1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static unsigned int solib_frv_debug;
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
49 struct ext_elf32_fdpic_loadseg
51 /* Core address to which the segment is mapped. */
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
73 /* Core address to which the segment is mapped. */
75 /* VMA recorded in the program header. */
77 /* Size of this segment in memory. */
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
84 /* Number of segments in this map. */
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
110 /* Problem reading the target's memory. */
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version,
120 /* We only handle version 0. */
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs,
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
145 /* Couldn't read rest of the loadmap. */
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
161 int_ldmbuf->segs[seg].addr
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
163 sizeof (ext_ldmbuf->segs[seg].addr),
165 int_ldmbuf->segs[seg].p_vaddr
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
169 int_ldmbuf->segs[seg].p_memsz
170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
181 typedef gdb_byte ext_ptr[4];
183 struct ext_elf32_fdpic_loadaddr
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
191 struct ext_elf32_fdpic_loadaddr l_addr;
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
203 /* Link map info to include in an allocated so_list entry. */
205 struct lm_info_frv : public lm_info_base
210 xfree (this->dyn_syms);
211 xfree (this->dyn_relocs);
214 /* The loadmap, digested into an easier to use form. */
215 int_elf32_fdpic_loadmap *map = NULL;
216 /* The GOT address for this link map entry. */
217 CORE_ADDR got_value = 0;
218 /* The link map address, needed for frv_fetch_objfile_link_map(). */
219 CORE_ADDR lm_addr = 0;
221 /* Cached dynamic symbol table and dynamic relocs initialized and
222 used only by find_canonical_descriptor_in_load_object().
224 Note: kevinb/2004-02-26: It appears that calls to
225 bfd_canonicalize_dynamic_reloc() will use the same symbols as
226 those supplied to the first call to this function. Therefore,
227 it's important to NOT free the asymbol ** data structure
228 supplied to the first call. Thus the caching of the dynamic
229 symbols (dyn_syms) is critical for correct operation. The
230 caching of the dynamic relocations could be dispensed with. */
231 asymbol **dyn_syms = NULL;
232 arelent **dyn_relocs = NULL;
233 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
236 /* The load map, got value, etc. are not available from the chain
237 of loaded shared objects. ``main_executable_lm_info'' provides
238 a way to get at this information so that it doesn't need to be
239 frequently recomputed. Initialized by frv_relocate_main_executable(). */
240 static lm_info_frv *main_executable_lm_info;
242 static void frv_relocate_main_executable (void);
243 static CORE_ADDR main_got (void);
244 static int enable_break2 (void);
246 /* Implement the "open_symbol_file_object" target_so_ops method. */
249 open_symbol_file_object (int from_tty)
255 /* Cached value for lm_base(), below. */
256 static CORE_ADDR lm_base_cache = 0;
258 /* Link map address for main module. */
259 static CORE_ADDR main_lm_addr = 0;
261 /* Return the address from which the link map chain may be found. On
262 the FR-V, this may be found in a number of ways. Assuming that the
263 main executable has already been relocated, the easiest way to find
264 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
265 pointer to the start of the link map will be located at the word found
266 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
267 reserve area mandated by the ABI.) */
272 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
273 struct bound_minimal_symbol got_sym;
275 gdb_byte buf[FRV_PTR_SIZE];
277 /* One of our assumptions is that the main executable has been relocated.
