1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
33 #include "exceptions.h"
36 /* Flag which indicates whether internal debug messages should be printed. */
37 static unsigned int solib_frv_debug;
39 /* FR-V pointers are four bytes wide. */
40 enum { FRV_PTR_SIZE = 4 };
42 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
44 /* External versions; the size and alignment of the fields should be
45 the same as those on the target. When loaded, the placement of
46 the bits in each field will be the same as on the target. */
47 typedef gdb_byte ext_Elf32_Half[2];
48 typedef gdb_byte ext_Elf32_Addr[4];
49 typedef gdb_byte ext_Elf32_Word[4];
51 struct ext_elf32_fdpic_loadseg
53 /* Core address to which the segment is mapped. */
55 /* VMA recorded in the program header. */
56 ext_Elf32_Addr p_vaddr;
57 /* Size of this segment in memory. */
58 ext_Elf32_Word p_memsz;
61 struct ext_elf32_fdpic_loadmap {
62 /* Protocol version number, must be zero. */
63 ext_Elf32_Half version;
64 /* Number of segments in this map. */
66 /* The actual memory map. */
67 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
70 /* Internal versions; the types are GDB types and the data in each
71 of the fields is (or will be) decoded from the external struct
72 for ease of consumption. */
73 struct int_elf32_fdpic_loadseg
75 /* Core address to which the segment is mapped. */
77 /* VMA recorded in the program header. */
79 /* Size of this segment in memory. */
83 struct int_elf32_fdpic_loadmap {
84 /* Protocol version number, must be zero. */
86 /* Number of segments in this map. */
88 /* The actual memory map. */
89 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
92 /* Given address LDMADDR, fetch and decode the loadmap at that address.
93 Return NULL if there is a problem reading the target memory or if
94 there doesn't appear to be a loadmap at the given address. The
95 allocated space (representing the loadmap) returned by this
96 function may be freed via a single call to xfree(). */
98 static struct int_elf32_fdpic_loadmap *
99 fetch_loadmap (CORE_ADDR ldmaddr)
101 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
102 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
103 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
104 struct int_elf32_fdpic_loadmap *int_ldmbuf;
105 int ext_ldmbuf_size, int_ldmbuf_size;
106 int version, seg, nsegs;
108 /* Fetch initial portion of the loadmap. */
109 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
110 sizeof ext_ldmbuf_partial))
112 /* Problem reading the target's memory. */
116 /* Extract the version. */
117 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
118 sizeof ext_ldmbuf_partial.version,
122 /* We only handle version 0. */
126 /* Extract the number of segments. */
127 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
128 sizeof ext_ldmbuf_partial.nsegs,
134 /* Allocate space for the complete (external) loadmap. */
135 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
136 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
137 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
139 /* Copy over the portion of the loadmap that's already been read. */
140 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
142 /* Read the rest of the loadmap from the target. */
143 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
144 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
145 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
147 /* Couldn't read rest of the loadmap. */
152 /* Allocate space into which to put information extract from the
153 external loadsegs. I.e, allocate the internal loadsegs. */
154 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
155 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
156 int_ldmbuf = xmalloc (int_ldmbuf_size);
158 /* Place extracted information in internal structs. */
159 int_ldmbuf->version = version;
160 int_ldmbuf->nsegs = nsegs;
161 for (seg = 0; seg < nsegs; seg++)
163 int_ldmbuf->segs[seg].addr
164 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
165 sizeof (ext_ldmbuf->segs[seg].addr),
167 int_ldmbuf->segs[seg].p_vaddr
168 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
169 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
171 int_ldmbuf->segs[seg].p_memsz
172 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
173 sizeof (ext_ldmbuf->segs[seg].p_memsz),
181 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
183 typedef gdb_byte ext_ptr[4];
185 struct ext_elf32_fdpic_loadaddr
187 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
188 ext_ptr got_value; /* void *got_value; */
193 struct ext_elf32_fdpic_loadaddr l_addr;
195 /* Absolute file name object was found in. */
196 ext_ptr l_name; /* char *l_name; */
198 /* Dynamic section of the shared object. */
199 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
201 /* Chain of loaded objects. */
202 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
205 /* Link map info to include in an allocated so_list entry. */
209 /* The loadmap, digested into an easier to use form. */
210 struct int_elf32_fdpic_loadmap *map;
211 /* The GOT address for this link map entry. */
213 /* The link map address, needed for frv_fetch_objfile_link_map(). */
216 /* Cached dynamic symbol table and dynamic relocs initialized and
217 used only by find_canonical_descriptor_in_load_object().
