find_feature (tdesc, feature_name);
1802 if (feature == NULL)
1805 for (unsigned int i = 0; i < registers_num; i++)
1806 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1813 static struct gdbarch *
1814 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1816 struct gdbarch_tdep *tdep;
1817 const struct target_desc *tdesc = info.target_desc;
1818 struct gdbarch *gdbarch;
1821 /* If there is already a candidate, use it. */
1822 arches = gdbarch_list_lookup_by_info (arches, &info);
1824 return arches->gdbarch;
1826 /* Allocate space for the new architecture. */
1827 tdep = XCNEW (struct gdbarch_tdep);
1828 gdbarch = gdbarch_alloc (&info, tdep);
1830 tdep->pc_regnum = SPARC32_PC_REGNUM;
1831 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1832 tdep->step_trap = sparc_step_trap;
1833 tdep->fpu_register_names = sparc32_fpu_register_names;
1834 tdep->fpu_registers_num = ARRAY_SIZE (sparc32_fpu_register_names);
1835 tdep->cp0_register_names = sparc32_cp0_register_names;
1836 tdep->cp0_registers_num = ARRAY_SIZE (sparc32_cp0_register_names);
1838 set_gdbarch_long_double_bit (gdbarch, 128);
1839 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1841 set_gdbarch_wchar_bit (gdbarch, 16);
1842 set_gdbarch_wchar_signed (gdbarch, 1);
1844 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1845 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1846 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1847 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1848 set_tdesc_pseudo_register_name (gdbarch, sparc32_pseudo_register_name);
1849 set_tdesc_pseudo_register_type (gdbarch, sparc32_pseudo_register_type);
1850 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1851 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1853 /* Register numbers of various important registers. */
1854 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1855 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1856 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1858 /* Call dummy code. */
1859 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1860 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1861 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1862 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1864 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1865 set_gdbarch_stabs_argument_has_addr
1866 (gdbarch, sparc32_stabs_argument_has_addr);
1868 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1870 /* Stack grows downward. */
1871 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1873 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1874 sparc_breakpoint::kind_from_pc);
1875 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1876 sparc_breakpoint::bp_from_kind);
1878 set_gdbarch_frame_args_skip (gdbarch, 8);
1880 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1881 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1883 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1885 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1887 frame_base_set_default (gdbarch, &sparc32_frame_base);
1889 /* Hook in the DWARF CFI frame unwinder. */
1890 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1891 /* Register DWARF vendor CFI handler. */
1892 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
1893 sparc_execute_dwarf_cfa_vendor_op);
1894 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1895 StackGhost issues have been resolved. */
1897 /* Hook in ABI-specific overrides, if they have been registered. */
1898 gdbarch_init_osabi (info, gdbarch);
1900 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1902 if (tdesc_has_registers (tdesc))
1904 struct tdesc_arch_data *tdesc_data = tdesc_data_alloc ();
1906 /* Validate that the descriptor provides the mandatory registers
1907 and allocate their numbers. */
1908 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1909 "org.gnu.gdb.sparc.cpu",
1910 sparc_core_register_names,
1911 ARRAY_SIZE (sparc_core_register_names),
1913 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1914 "org.gnu.gdb.sparc.fpu",
1915 tdep->fpu_register_names,
1916 tdep->fpu_registers_num,
1918 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1919 "org.gnu.gdb.sparc.cp0",
1920 tdep->cp0_register_names,
1921 tdep->cp0_registers_num,
1923 + tdep->fpu_registers_num);
1926 tdesc_data_cleanup (tdesc_data);
1930 /* Target description may have changed. */
1931 info.tdesc_data = tdesc_data;
1932 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1935 /* If we have register sets, enable the generic core file support. */
1937 set_gdbarch_iterate_over_regset_sections
1938 (gdbarch, sparc_iterate_over_regset_sections);
1940 register_sparc_ravenscar_ops (gdbarch);
1945 /* Helper functions for dealing with register windows. */
1948 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1950 struct gdbarch *gdbarch = regcache->arch ();
1951 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1958 /* Registers are 64-bit. */
1961 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1963 if (regnum == i || regnum == -1)
1965 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1967 /* Handle StackGhost. */
1968 if (i == SPARC_I7_REGNUM)
1970 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1973 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1974 store_unsigned_integer (buf + offset, 8, byte_order,
1978 regcache->raw_supply (i, buf);
1984 /* Registers are 32-bit. Toss any sign-extension of the stack
1988 /* Clear out the top half of the temporary buffer, and put the
1989 register value in the bottom half if we're in 64-bit mode. */
1990 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
1996 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1998 if (regnum == i || regnum == -1)
2000 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2003 /* Handle StackGhost. */
2004 if (i == SPARC_I7_REGNUM)