278 Bail out if this has not happened. (Note that post_create_inferior()
279 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
280 If we allow this to happen, lm_base_cache will be initialized with
282 if (main_executable_lm_info == 0)
285 /* If we already have a cached value, return it. */
287 return lm_base_cache;
289 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
291 if (got_sym.minsym == 0)
294 fprintf_unfiltered (gdb_stdlog,
295 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
299 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
302 fprintf_unfiltered (gdb_stdlog,
303 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
304 hex_string_custom (addr, 8));
306 if (target_read_memory (addr, buf, sizeof buf) != 0)
308 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
311 fprintf_unfiltered (gdb_stdlog,
312 "lm_base: lm_base_cache = %s\n",
313 hex_string_custom (lm_base_cache, 8));
315 return lm_base_cache;
319 /* Implement the "current_sos" target_so_ops method. */
321 static struct so_list *
322 frv_current_sos (void)
324 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
325 CORE_ADDR lm_addr, mgot;
326 struct so_list *sos_head = NULL;
327 struct so_list **sos_next_ptr = &sos_head;
329 /* Make sure that the main executable has been relocated. This is
330 required in order to find the address of the global offset table,
331 which in turn is used to find the link map info. (See lm_base()
334 Note that the relocation of the main executable is also performed
335 by solib_create_inferior_hook(), however, in the case of core
336 files, this hook is called too late in order to be of benefit to
337 solib_add. solib_add eventually calls this this function,
338 frv_current_sos, and also precedes the call to
339 solib_create_inferior_hook(). (See post_create_inferior() in
341 if (main_executable_lm_info == 0 && core_bfd != NULL)
342 frv_relocate_main_executable ();
344 /* Fetch the GOT corresponding to the main executable. */
347 /* Locate the address of the first link map struct. */
348 lm_addr = lm_base ();
350 /* We have at least one link map entry. Fetch the lot of them,
351 building the solist chain. */
354 struct ext_link_map lm_buf;
358 fprintf_unfiltered (gdb_stdlog,
359 "current_sos: reading link_map entry at %s\n",
360 hex_string_custom (lm_addr, 8));
362 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
363 sizeof (lm_buf)) != 0)
365 warning (_("frv_current_sos: Unable to read link map entry. "
366 "Shared object chain may be incomplete."));
371 = extract_unsigned_integer (lm_buf.l_addr.got_value,
372 sizeof (lm_buf.l_addr.got_value),
374 /* If the got_addr is the same as mgotr, then we're looking at the
375 entry for the main executable. By convention, we don't include
376 this in the list of shared objects. */
377 if (got_addr != mgot)
380 gdb::unique_xmalloc_ptr<char> name_buf;
381 struct int_elf32_fdpic_loadmap *loadmap;
385 /* Fetch the load map address. */
386 addr = extract_unsigned_integer (lm_buf.l_addr.map,
387 sizeof lm_buf.l_addr.map,
389 loadmap = fetch_loadmap (addr);
392 warning (_("frv_current_sos: Unable to fetch load map. "
393 "Shared object chain may be incomplete."));
397 sop = XCNEW (struct so_list);
398 lm_info_frv *li = new lm_info_frv;
401 li->got_value = got_addr;
402 li->lm_addr = lm_addr;
403 /* Fetch the name. */
404 addr = extract_unsigned_integer (lm_buf.l_name,
405 sizeof (lm_buf.l_name),
407 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
411 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
415 warning (_("Can't read pathname for link map entry: %s."),
416 safe_strerror (errcode));
419 strncpy (sop->so_name, name_buf.get (),
420 SO_NAME_MAX_PATH_SIZE - 1);
421 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
422 strcpy (sop->so_original_name, sop->so_name);
426 sos_next_ptr = &sop->next;
430 main_lm_addr = lm_addr;
433 lm_addr = extract_unsigned_integer (lm_buf.l_next,
434 sizeof (lm_buf.l_next), byte_order);
443 /* Return 1 if PC lies in the dynamic symbol resolution code of the
446 static CORE_ADDR interp_text_sect_low;
447 static CORE_ADDR interp_text_sect_high;
448 static CORE_ADDR interp_plt_sect_low;
449 static CORE_ADDR interp_plt_sect_high;
452 frv_in_dynsym_resolve_code (CORE_ADDR pc)
454 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
455 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
456 || in_plt_section (pc));
459 /* Given a loadmap and an address, return the displacement needed
460 to relocate the address. */
463 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
468 for (seg = 0; seg < map->nsegs; seg++)
470 if (map->segs[seg].p_vaddr <= addr
471 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
473 return map->segs[seg].addr - map->segs[seg].p_vaddr;
480 /* Print a warning about being unable to set the dynamic linker
484 enable_break_failure_warning (void)
486 warning (_("Unable to find dynamic linker breakpoint function.\n"
487 "GDB will be unable to debug shared library initializers\n"
488 "and track explicitly loaded dynamic code."));
491 /* Helper function for gdb_bfd_lookup_symbol. */
494 cmp_name (const asymbol *sym, const void *data)
496 return (strcmp (sym->name, (const char *) data) == 0);
499 /* Arrange for dynamic linker to hit breakpoint.
