1 /* Handle shared libraries for GDB, the GNU Debugger.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2005
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
26 #include <sys/types.h>
28 #include "gdb_string.h"
33 #include "exceptions.h"
38 #include "gdb_regex.h"
43 #include "completer.h"
44 #include "filenames.h" /* for DOSish file names */
48 #include "readline/readline.h"
50 /* Architecture-specific operations. */
52 /* Per-architecture data key. */
53 static struct gdbarch_data *solib_data;
56 solib_init (struct obstack *obstack)
58 struct target_so_ops **ops;
60 ops = OBSTACK_ZALLOC (obstack, struct target_so_ops *);
61 *ops = current_target_so_ops;
65 static struct target_so_ops *
66 solib_ops (struct gdbarch *gdbarch)
68 struct target_so_ops **ops = gdbarch_data (gdbarch, solib_data);
73 /* external data declarations */
75 /* FIXME: gdbarch needs to control this variable */
76 struct target_so_ops *current_target_so_ops;
78 /* local data declarations */
80 static struct so_list *so_list_head; /* List of known shared objects */
82 static int solib_cleanup_queued = 0; /* make_run_cleanup called */
84 /* Local function prototypes */
86 static void do_clear_solib (void *);
88 /* If non-zero, this is a prefix that will be added to the front of the name
89 shared libraries with an absolute filename for loading. */
90 static char *solib_absolute_prefix = NULL;
92 /* If non-empty, this is a search path for loading non-absolute shared library
93 symbol files. This takes precedence over the environment variables PATH
94 and LD_LIBRARY_PATH. */
95 static char *solib_search_path = NULL;
97 show_solib_search_path (struct ui_file *file, int from_tty,
98 struct cmd_list_element *c, const char *value)
100 fprintf_filtered (file, _("\
101 The search path for loading non-absolute shared library symbol files is %s.\n"),
109 solib_open -- Find a shared library file and open it.
113 int solib_open (char *in_patname, char **found_pathname);
117 Global variable SOLIB_ABSOLUTE_PREFIX is used as a prefix directory
118 to search for shared libraries if they have an absolute path.
120 Global variable SOLIB_SEARCH_PATH is used as a prefix directory
121 (or set of directories, as in LD_LIBRARY_PATH) to search for all
122 shared libraries if not found in SOLIB_ABSOLUTE_PREFIX.
125 * If there is a solib_absolute_prefix and path is absolute:
126 * Search for solib_absolute_prefix/path.
128 * Look for it literally (unmodified).
129 * Look in SOLIB_SEARCH_PATH.
130 * If available, use target defined search function.
131 * If solib_absolute_prefix is NOT set, perform the following two searches:
132 * Look in inferior's $PATH.
133 * Look in inferior's $LD_LIBRARY_PATH.
135 * The last check avoids doing this search when targetting remote
136 * machines since solib_absolute_prefix will almost always be set.
140 file handle for opened solib, or -1 for failure. */
143 solib_open (char *in_pathname, char **found_pathname)
145 struct target_so_ops *ops = solib_ops (current_gdbarch);
147 char *temp_pathname = NULL;
148 char *p = in_pathname;
150 while (*p && !IS_DIR_SEPARATOR (*p))
155 if (! IS_ABSOLUTE_PATH (in_pathname) || solib_absolute_prefix == NULL)
156 temp_pathname = in_pathname;
159 int prefix_len = strlen (solib_absolute_prefix);
161 /* Remove trailing slashes from absolute prefix. */
162 while (prefix_len > 0
163 && IS_DIR_SEPARATOR (solib_absolute_prefix[prefix_len - 1]))
166 /* Cat the prefixed pathname together. */
167 temp_pathname = alloca (prefix_len + strlen (in_pathname) + 1);
168 strncpy (temp_pathname, solib_absolute_prefix, prefix_len);
169 temp_pathname[prefix_len] = '\0';
170 strcat (temp_pathname, in_pathname);
173 /* Now see if we can open it. */
174 found_file = open (temp_pathname, O_RDONLY | O_BINARY, 0);
177 /* If the search in solib_absolute_prefix failed, and the path name is
178 absolute at this point, make it relative. (openp will try and open the
179 file according to its absolute path otherwise, which is not what we want.)
