1 /* Target-dependent code for SPARC.
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "arch-utils.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
42 #include "sparc-tdep.h"
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
95 sparc_fetch_instruction (CORE_ADDR pc)
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
116 sparc_is_unimp_insn (CORE_ADDR pc)
118 const unsigned long insn = sparc_fetch_instruction (pc);
120 return ((insn & 0xc1c00000) == 0);
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
130 The same website provides the following description of how
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
146 More information on StackGuard can be found on in:
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
152 /* Fetch StackGhost Per-Process XOR cookie. */
155 sparc_fetch_wcookie (struct gdbarch *gdbarch)
157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
158 struct target_ops *ops = ¤t_target;
162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
169 return extract_unsigned_integer (buf, len, byte_order);
173 /* The functions on this page are intended to be used to classify
174 function arguments. */
176 /* Check whether TYPE is "Integral or Pointer". */
179 sparc_integral_or_pointer_p (const struct type *type)
181 int len = TYPE_LENGTH (type);
183 switch (TYPE_CODE (type))
189 case TYPE_CODE_RANGE:
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
205 /* Check whether TYPE is "Floating". */
208 sparc_floating_p (const struct type *type)
210 switch (TYPE_CODE (type))
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
224 /* Check whether TYPE is "Structure or Union".
226 In terms of Ada subprogram calls, arrays are treated the same as
227 struct and union types. So this function also returns non-zero
231 sparc_structure_or_union_p (const struct type *type)
233 switch (TYPE_CODE (type))
235 case TYPE_CODE_STRUCT:
236 case TYPE_CODE_UNION:
237 case TYPE_CODE_ARRAY:
246 /* Register information. */
248 static const char *sparc32_register_names[] =
250 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
251 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
252 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
253 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
255 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
256 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
257 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
258 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
260 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
263 /* Total number of registers. */
264 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
266 /* We provide the aliases %d0..%d30 for the floating registers as
267 "psuedo" registers. */
269 static const char *sparc32_pseudo_register_names[] =
271 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
272 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
275 /* Total number of pseudo registers. */
276 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
278 /* Return the name of register REGNUM. */
281 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
283 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
284 return sparc32_register_names[regnum];
286 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
287 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
292 /* Construct types for ISA-specific registers. */
295 sparc_psr_type (struct gdbarch *gdbarch)
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
299 if (!tdep->sparc_psr_type)
303 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
304 append_flags_type_flag (type, 5, "ET");
305 append_flags_type_flag (type, 6, "PS");
306 append_flags_type_flag (type, 7, "S");
307 append_flags_type_flag (type, 12, "EF");
308 append_flags_type_flag (type, 13, "EC");
310 tdep->sparc_psr_type = type;
313 return tdep->sparc_psr_type;
317 sparc_fsr_type (struct gdbarch *gdbarch)
319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
321 if (!tdep->sparc_fsr_type)
325 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
326 append_flags_type_flag (type, 0, "NXA");
327 append_flags_type_flag (type, 1, "DZA");
328 append_flags_type_flag (type, 2, "UFA");
329 append_flags_type_flag (type, 3, "OFA");
330 append_flags_type_flag (type, 4, "NVA");
331 append_flags_type_flag (type, 5, "NXC");
332 append_flags_type_flag (type, 6, "DZC");
333 append_flags_type_flag (type, 7, "UFC");
334 append_flags_type_flag (type, 8, "OFC");
335 append_flags_type_flag (type, 9, "NVC");
336 append_flags_type_flag (type, 22, "NS");
337 append_flags_type_flag (type, 23, "NXM");
338 append_flags_type_flag (type, 24, "DZM");
339 append_flags_type_flag (type, 25, "UFM");
340 append_flags_type_flag (type, 26, "OFM");
341 append_flags_type_flag (type, 27, "NVM");
343 tdep->sparc_fsr_type = type;
346 return tdep->sparc_fsr_type;
349 /* Return the GDB type object for the "standard" data type of data in
353 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
355 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
356 return builtin_type (gdbarch)->builtin_float;
358 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
359 return builtin_type (gdbarch)->builtin_double;
361 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
362 return builtin_type (gdbarch)->builtin_data_ptr;
364 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
365 return builtin_type (gdbarch)->builtin_func_ptr;
367 if (regnum == SPARC32_PSR_REGNUM)
368 return sparc_psr_type (gdbarch);
370 if (regnum == SPARC32_FSR_REGNUM)
371 return sparc_fsr_type (gdbarch);
