1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "elf/external.h"
23 #include "elf/common.h"
35 #include "gdbthread.h"
36 #include "observable.h"
40 #include "solib-svr4.h"
42 #include "bfd-target.h"
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
54 /* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
62 static const char * const solib_break_names[] =
68 "__dl_rtld_db_dlactivity",
74 static const char * const bkpt_names[] =
82 static const char * const main_name_list[] =
88 /* What to do when a probe stop occurs. */
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
96 /* No action is required. The shared object list is still
100 /* The shared object list should be reloaded entirely. */
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
109 /* A probe's name and its associated action. */
113 /* The name of the probe. */
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
120 /* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
124 static const struct probe_info probe_info[] =
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
135 #define NUM_PROBES ARRAY_SIZE (probe_info)
137 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
141 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
146 /* On Solaris, when starting inferior we think that dynamic linker is
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
156 /* Similarly, we observed the same issue with sparc64, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
166 svr4_same (struct so_list *gdb, struct so_list *inferior)
168 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
171 static std::unique_ptr<lm_info_svr4>
172 lm_info_read (CORE_ADDR lm_addr)
174 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
175 std::unique_ptr<lm_info_svr4> lm_info;
177 gdb::byte_vector lm (lmo->link_map_size);
179 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
180 warning (_("Error reading shared library list entry at %s"),
181 paddress (target_gdbarch (), lm_addr));
184 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
186 lm_info.reset (new lm_info_svr4);
187 lm_info->lm_addr = lm_addr;
189 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
191 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
192 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
194 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
196 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
204 has_lm_dynamic_from_link_map (void)
206 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
208 return lmo->l_ld_offset >= 0;
212 lm_addr_check (const struct so_list *so, bfd *abfd)
214 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
218 struct bfd_section *dyninfo_sect;
219 CORE_ADDR l_addr, l_dynaddr, dynaddr;
221 l_addr = li->l_addr_inferior;
223 if (! abfd || ! has_lm_dynamic_from_link_map ())
226 l_dynaddr = li->l_ld;
228 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
229 if (dyninfo_sect == NULL)
232 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
234 if (dynaddr + l_addr != l_dynaddr)
236 CORE_ADDR align = 0x1000;
237 CORE_ADDR minpagesize = align;
239 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
241 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
242 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
247 for (i = 0; i < ehdr->e_phnum; i++)
248 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
249 align = phdr[i].p_align;
251 minpagesize = get_elf_backend_data (abfd)->minpagesize;
254 /* Turn it into a mask. */
257 /* If the changes match the alignment requirements, we
258 assume we're using a core file that was generated by the
259 same binary, just prelinked with a different base offset.
260 If it doesn't match, we may have a different binary, the
261 same binary with the dynamic table loaded at an unrelated
262 location, or anything, really. To avoid regressions,
263 don't adjust the base offset in the latter case, although
264 odds are that, if things really changed, debugging won't
267 One could expect more the condition
268 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
269 but the one below is relaxed for PPC. The PPC kernel supports
270 either 4k or 64k page sizes. To be prepared for 64k pages,
271 PPC ELF files are built using an alignment requirement of 64k.
272 However, when running on a kernel supporting 4k pages, the memory
273 mapping of the library may not actually happen on a 64k boundary!
275 (In the usual case where (l_addr & align) == 0, this check is
276 equivalent to the possibly expected check above.)
278 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
280 l_addr = l_dynaddr - dynaddr;
282 if ((l_addr & (minpagesize - 1)) == 0
283 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
286 printf_unfiltered (_("Using PIC (Position Independent Code) "
287 "prelink displacement %s for \"%s\".\n"),
288 paddress (target_gdbarch (), l_addr),
293 /* There is no way to verify the library file matches. prelink
294 can during prelinking of an unprelinked file (or unprelinking
295 of a prelinked file) shift the DYNAMIC segment by arbitrary
296 offset without any page size alignment. There is no way to
297 find out the ELF header and/or Program Headers for a limited
298 verification if it they match. One could do a verification
299 of the DYNAMIC segment. Still the found address is the best
300 one GDB could find. */
302 warning (_(".dynamic section for \"%s\" "
303 "is not at the expected address "
304 "(wrong library or version mismatch?)"), so->so_name);
316 /* Per pspace SVR4 specific data. */
320 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
322 /* Validity flag for debug_loader_offset. */
323 int debug_loader_offset_p;
325 /* Load address for the dynamic linker, inferred. */
326 CORE_ADDR debug_loader_offset;
328 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
329 char *debug_loader_name;
331 /* Load map address for the main executable. */
332 CORE_ADDR main_lm_addr;
334 CORE_ADDR interp_text_sect_low;
335 CORE_ADDR interp_text_sect_high;
336 CORE_ADDR interp_plt_sect_low;
337 CORE_ADDR interp_plt_sect_high;
339 /* Nonzero if the list of objects was last obtained from the target
340 via qXfer:libraries-svr4:read. */
343 /* Table of struct probe_and_action instances, used by the
344 probes-based interface to map breakpoint addresses to probes
345 and their associated actions. Lookup is performed using
346 probe_and_action->prob->address. */
349 /* List of objects loaded into the inferior, used by the probes-
351 struct so_list *solib_list;
354 /* Per-program-space data key. */
355 static const struct program_space_data *solib_svr4_pspace_data;
357 /* Free the probes table. */
360 free_probes_table (struct svr4_info *info)
362 if (info->probes_table == NULL)
365 htab_delete (info->probes_table);
366 info->probes_table = NULL;
369 /* Free the solib list. */
372 free_solib_list (struct svr4_info *info)
374 svr4_free_library_list (&info->solib_list);
375 info->solib_list = NULL;
379 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
381 struct svr4_info *info = (struct svr4_info *) arg;
383 free_probes_table (info);
384 free_solib_list (info);
389 /* Get the current svr4 data. If none is found yet, add it now. This
390 function always returns a valid object. */
392 static struct svr4_info *
395 struct svr4_info *info;
397 info = (struct svr4_info *) program_space_data (current_program_space,
398 solib_svr4_pspace_data);
402 info = XCNEW (struct svr4_info);
403 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
407 /* Local function prototypes */
409 static int match_main (const char *);
411 /* Read program header TYPE from inferior memory. The header is found
412 by scanning the OS auxillary vector.
