1 /* Shared library support for IRIX.
2 Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004
3 Free Software Foundation, Inc.
5 This file was created using portions of irix5-nat.c originally
6 contributed to GDB by Ian Lance Taylor.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
29 /* FIXME: ezannoni/2004-02-13 Verify that the include below is
39 /* Link map info to include in an allocate so_list entry. Unlike some
40 of the other solib backends, this (Irix) backend chooses to decode
41 the link map info obtained from the target and store it as (mostly)
42 CORE_ADDRs which need no further decoding. This is more convenient
43 because there are three different link map formats to worry about.
44 We use a single routine (fetch_lm_info) to read (and decode) the target
45 specific link map data. */
49 CORE_ADDR addr; /* address of obj_info or obj_list
50 struct on target (from which the
51 following information is obtained). */
52 CORE_ADDR next; /* address of next item in list. */
53 CORE_ADDR reloc_offset; /* amount to relocate by */
54 CORE_ADDR pathname_addr; /* address of pathname */
55 int pathname_len; /* length of pathname */
58 /* It's not desirable to use the system header files to obtain the
59 structure of the obj_list or obj_info structs. Therefore, we use a
60 platform neutral representation which has been derived from the IRIX
74 /* The "old" obj_list struct. This is used with old (o32) binaries.
75 The ``data'' member points at a much larger and more complicated
76 struct which we will only refer to by offsets. See
86 /* The ELF32 and ELF64 versions of the above struct. The oi_magic value
87 corresponds to the ``data'' value in the "old" struct. When this value
88 is 0xffffffff, the data will be in one of the following formats. The
89 ``oi_size'' field is used to decide which one we actually have. */
91 struct irix_elf32_obj_info
93 gdb_int32_bytes oi_magic;
94 gdb_int32_bytes oi_size;
95 gdb_int32_bytes oi_next;
96 gdb_int32_bytes oi_prev;
97 gdb_int32_bytes oi_ehdr;
98 gdb_int32_bytes oi_orig_ehdr;
99 gdb_int32_bytes oi_pathname;
100 gdb_int32_bytes oi_pathname_len;
103 struct irix_elf64_obj_info
105 gdb_int32_bytes oi_magic;
106 gdb_int32_bytes oi_size;
107 gdb_int64_bytes oi_next;
108 gdb_int64_bytes oi_prev;
109 gdb_int64_bytes oi_ehdr;
110 gdb_int64_bytes oi_orig_ehdr;
111 gdb_int64_bytes oi_pathname;
112 gdb_int32_bytes oi_pathname_len;
113 gdb_int32_bytes padding;
116 /* Union of all of the above (plus a split out magic field). */
120 gdb_int32_bytes magic;
121 struct irix_obj_list ol32;
122 struct irix_elf32_obj_info oi32;
123 struct irix_elf64_obj_info oi64;
126 /* MIPS sign extends its 32 bit addresses. We could conceivably use
127 extract_typed_address here, but to do so, we'd have to construct an
128 appropriate type. Calling extract_signed_integer seems simpler. */
131 extract_mips_address (void *addr, int len)
133 return extract_signed_integer (addr, len);
136 /* Fetch and return the link map data associated with ADDR. Note that
137 this routine automatically determines which (of three) link map
138 formats is in use by the target. */
141 fetch_lm_info (CORE_ADDR addr)
144 union irix_obj_info buf;
148 /* The smallest region that we'll need is for buf.ol32. We'll read
149 that first. We'll read more of the buffer later if we have to deal
150 with one of the other cases. (We don't want to incur a memory error
151 if we were to read a larger region that generates an error due to
152 being at the end of a page or the like.) */
153 read_memory (addr, (char *) &buf, sizeof (buf.ol32));
155 if (extract_unsigned_integer (&buf.magic, sizeof (buf.magic)) != 0xffffffff)
157 /* Use buf.ol32... */
159 CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
160 sizeof (buf.ol32.data));
161 li.next = extract_mips_address (&buf.ol32.next, sizeof (buf.ol32.next));
163 read_memory (obj_addr, obj_buf, sizeof (obj_buf));
165 li.pathname_addr = extract_mips_address (&obj_buf[236], 4);
166 li.pathname_len = 0; /* unknown */
167 li.reloc_offset = extract_mips_address (&obj_buf[196], 4)
168 - extract_mips_address (&obj_buf[248], 4);
171 else if (extract_unsigned_integer (&buf.oi32.oi_size,
172 sizeof (buf.oi32.oi_size))
173 == sizeof (buf.oi32))
175 /* Use buf.oi32... */
177 /* Read rest of buffer. */
178 read_memory (addr + sizeof (buf.ol32),