2006 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2009 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2010 store_unsigned_integer (buf + offset, 4, byte_order,
2014 regcache->raw_supply (i, buf);
2021 sparc_collect_rwindow (const struct regcache *regcache,
2022 CORE_ADDR sp, int regnum)
2024 struct gdbarch *gdbarch = regcache->arch ();
2025 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2032 /* Registers are 64-bit. */
2035 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2037 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2039 regcache->raw_collect (i, buf);
2041 /* Handle StackGhost. */
2042 if (i == SPARC_I7_REGNUM)
2044 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2047 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
2048 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
2051 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
2057 /* Registers are 32-bit. Toss any sign-extension of the stack
2061 /* Only use the bottom half if we're in 64-bit mode. */
2062 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
2065 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2067 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2069 regcache->raw_collect (i, buf);
2071 /* Handle StackGhost. */
2072 if (i == SPARC_I7_REGNUM)
2074 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2077 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2078 store_unsigned_integer (buf + offset, 4, byte_order,
2082 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2089 /* Helper functions for dealing with register sets. */
2092 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
2093 struct regcache *regcache,
2094 int regnum, const void *gregs)
2096 const gdb_byte *regs = (const gdb_byte *) gregs;
2097 gdb_byte zero[4] = { 0 };
2100 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2101 regcache->raw_supply (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
2103 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2104 regcache->raw_supply (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
2106 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2107 regcache->raw_supply (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
2109 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2110 regcache->raw_supply (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
2112 if (regnum == SPARC_G0_REGNUM || regnum == -1)
2113 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
2115 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2117 int offset = gregmap->r_g1_offset;
2119 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2121 if (regnum == i || regnum == -1)
2122 regcache->raw_supply (i, regs + offset);
2127 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2129 /* Not all of the register set variants include Locals and
2130 Inputs. For those that don't, we read them off the stack. */
2131 if (gregmap->r_l0_offset == -1)
2135 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
2136 sparc_supply_rwindow (regcache, sp, regnum);
2140 int offset = gregmap->r_l0_offset;
2142 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2144 if (regnum == i || regnum == -1)
2145 regcache->raw_supply (i, regs + offset);
2153 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
2154 const struct regcache *regcache,
2155 int regnum, void *gregs)
2157 gdb_byte *regs = (gdb_byte *) gregs;
2160 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2161 regcache->raw_collect (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
2163 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2164 regcache->raw_collect (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
2166 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2167 regcache->raw_collect (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
2169 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2170 regcache->raw_collect (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
2172 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2174 int offset = gregmap->r_g1_offset;
2176 /* %g0 is always zero. */
2177 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2179 if (regnum == i || regnum == -1)
2180 regcache->raw_collect (i, regs + offset);
2185 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2187 /* Not all of the register set variants include Locals and
2188 Inputs. For those that don't, we read them off the stack. */
2189 if (gregmap->r_l0_offset != -1)
2191 int offset = gregmap->r_l0_offset;
2193 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2195 if (regnum == i || regnum == -1)
2196 regcache->raw_collect (i, regs + offset);
2204 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2205 struct regcache *regcache,
2206 int regnum, const void *fpregs)
2208 const gdb_byte *regs = (const gdb_byte *) fpregs;
2211 for (i = 0; i < 32; i++)
2213 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2214 regcache->raw_supply (SPARC_F0_REGNUM + i,
2215 regs + fpregmap->r_f0_offset + (i * 4));
2218 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2219 regcache->raw_supply (SPARC32_FSR_REGNUM, regs + fpregmap->r_fsr_offset);
2223 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2224 const struct regcache *regcache,
2225 int regnum, void *fpregs)
2227 gdb_byte *regs = (gdb_byte *) fpregs;
2230 for (i = 0; i < 32; i++)
2232 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2233 regcache->raw_collect (SPARC_F0_REGNUM + i,
2234 regs + fpregmap->r_f0_offset + (i * 4));
2237 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2238 regcache->raw_collect (SPARC32_FSR_REGNUM,
2239 regs + fpregmap->r_fsr_offset);
2245 /* From <machine/reg.h>. */
2246 const struct sparc_gregmap sparc32_sunos4_gregmap =
2258 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2264 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2271 _initialize_sparc_tdep (void)
2273 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);