414 If TYPE == -1, return the program headers instead of the contents of
417 Return a pointer to allocated memory holding the program header contents,
418 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
419 size of those contents is returned to P_SECT_SIZE. Likewise, the target
420 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
421 the base address of the section is returned in BASE_ADDR. */
424 read_program_header (int type, int *p_sect_size, int *p_arch_size,
425 CORE_ADDR *base_addr)
427 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
428 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
429 int arch_size, sect_size;
434 /* Get required auxv elements from target. */
435 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
437 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
439 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
441 if (!at_phdr || !at_phnum)
444 /* Determine ELF architecture type. */
445 if (at_phent == sizeof (Elf32_External_Phdr))
447 else if (at_phent == sizeof (Elf64_External_Phdr))
452 /* Find the requested segment. */
456 sect_size = at_phent * at_phnum;
458 else if (arch_size == 32)
460 Elf32_External_Phdr phdr;
463 /* Search for requested PHDR. */
464 for (i = 0; i < at_phnum; i++)
468 if (target_read_memory (at_phdr + i * sizeof (phdr),
469 (gdb_byte *)&phdr, sizeof (phdr)))
472 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
475 if (p_type == PT_PHDR)
478 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
489 /* Retrieve address and size. */
490 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
492 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
497 Elf64_External_Phdr phdr;
500 /* Search for requested PHDR. */
501 for (i = 0; i < at_phnum; i++)
505 if (target_read_memory (at_phdr + i * sizeof (phdr),
506 (gdb_byte *)&phdr, sizeof (phdr)))
509 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
512 if (p_type == PT_PHDR)
515 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
526 /* Retrieve address and size. */
527 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
529 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
533 /* PT_PHDR is optional, but we really need it
534 for PIE to make this work in general. */
538 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
539 Relocation offset is the difference between the two. */
540 sect_addr = sect_addr + (at_phdr - pt_phdr);
543 /* Read in requested program header. */
544 buf = (gdb_byte *) xmalloc (sect_size);
545 if (target_read_memory (sect_addr, buf, sect_size))
552 *p_arch_size = arch_size;
554 *p_sect_size = sect_size;
556 *base_addr = sect_addr;
562 /* Return program interpreter string. */
564 find_program_interpreter (void)
566 gdb_byte *buf = NULL;
568 /* If we have an exec_bfd, use its section table. */
570 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
572 struct bfd_section *interp_sect;
574 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
575 if (interp_sect != NULL)
577 int sect_size = bfd_section_size (exec_bfd, interp_sect);
579 buf = (gdb_byte *) xmalloc (sect_size);
580 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
584 /* If we didn't find it, use the target auxillary vector. */
586 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
592 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
593 found, 1 is returned and the corresponding PTR is set. */
596 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
599 int arch_size, step, sect_size;
601 CORE_ADDR dyn_ptr, dyn_addr;
602 gdb_byte *bufend, *bufstart, *buf;
603 Elf32_External_Dyn *x_dynp_32;
604 Elf64_External_Dyn *x_dynp_64;
605 struct bfd_section *sect;
606 struct target_section *target_section;
611 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
614 arch_size = bfd_get_arch_size (abfd);
618 /* Find the start address of the .dynamic section. */
619 sect = bfd_get_section_by_name (abfd, ".dynamic");
623 for (target_section = current_target_sections->sections;
624 target_section < current_target_sections->sections_end;
626 if (sect == target_section->the_bfd_section)
628 if (target_section < current_target_sections->sections_end)
629 dyn_addr = target_section->addr;
632 /* ABFD may come from OBJFILE acting only as a symbol file without being
633 loaded into the target (see add_symbol_file_command). This case is
634 such fallback to the file VMA address without the possibility of
635 having the section relocated to its actual in-memory address. */
637 dyn_addr = bfd_section_vma (abfd, sect);
640 /* Read in .dynamic from the BFD. We will get the actual value
641 from memory later. */
642 sect_size = bfd_section_size (abfd, sect);
643 buf = bufstart = (gdb_byte *) alloca (sect_size);
644 if (!bfd_get_section_contents (abfd, sect,
648 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
649 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
650 : sizeof (Elf64_External_Dyn);
651 for (bufend = buf + sect_size;
657 x_dynp_32 = (Elf32_External_Dyn *) buf;
658 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
659 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
663 x_dynp_64 = (Elf64_External_Dyn *) buf;
664 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
665 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
667 if (current_dyntag == DT_NULL)
669 if (current_dyntag == desired_dyntag)
671 /* If requested, try to read the runtime value of this .dynamic
675 struct type *ptr_type;
677 CORE_ADDR ptr_addr_1;
679 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
680 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
681 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
682 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
685 *ptr_addr = dyn_addr + (buf - bufstart);
694 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
695 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
696 is returned and the corresponding PTR is set. */
699 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
702 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
703 int sect_size, arch_size, step;
707 gdb_byte *bufend, *bufstart, *buf;
709 /* Read in .dynamic section. */
710 buf = bufstart = read_program_header (PT_DYNAMIC, §_size, &arch_size,
715 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
716 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
717 : sizeof (Elf64_External_Dyn);
718 for (bufend = buf + sect_size;
724 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
726 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
728 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
733 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
735 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
737 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
740 if (current_dyntag == DT_NULL)
743 if (current_dyntag == desired_dyntag)
749 *ptr_addr = base_addr + buf - bufstart;
760 /* Locate the base address of dynamic linker structs for SVR4 elf
763 For SVR4 elf targets the address of the dynamic linker's runtime
764 structure is contained within the dynamic info section in the
765 executable file. The dynamic section is also mapped into the
766 inferior address space. Because the runtime loader fills in the
767 real address before starting the inferior, we have to read in the
768 dynamic info section from the inferior address space.
769 If there are any errors while trying to find the address, we
770 silently return 0, otherwise the found address is returned. */
773 elf_locate_base (void)
775 struct bound_minimal_symbol msymbol;
776 CORE_ADDR dyn_ptr, dyn_ptr_addr;
778 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
779 instead of DT_DEBUG, although they sometimes contain an unused
781 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
782 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
784 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
786 int pbuf_size = TYPE_LENGTH (ptr_type);
788 pbuf = (gdb_byte *) alloca (pbuf_size);
789 /* DT_MIPS_RLD_MAP contains a pointer to the address
790 of the dynamic link structure. */
791 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
793 return extract_typed_address (pbuf, ptr_type);
796 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
797 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
799 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
800 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
802 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
804 int pbuf_size = TYPE_LENGTH (ptr_type);
806 pbuf = (gdb_byte *) alloca (pbuf_size);
807 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
808 DT slot to the address of the dynamic link structure. */
809 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
811 return extract_typed_address (pbuf, ptr_type);
815 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
816 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
819 /* This may be a static executable. Look for the symbol
820 conventionally named _r_debug, as a last resort. */
821 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
822 if (msymbol.minsym != NULL)
823 return BMSYMBOL_VALUE_ADDRESS (msymbol);
825 /* DT_DEBUG entry not found. */
829 /* Locate the base address of dynamic linker structs.
831 For both the SunOS and SVR4 shared library implementations, if the
832 inferior executable has been linked dynamically, there is a single
833 address somewhere in the inferior's data space which is the key to
834 locating all of the dynamic linker's runtime structures. This
835 address is the value of the debug base symbol. The job of this
836 function is to find and return that address, or to return 0 if there
837 is no such address (the executable is statically linked for example).
839 For SunOS, the job is almost trivial, since the dynamic linker and
840 all of it's structures are statically linked to the executable at
841 link time. Thus the symbol for the address we are looking for has
842 already been added to the minimal symbol table for the executable's
843 objfile at the time the symbol file's symbols were read, and all we
844 have to do is look it up there. Note that we explicitly do NOT want
845 to find the copies in the shared library.
847 The SVR4 version is a bit more complicated because the address
848 is contained somewhere in the dynamic info section. We have to go
849 to a lot more work to discover the address of the debug base symbol.
850 Because of this complexity, we cache the value we find and return that
851 value on subsequent invocations. Note there is no copy in the
852 executable symbol tables. */
855 locate_base (struct svr4_info *info)
857 /* Check to see if we have a currently valid address, and if so, avoid
858 doing all this work again and just return the cached address. If
859 we have no cached address, try to locate it in the dynamic info
860 section for ELF executables. There's no point in doing any of this
861 though if we don't have some link map offsets to work with. */
863 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
864 info->debug_base = elf_locate_base ();
865 return info->debug_base;
868 /* Find the first element in the inferior's dynamic link map, and
869 return its address in the inferior. Return zero if the address
870 could not be determined.