219 Note: kevinb/2004-02-26: It appears that calls to
220 bfd_canonicalize_dynamic_reloc() will use the same symbols as
221 those supplied to the first call to this function. Therefore,
222 it's important to NOT free the asymbol ** data structure
223 supplied to the first call. Thus the caching of the dynamic
224 symbols (dyn_syms) is critical for correct operation. The
225 caching of the dynamic relocations could be dispensed with. */
227 arelent **dyn_relocs;
228 int dyn_reloc_count; /* Number of dynamic relocs. */
232 /* The load map, got value, etc. are not available from the chain
233 of loaded shared objects. ``main_executable_lm_info'' provides
234 a way to get at this information so that it doesn't need to be
235 frequently recomputed. Initialized by frv_relocate_main_executable(). */
236 static struct lm_info *main_executable_lm_info;
238 static void frv_relocate_main_executable (void);
239 static CORE_ADDR main_got (void);
240 static int enable_break2 (void);
242 /* Implement the "open_symbol_file_object" target_so_ops method. */
245 open_symbol_file_object (void *from_ttyp)
251 /* Cached value for lm_base(), below. */
252 static CORE_ADDR lm_base_cache = 0;
254 /* Link map address for main module. */
255 static CORE_ADDR main_lm_addr = 0;
257 /* Return the address from which the link map chain may be found. On
258 the FR-V, this may be found in a number of ways. Assuming that the
259 main executable has already been relocated, the easiest way to find
260 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
261 pointer to the start of the link map will be located at the word found
262 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
263 reserve area mandated by the ABI.) */
268 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
269 struct bound_minimal_symbol got_sym;
271 gdb_byte buf[FRV_PTR_SIZE];
273 /* One of our assumptions is that the main executable has been relocated.
274 Bail out if this has not happened. (Note that post_create_inferior()
275 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
276 If we allow this to happen, lm_base_cache will be initialized with
278 if (main_executable_lm_info == 0)
281 /* If we already have a cached value, return it. */
283 return lm_base_cache;
285 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
287 if (got_sym.minsym == 0)
290 fprintf_unfiltered (gdb_stdlog,
291 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
295 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
298 fprintf_unfiltered (gdb_stdlog,
299 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
300 hex_string_custom (addr, 8));
302 if (target_read_memory (addr, buf, sizeof buf) != 0)
304 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
307 fprintf_unfiltered (gdb_stdlog,
308 "lm_base: lm_base_cache = %s\n",
309 hex_string_custom (lm_base_cache, 8));
311 return lm_base_cache;
315 /* Implement the "current_sos" target_so_ops method. */
317 static struct so_list *
318 frv_current_sos (void)
320 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
321 CORE_ADDR lm_addr, mgot;
322 struct so_list *sos_head = NULL;
323 struct so_list **sos_next_ptr = &sos_head;
325 /* Make sure that the main executable has been relocated. This is
326 required in order to find the address of the global offset table,
327 which in turn is used to find the link map info. (See lm_base()
330 Note that the relocation of the main executable is also performed
331 by solib_create_inferior_hook(), however, in the case of core
332 files, this hook is called too late in order to be of benefit to
333 solib_add. solib_add eventually calls this this function,
334 frv_current_sos, and also precedes the call to
335 solib_create_inferior_hook(). (See post_create_inferior() in
337 if (main_executable_lm_info == 0 && core_bfd != NULL)
338 frv_relocate_main_executable ();
340 /* Fetch the GOT corresponding to the main executable. */