373 return builtin_type (gdbarch)->builtin_int32;
377 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
378 struct regcache *regcache,
379 int regnum, gdb_byte *buf)
381 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
383 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
384 regcache_raw_read (regcache, regnum, buf);
385 regcache_raw_read (regcache, regnum + 1, buf + 4);
389 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
390 struct regcache *regcache,
391 int regnum, const gdb_byte *buf)
393 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
395 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
396 regcache_raw_write (regcache, regnum, buf);
397 regcache_raw_write (regcache, regnum + 1, buf + 4);
402 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
404 struct value **args, int nargs,
405 struct type *value_type,
406 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
407 struct regcache *regcache)
409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
414 if (using_struct_return (gdbarch, NULL, value_type))
418 /* This is an UNIMP instruction. */
419 store_unsigned_integer (buf, 4, byte_order,
420 TYPE_LENGTH (value_type) & 0x1fff);
421 write_memory (sp - 8, buf, 4);
429 sparc32_store_arguments (struct regcache *regcache, int nargs,
430 struct value **args, CORE_ADDR sp,
431 int struct_return, CORE_ADDR struct_addr)
433 struct gdbarch *gdbarch = get_regcache_arch (regcache);
434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
435 /* Number of words in the "parameter array". */
436 int num_elements = 0;
440 for (i = 0; i < nargs; i++)
442 struct type *type = value_type (args[i]);
443 int len = TYPE_LENGTH (type);
445 if (sparc_structure_or_union_p (type)
446 || (sparc_floating_p (type) && len == 16))
448 /* Structure, Union and Quad-Precision Arguments. */
451 /* Use doubleword alignment for these values. That's always
452 correct, and wasting a few bytes shouldn't be a problem. */
455 write_memory (sp, value_contents (args[i]), len);
456 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
459 else if (sparc_floating_p (type))
461 /* Floating arguments. */
462 gdb_assert (len == 4 || len == 8);
463 num_elements += (len / 4);
467 /* Integral and pointer arguments. */
468 gdb_assert (sparc_integral_or_pointer_p (type));
471 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
473 num_elements += ((len + 3) / 4);
477 /* Always allocate at least six words. */
478 sp -= max (6, num_elements) * 4;
480 /* The psABI says that "Software convention requires space for the
481 struct/union return value pointer, even if the word is unused." */
484 /* The psABI says that "Although software convention and the
485 operating system require every stack frame to be doubleword
489 for (i = 0; i < nargs; i++)
491 const bfd_byte *valbuf = value_contents (args[i]);
492 struct type *type = value_type (args[i]);
493 int len = TYPE_LENGTH (type);
495 gdb_assert (len == 4 || len == 8);
499 int regnum = SPARC_O0_REGNUM + element;
501 regcache_cooked_write (regcache, regnum, valbuf);
502 if (len > 4 && element < 5)
503 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
506 /* Always store the argument in memory. */
507 write_memory (sp + 4 + element * 4, valbuf, len);
511 gdb_assert (element == num_elements);
517 store_unsigned_integer (buf, 4, byte_order, struct_addr);
518 write_memory (sp, buf, 4);
525 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
526 struct regcache *regcache, CORE_ADDR bp_addr,
527 int nargs, struct value **args, CORE_ADDR sp,
528 int struct_return, CORE_ADDR struct_addr)
530 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
532 /* Set return address. */
533 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
535 /* Set up function arguments. */
536 sp = sparc32_store_arguments (regcache, nargs, args, sp,
537 struct_return, struct_addr);
539 /* Allocate the 16-word window save area. */
542 /* Stack should be doubleword aligned at this point. */
543 gdb_assert (sp % 8 == 0);
545 /* Finally, update the stack pointer. */
546 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
552 /* Use the program counter to determine the contents and size of a
553 breakpoint instruction. Return a pointer to a string of bytes that
554 encode a breakpoint instruction, store the length of the string in
555 *LEN and optionally adjust *PC to point to the correct memory
556 location for inserting the breakpoint. */
558 static const gdb_byte *
559 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
561 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
563 *len = sizeof (break_insn);
568 /* Allocate and initialize a frame cache. */
570 static struct sparc_frame_cache *
571 sparc_alloc_frame_cache (void)
573 struct sparc_frame_cache *cache;
576 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
582 /* Frameless until proven otherwise. */
583 cache->frameless_p = 1;
585 cache->struct_return_p = 0;
590 /* GCC generates several well-known sequences of instructions at the begining
591 of each function prologue when compiling with -fstack-check. If one of
592 such sequences starts at START_PC, then return the address of the
593 instruction immediately past this sequence. Otherwise, return START_PC. */
596 sparc_skip_stack_check (const CORE_ADDR start_pc)
598 CORE_ADDR pc = start_pc;
600 int offset_stack_checking_sequence = 0;
602 /* With GCC, all stack checking sequences begin with the same two
605 /* sethi <some immediate>,%g1 */
606 insn = sparc_fetch_instruction (pc);
608 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
611 /* sub %sp, %g1, %g1 */