872 FIXME: Perhaps we should validate the info somehow, perhaps by
873 checking r_version for a known version number, or r_state for
877 solib_svr4_r_map (struct svr4_info *info)
879 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
880 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
885 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
888 CATCH (ex, RETURN_MASK_ERROR)
890 exception_print (gdb_stderr, ex);
897 /* Find r_brk from the inferior's debug base. */
900 solib_svr4_r_brk (struct svr4_info *info)
902 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
903 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
905 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
909 /* Find the link map for the dynamic linker (if it is not in the
910 normal list of loaded shared objects). */
913 solib_svr4_r_ldsomap (struct svr4_info *info)
915 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
916 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
917 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
918 ULONGEST version = 0;
922 /* Check version, and return zero if `struct r_debug' doesn't have
923 the r_ldsomap member. */
925 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
926 lmo->r_version_size, byte_order);
928 CATCH (ex, RETURN_MASK_ERROR)
930 exception_print (gdb_stderr, ex);
934 if (version < 2 || lmo->r_ldsomap_offset == -1)
937 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
941 /* On Solaris systems with some versions of the dynamic linker,
942 ld.so's l_name pointer points to the SONAME in the string table
943 rather than into writable memory. So that GDB can find shared
944 libraries when loading a core file generated by gcore, ensure that
945 memory areas containing the l_name string are saved in the core
949 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
951 struct svr4_info *info;
955 info = get_svr4_info ();
957 info->debug_base = 0;
959 if (!info->debug_base)
962 ldsomap = solib_svr4_r_ldsomap (info);
966 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
967 name_lm = li != NULL ? li->l_name : 0;
969 return (name_lm >= vaddr && name_lm < vaddr + size);
975 open_symbol_file_object (int from_tty)
977 CORE_ADDR lm, l_name;
978 gdb::unique_xmalloc_ptr<char> filename;
980 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
981 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
982 int l_name_size = TYPE_LENGTH (ptr_type);
983 gdb::byte_vector l_name_buf (l_name_size);
984 struct svr4_info *info = get_svr4_info ();
985 symfile_add_flags add_flags = 0;
988 add_flags |= SYMFILE_VERBOSE;
991 if (!query (_("Attempt to reload symbols from process? ")))
994 /* Always locate the debug struct, in case it has moved. */
995 info->debug_base = 0;
996 if (locate_base (info) == 0)
997 return 0; /* failed somehow... */
999 /* First link map member should be the executable. */
1000 lm = solib_svr4_r_map (info);
1002 return 0; /* failed somehow... */
1004 /* Read address of name from target memory to GDB. */
1005 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
1007 /* Convert the address to host format. */
1008 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
1011 return 0; /* No filename. */
1013 /* Now fetch the filename from target memory. */
1014 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1018 warning (_("failed to read exec filename from attached file: %s"),
1019 safe_strerror (errcode));
1023 /* Have a pathname: read the symbol file. */
1024 symbol_file_add_main (filename.get (), add_flags);
1029 /* Data exchange structure for the XML parser as returned by
1030 svr4_current_sos_via_xfer_libraries. */
1032 struct svr4_library_list
1034 struct so_list *head, **tailp;
1036 /* Inferior address of struct link_map used for the main executable. It is
1037 NULL if not known. */
1041 /* Implementation for target_so_ops.free_so. */
1044 svr4_free_so (struct so_list *so)
1046 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1051 /* Implement target_so_ops.clear_so. */
1054 svr4_clear_so (struct so_list *so)
1056 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1062 /* Free so_list built so far (called via cleanup). */
1065 svr4_free_library_list (void *p_list)
1067 struct so_list *list = *(struct so_list **) p_list;
1069 while (list != NULL)
1071 struct so_list *next = list->next;
1078 /* Copy library list. */
1080 static struct so_list *
1081 svr4_copy_library_list (struct so_list *src)
1083 struct so_list *dst = NULL;
1084 struct so_list **link = &dst;
1088 struct so_list *newobj;
1090 newobj = XNEW (struct so_list);
1091 memcpy (newobj, src, sizeof (struct so_list));
1093 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1094 newobj->lm_info = new lm_info_svr4 (*src_li);
1096 newobj->next = NULL;
1098 link = &newobj->next;
1106 #ifdef HAVE_LIBEXPAT
1108 #include "xml-support.h"
1110 /* Handle the start of a <library> element. Note: new elements are added
1111 at the tail of the list, keeping the list in order. */
1114 library_list_start_library (struct gdb_xml_parser *parser,
1115 const struct gdb_xml_element *element,
1117 std::vector<gdb_xml_value> &attributes)
1119 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1121 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1123 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1125 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1127 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1128 struct so_list *new_elem;
1130 new_elem = XCNEW (struct so_list);
1131 lm_info_svr4 *li = new lm_info_svr4;
1132 new_elem->lm_info = li;
1134 li->l_addr_inferior = *l_addrp;
1137 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1138 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1139 strcpy (new_elem->so_original_name, new_elem->so_name);
1141 *list->tailp = new_elem;
1142 list->tailp = &new_elem->next;
1145 /* Handle the start of a <library-list-svr4> element. */
1148 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1149 const struct gdb_xml_element *element,
1151 std::vector<gdb_xml_value> &attributes)
1153 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1155 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1156 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1158 if (strcmp (version, "1.0") != 0)
1159 gdb_xml_error (parser,
1160 _("SVR4 Library list has unsupported version \"%s\""),
1164 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1167 /* The allowed elements and attributes for an XML library list.
1168 The root element is a <library-list>. */
1170 static const struct gdb_xml_attribute svr4_library_attributes[] =
1172 { "name", GDB_XML_AF_NONE, NULL, NULL },
1173 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1174 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1175 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1176 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1179 static const struct gdb_xml_element svr4_library_list_children[] =
1182 "library", svr4_library_attributes, NULL,
1183 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1184 library_list_start_library, NULL
1186 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1189 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1191 { "version", GDB_XML_AF_NONE, NULL, NULL },
1192 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1193 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1196 static const struct gdb_xml_element svr4_library_list_elements[] =
1198 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1199 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1200 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1203 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1205 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1206 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1207 empty, caller is responsible for freeing all its entries. */
1210 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1212 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1215 memset (list, 0, sizeof (*list));
1216 list->tailp = &list->head;
1217 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1218 svr4_library_list_elements, document, list) == 0)
1220 /* Parsed successfully, keep the result. */
1221 discard_cleanups (back_to);
1225 do_cleanups (back_to);
1229 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1231 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1232 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1233 empty, caller is responsible for freeing all its entries.
1235 Note that ANNEX must be NULL if the remote does not explicitly allow
1236 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1237 this can be checked using target_augmented_libraries_svr4_read (). */
1240 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1243 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1245 /* Fetch the list of shared libraries. */
1246 gdb::optional<gdb::char_vector> svr4_library_document
1247 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1249 if (!svr4_library_document)
1252 return svr4_parse_libraries (svr4_library_document->data (), list);
1258 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1266 /* If no shared library information is available from the dynamic
1267 linker, build a fallback list from other sources. */
1269 static struct so_list *
1270 svr4_default_sos (void)
1272 struct svr4_info *info = get_svr4_info ();
1273 struct so_list *newobj;
1275 if (!info->debug_loader_offset_p)
1278 newobj = XCNEW (struct so_list);
1279 lm_info_svr4 *li = new lm_info_svr4;
1280 newobj->lm_info = li;
1282 /* Nothing will ever check the other fields if we set l_addr_p. */
1283 li->l_addr = info->debug_loader_offset;
1286 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1287 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1288 strcpy (newobj->so_original_name, newobj->so_name);
1293 /* Read the whole inferior libraries chain starting at address LM.
1294 Expect the first entry in the chain's previous entry to be PREV_LM.
1295 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1296 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1297 to it. Returns nonzero upon success. If zero is returned the
1298 entries stored to LINK_PTR_PTR are still valid although they may
1299 represent only part of the inferior library list. */
1302 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1303 struct so_list ***link_ptr_ptr, int ignore_first)
1305 CORE_ADDR first_l_name = 0;
1308 for (; lm != 0; prev_lm = lm, lm = next_lm)
1311 gdb::unique_xmalloc_ptr<char> buffer;
1313 so_list_up newobj (XCNEW (struct so_list));
1315 lm_info_svr4 *li = lm_info_read (lm).release ();
1316 newobj->lm_info = li;
1320 next_lm = li->l_next;
1322 if (li->l_prev != prev_lm)
1324 warning (_("Corrupted shared library list: %s != %s"),
1325 paddress (target_gdbarch (), prev_lm),
1326 paddress (target_gdbarch (), li->l_prev));
1330 /* For SVR4 versions, the first entry in the link map is for the
1331 inferior executable, so we must ignore it. For some versions of
1332 SVR4, it has no name. For others (Solaris 2.3 for example), it
1333 does have a name, so we can no longer use a missing name to
1334 decide when to ignore it. */
1335 if (ignore_first && li->l_prev == 0)
1337 struct svr4_info *info = get_svr4_info ();
1339 first_l_name = li->l_name;
1340 info->main_lm_addr = li->lm_addr;
1344 /* Extract this shared object's name. */
1345 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1349 /* If this entry's l_name address matches that of the
1350 inferior executable, then this is not a normal shared
1351 object, but (most likely) a vDSO. In this case, silently
1352 skip it; otherwise emit a warning. */
1353 if (first_l_name == 0 || li->l_name != first_l_name)
1354 warning (_("Can't read pathname for load map: %s."),
1355 safe_strerror (errcode));
1359 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1360 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1361 strcpy (newobj->so_original_name, newobj->so_name);
1363 /* If this entry has no name, or its name matches the name
1364 for the main executable, don't include it in the list. */
1365 if (! newobj->so_name[0] || match_main (newobj->so_name))
1369 /* Don't free it now. */
1370 **link_ptr_ptr = newobj.release ();
1371 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1377 /* Read the full list of currently loaded shared objects directly
1378 from the inferior, without referring to any libraries read and
1379 stored by the probes interface. Handle special cases relating
1380 to the first elements of the list. */
1382 static struct so_list *
1383 svr4_current_sos_direct (struct svr4_info *info)
1386 struct so_list *head = NULL;
1387 struct so_list **link_ptr = &head;
1388 struct cleanup *back_to;
1390 struct svr4_library_list library_list;
1392 /* Fall back to manual examination of the target if the packet is not
1393 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1394 tests a case where gdbserver cannot find the shared libraries list while
