1 /* Target-dependent code for Renesas Super-H, for GDB.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 Contributed by Steve Chamberlain
38 #include "gdb_string.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
46 #include "solib-svr4.h"
50 /* registers numbers shared with the simulator */
51 #include "gdb/sim-sh.h"
53 /* Information that is dependent on the processor variant. */
66 /* Registers of SH5 */
70 DEFAULT_RETURN_REGNUM = 2,
71 STRUCT_RETURN_REGNUM = 2,
74 FLOAT_ARGLAST_REGNUM = 11,
79 /* FPP stands for Floating Point Pair, to avoid confusion with
80 GDB's FP0_REGNUM, which is the number of the first Floating
81 point register. Unfortunately on the sh5, the floating point
82 registers are called FR, and the floating point pairs are called FP. */
84 FPP_LAST_REGNUM = 204,
88 R_LAST_C_REGNUM = 236,
98 FP_LAST_C_REGNUM = 260,
100 DR_LAST_C_REGNUM = 268,
102 FV_LAST_C_REGNUM = 272,
103 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
104 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
105 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
106 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
107 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
111 /* Define other aspects of the stack frame.
112 we keep a copy of the worked out return pc lying around, since it
113 is a useful bit of info */
115 struct frame_extra_info
123 sh64_register_name (int reg_nr)
125 static char *register_names[] =
127 /* SH MEDIA MODE (ISA 32) */
128 /* general registers (64-bit) 0-63 */
129 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
130 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
131 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
132 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
133 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
134 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
135 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
136 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
141 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
144 /* target registers (64-bit) 68-75*/
145 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
147 /* floating point state control register (32-bit) 76 */
150 /* single precision floating point registers (32-bit) 77-140*/
151 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
152 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
153 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
154 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
155 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
156 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
157 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
158 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
160 /* double precision registers (pseudo) 141-172 */
161 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
162 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
163 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
164 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
166 /* floating point pairs (pseudo) 173-204*/
167 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
168 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
169 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
170 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
172 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
173 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
174 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
176 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
177 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
178 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
180 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
182 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
183 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
184 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
185 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
186 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
191 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
193 return register_names[reg_nr];
196 #define NUM_PSEUDO_REGS_SH_MEDIA 80
197 #define NUM_PSEUDO_REGS_SH_COMPACT 51
199 /* Macros and functions for setting and testing a bit in a minimal
200 symbol that marks it as 32-bit function. The MSB of the minimal
201 symbol's "info" field is used for this purpose.
203 ELF_MAKE_MSYMBOL_SPECIAL
204 tests whether an ELF symbol is "special", i.e. refers
205 to a 32-bit function, and sets a "special" bit in a
206 minimal symbol to mark it as a 32-bit function
207 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
209 #define MSYMBOL_IS_SPECIAL(msym) \
210 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
213 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
218 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
220 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
221 SYMBOL_VALUE_ADDRESS (msym) |= 1;
225 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
226 are some macros to test, set, or clear bit 0 of addresses. */
227 #define IS_ISA32_ADDR(addr) ((addr) & 1)
228 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
229 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
232 pc_is_isa32 (bfd_vma memaddr)
234 struct minimal_symbol *sym;
236 /* If bit 0 of the address is set, assume this is a
237 ISA32 (shmedia) address. */
238 if (IS_ISA32_ADDR (memaddr))
241 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
242 the high bit of the info field. Use this to decide if the function is
244 sym = lookup_minimal_symbol_by_pc (memaddr);
246 return MSYMBOL_IS_SPECIAL (sym);
251 static const unsigned char *
252 sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
254 /* The BRK instruction for shmedia is
255 01101111 11110101 11111111 11110000
256 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
257 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
259 /* The BRK instruction for shcompact is
261 which translates in big endian mode to 0x0, 0x3b
262 and in little endian mode to 0x3b, 0x0*/
264 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
266 if (pc_is_isa32 (*pcptr))
268 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
269 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
270 *lenptr = sizeof (big_breakpoint_media);
271 return big_breakpoint_media;
275 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
276 *lenptr = sizeof (big_breakpoint_compact);
277 return big_breakpoint_compact;
282 if (pc_is_isa32 (*pcptr))
284 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
285 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
286 *lenptr = sizeof (little_breakpoint_media);
287 return little_breakpoint_media;
291 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
292 *lenptr = sizeof (little_breakpoint_compact);
293 return little_breakpoint_compact;
298 /* Prologue looks like
299 [mov.l <regs>,@-r15]...