343 /* Locate the address of the first link map struct. */
344 lm_addr = lm_base ();
346 /* We have at least one link map entry. Fetch the lot of them,
347 building the solist chain. */
350 struct ext_link_map lm_buf;
354 fprintf_unfiltered (gdb_stdlog,
355 "current_sos: reading link_map entry at %s\n",
356 hex_string_custom (lm_addr, 8));
358 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
359 sizeof (lm_buf)) != 0)
361 warning (_("frv_current_sos: Unable to read link map entry. "
362 "Shared object chain may be incomplete."));
367 = extract_unsigned_integer (lm_buf.l_addr.got_value,
368 sizeof (lm_buf.l_addr.got_value),
370 /* If the got_addr is the same as mgotr, then we're looking at the
371 entry for the main executable. By convention, we don't include
372 this in the list of shared objects. */
373 if (got_addr != mgot)
377 struct int_elf32_fdpic_loadmap *loadmap;
381 /* Fetch the load map address. */
382 addr = extract_unsigned_integer (lm_buf.l_addr.map,
383 sizeof lm_buf.l_addr.map,
385 loadmap = fetch_loadmap (addr);
388 warning (_("frv_current_sos: Unable to fetch load map. "
389 "Shared object chain may be incomplete."));
393 sop = xcalloc (1, sizeof (struct so_list));
394 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
395 sop->lm_info->map = loadmap;
396 sop->lm_info->got_value = got_addr;
397 sop->lm_info->lm_addr = lm_addr;
398 /* Fetch the name. */
399 addr = extract_unsigned_integer (lm_buf.l_name,
400 sizeof (lm_buf.l_name),
402 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
406 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
410 warning (_("Can't read pathname for link map entry: %s."),
411 safe_strerror (errcode));
414 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
415 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
417 strcpy (sop->so_original_name, sop->so_name);
421 sos_next_ptr = &sop->next;
425 main_lm_addr = lm_addr;
428 lm_addr = extract_unsigned_integer (lm_buf.l_next,
429 sizeof (lm_buf.l_next), byte_order);
438 /* Return 1 if PC lies in the dynamic symbol resolution code of the
441 static CORE_ADDR interp_text_sect_low;
442 static CORE_ADDR interp_text_sect_high;
443 static CORE_ADDR interp_plt_sect_low;
444 static CORE_ADDR interp_plt_sect_high;
447 frv_in_dynsym_resolve_code (CORE_ADDR pc)
449 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
450 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
451 || in_plt_section (pc));
454 /* Given a loadmap and an address, return the displacement needed
455 to relocate the address. */
458 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
463 for (seg = 0; seg < map->nsegs; seg++)
465 if (map->segs[seg].p_vaddr <= addr
466 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
468 return map->segs[seg].addr - map->segs[seg].p_vaddr;
475 /* Print a warning about being unable to set the dynamic linker
479 enable_break_failure_warning (void)
481 warning (_("Unable to find dynamic linker breakpoint function.\n"
482 "GDB will be unable to debug shared library initializers\n"
483 "and track explicitly loaded dynamic code."));
486 /* Helper function for gdb_bfd_lookup_symbol. */
489 cmp_name (asymbol *sym, void *data)
491 return (strcmp (sym->name, (const char *) data) == 0);
494 /* Arrange for dynamic linker to hit breakpoint.
496 The dynamic linkers has, as part of its debugger interface, support
497 for arranging for the inferior to hit a breakpoint after mapping in
498 the shared libraries. This function enables that breakpoint.
500 On the FR-V, using the shared library (FDPIC) ABI, the symbol
501 _dl_debug_addr points to the r_debug struct which contains
502 a field called r_brk. r_brk is the address of the function
503 descriptor upon which a breakpoint must be placed. Being a
504 function descriptor, we must extract the entry point in order
505 to set the breakpoint.