179 ((char *) &buf) + sizeof (buf.ol32),
180 sizeof (buf.oi32) - sizeof (buf.ol32));
182 /* Fill in fields using buffer contents. */
183 li.next = extract_mips_address (&buf.oi32.oi_next,
184 sizeof (buf.oi32.oi_next));
185 li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
186 sizeof (buf.oi32.oi_ehdr))
187 - extract_mips_address (&buf.oi32.oi_orig_ehdr,
188 sizeof (buf.oi32.oi_orig_ehdr));
189 li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
190 sizeof (buf.oi32.oi_pathname));
191 li.pathname_len = extract_unsigned_integer (&buf.oi32.oi_pathname_len,
195 else if (extract_unsigned_integer (&buf.oi64.oi_size,
196 sizeof (buf.oi64.oi_size))
197 == sizeof (buf.oi64))
199 /* Use buf.oi64... */
201 /* Read rest of buffer. */
202 read_memory (addr + sizeof (buf.ol32),
203 ((char *) &buf) + sizeof (buf.ol32),
204 sizeof (buf.oi64) - sizeof (buf.ol32));
206 /* Fill in fields using buffer contents. */
207 li.next = extract_mips_address (&buf.oi64.oi_next,
208 sizeof (buf.oi64.oi_next));
209 li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
210 sizeof (buf.oi64.oi_ehdr))
211 - extract_mips_address (&buf.oi64.oi_orig_ehdr,
212 sizeof (buf.oi64.oi_orig_ehdr));
213 li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
214 sizeof (buf.oi64.oi_pathname));
215 li.pathname_len = extract_unsigned_integer (&buf.oi64.oi_pathname_len,
221 error (_("Unable to fetch shared library obj_info or obj_list info."));
227 /* The symbol which starts off the list of shared libraries. */
228 #define DEBUG_BASE "__rld_obj_head"
230 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
232 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
233 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
239 locate_base -- locate the base address of dynamic linker structs
243 CORE_ADDR locate_base (void)
247 For both the SunOS and SVR4 shared library implementations, if the
248 inferior executable has been linked dynamically, there is a single
249 address somewhere in the inferior's data space which is the key to
250 locating all of the dynamic linker's runtime structures. This
251 address is the value of the symbol defined by the macro DEBUG_BASE.
252 The job of this function is to find and return that address, or to
253 return 0 if there is no such address (the executable is statically
256 For SunOS, the job is almost trivial, since the dynamic linker and
257 all of it's structures are statically linked to the executable at
258 link time. Thus the symbol for the address we are looking for has
259 already been added to the minimal symbol table for the executable's
260 objfile at the time the symbol file's symbols were read, and all we
261 have to do is look it up there. Note that we explicitly do NOT want
262 to find the copies in the shared library.
264 The SVR4 version is much more complicated because the dynamic linker
265 and it's structures are located in the shared C library, which gets
266 run as the executable's "interpreter" by the kernel. We have to go
267 to a lot more work to discover the address of DEBUG_BASE. Because
268 of this complexity, we cache the value we find and return that value
269 on subsequent invocations. Note there is no copy in the executable
272 Irix 5 is basically like SunOS.
274 Note that we can assume nothing about the process state at the time
275 we need to find this address. We may be stopped on the first instruc-
276 tion of the interpreter (C shared library), the first instruction of
277 the executable itself, or somewhere else entirely (if we attached
278 to the process for example).
285 struct minimal_symbol *msymbol;
286 CORE_ADDR address = 0;
288 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
289 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
291 address = SYMBOL_VALUE_ADDRESS (msymbol);
300 disable_break -- remove the "mapping changed" breakpoint
304 static int disable_break ()
308 Removes the breakpoint that gets hit when the dynamic linker
309 completes a mapping change.
319 /* Note that breakpoint address and original contents are in our address
320 space, so we just need to write the original contents back. */
322 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
327 /* Note that it is possible that we have stopped at a location that
328 is different from the location where we inserted our breakpoint.