612 insn = sparc_fetch_instruction (pc);
614 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
615 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
618 insn = sparc_fetch_instruction (pc);
621 /* First possible sequence:
622 [first two instructions above]
623 clr [%g1 - some immediate] */
625 /* clr [%g1 - some immediate] */
626 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
627 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
629 /* Valid stack-check sequence, return the new PC. */
633 /* Second possible sequence: A small number of probes.
634 [first two instructions above]
636 add %g1, -<some immediate>, %g1
638 [repeat the two instructions above any (small) number of times]
639 clr [%g1 - some immediate] */
642 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
643 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
647 /* add %g1, -<some immediate>, %g1 */
648 insn = sparc_fetch_instruction (pc);
650 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
651 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
655 insn = sparc_fetch_instruction (pc);
657 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
658 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
662 /* clr [%g1 - some immediate] */
663 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
664 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
667 /* We found a valid stack-check sequence, return the new PC. */
671 /* Third sequence: A probing loop.
672 [first two instructions above]
673 sethi <some immediate>, %g4
677 add %g1, -<some immediate>, %g1
680 clr [%g4 - some immediate] */
682 /* sethi <some immediate>, %g4 */
683 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
685 /* sub %g1, %g4, %g4 */
686 insn = sparc_fetch_instruction (pc);
688 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
689 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
693 insn = sparc_fetch_instruction (pc);
695 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
696 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
700 insn = sparc_fetch_instruction (pc);
702 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
705 /* add %g1, -<some immediate>, %g1 */
706 insn = sparc_fetch_instruction (pc);
708 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
709 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
713 insn = sparc_fetch_instruction (pc);
715 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
719 insn = sparc_fetch_instruction (pc);
721 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
722 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
725 /* clr [%g4 - some immediate] */
726 insn = sparc_fetch_instruction (pc);
728 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
729 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
732 /* We found a valid stack-check sequence, return the new PC. */
736 /* No stack check code in our prologue, return the start_pc. */
741 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
742 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
744 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
749 pc = sparc_skip_stack_check (pc);
751 if (current_pc <= pc)
754 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
755 SPARC the linker usually defines a symbol (typically
756 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
757 This symbol makes us end up here with PC pointing at the start of
758 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
759 would do our normal prologue analysis, we would probably conclude
760 that we've got a frame when in reality we don't, since the
761 dynamic linker patches up the first PLT with some code that
762 starts with a SAVE instruction. Patch up PC such that it points
763 at the start of our PLT entry. */
764 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
765 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
767 insn = sparc_fetch_instruction (pc);
769 /* Recognize a SETHI insn and record its destination. */
770 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
775 insn = sparc_fetch_instruction (pc + 4);
778 /* Allow for an arithmetic operation on DEST or %g1. */
779 if (X_OP (insn) == 2 && X_I (insn)
780 && (X_RD (insn) == 1 || X_RD (insn) == dest))
784 insn = sparc_fetch_instruction (pc + 8);
787 /* Check for the SAVE instruction that sets up the frame. */
788 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
790 cache->frameless_p = 0;
791 return pc + offset + 4;
798 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
800 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
801 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
804 /* Return PC of first real instruction of the function starting at
808 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
810 struct symtab_and_line sal;
811 CORE_ADDR func_start, func_end;
812 struct sparc_frame_cache cache;
814 /* This is the preferred method, find the end of the prologue by
815 using the debugging information. */
816 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
818 sal = find_pc_line (func_start, 0);
820 if (sal.end < func_end
821 && start_pc <= sal.end)
825 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
827 /* The psABI says that "Although the first 6 words of arguments
828 reside in registers, the standard stack frame reserves space for
829 them.". It also suggests that a function may use that space to
830 "write incoming arguments 0 to 5" into that space, and that's
831 indeed what GCC seems to be doing. In that case GCC will
832 generate debug information that points to the stack slots instead