507 Our strategy will be to get the .interp section from the
508 executable. This section will provide us with the name of the
509 interpreter. We'll open the interpreter and then look up
510 the address of _dl_debug_addr. We then relocate this address
511 using the interpreter's loadmap. Once the relocated address
512 is known, we fetch the value (address) corresponding to r_brk
513 and then use that value to fetch the entry point of the function
514 we're interested in. */
516 static int enable_break2_done = 0;
521 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
524 asection *interp_sect;
526 if (enable_break2_done)
529 interp_text_sect_low = interp_text_sect_high = 0;
530 interp_plt_sect_low = interp_plt_sect_high = 0;
532 /* Find the .interp section; if not found, warn the user and drop
533 into the old breakpoint at symbol code. */
534 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
537 unsigned int interp_sect_size;
541 CORE_ADDR addr, interp_loadmap_addr;
542 gdb_byte addr_buf[FRV_PTR_SIZE];
543 struct int_elf32_fdpic_loadmap *ldm;
544 volatile struct gdb_exception ex;
546 /* Read the contents of the .interp section into a local buffer;
547 the contents specify the dynamic linker this program uses. */
548 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
549 buf = alloca (interp_sect_size);
550 bfd_get_section_contents (exec_bfd, interp_sect,
551 buf, 0, interp_sect_size);
553 /* Now we need to figure out where the dynamic linker was
554 loaded so that we can load its symbols and place a breakpoint
555 in the dynamic linker itself.
557 This address is stored on the stack. However, I've been unable
558 to find any magic formula to find it for Solaris (appears to
559 be trivial on GNU/Linux). Therefore, we have to try an alternate
560 mechanism to find the dynamic linker's base address. */
562 TRY_CATCH (ex, RETURN_MASK_ALL)
564 tmp_bfd = solib_bfd_open (buf);
568 enable_break_failure_warning ();
572 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
573 &interp_loadmap_addr, 0);
576 warning (_("Unable to determine dynamic linker loadmap address."));
577 enable_break_failure_warning ();
578 gdb_bfd_unref (tmp_bfd);
583 fprintf_unfiltered (gdb_stdlog,
584 "enable_break: interp_loadmap_addr = %s\n",
585 hex_string_custom (interp_loadmap_addr, 8));
587 ldm = fetch_loadmap (interp_loadmap_addr);
590 warning (_("Unable to load dynamic linker loadmap at address %s."),
591 hex_string_custom (interp_loadmap_addr, 8));
592 enable_break_failure_warning ();
593 gdb_bfd_unref (tmp_bfd);
597 /* Record the relocated start and end address of the dynamic linker
598 text and plt section for svr4_in_dynsym_resolve_code. */
599 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
603 = bfd_section_vma (tmp_bfd, interp_sect);
605 += displacement_from_map (ldm, interp_text_sect_low);
606 interp_text_sect_high
607 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
609 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
612 interp_plt_sect_low =
613 bfd_section_vma (tmp_bfd, interp_sect);
615 += displacement_from_map (ldm, interp_plt_sect_low);
616 interp_plt_sect_high =
617 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
620 addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name, "_dl_debug_addr");
624 warning (_("Could not find symbol _dl_debug_addr "
625 "in dynamic linker"));
626 enable_break_failure_warning ();
627 gdb_bfd_unref (tmp_bfd);
632 fprintf_unfiltered (gdb_stdlog,
633 "enable_break: _dl_debug_addr "
634 "(prior to relocation) = %s\n",
635 hex_string_custom (addr, 8));
637 addr += displacement_from_map (ldm, addr);
640 fprintf_unfiltered (gdb_stdlog,
641 "enable_break: _dl_debug_addr "
642 "(after relocation) = %s\n",
643 hex_string_custom (addr, 8));
645 /* Fetch the address of the r_debug struct. */
646 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
648 warning (_("Unable to fetch contents of _dl_debug_addr "
649 "(at address %s) from dynamic linker"),
650 hex_string_custom (addr, 8));
652 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
655 fprintf_unfiltered (gdb_stdlog,
656 "enable_break: _dl_debug_addr[0..3] = %s\n",
657 hex_string_custom (addr, 8));
659 /* If it's zero, then the ldso hasn't initialized yet, and so
660 there are no shared libs yet loaded. */