180 Affects subsequent searches for this solib. */
181 if (found_file < 0 && IS_ABSOLUTE_PATH (in_pathname))
183 /* First, get rid of any drive letters etc. */
184 while (!IS_DIR_SEPARATOR (*in_pathname))
187 /* Next, get rid of all leading dir separators. */
188 while (IS_DIR_SEPARATOR (*in_pathname))
192 /* If not found, search the solib_search_path (if any). */
193 if (found_file < 0 && solib_search_path != NULL)
194 found_file = openp (solib_search_path, OPF_TRY_CWD_FIRST,
195 in_pathname, O_RDONLY | O_BINARY, 0, &temp_pathname);
197 /* If not found, next search the solib_search_path (if any) for the basename
198 only (ignoring the path). This is to allow reading solibs from a path
199 that differs from the opened path. */
200 if (found_file < 0 && solib_search_path != NULL)
201 found_file = openp (solib_search_path, OPF_TRY_CWD_FIRST,
202 lbasename (in_pathname), O_RDONLY | O_BINARY, 0,
205 /* If not found, try to use target supplied solib search method */
206 if (found_file < 0 && ops->find_and_open_solib)
207 found_file = ops->find_and_open_solib (in_pathname, O_RDONLY | O_BINARY,
210 /* If not found, next search the inferior's $PATH environment variable. */
211 if (found_file < 0 && solib_absolute_prefix == NULL)
212 found_file = openp (get_in_environ (inferior_environ, "PATH"),
213 OPF_TRY_CWD_FIRST, in_pathname, O_RDONLY | O_BINARY, 0,
216 /* If not found, next search the inferior's $LD_LIBRARY_PATH
217 environment variable. */
218 if (found_file < 0 && solib_absolute_prefix == NULL)
219 found_file = openp (get_in_environ (inferior_environ, "LD_LIBRARY_PATH"),
220 OPF_TRY_CWD_FIRST, in_pathname, O_RDONLY | O_BINARY, 0,
223 /* Done. If not found, tough luck. Return found_file and
224 (optionally) found_pathname. */
225 if (found_pathname != NULL && temp_pathname != NULL)
226 *found_pathname = xstrdup (temp_pathname);
235 solib_map_sections -- open bfd and build sections for shared lib
239 static int solib_map_sections (struct so_list *so)
243 Given a pointer to one of the shared objects in our list
244 of mapped objects, use the recorded name to open a bfd
245 descriptor for the object, build a section table, and then
246 relocate all the section addresses by the base address at
247 which the shared object was mapped.
251 In most (all?) cases the shared object file name recorded in the
252 dynamic linkage tables will be a fully qualified pathname. For
253 cases where it isn't, do we really mimic the systems search
254 mechanism correctly in the below code (particularly the tilde
259 solib_map_sections (void *arg)
261 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
263 char *scratch_pathname;
265 struct section_table *p;
266 struct cleanup *old_chain;
269 filename = tilde_expand (so->so_name);
271 old_chain = make_cleanup (xfree, filename);
272 scratch_chan = solib_open (filename, &scratch_pathname);
274 if (scratch_chan < 0)
276 perror_with_name (filename);
279 /* Leave scratch_pathname allocated. abfd->name will point to it. */
280 abfd = bfd_fopen (scratch_pathname, gnutarget, FOPEN_RB, scratch_chan);
283 close (scratch_chan);
284 error (_("Could not open `%s' as an executable file: %s"),
285 scratch_pathname, bfd_errmsg (bfd_get_error ()));
288 /* Leave bfd open, core_xfer_memory and "info files" need it. */
290 bfd_set_cacheable (abfd, 1);
292 /* copy full path name into so_name, so that later symbol_file_add
294 if (strlen (scratch_pathname) >= SO_NAME_MAX_PATH_SIZE)
295 error (_("Full path name length of shared library exceeds SO_NAME_MAX_PATH_SIZE in so_list structure."));
296 strcpy (so->so_name, scratch_pathname);
298 if (!bfd_check_format (abfd, bfd_object))
300 error (_("\"%s\": not in executable format: %s."),
301 scratch_pathname, bfd_errmsg (bfd_get_error ()));
303 if (build_section_table (abfd, &so->sections, &so->sections_end))
305 error (_("Can't find the file sections in `%s': %s"),
306 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
309 for (p = so->sections; p < so->sections_end; p++)
311 struct target_so_ops *ops = solib_ops (current_gdbarch);
313 /* Relocate the section binding addresses as recorded in the shared
314 object's file by the base address to which the object was actually
316 ops->relocate_section_addresses (so, p);
317 if (strcmp (p->the_bfd_section->name, ".text") == 0)
323 /* Free the file names, close the file now. */
324 do_cleanups (old_chain);
331 free_so --- free a `struct so_list' object
335 void free_so (struct so_list *so)