329 On mips-irix, we can actually land in __dbx_init(), so we should
330 not check the PC against our breakpoint address here. See procfs.c
340 enable_break -- arrange for dynamic linker to hit breakpoint
344 int enable_break (void)
348 This functions inserts a breakpoint at the entry point of the
349 main executable, where all shared libraries are mapped in.
355 if (symfile_objfile != NULL
356 && target_insert_breakpoint (entry_point_address (),
357 shadow_contents) == 0)
359 breakpoint_addr = entry_point_address ();
370 irix_solib_create_inferior_hook -- shared library startup support
374 void solib_create_inferior_hook ()
378 When gdb starts up the inferior, it nurses it along (through the
379 shell) until it is ready to execute it's first instruction. At this
380 point, this function gets called via expansion of the macro
381 SOLIB_CREATE_INFERIOR_HOOK.
383 For SunOS executables, this first instruction is typically the
384 one at "_start", or a similar text label, regardless of whether
385 the executable is statically or dynamically linked. The runtime
386 startup code takes care of dynamically linking in any shared
387 libraries, once gdb allows the inferior to continue.
389 For SVR4 executables, this first instruction is either the first
390 instruction in the dynamic linker (for dynamically linked
391 executables) or the instruction at "start" for statically linked
392 executables. For dynamically linked executables, the system
393 first exec's /lib/libc.so.N, which contains the dynamic linker,
394 and starts it running. The dynamic linker maps in any needed
395 shared libraries, maps in the actual user executable, and then
396 jumps to "start" in the user executable.
398 For both SunOS shared libraries, and SVR4 shared libraries, we
399 can arrange to cooperate with the dynamic linker to discover the
400 names of shared libraries that are dynamically linked, and the
401 base addresses to which they are linked.
403 This function is responsible for discovering those names and
404 addresses, and saving sufficient information about them to allow
405 their symbols to be read at a later time.
409 Between enable_break() and disable_break(), this code does not
410 properly handle hitting breakpoints which the user might have
411 set in the startup code or in the dynamic linker itself. Proper
412 handling will probably have to wait until the implementation is
413 changed to use the "breakpoint handler function" method.
415 Also, what if child has exit()ed? Must exit loop somehow.
419 irix_solib_create_inferior_hook (void)
421 if (!enable_break ())
423 warning (_("shared library handler failed to enable breakpoint"));
427 /* Now run the target. It will eventually hit the breakpoint, at
428 which point all of the libraries will have been mapped in and we
429 can go groveling around in the dynamic linker structures to find
430 out what we need to know about them. */
432 clear_proceed_status ();
433 stop_soon = STOP_QUIETLY;
434 stop_signal = TARGET_SIGNAL_0;
437 target_resume (pid_to_ptid (-1), 0, stop_signal);
438 wait_for_inferior ();
440 while (stop_signal != TARGET_SIGNAL_TRAP);
442 /* We are now either at the "mapping complete" breakpoint (or somewhere
443 else, a condition we aren't prepared to deal with anyway), so adjust
444 the PC as necessary after a breakpoint, disable the breakpoint, and
445 add any shared libraries that were mapped in. */
447 if (!disable_break ())
449 warning (_("shared library handler failed to disable breakpoint"));
452 /* solib_add will call reinit_frame_cache.
453 But we are stopped in the startup code and we might not have symbols
454 for the startup code, so heuristic_proc_start could be called
455 and will put out an annoying warning.
456 Delaying the resetting of stop_soon until after symbol loading
457 suppresses the warning. */
458 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
459 stop_soon = NO_STOP_QUIETLY;
460 re_enable_breakpoints_in_shlibs ();
465 current_sos -- build a list of currently loaded shared objects
469 struct so_list *current_sos ()
473 Build a list of `struct so_list' objects describing the shared
474 objects currently loaded in the inferior. This list does not
475 include an entry for the main executable file.