501 The dynamic linkers has, as part of its debugger interface, support
502 for arranging for the inferior to hit a breakpoint after mapping in
503 the shared libraries. This function enables that breakpoint.
505 On the FR-V, using the shared library (FDPIC) ABI, the symbol
506 _dl_debug_addr points to the r_debug struct which contains
507 a field called r_brk. r_brk is the address of the function
508 descriptor upon which a breakpoint must be placed. Being a
509 function descriptor, we must extract the entry point in order
510 to set the breakpoint.
512 Our strategy will be to get the .interp section from the
513 executable. This section will provide us with the name of the
514 interpreter. We'll open the interpreter and then look up
515 the address of _dl_debug_addr. We then relocate this address
516 using the interpreter's loadmap. Once the relocated address
517 is known, we fetch the value (address) corresponding to r_brk
518 and then use that value to fetch the entry point of the function
519 we're interested in. */
521 static int enable_break2_done = 0;
526 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
527 asection *interp_sect;
529 if (enable_break2_done)
532 interp_text_sect_low = interp_text_sect_high = 0;
533 interp_plt_sect_low = interp_plt_sect_high = 0;
535 /* Find the .interp section; if not found, warn the user and drop
536 into the old breakpoint at symbol code. */
537 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
540 unsigned int interp_sect_size;
543 CORE_ADDR addr, interp_loadmap_addr;
544 gdb_byte addr_buf[FRV_PTR_SIZE];
545 struct int_elf32_fdpic_loadmap *ldm;
547 /* Read the contents of the .interp section into a local buffer;
548 the contents specify the dynamic linker this program uses. */
549 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
550 buf = (char *) alloca (interp_sect_size);
551 bfd_get_section_contents (exec_bfd, interp_sect,
552 buf, 0, interp_sect_size);
554 /* Now we need to figure out where the dynamic linker was
555 loaded so that we can load its symbols and place a breakpoint
556 in the dynamic linker itself.
558 This address is stored on the stack. However, I've been unable
559 to find any magic formula to find it for Solaris (appears to
560 be trivial on GNU/Linux). Therefore, we have to try an alternate
561 mechanism to find the dynamic linker's base address. */
563 gdb_bfd_ref_ptr tmp_bfd;
566 tmp_bfd = solib_bfd_open (buf);
568 CATCH (ex, RETURN_MASK_ALL)
575 enable_break_failure_warning ();
579 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
580 &interp_loadmap_addr, 0);
583 warning (_("Unable to determine dynamic linker loadmap address."));
584 enable_break_failure_warning ();
589 fprintf_unfiltered (gdb_stdlog,
590 "enable_break: interp_loadmap_addr = %s\n",
591 hex_string_custom (interp_loadmap_addr, 8));
593 ldm = fetch_loadmap (interp_loadmap_addr);
596 warning (_("Unable to load dynamic linker loadmap at address %s."),
597 hex_string_custom (interp_loadmap_addr, 8));
598 enable_break_failure_warning ();
602 /* Record the relocated start and end address of the dynamic linker
603 text and plt section for svr4_in_dynsym_resolve_code. */
604 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
608 = bfd_section_vma (tmp_bfd.get (), interp_sect);
610 += displacement_from_map (ldm, interp_text_sect_low);
611 interp_text_sect_high
612 = interp_text_sect_low + bfd_section_size (tmp_bfd.get (),
615 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
618 interp_plt_sect_low =
619 bfd_section_vma (tmp_bfd.get (), interp_sect);
621 += displacement_from_map (ldm, interp_plt_sect_low);
622 interp_plt_sect_high =
623 interp_plt_sect_low + bfd_section_size (tmp_bfd.get (),
627 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
631 warning (_("Could not find symbol _dl_debug_addr "
632 "in dynamic linker"));
633 enable_break_failure_warning ();
638 fprintf_unfiltered (gdb_stdlog,
639 "enable_break: _dl_debug_addr "
640 "(prior to relocation) = %s\n",
641 hex_string_custom (addr, 8));
643 addr += displacement_from_map (ldm, addr);
646 fprintf_unfiltered (gdb_stdlog,
647 "enable_break: _dl_debug_addr "
648 "(after relocation) = %s\n",
649 hex_string_custom (addr, 8));
651 /* Fetch the address of the r_debug struct. */
652 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