664 fprintf_unfiltered (gdb_stdlog,
665 "enable_break: ldso not yet initialized\n");
666 /* Do not warn, but mark to run again. */
670 /* Fetch the r_brk field. It's 8 bytes from the start of
672 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
674 warning (_("Unable to fetch _dl_debug_addr->r_brk "
675 "(at address %s) from dynamic linker"),
676 hex_string_custom (addr + 8, 8));
677 enable_break_failure_warning ();
678 gdb_bfd_unref (tmp_bfd);
681 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
683 /* Now fetch the function entry point. */
684 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
686 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
687 "(at address %s) from dynamic linker"),
688 hex_string_custom (addr, 8));
689 enable_break_failure_warning ();
690 gdb_bfd_unref (tmp_bfd);
693 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
695 /* We're done with the temporary bfd. */
696 gdb_bfd_unref (tmp_bfd);
698 /* We're also done with the loadmap. */
701 /* Remove all the solib event breakpoints. Their addresses
702 may have changed since the last time we ran the program. */
703 remove_solib_event_breakpoints ();
705 /* Now (finally!) create the solib breakpoint. */
706 create_solib_event_breakpoint (target_gdbarch (), addr);
708 enable_break2_done = 1;
713 /* Tell the user we couldn't set a dynamic linker breakpoint. */
714 enable_break_failure_warning ();
716 /* Failure return. */
723 asection *interp_sect;
724 CORE_ADDR entry_point;
726 if (symfile_objfile == NULL)
729 fprintf_unfiltered (gdb_stdlog,
730 "enable_break: No symbol file found.\n");
734 if (!entry_point_address_query (&entry_point))
737 fprintf_unfiltered (gdb_stdlog,
738 "enable_break: Symbol file has no entry point.\n");
742 /* Check for the presence of a .interp section. If there is no
743 such section, the executable is statically linked. */
745 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
747 if (interp_sect == NULL)
750 fprintf_unfiltered (gdb_stdlog,
751 "enable_break: No .interp section found.\n");
755 create_solib_event_breakpoint (target_gdbarch (), entry_point);
758 fprintf_unfiltered (gdb_stdlog,
759 "enable_break: solib event breakpoint "
760 "placed at entry point: %s\n",
761 hex_string_custom (entry_point, 8));
765 /* Implement the "special_symbol_handling" target_so_ops method. */
768 frv_special_symbol_handling (void)
770 /* Nothing needed for FRV. */
774 frv_relocate_main_executable (void)
777 CORE_ADDR exec_addr, interp_addr;
778 struct int_elf32_fdpic_loadmap *ldm;
779 struct cleanup *old_chain;
780 struct section_offsets *new_offsets;
782 struct obj_section *osect;
784 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
785 &interp_addr, &exec_addr);
787 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
789 /* Not using FDPIC ABI, so do nothing. */
793 /* Fetch the loadmap located at ``exec_addr''. */
794 ldm = fetch_loadmap (exec_addr);
796 error (_("Unable to load the executable's loadmap."));
798 if (main_executable_lm_info)
799 xfree (main_executable_lm_info);
800 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
801 main_executable_lm_info->map = ldm;
803 new_offsets = xcalloc (symfile_objfile->num_sections,
804 sizeof (struct section_offsets));
805 old_chain = make_cleanup (xfree, new_offsets);
808 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
810 CORE_ADDR orig_addr, addr, offset;
814 osect_idx = osect - symfile_objfile->sections;
816 /* Current address of section. */
817 addr = obj_section_addr (osect);
818 /* Offset from where this section started. */
819 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
820 /* Original address prior to any past relocations. */
821 orig_addr = addr - offset;
823 for (seg = 0; seg < ldm->nsegs; seg++)
825 if (ldm->segs[seg].p_vaddr <= orig_addr
826 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
828 new_offsets->offsets[osect_idx]
829 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
831 if (new_offsets->offsets[osect_idx] != offset)
839 objfile_relocate (symfile_objfile, new_offsets);
841 do_cleanups (old_chain);
843 /* Now that symfile_objfile has been relocated, we can compute the
844 GOT value and stash it away. */
845 main_executable_lm_info->got_value = main_got ();
848 /* Implement the "create_inferior_hook" target_solib_ops method.