833 of the registers, so we should consider the instructions that
834 write out these incoming arguments onto the stack. Of course we
835 only need to do this if we have a stack frame. */
837 while (!cache.frameless_p)
839 unsigned long insn = sparc_fetch_instruction (start_pc);
841 /* Recognize instructions that store incoming arguments in
842 %i0...%i5 into the corresponding stack slot. */
843 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
844 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
845 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
859 struct sparc_frame_cache *
860 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
862 struct sparc_frame_cache *cache;
867 cache = sparc_alloc_frame_cache ();
870 cache->pc = get_frame_func (this_frame);
872 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
873 get_frame_pc (this_frame), cache);
875 if (cache->frameless_p)
877 /* This function is frameless, so %fp (%i6) holds the frame
878 pointer for our calling frame. Use %sp (%o6) as this frame's
881 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
885 /* For normal frames, %fp (%i6) holds the frame pointer, the
886 base address for the current stack frame. */
888 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
898 sparc32_struct_return_from_sym (struct symbol *sym)
900 struct type *type = check_typedef (SYMBOL_TYPE (sym));
901 enum type_code code = TYPE_CODE (type);
903 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
905 type = check_typedef (TYPE_TARGET_TYPE (type));
906 if (sparc_structure_or_union_p (type)
907 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
914 struct sparc_frame_cache *
915 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
917 struct sparc_frame_cache *cache;
923 cache = sparc_frame_cache (this_frame, this_cache);
925 sym = find_pc_function (cache->pc);
928 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
932 /* There is no debugging information for this function to
933 help us determine whether this function returns a struct
934 or not. So we rely on another heuristic which is to check
935 the instruction at the return address and see if this is
936 an "unimp" instruction. If it is, then it is a struct-return
939 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
941 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
942 if (sparc_is_unimp_insn (pc))
943 cache->struct_return_p = 1;
950 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
951 struct frame_id *this_id)
953 struct sparc_frame_cache *cache =
954 sparc32_frame_cache (this_frame, this_cache);
956 /* This marks the outermost frame. */
957 if (cache->base == 0)
960 (*this_id) = frame_id_build (cache->base, cache->pc);
963 static struct value *
964 sparc32_frame_prev_register (struct frame_info *this_frame,
965 void **this_cache, int regnum)
967 struct gdbarch *gdbarch = get_frame_arch (this_frame);
968 struct sparc_frame_cache *cache =
969 sparc32_frame_cache (this_frame, this_cache);
971 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
973 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
975 /* If this functions has a Structure, Union or Quad-Precision
976 return value, we have to skip the UNIMP instruction that encodes
977 the size of the structure. */
978 if (cache->struct_return_p)
981 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
982 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
983 return frame_unwind_got_constant (this_frame, regnum, pc);
986 /* Handle StackGhost. */
988 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
990 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
992 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
995 /* Read the value in from memory. */
996 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
997 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1001 /* The previous frame's `local' and `in' registers have been saved
1002 in the register save area. */
1003 if (!cache->frameless_p
1004 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
1006 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1008 return frame_unwind_got_memory (this_frame, regnum, addr);
1011 /* The previous frame's `out' registers are accessible as the
1012 current frame's `in' registers. */
1013 if (!cache->frameless_p
1014 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1015 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1017 return frame_unwind_got_register (this_frame, regnum, regnum);
1020 static const struct frame_unwind sparc32_frame_unwind =
1023 sparc32_frame_this_id,
1024 sparc32_frame_prev_register,
1026 default_frame_sniffer
1031 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1033 struct sparc_frame_cache *cache =
1034 sparc32_frame_cache (this_frame, this_cache);
1039 static const struct frame_base sparc32_frame_base =
1041 &sparc32_frame_unwind,
1042 sparc32_frame_base_address,
1043 sparc32_frame_base_address,
1044 sparc32_frame_base_address
1047 static struct frame_id
1048 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1052 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1055 return frame_id_build (sp, get_frame_pc (this_frame));
1059 /* Extract a function return value of TYPE from REGCACHE, and copy
1060 that into VALBUF. */
1063 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1066 int len = TYPE_LENGTH (type);
1069 gdb_assert (!sparc_structure_or_union_p (type));
1070 gdb_assert (!(sparc_floating_p (type) && len == 16));
1072 if (sparc_floating_p (type))
1074 /* Floating return values. */