1395 GDB itself is able to find it via SYMFILE_OBJFILE.
1397 Unfortunately statically linked inferiors will also fall back through this
1398 suboptimal code path. */
1400 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1402 if (info->using_xfer)
1404 if (library_list.main_lm)
1405 info->main_lm_addr = library_list.main_lm;
1407 return library_list.head ? library_list.head : svr4_default_sos ();
1410 /* Always locate the debug struct, in case it has moved. */
1411 info->debug_base = 0;
1414 /* If we can't find the dynamic linker's base structure, this
1415 must not be a dynamically linked executable. Hmm. */
1416 if (! info->debug_base)
1417 return svr4_default_sos ();
1419 /* Assume that everything is a library if the dynamic loader was loaded
1420 late by a static executable. */
1421 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1426 back_to = make_cleanup (svr4_free_library_list, &head);
1428 /* Walk the inferior's link map list, and build our list of
1429 `struct so_list' nodes. */
1430 lm = solib_svr4_r_map (info);
1432 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1434 /* On Solaris, the dynamic linker is not in the normal list of
1435 shared objects, so make sure we pick it up too. Having
1436 symbol information for the dynamic linker is quite crucial
1437 for skipping dynamic linker resolver code. */
1438 lm = solib_svr4_r_ldsomap (info);
1440 svr4_read_so_list (lm, 0, &link_ptr, 0);
1442 discard_cleanups (back_to);
1445 return svr4_default_sos ();
1450 /* Implement the main part of the "current_sos" target_so_ops
1453 static struct so_list *
1454 svr4_current_sos_1 (void)
1456 struct svr4_info *info = get_svr4_info ();
1458 /* If the solib list has been read and stored by the probes
1459 interface then we return a copy of the stored list. */
1460 if (info->solib_list != NULL)
1461 return svr4_copy_library_list (info->solib_list);
1463 /* Otherwise obtain the solib list directly from the inferior. */
1464 return svr4_current_sos_direct (info);
1467 /* Implement the "current_sos" target_so_ops method. */
1469 static struct so_list *
1470 svr4_current_sos (void)
1472 struct so_list *so_head = svr4_current_sos_1 ();
1473 struct mem_range vsyscall_range;
1475 /* Filter out the vDSO module, if present. Its symbol file would
1476 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1477 managed by symfile-mem.c:add_vsyscall_page. */
1478 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1479 && vsyscall_range.length != 0)
1481 struct so_list **sop;
1484 while (*sop != NULL)
1486 struct so_list *so = *sop;
1488 /* We can't simply match the vDSO by starting address alone,
1489 because lm_info->l_addr_inferior (and also l_addr) do not
1490 necessarily represent the real starting address of the
1491 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1492 field (the ".dynamic" section of the shared object)
1493 always points at the absolute/resolved address though.
1494 So check whether that address is inside the vDSO's
1497 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1498 0-based ELF, and we see:
1501 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1502 (gdb) p/x *_r_debug.r_map.l_next
1503 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1505 And on Linux 2.6.32 (x86_64) we see:
1508 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1509 (gdb) p/x *_r_debug.r_map.l_next
1510 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1512 Dumping that vDSO shows:
1514 (gdb) info proc mappings
1515 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1516 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1517 # readelf -Wa vdso.bin
1519 Entry point address: 0xffffffffff700700
1522 [Nr] Name Type Address Off Size
1523 [ 0] NULL 0000000000000000 000000 000000
1524 [ 1] .hash HASH ffffffffff700120 000120 000038
1525 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1527 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1530 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1532 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1546 /* Get the address of the link_map for a given OBJFILE. */
1549 svr4_fetch_objfile_link_map (struct objfile *objfile)
1552 struct svr4_info *info = get_svr4_info ();
1554 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1555 if (info->main_lm_addr == 0)
1556 solib_add (NULL, 0, auto_solib_add);
1558 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1559 if (objfile == symfile_objfile)
1560 return info->main_lm_addr;
1562 /* The other link map addresses may be found by examining the list
1563 of shared libraries. */
1564 for (so = master_so_list (); so; so = so->next)
1565 if (so->objfile == objfile)
1567 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1576 /* On some systems, the only way to recognize the link map entry for
1577 the main executable file is by looking at its name. Return
1578 non-zero iff SONAME matches one of the known main executable names. */
1581 match_main (const char *soname)
1583 const char * const *mainp;
1585 for (mainp = main_name_list; *mainp != NULL; mainp++)
1587 if (strcmp (soname, *mainp) == 0)
1594 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1595 SVR4 run time loader. */
1598 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1600 struct svr4_info *info = get_svr4_info ();
1602 return ((pc >= info->interp_text_sect_low
1603 && pc < info->interp_text_sect_high)
1604 || (pc >= info->interp_plt_sect_low
1605 && pc < info->interp_plt_sect_high)
1606 || in_plt_section (pc)
1607 || in_gnu_ifunc_stub (pc));
1610 /* Given an executable's ABFD and target, compute the entry-point
1614 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1618 /* KevinB wrote ... for most targets, the address returned by
1619 bfd_get_start_address() is the entry point for the start
1620 function. But, for some targets, bfd_get_start_address() returns
1621 the address of a function descriptor from which the entry point
1622 address may be extracted. This address is extracted by
1623 gdbarch_convert_from_func_ptr_addr(). The method
1624 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1625 function for targets which don't use function descriptors. */
1626 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1627 bfd_get_start_address (abfd),
1629 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1632 /* A probe and its associated action. */
1634 struct probe_and_action
1639 /* The relocated address of the probe. */
1643 enum probe_action action;
1646 /* Returns a hash code for the probe_and_action referenced by p. */
1649 hash_probe_and_action (const void *p)
1651 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1653 return (hashval_t) pa->address;
1656 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1660 equal_probe_and_action (const void *p1, const void *p2)
1662 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1663 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1665 return pa1->address == pa2->address;
1668 /* Register a solib event probe and its associated action in the
1672 register_solib_event_probe (probe *prob, CORE_ADDR address,
1673 enum probe_action action)
1675 struct svr4_info *info = get_svr4_info ();
1676 struct probe_and_action lookup, *pa;
1679 /* Create the probes table, if necessary. */
1680 if (info->probes_table == NULL)
1681 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1682 equal_probe_and_action,
1683 xfree, xcalloc, xfree);
1686 lookup.address = address;
1687 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1688 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1690 pa = XCNEW (struct probe_and_action);
1692 pa->address = address;
1693 pa->action = action;
1698 /* Get the solib event probe at the specified location, and the
1699 action associated with it. Returns NULL if no solib event probe
1702 static struct probe_and_action *
1703 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1705 struct probe_and_action lookup;
1708 lookup.address = address;
1709 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1714 return (struct probe_and_action *) *slot;
1717 /* Decide what action to take when the specified solib event probe is
1720 static enum probe_action
1721 solib_event_probe_action (struct probe_and_action *pa)
1723 enum probe_action action;
1724 unsigned probe_argc = 0;
1725 struct frame_info *frame = get_current_frame ();
1727 action = pa->action;
1728 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1731 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1733 /* Check that an appropriate number of arguments has been supplied.
1735 arg0: Lmid_t lmid (mandatory)
1736 arg1: struct r_debug *debug_base (mandatory)
1737 arg2: struct link_map *new (optional, for incremental updates) */
1740 probe_argc = pa->prob->get_argument_count (frame);
1742 CATCH (ex, RETURN_MASK_ERROR)
1744 exception_print (gdb_stderr, ex);
1749 /* If get_argument_count throws an exception, probe_argc will be set
1750 to zero. However, if pa->prob does not have arguments, then
1751 get_argument_count will succeed but probe_argc will also be zero.
