1 /* Functions specific to running gdb native on a SPARC running SunOS4.
2 Copyright 1989, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
27 #include <sys/ptrace.h>
32 #include <machine/reg.h>
36 /* We don't store all registers immediately when requested, since they
37 get sent over in large chunks anyway. Instead, we accumulate most
38 of the changes and send them over once. "deferred_stores" keeps
39 track of which sets of registers we have locally-changed copies of,
40 so we only need send the groups that have changed. */
46 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
48 /* Fetch one or more registers from the inferior. REGNO == -1 to get
49 them all. We actually fetch more than requested, when convenient,
50 marking them as valid so we won't fetch them again. */
53 fetch_inferior_registers (int regno)
55 struct regs inferior_registers;
56 struct fp_status inferior_fp_registers;
59 /* We should never be called with deferred stores, because a prerequisite
60 for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
66 /* Global and Out regs are fetched directly, as well as the control
67 registers. If we're getting one of the in or local regs,
68 and the stack pointer has not yet been fetched,
69 we have to do that first, since they're found in memory relative
70 to the stack pointer. */
71 if (regno < O7_REGNUM /* including -1 */
73 || (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
75 if (0 != ptrace (PTRACE_GETREGS, inferior_pid,
76 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
77 perror ("ptrace_getregs");
79 registers[REGISTER_BYTE (0)] = 0;
80 memcpy (®isters[REGISTER_BYTE (1)], &inferior_registers.r_g1,
81 15 * REGISTER_RAW_SIZE (G0_REGNUM));
82 *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
83 *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
84 *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
85 *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
87 for (i = G0_REGNUM; i <= O7_REGNUM; i++)
88 register_valid[i] = 1;
89 register_valid[Y_REGNUM] = 1;
90 register_valid[PS_REGNUM] = 1;
91 register_valid[PC_REGNUM] = 1;
92 register_valid[NPC_REGNUM] = 1;
93 /* If we don't set these valid, read_register_bytes() rereads
94 all the regs every time it is called! FIXME. */
95 register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
96 register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
97 register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
100 /* Floating point registers */
102 regno == FPS_REGNUM ||
103 (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
105 if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid,
106 (PTRACE_ARG3_TYPE) & inferior_fp_registers,
108 perror ("ptrace_getfpregs");
109 memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
110 sizeof inferior_fp_registers.fpu_fr);
111 memcpy (®isters[REGISTER_BYTE (FPS_REGNUM)],
112 &inferior_fp_registers.Fpu_fsr,
113 sizeof (FPU_FSR_TYPE));
114 for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
115 register_valid[i] = 1;
116 register_valid[FPS_REGNUM] = 1;
119 /* These regs are saved on the stack by the kernel. Only read them
120 all (16 ptrace calls!) if we really need them. */
123 target_read_memory (*(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)],
124 ®isters[REGISTER_BYTE (L0_REGNUM)],
125 16 * REGISTER_RAW_SIZE (L0_REGNUM));
126 for (i = L0_REGNUM; i <= I7_REGNUM; i++)
127 register_valid[i] = 1;
129 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
131 CORE_ADDR sp = *(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)];
132 i = REGISTER_BYTE (regno);
133 if (register_valid[regno])
134 printf_unfiltered ("register %d valid and read\n", regno);
135 target_read_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
136 ®isters[i], REGISTER_RAW_SIZE (regno));
137 register_valid[regno] = 1;
141 /* Store our register values back into the inferior.
142 If REGNO is -1, do this for all registers.
143 Otherwise, REGNO specifies which register (so we can save time). */
146 store_inferior_registers (int regno)
148 struct regs inferior_registers;
149 struct fp_status inferior_fp_registers;
150 int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
152 /* First decide which pieces of machine-state we need to modify.