1075 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1077 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1078 memcpy (valbuf, buf, len);
1082 /* Integral and pointer return values. */
1083 gdb_assert (sparc_integral_or_pointer_p (type));
1085 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1088 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1089 gdb_assert (len == 8);
1090 memcpy (valbuf, buf, 8);
1094 /* Just stripping off any unused bytes should preserve the
1095 signed-ness just fine. */
1096 memcpy (valbuf, buf + 4 - len, len);
1101 /* Store the function return value of type TYPE from VALBUF into
1105 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1106 const gdb_byte *valbuf)
1108 int len = TYPE_LENGTH (type);
1111 gdb_assert (!sparc_structure_or_union_p (type));
1112 gdb_assert (!(sparc_floating_p (type) && len == 16));
1113 gdb_assert (len <= 8);
1115 if (sparc_floating_p (type))
1117 /* Floating return values. */
1118 memcpy (buf, valbuf, len);
1119 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1121 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1125 /* Integral and pointer return values. */
1126 gdb_assert (sparc_integral_or_pointer_p (type));
1130 gdb_assert (len == 8);
1131 memcpy (buf, valbuf, 8);
1132 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1136 /* ??? Do we need to do any sign-extension here? */
1137 memcpy (buf + 4 - len, valbuf, len);
1139 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1143 static enum return_value_convention
1144 sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1145 struct type *type, struct regcache *regcache,
1146 gdb_byte *readbuf, const gdb_byte *writebuf)
1148 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1150 /* The psABI says that "...every stack frame reserves the word at
1151 %fp+64. If a function returns a structure, union, or
1152 quad-precision value, this word should hold the address of the
1153 object into which the return value should be copied." This
1154 guarantees that we can always find the return value, not just
1155 before the function returns. */
1157 if (sparc_structure_or_union_p (type)
1158 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1165 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1166 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1167 read_memory (addr, readbuf, TYPE_LENGTH (type));
1170 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1174 sparc32_extract_return_value (type, regcache, readbuf);
1176 sparc32_store_return_value (type, regcache, writebuf);
1178 return RETURN_VALUE_REGISTER_CONVENTION;
1182 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1184 return (sparc_structure_or_union_p (type)
1185 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1189 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1191 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1192 struct symbol *sym = find_pc_function (pc);
1195 return sparc32_struct_return_from_sym (sym);
1200 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1201 struct dwarf2_frame_state_reg *reg,
1202 struct frame_info *this_frame)
1208 case SPARC_G0_REGNUM:
1209 /* Since %g0 is always zero, there is no point in saving it, and
1210 people will be inclined omit it from the CFI. Make sure we
1211 don't warn about that. */
1212 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1214 case SPARC_SP_REGNUM:
1215 reg->how = DWARF2_FRAME_REG_CFA;
1217 case SPARC32_PC_REGNUM:
1218 case SPARC32_NPC_REGNUM:
1219 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1221 if (sparc32_dwarf2_struct_return_p (this_frame))
1223 if (regnum == SPARC32_NPC_REGNUM)
1225 reg->loc.offset = off;
1231 /* The SPARC Architecture doesn't have hardware single-step support,
1232 and most operating systems don't implement it either, so we provide
1233 software single-step mechanism. */
1236 sparc_analyze_control_transfer (struct frame_info *frame,
1237 CORE_ADDR pc, CORE_ADDR *npc)
1239 unsigned long insn = sparc_fetch_instruction (pc);
1240 int conditional_p = X_COND (insn) & 0x7;
1242 long offset = 0; /* Must be signed for sign-extend. */
1244 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1246 /* Branch on Integer Register with Prediction (BPr). */
1250 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1252 /* Branch on Floating-Point Condition Codes (FBfcc). */
1254 offset = 4 * X_DISP22 (insn);
1256 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1258 /* Branch on Floating-Point Condition Codes with Prediction
1261 offset = 4 * X_DISP19 (insn);
1263 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1265 /* Branch on Integer Condition Codes (Bicc). */
1267 offset = 4 * X_DISP22 (insn);
1269 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1271 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1273 offset = 4 * X_DISP19 (insn);
1275 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1277 /* Trap instruction (TRAP). */
1278 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1281 /* FIXME: Handle DONE and RETRY instructions. */
1287 /* For conditional branches, return nPC + 4 iff the annul
1289 return (X_A (insn) ? *npc + 4 : 0);
1293 /* For unconditional branches, return the target if its
1294 specified condition is "always" and return nPC + 4 if the
1295 condition is "never". If the annul bit is 1, set *NPC to
1297 if (X_COND (insn) == 0x0)
1298 pc = *npc, offset = 4;
1302 gdb_assert (offset != 0);
1311 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1317 sparc_software_single_step (struct frame_info *frame)
1319 struct gdbarch *arch = get_frame_arch (frame);