1752 Both cases happen because of different things, but they are
1753 treated equally here: action will be set to
1754 PROBES_INTERFACE_FAILED. */
1755 if (probe_argc == 2)
1756 action = FULL_RELOAD;
1757 else if (probe_argc < 2)
1758 action = PROBES_INTERFACE_FAILED;
1763 /* Populate the shared object list by reading the entire list of
1764 shared objects from the inferior. Handle special cases relating
1765 to the first elements of the list. Returns nonzero on success. */
1768 solist_update_full (struct svr4_info *info)
1770 free_solib_list (info);
1771 info->solib_list = svr4_current_sos_direct (info);
1776 /* Update the shared object list starting from the link-map entry
1777 passed by the linker in the probe's third argument. Returns
1778 nonzero if the list was successfully updated, or zero to indicate
1782 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1784 struct so_list *tail;
1787 /* svr4_current_sos_direct contains logic to handle a number of
1788 special cases relating to the first elements of the list. To
1789 avoid duplicating this logic we defer to solist_update_full
1790 if the list is empty. */
1791 if (info->solib_list == NULL)
1794 /* Fall back to a full update if we are using a remote target
1795 that does not support incremental transfers. */
1796 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1799 /* Walk to the end of the list. */
1800 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1803 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1804 prev_lm = li->lm_addr;
1806 /* Read the new objects. */
1807 if (info->using_xfer)
1809 struct svr4_library_list library_list;
1812 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1813 phex_nz (lm, sizeof (lm)),
1814 phex_nz (prev_lm, sizeof (prev_lm)));
1815 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1818 tail->next = library_list.head;
1822 struct so_list **link = &tail->next;
1824 /* IGNORE_FIRST may safely be set to zero here because the
1825 above check and deferral to solist_update_full ensures
1826 that this call to svr4_read_so_list will never see the
1828 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1835 /* Disable the probes-based linker interface and revert to the
1836 original interface. We don't reset the breakpoints as the
1837 ones set up for the probes-based interface are adequate. */
1840 disable_probes_interface_cleanup (void *arg)
1842 struct svr4_info *info = get_svr4_info ();
1844 warning (_("Probes-based dynamic linker interface failed.\n"
1845 "Reverting to original interface.\n"));
1847 free_probes_table (info);
1848 free_solib_list (info);
1851 /* Update the solib list as appropriate when using the
1852 probes-based linker interface. Do nothing if using the
1853 standard interface. */
1856 svr4_handle_solib_event (void)
1858 struct svr4_info *info = get_svr4_info ();
1859 struct probe_and_action *pa;
1860 enum probe_action action;
1861 struct cleanup *old_chain;
1862 struct value *val = NULL;
1863 CORE_ADDR pc, debug_base, lm = 0;
1864 struct frame_info *frame = get_current_frame ();
1866 /* Do nothing if not using the probes interface. */
1867 if (info->probes_table == NULL)
1870 /* If anything goes wrong we revert to the original linker
1872 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1874 pc = regcache_read_pc (get_current_regcache ());
1875 pa = solib_event_probe_at (info, pc);
1878 do_cleanups (old_chain);
1882 action = solib_event_probe_action (pa);
1883 if (action == PROBES_INTERFACE_FAILED)
1885 do_cleanups (old_chain);
1889 if (action == DO_NOTHING)
1891 discard_cleanups (old_chain);
1895 /* evaluate_argument looks up symbols in the dynamic linker
1896 using find_pc_section. find_pc_section is accelerated by a cache
1897 called the section map. The section map is invalidated every
1898 time a shared library is loaded or unloaded, and if the inferior
1899 is generating a lot of shared library events then the section map
1900 will be updated every time svr4_handle_solib_event is called.
1901 We called find_pc_section in svr4_create_solib_event_breakpoints,
1902 so we can guarantee that the dynamic linker's sections are in the
1903 section map. We can therefore inhibit section map updates across
1904 these calls to evaluate_argument and save a lot of time. */
1906 scoped_restore inhibit_updates
1907 = inhibit_section_map_updates (current_program_space);
1911 val = pa->prob->evaluate_argument (1, frame);
1913 CATCH (ex, RETURN_MASK_ERROR)
1915 exception_print (gdb_stderr, ex);
1922 do_cleanups (old_chain);
1926 debug_base = value_as_address (val);
1927 if (debug_base == 0)
1929 do_cleanups (old_chain);
1933 /* Always locate the debug struct, in case it moved. */
1934 info->debug_base = 0;
1935 if (locate_base (info) == 0)
1937 do_cleanups (old_chain);
1941 /* GDB does not currently support libraries loaded via dlmopen
1942 into namespaces other than the initial one. We must ignore
1943 any namespace other than the initial namespace here until
1944 support for this is added to GDB. */
1945 if (debug_base != info->debug_base)
1946 action = DO_NOTHING;
1948 if (action == UPDATE_OR_RELOAD)
1952 val = pa->prob->evaluate_argument (2, frame);
1954 CATCH (ex, RETURN_MASK_ERROR)
1956 exception_print (gdb_stderr, ex);
1957 do_cleanups (old_chain);
1963 lm = value_as_address (val);
1966 action = FULL_RELOAD;
1969 /* Resume section map updates. Closing the scope is
1973 if (action == UPDATE_OR_RELOAD)
1975 if (!solist_update_incremental (info, lm))
1976 action = FULL_RELOAD;
1979 if (action == FULL_RELOAD)
1981 if (!solist_update_full (info))
1983 do_cleanups (old_chain);
1988 discard_cleanups (old_chain);
1991 /* Helper function for svr4_update_solib_event_breakpoints. */
1994 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1996 struct bp_location *loc;
1998 if (b->type != bp_shlib_event)
2000 /* Continue iterating. */
2004 for (loc = b->loc; loc != NULL; loc = loc->next)
2006 struct svr4_info *info;
2007 struct probe_and_action *pa;
2009 info = ((struct svr4_info *)
2010 program_space_data (loc->pspace, solib_svr4_pspace_data));
2011 if (info == NULL || info->probes_table == NULL)
2014 pa = solib_event_probe_at (info, loc->address);
2018 if (pa->action == DO_NOTHING)
2020 if (b->enable_state == bp_disabled && stop_on_solib_events)
2021 enable_breakpoint (b);
2022 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2023 disable_breakpoint (b);
2029 /* Continue iterating. */
2033 /* Enable or disable optional solib event breakpoints as appropriate.
2034 Called whenever stop_on_solib_events is changed. */
2037 svr4_update_solib_event_breakpoints (void)
2039 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2042 /* Create and register solib event breakpoints. PROBES is an array
2043 of NUM_PROBES elements, each of which is vector of probes. A
2044 solib event breakpoint will be created and registered for each
2048 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2049 const std::vector<probe *> *probes,
2050 struct objfile *objfile)
2052 for (int i = 0; i < NUM_PROBES; i++)
2054 enum probe_action action = probe_info[i].action;
2056 for (probe *p : probes[i])
2058 CORE_ADDR address = p->get_relocated_address (objfile);
2060 create_solib_event_breakpoint (gdbarch, address);
2061 register_solib_event_probe (p, address, action);
2065 svr4_update_solib_event_breakpoints ();
2068 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2069 before and after mapping and unmapping shared libraries. The sole
2070 purpose of this method is to allow debuggers to set a breakpoint so
2071 they can track these changes.
2073 Some versions of the glibc dynamic linker contain named probes
2074 to allow more fine grained stopping. Given the address of the
2075 original marker function, this function attempts to find these
2076 probes, and if found, sets breakpoints on those instead. If the
2077 probes aren't found, a single breakpoint is set on the original
2081 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2084 struct obj_section *os;
2086 os = find_pc_section (address);
2091 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2093 std::vector<probe *> probes[NUM_PROBES];
2094 int all_probes_found = 1;
2095 int checked_can_use_probe_arguments = 0;
2097 for (int i = 0; i < NUM_PROBES; i++)
2099 const char *name = probe_info[i].name;
2103 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2104 shipped with an early version of the probes code in
2105 which the probes' names were prefixed with "rtld_"
2106 and the "map_failed" probe did not exist. The
2107 locations of the probes are otherwise the same, so
2108 we check for probes with prefixed names if probes
2109 with unprefixed names are not present. */
2112 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2116 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2118 /* The "map_failed" probe did not exist in early
2119 versions of the probes code in which the probes'
2120 names were prefixed with "rtld_". */
2121 if (strcmp (name, "rtld_map_failed") == 0)
2124 if (probes[i].empty ())
2126 all_probes_found = 0;
2130 /* Ensure probe arguments can be evaluated. */
2131 if (!checked_can_use_probe_arguments)
2134 if (!p->can_evaluate_arguments ())
2136 all_probes_found = 0;
2139 checked_can_use_probe_arguments = 1;
2143 if (all_probes_found)
2144 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2146 if (all_probes_found)
2151 create_solib_event_breakpoint (gdbarch, address);
2154 /* Helper function for gdb_bfd_lookup_symbol. */
2157 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2159 return (strcmp (sym->name, (const char *) data) == 0
2160 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2162 /* Arrange for dynamic linker to hit breakpoint.
2164 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2165 debugger interface, support for arranging for the inferior to hit
2166 a breakpoint after mapping in the shared libraries. This function
2167 enables that breakpoint.
2169 For SunOS, there is a special flag location (in_debugger) which we
2170 set to 1. When the dynamic linker sees this flag set, it will set
2171 a breakpoint at a location known only to itself, after saving the
2172 original contents of that place and the breakpoint address itself,
2173 in it's own internal structures. When we resume the inferior, it
2174 will eventually take a SIGTRAP when it runs into the breakpoint.
2175 We handle this (in a different place) by restoring the contents of
2176 the breakpointed location (which is only known after it stops),
2177 chasing around to locate the shared libraries that have been
2178 loaded, then resuming.
2180 For SVR4, the debugger interface structure contains a member (r_brk)
2181 which is statically initialized at the time the shared library is
2182 built, to the offset of a function (_r_debug_state) which is guaran-
2183 teed to be called once before mapping in a library, and again when
2184 the mapping is complete. At the time we are examining this member,
2185 it contains only the unrelocated offset of the function, so we have
2186 to do our own relocation. Later, when the dynamic linker actually
2187 runs, it relocates r_brk to be the actual address of _r_debug_state().