304 Actually it can be more complicated than this. For instance, with
322 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
323 with l=1 and n = 18 0110101111110001010010100aaa0000 */
324 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
326 /* STS.L PR,@-r0 0100000000100010
327 r0-4-->r0, PR-->(r0) */
328 #define IS_STS_R0(x) ((x) == 0x4022)
330 /* STS PR, Rm 0000mmmm00101010
332 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
334 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
336 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
338 /* MOV.L R14,@(disp,r15) 000111111110dddd
339 R14-->(dispx4+r15) */
340 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
342 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
343 R18-->(dispx8+R14) */
344 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
346 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
347 R18-->(dispx8+R15) */
348 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
350 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
351 R18-->(dispx4+R15) */
352 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
354 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
355 R14-->(dispx8+R15) */
356 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
358 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
359 R14-->(dispx4+R15) */
360 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
362 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
364 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
366 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
368 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
370 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
372 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
374 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
376 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
378 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
380 /* MOV #imm, R0 1110 0000 ssss ssss
382 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
384 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
385 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
387 /* ADD r15,r0 0011 0000 1111 1100
389 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
391 /* MOV.L R14 @-R0 0010 0000 1110 0110
392 R14-->(R0-4), R0-4-->R0 */
393 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
395 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
396 where Rm is one of r2-r9 which are the argument registers. */
397 /* FIXME: Recognize the float and double register moves too! */
398 #define IS_MEDIA_IND_ARG_MOV(x) \
399 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
401 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
402 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
403 where Rm is one of r2-r9 which are the argument registers. */
404 #define IS_MEDIA_ARG_MOV(x) \
405 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
406 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
408 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
409 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
410 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
411 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
412 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
413 #define IS_MEDIA_MOV_TO_R14(x) \
414 ((((x) & 0xfffffc0f) == 0xa0e00000) \
415 || (((x) & 0xfffffc0f) == 0xa4e00000) \
416 || (((x) & 0xfffffc0f) == 0xa8e00000) \
417 || (((x) & 0xfffffc0f) == 0xb4e00000) \
418 || (((x) & 0xfffffc0f) == 0xbce00000))
420 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
422 #define IS_COMPACT_IND_ARG_MOV(x) \
423 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
425 /* compact direct arg move!
426 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
427 #define IS_COMPACT_ARG_MOV(x) \
428 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
430 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
431 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
432 #define IS_COMPACT_MOV_TO_R14(x) \
433 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
435 #define IS_JSR_R0(x) ((x) == 0x400b)
436 #define IS_NOP(x) ((x) == 0x0009)
439 /* MOV r15,r14 0110111011110011
441 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
443 /* ADD #imm,r15 01111111iiiiiiii
445 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
447 /* Skip any prologue before the guts of a function */
449 /* Skip the prologue using the debug information. If this fails we'll
450 fall back on the 'guess' method below. */
452 after_prologue (CORE_ADDR pc)
454 struct symtab_and_line sal;
455 CORE_ADDR func_addr, func_end;
457 /* If we can not find the symbol in the partial symbol table, then
458 there is no hope we can determine the function's start address
460 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
463 /* Get the line associated with FUNC_ADDR. */
464 sal = find_pc_line (func_addr, 0);
466 /* There are only two cases to consider. First, the end of the source line
467 is within the function bounds. In that case we return the end of the
468 source line. Second is the end of the source line extends beyond the
469 bounds of the current function. We need to use the slow code to
470 examine instructions in that case. */
471 if (sal.end < func_end)
478 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
482 int insn_size = (media_mode ? 4 : 2);