654 warning (_("Unable to fetch contents of _dl_debug_addr "
655 "(at address %s) from dynamic linker"),
656 hex_string_custom (addr, 8));
658 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
661 fprintf_unfiltered (gdb_stdlog,
662 "enable_break: _dl_debug_addr[0..3] = %s\n",
663 hex_string_custom (addr, 8));
665 /* If it's zero, then the ldso hasn't initialized yet, and so
666 there are no shared libs yet loaded. */
670 fprintf_unfiltered (gdb_stdlog,
671 "enable_break: ldso not yet initialized\n");
672 /* Do not warn, but mark to run again. */
676 /* Fetch the r_brk field. It's 8 bytes from the start of
678 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
680 warning (_("Unable to fetch _dl_debug_addr->r_brk "
681 "(at address %s) from dynamic linker"),
682 hex_string_custom (addr + 8, 8));
683 enable_break_failure_warning ();
686 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
688 /* Now fetch the function entry point. */
689 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
691 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
692 "(at address %s) from dynamic linker"),
693 hex_string_custom (addr, 8));
694 enable_break_failure_warning ();
697 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
699 /* We're done with the loadmap. */
702 /* Remove all the solib event breakpoints. Their addresses
703 may have changed since the last time we ran the program. */
704 remove_solib_event_breakpoints ();
706 /* Now (finally!) create the solib breakpoint. */
707 create_solib_event_breakpoint (target_gdbarch (), addr);
709 enable_break2_done = 1;
714 /* Tell the user we couldn't set a dynamic linker breakpoint. */
715 enable_break_failure_warning ();
717 /* Failure return. */
724 asection *interp_sect;
725 CORE_ADDR entry_point;
727 if (symfile_objfile == NULL)
730 fprintf_unfiltered (gdb_stdlog,
731 "enable_break: No symbol file found.\n");
735 if (!entry_point_address_query (&entry_point))
738 fprintf_unfiltered (gdb_stdlog,
739 "enable_break: Symbol file has no entry point.\n");
743 /* Check for the presence of a .interp section. If there is no
744 such section, the executable is statically linked. */
746 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
748 if (interp_sect == NULL)
751 fprintf_unfiltered (gdb_stdlog,
752 "enable_break: No .interp section found.\n");
756 create_solib_event_breakpoint (target_gdbarch (), entry_point);
759 fprintf_unfiltered (gdb_stdlog,
760 "enable_break: solib event breakpoint "
761 "placed at entry point: %s\n",
762 hex_string_custom (entry_point, 8));
767 frv_relocate_main_executable (void)
770 CORE_ADDR exec_addr, interp_addr;
771 struct int_elf32_fdpic_loadmap *ldm;
773 struct obj_section *osect;
775 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
776 &interp_addr, &exec_addr);
778 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
780 /* Not using FDPIC ABI, so do nothing. */
784 /* Fetch the loadmap located at ``exec_addr''. */
785 ldm = fetch_loadmap (exec_addr);
787 error (_("Unable to load the executable's loadmap."));
789 delete main_executable_lm_info;
790 main_executable_lm_info = new lm_info_frv;
791 main_executable_lm_info->map = ldm;
793 gdb::unique_xmalloc_ptr<struct section_offsets> new_offsets
794 (XCNEWVEC (struct section_offsets, symfile_objfile->num_sections));
797 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
799 CORE_ADDR orig_addr, addr, offset;
803 osect_idx = osect - symfile_objfile->sections;
805 /* Current address of section. */
806 addr = obj_section_addr (osect);
807 /* Offset from where this section started. */
808 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
809 /* Original address prior to any past relocations. */
810 orig_addr = addr - offset;
812 for (seg = 0; seg < ldm->nsegs; seg++)
814 if (ldm->segs[seg].p_vaddr <= orig_addr
815 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
817 new_offsets->offsets[osect_idx]
818 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
820 if (new_offsets->offsets[osect_idx] != offset)
828 objfile_relocate (symfile_objfile, new_offsets.get ());
830 /* Now that symfile_objfile has been relocated, we can compute the
831 GOT value and stash it away. */
832 main_executable_lm_info->got_value = main_got ();
835 /* Implement the "create_inferior_hook" target_solib_ops method.