2189 The debugger interface structure also contains an enumeration which
2190 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2191 depending upon whether or not the library is being mapped or unmapped,
2192 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2195 enable_break (struct svr4_info *info, int from_tty)
2197 struct bound_minimal_symbol msymbol;
2198 const char * const *bkpt_namep;
2199 asection *interp_sect;
2203 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2204 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2206 /* If we already have a shared library list in the target, and
2207 r_debug contains r_brk, set the breakpoint there - this should
2208 mean r_brk has already been relocated. Assume the dynamic linker
2209 is the object containing r_brk. */
2211 solib_add (NULL, from_tty, auto_solib_add);
2213 if (info->debug_base && solib_svr4_r_map (info) != 0)
2214 sym_addr = solib_svr4_r_brk (info);
2218 struct obj_section *os;
2220 sym_addr = gdbarch_addr_bits_remove
2222 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2224 current_top_target ()));
2226 /* On at least some versions of Solaris there's a dynamic relocation
2227 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2228 we get control before the dynamic linker has self-relocated.
2229 Check if SYM_ADDR is in a known section, if it is assume we can
2230 trust its value. This is just a heuristic though, it could go away
2231 or be replaced if it's getting in the way.
2233 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2234 however it's spelled in your particular system) is ARM or Thumb.
2235 That knowledge is encoded in the address, if it's Thumb the low bit
2236 is 1. However, we've stripped that info above and it's not clear
2237 what all the consequences are of passing a non-addr_bits_remove'd
2238 address to svr4_create_solib_event_breakpoints. The call to
2239 find_pc_section verifies we know about the address and have some
2240 hope of computing the right kind of breakpoint to use (via
2241 symbol info). It does mean that GDB needs to be pointed at a
2242 non-stripped version of the dynamic linker in order to obtain
2243 information it already knows about. Sigh. */
2245 os = find_pc_section (sym_addr);
2248 /* Record the relocated start and end address of the dynamic linker
2249 text and plt section for svr4_in_dynsym_resolve_code. */
2251 CORE_ADDR load_addr;
2253 tmp_bfd = os->objfile->obfd;
2254 load_addr = ANOFFSET (os->objfile->section_offsets,
2255 SECT_OFF_TEXT (os->objfile));
2257 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2260 info->interp_text_sect_low =
2261 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2262 info->interp_text_sect_high =
2263 info->interp_text_sect_low
2264 + bfd_section_size (tmp_bfd, interp_sect);
2266 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2269 info->interp_plt_sect_low =
2270 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2271 info->interp_plt_sect_high =
2272 info->interp_plt_sect_low
2273 + bfd_section_size (tmp_bfd, interp_sect);
2276 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2281 /* Find the program interpreter; if not found, warn the user and drop
2282 into the old breakpoint at symbol code. */
2283 interp_name = find_program_interpreter ();
2286 CORE_ADDR load_addr = 0;
2287 int load_addr_found = 0;
2288 int loader_found_in_list = 0;
2290 struct target_ops *tmp_bfd_target;
2294 /* Now we need to figure out where the dynamic linker was
2295 loaded so that we can load its symbols and place a breakpoint
2296 in the dynamic linker itself.
2298 This address is stored on the stack. However, I've been unable
2299 to find any magic formula to find it for Solaris (appears to
2300 be trivial on GNU/Linux). Therefore, we have to try an alternate
2301 mechanism to find the dynamic linker's base address. */
2303 gdb_bfd_ref_ptr tmp_bfd;
2306 tmp_bfd = solib_bfd_open (interp_name);
2308 CATCH (ex, RETURN_MASK_ALL)
2313 if (tmp_bfd == NULL)
2314 goto bkpt_at_symbol;
2316 /* Now convert the TMP_BFD into a target. That way target, as
2317 well as BFD operations can be used. target_bfd_reopen
2318 acquires its own reference. */
2319 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2321 /* On a running target, we can get the dynamic linker's base
2322 address from the shared library table. */
2323 so = master_so_list ();
2326 if (svr4_same_1 (interp_name, so->so_original_name))
2328 load_addr_found = 1;
2329 loader_found_in_list = 1;
2330 load_addr = lm_addr_check (so, tmp_bfd.get ());
2336 /* If we were not able to find the base address of the loader
2337 from our so_list, then try using the AT_BASE auxilliary entry. */
2338 if (!load_addr_found)
2339 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2341 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2343 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2344 that `+ load_addr' will overflow CORE_ADDR width not creating
2345 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2348 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2350 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2351 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2354 gdb_assert (load_addr < space_size);
2356 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2357 64bit ld.so with 32bit executable, it should not happen. */
2359 if (tmp_entry_point < space_size
2360 && tmp_entry_point + load_addr >= space_size)
2361 load_addr -= space_size;
2364 load_addr_found = 1;
2367 /* Otherwise we find the dynamic linker's base address by examining
2368 the current pc (which should point at the entry point for the
2369 dynamic linker) and subtracting the offset of the entry point.
2371 This is more fragile than the previous approaches, but is a good
2372 fallback method because it has actually been working well in
2374 if (!load_addr_found)
2376 struct regcache *regcache
2377 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2379 load_addr = (regcache_read_pc (regcache)
2380 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2383 if (!loader_found_in_list)
2385 info->debug_loader_name = xstrdup (interp_name);
2386 info->debug_loader_offset_p = 1;
2387 info->debug_loader_offset = load_addr;
2388 solib_add (NULL, from_tty, auto_solib_add);
2391 /* Record the relocated start and end address of the dynamic linker
2392 text and plt section for svr4_in_dynsym_resolve_code. */
2393 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2396 info->interp_text_sect_low =
2397 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2398 info->interp_text_sect_high =
2399 info->interp_text_sect_low
2400 + bfd_section_size (tmp_bfd.get (), interp_sect);
2402 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2405 info->interp_plt_sect_low =
2406 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2407 info->interp_plt_sect_high =
2408 info->interp_plt_sect_low
2409 + bfd_section_size (tmp_bfd.get (), interp_sect);
2412 /* Now try to set a breakpoint in the dynamic linker. */
2413 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2415 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2416 cmp_name_and_sec_flags,
2423 /* Convert 'sym_addr' from a function pointer to an address.
2424 Because we pass tmp_bfd_target instead of the current
2425 target, this will always produce an unrelocated value. */
2426 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2430 /* We're done with both the temporary bfd and target. Closing
2431 the target closes the underlying bfd, because it holds the
2432 only remaining reference. */
2433 target_close (tmp_bfd_target);
2437 svr4_create_solib_event_breakpoints (target_gdbarch (),
2438 load_addr + sym_addr);
2439 xfree (interp_name);
2443 /* For whatever reason we couldn't set a breakpoint in the dynamic
2444 linker. Warn and drop into the old code. */
2446 xfree (interp_name);
2447 warning (_("Unable to find dynamic linker breakpoint function.\n"
2448 "GDB will be unable to debug shared library initializers\n"
2449 "and track explicitly loaded dynamic code."));
2452 /* Scan through the lists of symbols, trying to look up the symbol and
2453 set a breakpoint there. Terminate loop when we/if we succeed. */
2455 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2457 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2458 if ((msymbol.minsym != NULL)
2459 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2461 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2462 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2464 current_top_target ());
2465 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2470 if (interp_name != NULL && !current_inferior ()->attach_flag)
2472 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2474 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2475 if ((msymbol.minsym != NULL)
2476 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2478 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2479 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2481 current_top_target ());
2482 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2490 /* Read the ELF program headers from ABFD. Return the contents and
2491 set *PHDRS_SIZE to the size of the program headers. */
2494 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
2496 Elf_Internal_Ehdr *ehdr;
2499 ehdr = elf_elfheader (abfd);
2501 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2502 if (*phdrs_size == 0)
2505 buf = (gdb_byte *) xmalloc (*phdrs_size);
2506 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2507 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2516 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2517 exec_bfd. Otherwise return 0.
2519 We relocate all of the sections by the same amount. This
2520 behavior is mandated by recent editions of the System V ABI.
2521 According to the System V Application Binary Interface,
2522 Edition 4.1, page 5-5:
2524 ... Though the system chooses virtual addresses for
2525 individual processes, it maintains the segments' relative
2526 positions. Because position-independent code uses relative
2527 addressesing between segments, the difference between
2528 virtual addresses in memory must match the difference
2529 between virtual addresses in the file. The difference
2530 between the virtual address of any segment in memory and
2531 the corresponding virtual address in the file is thus a
2532 single constant value for any one executable or shared
2533 object in a given process. This difference is the base
2534 address. One use of the base address is to relocate the
2535 memory image of the program during dynamic linking.