477 Note that we only gather information directly available from the
478 inferior --- we don't examine any of the shared library files
479 themselves. The declaration of `struct so_list' says which fields
480 we provide values for. */
482 static struct so_list *
483 irix_current_sos (void)
487 struct so_list *head = 0;
488 struct so_list **link_ptr = &head;
492 /* Make sure we've looked up the inferior's dynamic linker's base
496 debug_base = locate_base ();
498 /* If we can't find the dynamic linker's base structure, this
499 must not be a dynamically linked executable. Hmm. */
504 read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
505 lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
509 lm = fetch_lm_info (lma);
516 = (struct so_list *) xmalloc (sizeof (struct so_list));
517 struct cleanup *old_chain = make_cleanup (xfree, new);
519 memset (new, 0, sizeof (*new));
521 new->lm_info = xmalloc (sizeof (struct lm_info));
522 make_cleanup (xfree, new->lm_info);
526 /* Extract this shared object's name. */
527 name_size = lm.pathname_len;
529 name_size = SO_NAME_MAX_PATH_SIZE - 1;
531 if (name_size >= SO_NAME_MAX_PATH_SIZE)
533 name_size = SO_NAME_MAX_PATH_SIZE - 1;
535 ("current_sos: truncating name of %d characters to only %d characters",
536 lm.pathname_len, name_size);
539 target_read_string (lm.pathname_addr, &name_buf,
540 name_size, &errcode);
542 warning (_("Can't read pathname for load map: %s."),
543 safe_strerror (errcode));
546 strncpy (new->so_name, name_buf, name_size);
547 new->so_name[name_size] = '\0';
549 strcpy (new->so_original_name, new->so_name);
554 link_ptr = &new->next;
556 discard_cleanups (old_chain);
569 irix_open_symbol_file_object
573 void irix_open_symbol_file_object (void *from_tty)
577 If no open symbol file, attempt to locate and open the main symbol
578 file. On IRIX, this is the first link map entry. If its name is
579 here, we can open it. Useful when attaching to a process without
580 first loading its symbol file.
582 If FROM_TTYP dereferences to a non-zero integer, allow messages to
583 be printed. This parameter is a pointer rather than an int because
584 open_symbol_file_object() is called via catch_errors() and
585 catch_errors() requires a pointer argument. */
588 irix_open_symbol_file_object (void *from_ttyp)
593 struct cleanup *cleanups;
595 int from_tty = *(int *) from_ttyp;
599 if (!query ("Attempt to reload symbols from process? "))
602 if ((debug_base = locate_base ()) == 0)
603 return 0; /* failed somehow... */
605 /* First link map member should be the executable. */
606 read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
607 lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
609 return 0; /* failed somehow... */
611 lm = fetch_lm_info (lma);
613 if (lm.pathname_addr == 0)
614 return 0; /* No filename. */
616 /* Now fetch the filename from target memory. */
617 target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
622 warning (_("failed to read exec filename from attached file: %s"),
623 safe_strerror (errcode));
627 cleanups = make_cleanup (xfree, filename);
628 /* Have a pathname: read the symbol file. */
629 symbol_file_add_main (filename, from_tty);
631 do_cleanups (cleanups);
641 irix_special_symbol_handling -- additional shared library symbol handling
645 void irix_special_symbol_handling ()
649 Once the symbols from a shared object have been loaded in the usual
650 way, we are called to do any system specific symbol handling that
653 For SunOS4, this consisted of grunging around in the dynamic
654 linkers structures to find symbol definitions for "common" symbols
655 and adding them to the minimal symbol table for the runtime common
658 However, for IRIX, there's nothing to do.
663 irix_special_symbol_handling (void)
667 /* Using the solist entry SO, relocate the addresses in SEC. */
670 irix_relocate_section_addresses (struct so_list *so,
671 struct section_table *sec)
673 sec->addr += so->lm_info->reloc_offset;
674 sec->endaddr += so->lm_info->reloc_offset;
677 /* Free the lm_info struct. */
680 irix_free_so (struct so_list *so)
685 /* Clear backend specific state. */
688 irix_clear_solib (void)
693 /* Return 1 if PC lies in the dynamic symbol resolution code of the
696 irix_in_dynsym_resolve_code (CORE_ADDR pc)
701 static struct target_so_ops irix_so_ops;
704 _initialize_irix_solib (void)
706 irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
707 irix_so_ops.free_so = irix_free_so;
708 irix_so_ops.clear_solib = irix_clear_solib;
709 irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
710 irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
711 irix_so_ops.current_sos = irix_current_sos;
712 irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
713 irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
715 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
716 current_target_so_ops = &irix_so_ops;