850 For the FR-V shared library ABI (FDPIC), the main executable needs
851 to be relocated. The shared library breakpoints also need to be
855 frv_solib_create_inferior_hook (int from_tty)
857 /* Relocate main executable. */
858 frv_relocate_main_executable ();
860 /* Enable shared library breakpoints. */
861 if (!enable_break ())
863 warning (_("shared library handler failed to enable breakpoint"));
869 frv_clear_solib (void)
872 enable_break2_done = 0;
874 if (main_executable_lm_info != 0)
876 xfree (main_executable_lm_info->map);
877 xfree (main_executable_lm_info->dyn_syms);
878 xfree (main_executable_lm_info->dyn_relocs);
879 xfree (main_executable_lm_info);
880 main_executable_lm_info = 0;
885 frv_free_so (struct so_list *so)
887 xfree (so->lm_info->map);
888 xfree (so->lm_info->dyn_syms);
889 xfree (so->lm_info->dyn_relocs);
894 frv_relocate_section_addresses (struct so_list *so,
895 struct target_section *sec)
898 struct int_elf32_fdpic_loadmap *map;
900 map = so->lm_info->map;
902 for (seg = 0; seg < map->nsegs; seg++)
904 if (map->segs[seg].p_vaddr <= sec->addr
905 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
907 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
910 sec->endaddr += displ;
916 /* Return the GOT address associated with the main executable. Return
917 0 if it can't be found. */
922 struct bound_minimal_symbol got_sym;
924 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
925 NULL, symfile_objfile);
926 if (got_sym.minsym == 0)
929 return BMSYMBOL_VALUE_ADDRESS (got_sym);
932 /* Find the global pointer for the given function address ADDR. */
935 frv_fdpic_find_global_pointer (CORE_ADDR addr)
939 so = master_so_list ();
943 struct int_elf32_fdpic_loadmap *map;
945 map = so->lm_info->map;
947 for (seg = 0; seg < map->nsegs; seg++)
949 if (map->segs[seg].addr <= addr
950 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
951 return so->lm_info->got_value;
957 /* Didn't find it in any of the shared objects. So assume it's in the
962 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
963 static CORE_ADDR find_canonical_descriptor_in_load_object
964 (CORE_ADDR, CORE_ADDR, const char *, bfd *, struct lm_info *);
966 /* Given a function entry point, attempt to find the canonical descriptor
967 associated with that entry point. Return 0 if no canonical descriptor
971 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
976 struct int_elf32_fdpic_loadmap *ldm = 0;
979 /* Fetch the corresponding global pointer for the entry point. */
980 got_value = frv_fdpic_find_global_pointer (entry_point);
982 /* Attempt to find the name of the function. If the name is available,
983 it'll be used as an aid in finding matching functions in the dynamic
985 sym = find_pc_function (entry_point);
989 name = SYMBOL_LINKAGE_NAME (sym);
991 /* Check the main executable. */
992 addr = find_canonical_descriptor_in_load_object
993 (entry_point, got_value, name, symfile_objfile->obfd,
994 main_executable_lm_info);
996 /* If descriptor not found via main executable, check each load object
997 in list of shared objects. */
1002 so = master_so_list ();
1005 addr = find_canonical_descriptor_in_load_object
1006 (entry_point, got_value, name, so->abfd, so->lm_info);
1019 find_canonical_descriptor_in_load_object
1020 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
1023 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1028 /* Nothing to do if no bfd. */
1032 /* Nothing to do if no link map. */
1036 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1037 (More about this later.) But in order to fetch the relocs, we
1038 need to first fetch the dynamic symbols. These symbols need to
1039 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1040 works. (See the comments in the declaration of struct lm_info
1041 for more information.) */
1042 if (lm->dyn_syms == NULL)
1044 long storage_needed;
1045 unsigned int number_of_symbols;
1047 /* Determine amount of space needed to hold the dynamic symbol table. */
1048 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1050 /* If there are no dynamic symbols, there's nothing to do. */