2537 The same language also appears in Edition 4.0 of the System V
2538 ABI and is left unspecified in some of the earlier editions.
2540 Decide if the objfile needs to be relocated. As indicated above, we will
2541 only be here when execution is stopped. But during attachment PC can be at
2542 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2543 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2544 regcache_read_pc would point to the interpreter and not the main executable.
2546 So, to summarize, relocations are necessary when the start address obtained
2547 from the executable is different from the address in auxv AT_ENTRY entry.
2549 [ The astute reader will note that we also test to make sure that
2550 the executable in question has the DYNAMIC flag set. It is my
2551 opinion that this test is unnecessary (undesirable even). It
2552 was added to avoid inadvertent relocation of an executable
2553 whose e_type member in the ELF header is not ET_DYN. There may
2554 be a time in the future when it is desirable to do relocations
2555 on other types of files as well in which case this condition
2556 should either be removed or modified to accomodate the new file
2557 type. - Kevin, Nov 2000. ] */
2560 svr4_exec_displacement (CORE_ADDR *displacementp)
2562 /* ENTRY_POINT is a possible function descriptor - before
2563 a call to gdbarch_convert_from_func_ptr_addr. */
2564 CORE_ADDR entry_point, exec_displacement;
2566 if (exec_bfd == NULL)
2569 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2570 being executed themselves and PIE (Position Independent Executable)
2571 executables are ET_DYN. */
2573 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2576 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2579 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2581 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2582 alignment. It is cheaper than the program headers comparison below. */
2584 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2586 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2588 /* p_align of PT_LOAD segments does not specify any alignment but
2589 only congruency of addresses:
2590 p_offset % p_align == p_vaddr % p_align
2591 Kernel is free to load the executable with lower alignment. */
2593 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2597 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2598 comparing their program headers. If the program headers in the auxilliary
2599 vector do not match the program headers in the executable, then we are
2600 looking at a different file than the one used by the kernel - for
2601 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2603 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2605 /* Be optimistic and clear OK only if GDB was able to verify the headers
2606 really do not match. */
2607 int phdrs_size, phdrs2_size, ok = 1;
2608 gdb_byte *buf, *buf2;
2611 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
2612 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
2613 if (buf != NULL && buf2 != NULL)
2615 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2617 /* We are dealing with three different addresses. EXEC_BFD
2618 represents current address in on-disk file. target memory content
2619 may be different from EXEC_BFD as the file may have been prelinked
2620 to a different address after the executable has been loaded.
2621 Moreover the address of placement in target memory can be
2622 different from what the program headers in target memory say -
2623 this is the goal of PIE.
2625 Detected DISPLACEMENT covers both the offsets of PIE placement and
2626 possible new prelink performed after start of the program. Here
2627 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2628 content offset for the verification purpose. */
2630 if (phdrs_size != phdrs2_size
2631 || bfd_get_arch_size (exec_bfd) != arch_size)
2633 else if (arch_size == 32
2634 && phdrs_size >= sizeof (Elf32_External_Phdr)
2635 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2637 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2638 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2639 CORE_ADDR displacement = 0;
2642 /* DISPLACEMENT could be found more easily by the difference of
2643 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2644 already have enough information to compute that displacement
2645 with what we've read. */
2647 for (i = 0; i < ehdr2->e_phnum; i++)
2648 if (phdr2[i].p_type == PT_LOAD)
2650 Elf32_External_Phdr *phdrp;
2651 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2652 CORE_ADDR vaddr, paddr;
2653 CORE_ADDR displacement_vaddr = 0;
2654 CORE_ADDR displacement_paddr = 0;
2656 phdrp = &((Elf32_External_Phdr *) buf)[i];
2657 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2658 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2660 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2662 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2664 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2666 displacement_paddr = paddr - phdr2[i].p_paddr;
2668 if (displacement_vaddr == displacement_paddr)
2669 displacement = displacement_vaddr;
2674 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2676 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2678 Elf32_External_Phdr *phdrp;
2679 Elf32_External_Phdr *phdr2p;
2680 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2681 CORE_ADDR vaddr, paddr;
2682 asection *plt2_asect;
2684 phdrp = &((Elf32_External_Phdr *) buf)[i];
2685 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2686 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2687 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2689 /* PT_GNU_STACK is an exception by being never relocated by
2690 prelink as its addresses are always zero. */
2692 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2695 /* Check also other adjustment combinations - PR 11786. */
2697 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2699 vaddr -= displacement;
2700 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2702 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2704 paddr -= displacement;
2705 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2707 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2710 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2711 CentOS-5 has problems with filesz, memsz as well.
2713 if (phdr2[i].p_type == PT_GNU_RELRO)
2715 Elf32_External_Phdr tmp_phdr = *phdrp;
2716 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2718 memset (tmp_phdr.p_filesz, 0, 4);
2719 memset (tmp_phdr.p_memsz, 0, 4);
2720 memset (tmp_phdr.p_flags, 0, 4);
2721 memset (tmp_phdr.p_align, 0, 4);
2722 memset (tmp_phdr2.p_filesz, 0, 4);
2723 memset (tmp_phdr2.p_memsz, 0, 4);
2724 memset (tmp_phdr2.p_flags, 0, 4);
2725 memset (tmp_phdr2.p_align, 0, 4);
2727 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2732 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2733 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2737 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2740 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2741 & SEC_HAS_CONTENTS) != 0;
2743 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2746 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2747 FILESZ is from the in-memory image. */
2749 filesz += bfd_get_section_size (plt2_asect);
2751 filesz -= bfd_get_section_size (plt2_asect);
2753 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2756 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2764 else if (arch_size == 64
2765 && phdrs_size >= sizeof (Elf64_External_Phdr)
2766 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2768 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2769 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2770 CORE_ADDR displacement = 0;
2773 /* DISPLACEMENT could be found more easily by the difference of
2774 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2775 already have enough information to compute that displacement
2776 with what we've read. */
2778 for (i = 0; i < ehdr2->e_phnum; i++)
2779 if (phdr2[i].p_type == PT_LOAD)
2781 Elf64_External_Phdr *phdrp;
2782 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2783 CORE_ADDR vaddr, paddr;
2784 CORE_ADDR displacement_vaddr = 0;
2785 CORE_ADDR displacement_paddr = 0;
2787 phdrp = &((Elf64_External_Phdr *) buf)[i];
2788 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2789 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2791 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2793 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2795 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2797 displacement_paddr = paddr - phdr2[i].p_paddr;
2799 if (displacement_vaddr == displacement_paddr)
2800 displacement = displacement_vaddr;
2805 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2807 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2809 Elf64_External_Phdr *phdrp;
2810 Elf64_External_Phdr *phdr2p;
2811 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2812 CORE_ADDR vaddr, paddr;
2813 asection *plt2_asect;
2815 phdrp = &((Elf64_External_Phdr *) buf)[i];
2816 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2817 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2818 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2820 /* PT_GNU_STACK is an exception by being never relocated by
2821 prelink as its addresses are always zero. */
2823 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2826 /* Check also other adjustment combinations - PR 11786. */
2828 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2830 vaddr -= displacement;
2831 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2833 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2835 paddr -= displacement;
2836 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2838 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2841 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2842 CentOS-5 has problems with filesz, memsz as well.
2844 if (phdr2[i].p_type == PT_GNU_RELRO)
2846 Elf64_External_Phdr tmp_phdr = *phdrp;
2847 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2849 memset (tmp_phdr.p_filesz, 0, 8);
2850 memset (tmp_phdr.p_memsz, 0, 8);
2851 memset (tmp_phdr.p_flags, 0, 4);
2852 memset (tmp_phdr.p_align, 0, 8);
2853 memset (tmp_phdr2.p_filesz, 0, 8);
2854 memset (tmp_phdr2.p_memsz, 0, 8);
2855 memset (tmp_phdr2.p_flags, 0, 4);
2856 memset (tmp_phdr2.p_align, 0, 8);
2858 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2863 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2864 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2868 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2871 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2872 & SEC_HAS_CONTENTS) != 0;
2874 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2877 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2878 FILESZ is from the in-memory image. */
2880 filesz += bfd_get_section_size (plt2_asect);
2882 filesz -= bfd_get_section_size (plt2_asect);
2884 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2887 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2908 /* It can be printed repeatedly as there is no easy way to check
2909 the executable symbols/file has been already relocated to
2912 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2913 "displacement %s for \"%s\".\n"),
2914 paddress (target_gdbarch (), exec_displacement),
2915 bfd_get_filename (exec_bfd));
2918 *displacementp = exec_displacement;
2922 /* Relocate the main executable. This function should be called upon
2923 stopping the inferior process at the entry point to the program.