339 Free the storage associated with the `struct so_list' object SO.
340 If we have opened a BFD for SO, close it.
342 The caller is responsible for removing SO from whatever list it is
343 a member of. If we have placed SO's sections in some target's
344 section table, the caller is responsible for removing them.
346 This function doesn't mess with objfiles at all. If there is an
347 objfile associated with SO that needs to be removed, the caller is
348 responsible for taking care of that. */
351 free_so (struct so_list *so)
353 struct target_so_ops *ops = solib_ops (current_gdbarch);
354 char *bfd_filename = 0;
357 xfree (so->sections);
361 bfd_filename = bfd_get_filename (so->abfd);
362 if (! bfd_close (so->abfd))
363 warning (_("cannot close \"%s\": %s"),
364 bfd_filename, bfd_errmsg (bfd_get_error ()));
368 xfree (bfd_filename);
376 /* Return address of first so_list entry in master shared object list. */
378 master_so_list (void)
384 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
387 symbol_add_stub (void *arg)
389 struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
390 struct section_addr_info *sap;
392 /* Have we already loaded this shared object? */
393 ALL_OBJFILES (so->objfile)
395 if (strcmp (so->objfile->name, so->so_name) == 0)
399 sap = build_section_addr_info_from_section_table (so->sections,
402 so->objfile = symbol_file_add (so->so_name, so->from_tty,
403 sap, 0, OBJF_SHARED);
404 free_section_addr_info (sap);
409 /* Read in symbols for shared object SO. If FROM_TTY is non-zero, be
410 chatty about it. Return non-zero if any symbols were actually
414 solib_read_symbols (struct so_list *so, int from_tty)
416 if (so->symbols_loaded)
419 printf_unfiltered (_("Symbols already loaded for %s\n"), so->so_name);
423 if (catch_errors (symbol_add_stub, so,
424 "Error while reading shared library symbols:\n",
428 printf_unfiltered (_("Loaded symbols for %s\n"), so->so_name);
429 so->symbols_loaded = 1;
439 update_solib_list --- synchronize GDB's shared object list with inferior's
443 void update_solib_list (int from_tty, struct target_ops *TARGET)
445 Extract the list of currently loaded shared objects from the
446 inferior, and compare it with the list of shared objects currently
447 in GDB's so_list_head list. Edit so_list_head to bring it in sync
448 with the inferior's new list.
450 If we notice that the inferior has unloaded some shared objects,
451 free any symbolic info GDB had read about those shared objects.
453 Don't load symbolic info for any new shared objects; just add them
454 to the list, and leave their symbols_loaded flag clear.