837 For the FR-V shared library ABI (FDPIC), the main executable needs
838 to be relocated. The shared library breakpoints also need to be
842 frv_solib_create_inferior_hook (int from_tty)
844 /* Relocate main executable. */
845 frv_relocate_main_executable ();
847 /* Enable shared library breakpoints. */
848 if (!enable_break ())
850 warning (_("shared library handler failed to enable breakpoint"));
856 frv_clear_solib (void)
859 enable_break2_done = 0;
862 delete main_executable_lm_info;
863 main_executable_lm_info = NULL;
867 frv_free_so (struct so_list *so)
869 lm_info_frv *li = (lm_info_frv *) so->lm_info;
875 frv_relocate_section_addresses (struct so_list *so,
876 struct target_section *sec)
879 lm_info_frv *li = (lm_info_frv *) so->lm_info;
880 int_elf32_fdpic_loadmap *map = li->map;
882 for (seg = 0; seg < map->nsegs; seg++)
884 if (map->segs[seg].p_vaddr <= sec->addr
885 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
887 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
890 sec->endaddr += displ;
896 /* Return the GOT address associated with the main executable. Return
897 0 if it can't be found. */
902 struct bound_minimal_symbol got_sym;
904 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
905 NULL, symfile_objfile);
906 if (got_sym.minsym == 0)
909 return BMSYMBOL_VALUE_ADDRESS (got_sym);
912 /* Find the global pointer for the given function address ADDR. */
915 frv_fdpic_find_global_pointer (CORE_ADDR addr)
919 so = master_so_list ();
923 lm_info_frv *li = (lm_info_frv *) so->lm_info;
924 int_elf32_fdpic_loadmap *map = li->map;
926 for (seg = 0; seg < map->nsegs; seg++)
928 if (map->segs[seg].addr <= addr
929 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
930 return li->got_value;
936 /* Didn't find it in any of the shared objects. So assume it's in the
941 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
942 static CORE_ADDR find_canonical_descriptor_in_load_object
943 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
945 /* Given a function entry point, attempt to find the canonical descriptor
946 associated with that entry point. Return 0 if no canonical descriptor
950 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
957 /* Fetch the corresponding global pointer for the entry point. */
958 got_value = frv_fdpic_find_global_pointer (entry_point);
960 /* Attempt to find the name of the function. If the name is available,
961 it'll be used as an aid in finding matching functions in the dynamic
963 sym = find_pc_function (entry_point);
967 name = SYMBOL_LINKAGE_NAME (sym);
969 /* Check the main executable. */
970 addr = find_canonical_descriptor_in_load_object
971 (entry_point, got_value, name, symfile_objfile->obfd,
972 main_executable_lm_info);
974 /* If descriptor not found via main executable, check each load object
975 in list of shared objects. */
980 so = master_so_list ();
983 lm_info_frv *li = (lm_info_frv *) so->lm_info;
985 addr = find_canonical_descriptor_in_load_object
986 (entry_point, got_value, name, so->abfd, li);
999 find_canonical_descriptor_in_load_object
1000 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
1003 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1008 /* Nothing to do if no bfd. */
1012 /* Nothing to do if no link map. */
1016 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1017 (More about this later.) But in order to fetch the relocs, we
1018 need to first fetch the dynamic symbols. These symbols need to
1019 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1020 works. (See the comments in the declaration of struct lm_info
1021 for more information.) */
1022 if (lm->dyn_syms == NULL)
1024 long storage_needed;
1025 unsigned int number_of_symbols;
1027 /* Determine amount of space needed to hold the dynamic symbol table. */
1028 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1030 /* If there are no dynamic symbols, there's nothing to do. */
1031 if (storage_needed <= 0)