2924 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2925 different, the main executable is relocated by the proper amount. */
2928 svr4_relocate_main_executable (void)
2930 CORE_ADDR displacement;
2932 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2933 probably contains the offsets computed using the PIE displacement
2934 from the previous run, which of course are irrelevant for this run.
2935 So we need to determine the new PIE displacement and recompute the
2936 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2937 already contains pre-computed offsets.
2939 If we cannot compute the PIE displacement, either:
2941 - The executable is not PIE.
2943 - SYMFILE_OBJFILE does not match the executable started in the target.
2944 This can happen for main executable symbols loaded at the host while
2945 `ld.so --ld-args main-executable' is loaded in the target.
2947 Then we leave the section offsets untouched and use them as is for
2950 - These section offsets were properly reset earlier, and thus
2951 already contain the correct values. This can happen for instance
2952 when reconnecting via the remote protocol to a target that supports
2953 the `qOffsets' packet.
2955 - The section offsets were not reset earlier, and the best we can
2956 hope is that the old offsets are still applicable to the new run. */
2958 if (! svr4_exec_displacement (&displacement))
2961 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2964 if (symfile_objfile)
2966 struct section_offsets *new_offsets;
2969 new_offsets = XALLOCAVEC (struct section_offsets,
2970 symfile_objfile->num_sections);
2972 for (i = 0; i < symfile_objfile->num_sections; i++)
2973 new_offsets->offsets[i] = displacement;
2975 objfile_relocate (symfile_objfile, new_offsets);
2981 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2982 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2983 (bfd_section_vma (exec_bfd, asect)
2988 /* Implement the "create_inferior_hook" target_solib_ops method.
2990 For SVR4 executables, this first instruction is either the first
2991 instruction in the dynamic linker (for dynamically linked
2992 executables) or the instruction at "start" for statically linked
2993 executables. For dynamically linked executables, the system
2994 first exec's /lib/libc.so.N, which contains the dynamic linker,
2995 and starts it running. The dynamic linker maps in any needed
2996 shared libraries, maps in the actual user executable, and then
2997 jumps to "start" in the user executable.
2999 We can arrange to cooperate with the dynamic linker to discover the
3000 names of shared libraries that are dynamically linked, and the base
3001 addresses to which they are linked.
3003 This function is responsible for discovering those names and
3004 addresses, and saving sufficient information about them to allow
3005 their symbols to be read at a later time. */
3008 svr4_solib_create_inferior_hook (int from_tty)
3010 struct svr4_info *info;
3012 info = get_svr4_info ();
3014 /* Clear the probes-based interface's state. */
3015 free_probes_table (info);
3016 free_solib_list (info);
3018 /* Relocate the main executable if necessary. */
3019 svr4_relocate_main_executable ();
3021 /* No point setting a breakpoint in the dynamic linker if we can't
3022 hit it (e.g., a core file, or a trace file). */
3023 if (!target_has_execution)
3026 if (!svr4_have_link_map_offsets ())
3029 if (!enable_break (info, from_tty))
3034 svr4_clear_solib (void)
3036 struct svr4_info *info;
3038 info = get_svr4_info ();
3039 info->debug_base = 0;
3040 info->debug_loader_offset_p = 0;
3041 info->debug_loader_offset = 0;
3042 xfree (info->debug_loader_name);
3043 info->debug_loader_name = NULL;
3046 /* Clear any bits of ADDR that wouldn't fit in a target-format
3047 data pointer. "Data pointer" here refers to whatever sort of
3048 address the dynamic linker uses to manage its sections. At the
3049 moment, we don't support shared libraries on any processors where
3050 code and data pointers are different sizes.
3052 This isn't really the right solution. What we really need here is
3053 a way to do arithmetic on CORE_ADDR values that respects the
3054 natural pointer/address correspondence. (For example, on the MIPS,
3055 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3056 sign-extend the value. There, simply truncating the bits above
3057 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3058 be a new gdbarch method or something. */
3060 svr4_truncate_ptr (CORE_ADDR addr)
3062 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3063 /* We don't need to truncate anything, and the bit twiddling below
3064 will fail due to overflow problems. */
3067 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3072 svr4_relocate_section_addresses (struct so_list *so,
3073 struct target_section *sec)
3075 bfd *abfd = sec->the_bfd_section->owner;
3077 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3078 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3082 /* Architecture-specific operations. */
3084 /* Per-architecture data key. */
3085 static struct gdbarch_data *solib_svr4_data;
3087 struct solib_svr4_ops
3089 /* Return a description of the layout of `struct link_map'. */
3090 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3093 /* Return a default for the architecture-specific operations. */
3096 solib_svr4_init (struct obstack *obstack)
3098 struct solib_svr4_ops *ops;
3100 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3101 ops->fetch_link_map_offsets = NULL;
3105 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3106 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3109 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3110 struct link_map_offsets *(*flmo) (void))
3112 struct solib_svr4_ops *ops
3113 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3115 ops->fetch_link_map_offsets = flmo;
3117 set_solib_ops (gdbarch, &svr4_so_ops);
3120 /* Fetch a link_map_offsets structure using the architecture-specific
3121 `struct link_map_offsets' fetcher. */
3123 static struct link_map_offsets *
3124 svr4_fetch_link_map_offsets (void)
3126 struct solib_svr4_ops *ops
3127 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3130 gdb_assert (ops->fetch_link_map_offsets);
3131 return ops->fetch_link_map_offsets ();
3134 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3137 svr4_have_link_map_offsets (void)
3139 struct solib_svr4_ops *ops
3140 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3143 return (ops->fetch_link_map_offsets != NULL);
3147 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3148 `struct r_debug' and a `struct link_map' that are binary compatible
3149 with the origional SVR4 implementation. */
3151 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3152 for an ILP32 SVR4 system. */
3154 struct link_map_offsets *
3155 svr4_ilp32_fetch_link_map_offsets (void)
3157 static struct link_map_offsets lmo;
3158 static struct link_map_offsets *lmp = NULL;
3164 lmo.r_version_offset = 0;
3165 lmo.r_version_size = 4;
3166 lmo.r_map_offset = 4;
3167 lmo.r_brk_offset = 8;
3168 lmo.r_ldsomap_offset = 20;
3170 /* Everything we need is in the first 20 bytes. */
3171 lmo.link_map_size = 20;
3172 lmo.l_addr_offset = 0;
3173 lmo.l_name_offset = 4;
3174 lmo.l_ld_offset = 8;
3175 lmo.l_next_offset = 12;
3176 lmo.l_prev_offset = 16;
3182 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3183 for an LP64 SVR4 system. */
3185 struct link_map_offsets *
3186 svr4_lp64_fetch_link_map_offsets (void)
3188 static struct link_map_offsets lmo;
3189 static struct link_map_offsets *lmp = NULL;
3195 lmo.r_version_offset = 0;
3196 lmo.r_version_size = 4;
3197 lmo.r_map_offset = 8;
3198 lmo.r_brk_offset = 16;
3199 lmo.r_ldsomap_offset = 40;
3201 /* Everything we need is in the first 40 bytes. */
3202 lmo.link_map_size = 40;
3203 lmo.l_addr_offset = 0;
3204 lmo.l_name_offset = 8;
3205 lmo.l_ld_offset = 16;
3206 lmo.l_next_offset = 24;
3207 lmo.l_prev_offset = 32;
3214 struct target_so_ops svr4_so_ops;
3216 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3217 different rule for symbol lookup. The lookup begins here in the DSO, not in
3218 the main executable. */
3220 static struct block_symbol
3221 elf_lookup_lib_symbol (struct objfile *objfile,
3223 const domain_enum domain)
3227 if (objfile == symfile_objfile)
3231 /* OBJFILE should have been passed as the non-debug one. */
3232 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3234 abfd = objfile->obfd;
3237 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3238 return (struct block_symbol) {NULL, NULL};
3240 return lookup_global_symbol_from_objfile (objfile, name, domain);
3244 _initialize_svr4_solib (void)
3246 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3247 solib_svr4_pspace_data
3248 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3250 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3251 svr4_so_ops.free_so = svr4_free_so;
3252 svr4_so_ops.clear_so = svr4_clear_so;
3253 svr4_so_ops.clear_solib = svr4_clear_solib;
3254 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3255 svr4_so_ops.current_sos = svr4_current_sos;
3256 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3257 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3258 svr4_so_ops.bfd_open = solib_bfd_open;
3259 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3260 svr4_so_ops.same = svr4_same;
3261 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3262 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3263 svr4_so_ops.handle_event = svr4_handle_solib_event;