1320 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1321 struct address_space *aspace = get_frame_address_space (frame);
1322 CORE_ADDR npc, nnpc;
1324 CORE_ADDR pc, orig_npc;
1326 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1327 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1329 /* Analyze the instruction at PC. */
1330 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1332 insert_single_step_breakpoint (arch, aspace, npc);
1335 insert_single_step_breakpoint (arch, aspace, nnpc);
1337 /* Assert that we have set at least one breakpoint, and that
1338 they're not set at the same spot - unless we're going
1339 from here straight to NULL, i.e. a call or jump to 0. */
1340 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1341 gdb_assert (nnpc != npc || orig_npc == 0);
1347 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1349 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1351 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1352 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1356 /* Return the appropriate register set for the core section identified
1357 by SECT_NAME and SECT_SIZE. */
1359 static const struct regset *
1360 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1361 const char *sect_name, size_t sect_size)
1363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1365 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1366 return tdep->gregset;
1368 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1369 return tdep->fpregset;
1375 static struct gdbarch *
1376 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1378 struct gdbarch_tdep *tdep;
1379 struct gdbarch *gdbarch;
1381 /* If there is already a candidate, use it. */
1382 arches = gdbarch_list_lookup_by_info (arches, &info);
1384 return arches->gdbarch;
1386 /* Allocate space for the new architecture. */
1387 tdep = XZALLOC (struct gdbarch_tdep);
1388 gdbarch = gdbarch_alloc (&info, tdep);
1390 tdep->pc_regnum = SPARC32_PC_REGNUM;
1391 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1392 tdep->step_trap = sparc_step_trap;
1394 set_gdbarch_long_double_bit (gdbarch, 128);
1395 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1397 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1398 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1399 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1400 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1401 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1402 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1404 /* Register numbers of various important registers. */
1405 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1406 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1407 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1409 /* Call dummy code. */
1410 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1411 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1412 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1414 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1415 set_gdbarch_stabs_argument_has_addr
1416 (gdbarch, sparc32_stabs_argument_has_addr);
1418 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1420 /* Stack grows downward. */
1421 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1423 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1425 set_gdbarch_frame_args_skip (gdbarch, 8);
1427 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1429 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1430 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1432 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1434 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1436 frame_base_set_default (gdbarch, &sparc32_frame_base);
1438 /* Hook in the DWARF CFI frame unwinder. */
1439 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1440 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1441 StackGhost issues have been resolved. */
1443 /* Hook in ABI-specific overrides, if they have been registered. */
1444 gdbarch_init_osabi (info, gdbarch);
1446 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1448 /* If we have register sets, enable the generic core file support. */
1450 set_gdbarch_regset_from_core_section (gdbarch,
1451 sparc_regset_from_core_section);
1456 /* Helper functions for dealing with register windows. */
1459 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1461 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1469 /* Registers are 64-bit. */
1472 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1474 if (regnum == i || regnum == -1)
1476 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1478 /* Handle StackGhost. */
1479 if (i == SPARC_I7_REGNUM)
1481 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1484 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1485 store_unsigned_integer (buf + offset, 8, byte_order,
1489 regcache_raw_supply (regcache, i, buf);
1495 /* Registers are 32-bit. Toss any sign-extension of the stack
1499 /* Clear out the top half of the temporary buffer, and put the
1500 register value in the bottom half if we're in 64-bit mode. */
1501 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1507 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1509 if (regnum == i || regnum == -1)
1511 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1514 /* Handle StackGhost. */
1515 if (i == SPARC_I7_REGNUM)
1517 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1520 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1521 store_unsigned_integer (buf + offset, 4, byte_order,
1525 regcache_raw_supply (regcache, i, buf);