1034 /* Allocate space for the dynamic symbol table. */
1035 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1037 /* Fetch the dynamic symbol table. */
1038 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1040 if (number_of_symbols == 0)
1044 /* Fetch the dynamic relocations if not already cached. */
1045 if (lm->dyn_relocs == NULL)
1047 long storage_needed;
1049 /* Determine amount of space needed to hold the dynamic relocs. */
1050 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1052 /* Bail out if there are no dynamic relocs. */
1053 if (storage_needed <= 0)
1056 /* Allocate space for the relocs. */
1057 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1059 /* Fetch the dynamic relocs. */
1061 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1064 /* Search the dynamic relocs. */
1065 for (i = 0; i < lm->dyn_reloc_count; i++)
1067 rel = lm->dyn_relocs[i];
1069 /* Relocs of interest are those which meet the following
1072 - the names match (assuming the caller could provide
1073 a name which matches ``entry_point'').
1074 - the relocation type must be R_FRV_FUNCDESC. Relocs
1075 of this type are used (by the dynamic linker) to
1076 look up the address of a canonical descriptor (allocating
1077 it if need be) and initializing the GOT entry referred
1078 to by the offset to the address of the descriptor.
1080 These relocs of interest may be used to obtain a
1081 candidate descriptor by first adjusting the reloc's
1082 address according to the link map and then dereferencing
1083 this address (which is a GOT entry) to obtain a descriptor
1085 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1086 && rel->howto->type == R_FRV_FUNCDESC)
1088 gdb_byte buf [FRV_PTR_SIZE];
1090 /* Compute address of address of candidate descriptor. */
1091 addr = rel->address + displacement_from_map (lm->map, rel->address);
1093 /* Fetch address of candidate descriptor. */
1094 if (target_read_memory (addr, buf, sizeof buf) != 0)
1096 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1098 /* Check for matching entry point. */
1099 if (target_read_memory (addr, buf, sizeof buf) != 0)
1101 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1105 /* Check for matching got value. */
1106 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1108 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1112 /* Match was successful! Exit loop. */
1120 /* Given an objfile, return the address of its link map. This value is
1121 needed for TLS support. */
1123 frv_fetch_objfile_link_map (struct objfile *objfile)
1127 /* Cause frv_current_sos() to be run if it hasn't been already. */
1128 if (main_lm_addr == 0)
1129 solib_add (0, 0, 1);
1131 /* frv_current_sos() will set main_lm_addr for the main executable. */
1132 if (objfile == symfile_objfile)
1133 return main_lm_addr;
1135 /* The other link map addresses may be found by examining the list
1136 of shared libraries. */
1137 for (so = master_so_list (); so; so = so->next)
1139 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1141 if (so->objfile == objfile)
1149 struct target_so_ops frv_so_ops;
1152 _initialize_frv_solib (void)
1154 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1155 frv_so_ops.free_so = frv_free_so;
1156 frv_so_ops.clear_solib = frv_clear_solib;
1157 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1158 frv_so_ops.current_sos = frv_current_sos;
1159 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1160 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1161 frv_so_ops.bfd_open = solib_bfd_open;
1163 /* Debug this file's internals. */
1164 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1165 &solib_frv_debug, _("\
1166 Set internal debugging of shared library code for FR-V."), _("\
1167 Show internal debugging of shared library code for FR-V."), _("\
1168 When non-zero, FR-V solib specific internal debugging is enabled."),
1170 NULL, /* FIXME: i18n: */
1171 &setdebuglist, &showdebuglist);