456 If FROM_TTY is non-null, feel free to print messages about what
459 If TARGET is non-null, add the sections of all new shared objects
460 to TARGET's section table. Note that this doesn't remove any
461 sections for shared objects that have been unloaded, and it
462 doesn't check to see if the new shared objects are already present in
463 the section table. But we only use this for core files and
464 processes we've just attached to, so that's okay. */
467 update_solib_list (int from_tty, struct target_ops *target)
469 struct target_so_ops *ops = solib_ops (current_gdbarch);
470 struct so_list *inferior = ops->current_sos();
471 struct so_list *gdb, **gdb_link;
473 /* If we are attaching to a running process for which we
474 have not opened a symbol file, we may be able to get its
477 symfile_objfile == NULL)
478 catch_errors (ops->open_symbol_file_object, &from_tty,
479 "Error reading attached process's symbol file.\n",
482 /* Since this function might actually add some elements to the
483 so_list_head list, arrange for it to be cleaned up when
485 if (!solib_cleanup_queued)
487 make_run_cleanup (do_clear_solib, NULL);
488 solib_cleanup_queued = 1;
491 /* GDB and the inferior's dynamic linker each maintain their own
492 list of currently loaded shared objects; we want to bring the
493 former in sync with the latter. Scan both lists, seeing which
494 shared objects appear where. There are three cases:
496 - A shared object appears on both lists. This means that GDB
497 knows about it already, and it's still loaded in the inferior.
498 Nothing needs to happen.
500 - A shared object appears only on GDB's list. This means that
501 the inferior has unloaded it. We should remove the shared
502 object from GDB's tables.
504 - A shared object appears only on the inferior's list. This
505 means that it's just been loaded. We should add it to GDB's
508 So we walk GDB's list, checking each entry to see if it appears
509 in the inferior's list too. If it does, no action is needed, and
510 we remove it from the inferior's list. If it doesn't, the
511 inferior has unloaded it, and we remove it from GDB's list. By
512 the time we're done walking GDB's list, the inferior's list
513 contains only the new shared objects, which we then add. */
516 gdb_link = &so_list_head;
519 struct so_list *i = inferior;
520 struct so_list **i_link = &inferior;
522 /* Check to see whether the shared object *gdb also appears in
523 the inferior's current list. */
526 if (! strcmp (gdb->so_original_name, i->so_original_name))
533 /* If the shared object appears on the inferior's list too, then
534 it's still loaded, so we don't need to do anything. Delete
535 it from the inferior's list, and leave it on GDB's list. */
540 gdb_link = &gdb->next;
544 /* If it's not on the inferior's list, remove it from GDB's tables. */
547 /* Notify any observer that the shared object has been
548 unloaded before we remove it from GDB's tables. */
549 observer_notify_solib_unloaded (gdb);
551 *gdb_link = gdb->next;
553 /* Unless the user loaded it explicitly, free SO's objfile. */
554 if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED))
555 free_objfile (gdb->objfile);
557 /* Some targets' section tables might be referring to
558 sections from so->abfd; remove them. */
559 remove_target_sections (gdb->abfd);
566 /* Now the inferior's list contains only shared objects that don't
567 appear in GDB's list --- those that are newly loaded. Add them
568 to GDB's shared object list. */
573 /* Add the new shared objects to GDB's list. */
574 *gdb_link = inferior;
576 /* Fill in the rest of each of the `struct so_list' nodes. */
577 for (i = inferior; i; i = i->next)
579 i->from_tty = from_tty;
581 /* Fill in the rest of the `struct so_list' node. */
582 catch_errors (solib_map_sections, i,
583 "Error while mapping shared library sections:\n",
586 /* If requested, add the shared object's sections to the TARGET's
587 section table. Do this immediately after mapping the object so
588 that later nodes in the list can query this object, as is needed
592 int count = (i->sections_end - i->sections);
595 int space = target_resize_to_sections (target, count);
596 memcpy (target->to_sections + space,
598 count * sizeof (i->sections[0]));
602 /* Notify any observer that the shared object has been
603 loaded now that we've added it to GDB's tables. */
604 observer_notify_solib_loaded (i);
612 solib_add -- read in symbol info for newly added shared libraries
616 void solib_add (char *pattern, int from_tty, struct target_ops
617 *TARGET, int readsyms)
621 Read in symbolic information for any shared objects whose names
622 match PATTERN. (If we've already read a shared object's symbol
623 info, leave it alone.) If PATTERN is zero, read them all.
625 If READSYMS is 0, defer reading symbolic information until later
626 but still do any needed low level processing.