1532 sparc_collect_rwindow (const struct regcache *regcache,
1533 CORE_ADDR sp, int regnum)
1535 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1536 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1543 /* Registers are 64-bit. */
1546 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1548 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1550 regcache_raw_collect (regcache, i, buf);
1552 /* Handle StackGhost. */
1553 if (i == SPARC_I7_REGNUM)
1555 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1558 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1559 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1562 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1568 /* Registers are 32-bit. Toss any sign-extension of the stack
1572 /* Only use the bottom half if we're in 64-bit mode. */
1573 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1576 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1578 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1580 regcache_raw_collect (regcache, i, buf);
1582 /* Handle StackGhost. */
1583 if (i == SPARC_I7_REGNUM)
1585 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1588 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1589 store_unsigned_integer (buf + offset, 4, byte_order,
1593 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1600 /* Helper functions for dealing with register sets. */
1603 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1604 struct regcache *regcache,
1605 int regnum, const void *gregs)
1607 const gdb_byte *regs = gregs;
1610 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1611 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1612 regs + gregset->r_psr_offset);
1614 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1615 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1616 regs + gregset->r_pc_offset);
1618 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1619 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1620 regs + gregset->r_npc_offset);
1622 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1623 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1624 regs + gregset->r_y_offset);
1626 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1627 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1629 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1631 int offset = gregset->r_g1_offset;
1633 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1635 if (regnum == i || regnum == -1)
1636 regcache_raw_supply (regcache, i, regs + offset);
1641 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1643 /* Not all of the register set variants include Locals and
1644 Inputs. For those that don't, we read them off the stack. */
1645 if (gregset->r_l0_offset == -1)
1649 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1650 sparc_supply_rwindow (regcache, sp, regnum);
1654 int offset = gregset->r_l0_offset;
1656 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1658 if (regnum == i || regnum == -1)
1659 regcache_raw_supply (regcache, i, regs + offset);
1667 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1668 const struct regcache *regcache,
1669 int regnum, void *gregs)
1671 gdb_byte *regs = gregs;
1674 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1675 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1676 regs + gregset->r_psr_offset);
1678 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1679 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1680 regs + gregset->r_pc_offset);
1682 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1683 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1684 regs + gregset->r_npc_offset);
1686 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1687 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1688 regs + gregset->r_y_offset);
1690 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1692 int offset = gregset->r_g1_offset;
1694 /* %g0 is always zero. */
1695 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1697 if (regnum == i || regnum == -1)
1698 regcache_raw_collect (regcache, i, regs + offset);
1703 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1705 /* Not all of the register set variants include Locals and
1706 Inputs. For those that don't, we read them off the stack. */
1707 if (gregset->r_l0_offset != -1)
1709 int offset = gregset->r_l0_offset;
1711 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1713 if (regnum == i || regnum == -1)
1714 regcache_raw_collect (regcache, i, regs + offset);
1722 sparc32_supply_fpregset (struct regcache *regcache,
1723 int regnum, const void *fpregs)
1725 const gdb_byte *regs = fpregs;
1728 for (i = 0; i < 32; i++)
1730 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1731 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1734 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1735 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1739 sparc32_collect_fpregset (const struct regcache *regcache,
1740 int regnum, void *fpregs)
1742 gdb_byte *regs = fpregs;
1745 for (i = 0; i < 32; i++)
1747 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1748 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1751 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1752 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1758 /* From <machine/reg.h>. */
1759 const struct sparc_gregset sparc32_sunos4_gregset =
1772 /* Provide a prototype to silence -Wmissing-prototypes. */
1773 void _initialize_sparc_tdep (void);
1776 _initialize_sparc_tdep (void)
1778 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);