153 Default for regno == -1 case is all pieces. */
155 if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
157 wanna_store = FP_REGS;
161 if (regno == SP_REGNUM)
162 wanna_store = INT_REGS + STACK_REGS;
163 else if (regno < L0_REGNUM || regno > I7_REGNUM)
164 wanna_store = INT_REGS;
165 else if (regno == FPS_REGNUM)
166 wanna_store = FP_REGS;
168 wanna_store = STACK_REGS;
171 /* See if we're forcing the stores to happen now, or deferring. */
174 wanna_store = deferred_stores;
179 if (wanna_store == STACK_REGS)
181 /* Fall through and just store one stack reg. If we deferred
182 it, we'd have to store them all, or remember more info. */
186 deferred_stores |= wanna_store;
191 if (wanna_store & STACK_REGS)
193 CORE_ADDR sp = *(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)];
195 if (regno < 0 || regno == SP_REGNUM)
197 if (!register_valid[L0_REGNUM + 5])
199 target_write_memory (sp,
200 ®isters[REGISTER_BYTE (L0_REGNUM)],
201 16 * REGISTER_RAW_SIZE (L0_REGNUM));
205 if (!register_valid[regno])
207 target_write_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
208 ®isters[REGISTER_BYTE (regno)],
209 REGISTER_RAW_SIZE (regno));
214 if (wanna_store & INT_REGS)
216 if (!register_valid[G1_REGNUM])
219 memcpy (&inferior_registers.r_g1, ®isters[REGISTER_BYTE (G1_REGNUM)],
220 15 * REGISTER_RAW_SIZE (G1_REGNUM));
222 inferior_registers.r_ps =
223 *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
224 inferior_registers.r_pc =
225 *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
226 inferior_registers.r_npc =
227 *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)];
228 inferior_registers.r_y =
229 *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)];
231 if (0 != ptrace (PTRACE_SETREGS, inferior_pid,
232 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
233 perror ("ptrace_setregs");
236 if (wanna_store & FP_REGS)
238 if (!register_valid[FP0_REGNUM + 9])
240 memcpy (&inferior_fp_registers, ®isters[REGISTER_BYTE (FP0_REGNUM)],
241 sizeof inferior_fp_registers.fpu_fr);
242 memcpy (&inferior_fp_registers.Fpu_fsr,
243 ®isters[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
245 ptrace (PTRACE_SETFPREGS, inferior_pid,
246 (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0))
247 perror ("ptrace_setfpregs");
253 fetch_core_registers (core_reg_sect, core_reg_size, which, ignore)
255 unsigned core_reg_size;
257 CORE_ADDR ignore; /* reg addr, unused in this version */
263 /* Integer registers */
265 #define gregs ((struct regs *)core_reg_sect)
266 /* G0 *always* holds 0. */
267 *(int *) ®isters[REGISTER_BYTE (0)] = 0;
269 /* The globals and output registers. */
270 memcpy (®isters[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
271 15 * REGISTER_RAW_SIZE (G1_REGNUM));
272 *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
273 *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
274 *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
275 *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
277 /* My best guess at where to get the locals and input
278 registers is exactly where they usually are, right above
279 the stack pointer. If the core dump was caused by a bus error
280 from blowing away the stack pointer (as is possible) then this
281 won't work, but it's worth the try. */
285 sp = *(int *) ®isters[REGISTER_BYTE (SP_REGNUM)];
286 if (0 != target_read_memory (sp, ®isters[REGISTER_BYTE (L0_REGNUM)],
287 16 * REGISTER_RAW_SIZE (L0_REGNUM)))
289 /* fprintf_unfiltered so user can still use gdb */
290 fprintf_unfiltered (gdb_stderr,
291 "Couldn't read input and local registers from core file\n");
298 /* Floating point registers */
300 #define fpuregs ((struct fpu *) core_reg_sect)
301 if (core_reg_size >= sizeof (struct fpu))
303 memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
304 sizeof (fpuregs->fpu_regs));
305 memcpy (®isters[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
306 sizeof (FPU_FSR_TYPE));
309 fprintf_unfiltered (gdb_stderr, "Couldn't read float regs from core file\n");
316 return (sizeof (struct user));
320 /* Register that we are able to handle sparc core file formats.
321 FIXME: is this really bfd_target_unknown_flavour? */
323 static struct core_fns sparc_core_fns =
325 bfd_target_unknown_flavour, /* core_flavour */
326 default_check_format, /* check_format */
327 default_core_sniffer, /* core_sniffer */
328 fetch_core_registers, /* core_read_registers */
333 _initialize_core_sparc (void)
335 add_core_fns (&sparc_core_fns);