1051 if (storage_needed <= 0)
1054 /* Allocate space for the dynamic symbol table. */
1055 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1057 /* Fetch the dynamic symbol table. */
1058 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1060 if (number_of_symbols == 0)
1064 /* Fetch the dynamic relocations if not already cached. */
1065 if (lm->dyn_relocs == NULL)
1067 long storage_needed;
1069 /* Determine amount of space needed to hold the dynamic relocs. */
1070 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1072 /* Bail out if there are no dynamic relocs. */
1073 if (storage_needed <= 0)
1076 /* Allocate space for the relocs. */
1077 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1079 /* Fetch the dynamic relocs. */
1081 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1084 /* Search the dynamic relocs. */
1085 for (i = 0; i < lm->dyn_reloc_count; i++)
1087 rel = lm->dyn_relocs[i];
1089 /* Relocs of interest are those which meet the following
1092 - the names match (assuming the caller could provide
1093 a name which matches ``entry_point'').
1094 - the relocation type must be R_FRV_FUNCDESC. Relocs
1095 of this type are used (by the dynamic linker) to
1096 look up the address of a canonical descriptor (allocating
1097 it if need be) and initializing the GOT entry referred
1098 to by the offset to the address of the descriptor.
1100 These relocs of interest may be used to obtain a
1101 candidate descriptor by first adjusting the reloc's
1102 address according to the link map and then dereferencing
1103 this address (which is a GOT entry) to obtain a descriptor
1105 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1106 && rel->howto->type == R_FRV_FUNCDESC)
1108 gdb_byte buf [FRV_PTR_SIZE];
1110 /* Compute address of address of candidate descriptor. */
1111 addr = rel->address + displacement_from_map (lm->map, rel->address);
1113 /* Fetch address of candidate descriptor. */
1114 if (target_read_memory (addr, buf, sizeof buf) != 0)
1116 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1118 /* Check for matching entry point. */
1119 if (target_read_memory (addr, buf, sizeof buf) != 0)
1121 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1125 /* Check for matching got value. */
1126 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1128 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1132 /* Match was successful! Exit loop. */
1140 /* Given an objfile, return the address of its link map. This value is
1141 needed for TLS support. */
1143 frv_fetch_objfile_link_map (struct objfile *objfile)
1147 /* Cause frv_current_sos() to be run if it hasn't been already. */
1148 if (main_lm_addr == 0)
1149 solib_add (0, 0, 0, 1);
1151 /* frv_current_sos() will set main_lm_addr for the main executable. */
1152 if (objfile == symfile_objfile)
1153 return main_lm_addr;
1155 /* The other link map addresses may be found by examining the list
1156 of shared libraries. */
1157 for (so = master_so_list (); so; so = so->next)
1159 if (so->objfile == objfile)
1160 return so->lm_info->lm_addr;
1167 struct target_so_ops frv_so_ops;
1169 /* Provide a prototype to silence -Wmissing-prototypes. */
1170 extern initialize_file_ftype _initialize_frv_solib;
1173 _initialize_frv_solib (void)
1175 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1176 frv_so_ops.free_so = frv_free_so;
1177 frv_so_ops.clear_solib = frv_clear_solib;
1178 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1179 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1180 frv_so_ops.current_sos = frv_current_sos;
1181 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1182 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1183 frv_so_ops.bfd_open = solib_bfd_open;
1185 /* Debug this file's internals. */
1186 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1187 &solib_frv_debug, _("\
1188 Set internal debugging of shared library code for FR-V."), _("\
1189 Show internal debugging of shared library code for FR-V."), _("\
1190 When non-zero, FR-V solib specific internal debugging is enabled."),
1192 NULL, /* FIXME: i18n: */
1193 &setdebuglist, &showdebuglist);