628 FROM_TTY and TARGET are as described for update_solib_list, above. */
631 solib_add (char *pattern, int from_tty, struct target_ops *target, int readsyms)
637 char *re_err = re_comp (pattern);
640 error (_("Invalid regexp: %s"), re_err);
643 update_solib_list (from_tty, target);
645 /* Walk the list of currently loaded shared libraries, and read
646 symbols for any that match the pattern --- or any whose symbols
647 aren't already loaded, if no pattern was given. */
650 int loaded_any_symbols = 0;
652 for (gdb = so_list_head; gdb; gdb = gdb->next)
653 if (! pattern || re_exec (gdb->so_name))
656 if (readsyms && solib_read_symbols (gdb, from_tty))
657 loaded_any_symbols = 1;
660 if (from_tty && pattern && ! any_matches)
662 ("No loaded shared libraries match the pattern `%s'.\n", pattern);
664 if (loaded_any_symbols)
666 struct target_so_ops *ops = solib_ops (current_gdbarch);
668 /* Getting new symbols may change our opinion about what is
670 reinit_frame_cache ();
672 ops->special_symbol_handling ();
682 info_sharedlibrary_command -- code for "info sharedlibrary"
686 static void info_sharedlibrary_command ()
690 Walk through the shared library list and print information
691 about each attached library.
695 info_sharedlibrary_command (char *ignore, int from_tty)
697 struct so_list *so = NULL; /* link map state variable */
701 /* "0x", a little whitespace, and two hex digits per byte of pointers. */
702 addr_width = 4 + (TARGET_PTR_BIT / 4);
704 update_solib_list (from_tty, 0);
706 for (so = so_list_head; so; so = so->next)
712 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
713 addr_width, "To", "Syms Read",
714 "Shared Object Library");
718 printf_unfiltered ("%-*s", addr_width,
719 so->textsection != NULL
720 ? hex_string_custom (
721 (LONGEST) so->textsection->addr,
724 printf_unfiltered ("%-*s", addr_width,
725 so->textsection != NULL
726 ? hex_string_custom (
727 (LONGEST) so->textsection->endaddr,
730 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
731 printf_unfiltered ("%s\n", so->so_name);
734 if (so_list_head == NULL)
736 printf_unfiltered (_("No shared libraries loaded at this time.\n"));
744 solib_address -- check to see if an address is in a shared lib
748 char * solib_address (CORE_ADDR address)
752 Provides a hook for other gdb routines to discover whether or
753 not a particular address is within the mapped address space of
756 For example, this routine is called at one point to disable
757 breakpoints which are in shared libraries that are not currently
762 solib_address (CORE_ADDR address)
764 struct so_list *so = 0; /* link map state variable */
766 for (so = so_list_head; so; so = so->next)
768 struct section_table *p;
770 for (p = so->sections; p < so->sections_end; p++)
772 if (p->addr <= address && address < p->endaddr)
773 return (so->so_name);
780 /* Called by free_all_symtabs */
785 struct target_so_ops *ops = solib_ops (current_gdbarch);
787 /* This function is expected to handle ELF shared libraries. It is
788 also used on Solaris, which can run either ELF or a.out binaries
789 (for compatibility with SunOS 4), both of which can use shared
790 libraries. So we don't know whether we have an ELF executable or
791 an a.out executable until the user chooses an executable file.
793 ELF shared libraries don't get mapped into the address space
794 until after the program starts, so we'd better not try to insert
795 breakpoints in them immediately. We have to wait until the
796 dynamic linker has loaded them; we'll hit a bp_shlib_event
797 breakpoint (look for calls to create_solib_event_breakpoint) when
800 SunOS shared libraries seem to be different --- they're present
801 as soon as the process begins execution, so there's no need to
802 put off inserting breakpoints. There's also nowhere to put a
803 bp_shlib_event breakpoint, so if we put it off, we'll never get
806 So: disable breakpoints only if we're using ELF shared libs. */
808 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
809 disable_breakpoints_in_shlibs (1);
813 struct so_list *so = so_list_head;
814 so_list_head = so->next;
816 remove_target_sections (so->abfd);
824 do_clear_solib (void *dummy)
826 solib_cleanup_queued = 0;
832 solib_create_inferior_hook -- shared library startup support
836 void solib_create_inferior_hook ()
840 When gdb starts up the inferior, it nurses it along (through the
841 shell) until it is ready to execute it's first instruction. At this
842 point, this function gets called via expansion of the macro
843 SOLIB_CREATE_INFERIOR_HOOK. */
846 solib_create_inferior_hook (void)
848 struct target_so_ops *ops = solib_ops (current_gdbarch);
849 ops->solib_create_inferior_hook();
854 in_solib_dynsym_resolve_code -- check to see if an address is in
855 dynamic loader's dynamic symbol
860 int in_solib_dynsym_resolve_code (CORE_ADDR pc)
864 Determine if PC is in the dynamic linker's symbol resolution
865 code. Return 1 if so, 0 otherwise.
869 in_solib_dynsym_resolve_code (CORE_ADDR pc)
871 struct target_so_ops *ops = solib_ops (current_gdbarch);
872 return ops->in_dynsym_resolve_code (pc);
879 sharedlibrary_command -- handle command to explicitly add library
883 static void sharedlibrary_command (char *args, int from_tty)
890 sharedlibrary_command (char *args, int from_tty)
893 solib_add (args, from_tty, (struct target_ops *) 0, 1);
898 no_shared_libraries -- handle command to explicitly discard symbols
899 from shared libraries.
903 Implements the command "nosharedlibrary", which discards symbols
904 that have been auto-loaded from shared libraries. Symbols from
905 shared libraries that were added by explicit request of the user
906 are not discarded. Also called from remote.c. */
909 no_shared_libraries (char *ignored, int from_tty)
911 objfile_purge_solibs ();
912 do_clear_solib (NULL);
916 reload_shared_libraries (char *ignored, int from_tty,
917 struct cmd_list_element *e)
919 no_shared_libraries (NULL, from_tty);
920 solib_add (NULL, from_tty, NULL, auto_solib_add);
924 show_auto_solib_add (struct ui_file *file, int from_tty,
925 struct cmd_list_element *c, const char *value)
927 fprintf_filtered (file, _("Autoloading of shared library symbols is %s.\n"),
932 extern initialize_file_ftype _initialize_solib; /* -Wmissing-prototypes */
935 _initialize_solib (void)
937 struct cmd_list_element *c;
939 solib_data = gdbarch_data_register_pre_init (solib_init);
941 add_com ("sharedlibrary", class_files, sharedlibrary_command,
942 _("Load shared object library symbols for files matching REGEXP."));
943 add_info ("sharedlibrary", info_sharedlibrary_command,
944 _("Status of loaded shared object libraries."));
945 add_com ("nosharedlibrary", class_files, no_shared_libraries,
946 _("Unload all shared object library symbols."));
948 add_setshow_boolean_cmd ("auto-solib-add", class_support,
949 &auto_solib_add, _("\
950 Set autoloading of shared library symbols."), _("\
951 Show autoloading of shared library symbols."), _("\
952 If \"on\", symbols from all shared object libraries will be loaded\n\
953 automatically when the inferior begins execution, when the dynamic linker\n\
954 informs gdb that a new library has been loaded, or when attaching to the\n\
955 inferior. Otherwise, symbols must be loaded manually, using `sharedlibrary'."),
958 &setlist, &showlist);
960 add_setshow_filename_cmd ("solib-absolute-prefix", class_support,
961 &solib_absolute_prefix, _("\
962 Set prefix for loading absolute shared library symbol files."), _("\
963 Show prefix for loading absolute shared library symbol files."), _("\
964 For other (relative) files, you can add values using `set solib-search-path'."),
965 reload_shared_libraries,
967 &setlist, &showlist);
969 /* Set the default value of "solib-absolute-prefix" from the sysroot, if
971 solib_absolute_prefix = xstrdup (gdb_sysroot);
973 add_setshow_optional_filename_cmd ("solib-search-path", class_support,
974 &solib_search_path, _("\
975 Set the search path for loading non-absolute shared library symbol files."), _("\
976 Show the search path for loading non-absolute shared library symbol files."), _("\
977 This takes precedence over the environment variables PATH and LD_LIBRARY_PATH."),
978 reload_shared_libraries,
979 show_solib_search_path,
980 &setlist, &showlist);