484 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
488 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
490 if (IS_MEDIA_IND_ARG_MOV (w))
492 /* This must be followed by a store to r14, so the argument
493 is where the debug info says it is. This can happen after
494 the SP has been saved, unfortunately. */
496 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
499 if (IS_MEDIA_MOV_TO_R14 (next_insn))
502 else if (IS_MEDIA_ARG_MOV (w))
504 /* These instructions store directly the argument in r14. */
512 w = read_memory_integer (here, insn_size);
515 if (IS_COMPACT_IND_ARG_MOV (w))
517 /* This must be followed by a store to r14, so the argument
518 is where the debug info says it is. This can happen after
519 the SP has been saved, unfortunately. */
521 int next_insn = 0xffff & read_memory_integer (here, insn_size);
523 if (IS_COMPACT_MOV_TO_R14 (next_insn))
526 else if (IS_COMPACT_ARG_MOV (w))
528 /* These instructions store directly the argument in r14. */
531 else if (IS_MOVL_R0 (w))
533 /* There is a function that gcc calls to get the arguments
534 passed correctly to the function. Only after this
535 function call the arguments will be found at the place
536 where they are supposed to be. This happens in case the
537 argument has to be stored into a 64-bit register (for
538 instance doubles, long longs). SHcompact doesn't have
539 access to the full 64-bits, so we store the register in
540 stack slot and store the address of the stack slot in
541 the register, then do a call through a wrapper that
542 loads the memory value into the register. A SHcompact
543 callee calls an argument decoder
544 (GCC_shcompact_incoming_args) that stores the 64-bit
545 value in a stack slot and stores the address of the
546 stack slot in the register. GCC thinks the argument is
547 just passed by transparent reference, but this is only
548 true after the argument decoder is called. Such a call
549 needs to be considered part of the prologue. */
551 /* This must be followed by a JSR @r0 instruction and by
552 a NOP instruction. After these, the prologue is over! */
554 int next_insn = 0xffff & read_memory_integer (here, insn_size);
556 if (IS_JSR_R0 (next_insn))
558 next_insn = 0xffff & read_memory_integer (here, insn_size);
561 if (IS_NOP (next_insn))
574 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
584 if (pc_is_isa32 (start_pc) == 0)
590 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
595 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
597 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
598 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
599 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
603 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
611 /* Don't bail out yet, we may have arguments stored in
612 registers here, according to the debug info, so that
613 gdb can print the frames correctly. */
614 start_pc = look_for_args_moves (here - insn_size, media_mode);
620 int w = 0xffff & read_memory_integer (here, insn_size);
623 if (IS_STS_R0 (w) || IS_STS_PR (w)
624 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
625 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
629 else if (IS_MOV_SP_FP (w))
637 /* Don't bail out yet, we may have arguments stored in
638 registers here, according to the debug info, so that
639 gdb can print the frames correctly. */
640 start_pc = look_for_args_moves (here - insn_size, media_mode);
650 sh_skip_prologue (CORE_ADDR pc)
652 CORE_ADDR post_prologue_pc;
654 /* See if we can determine the end of the prologue via the symbol table.
655 If so, then return either PC, or the PC after the prologue, whichever
657 post_prologue_pc = after_prologue (pc);
659 /* If after_prologue returned a useful address, then use it. Else
660 fall back on the instruction skipping code. */
661 if (post_prologue_pc != 0)
662 return max (pc, post_prologue_pc);
664 return sh64_skip_prologue_hard_way (pc);
667 /* Immediately after a function call, return the saved pc.
668 Can't always go through the frames for this because on some machines
669 the new frame is not set up until the new function executes
672 The return address is the value saved in the PR register + 4 */
674 sh_saved_pc_after_call (struct frame_info *frame)
676 return (ADDR_BITS_REMOVE (read_register (PR_REGNUM)));
679 /* Should call_function allocate stack space for a struct return? */
681 sh64_use_struct_convention (int gcc_p, struct type *type)
683 return (TYPE_LENGTH (type) > 8);
686 /* Store the address of the place in which to copy the structure the
687 subroutine will return. This is called from call_function.
689 We store structs through a pointer passed in R2 */
691 sh64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
693 write_register (STRUCT_RETURN_REGNUM, (addr));
696 /* Disassemble an instruction. */
698 gdb_print_insn_sh (bfd_vma memaddr, disassemble_info *info)
700 info->endian = TARGET_BYTE_ORDER;
701 return print_insn_sh (memaddr, info);
704 /* Given a register number RN as it appears in an assembly
705 instruction, find the corresponding register number in the GDB
708 translate_insn_rn (int rn, int media_mode)
710 /* FIXME: this assumes that the number rn is for a not pseudo
716 /* These registers don't have a corresponding compact one. */
717 /* FIXME: This is probably not enough. */
719 if ((rn >= 16 && rn <= 63) || (rn >= 93 && rn <= 140))
722 if (rn >= 0 && rn <= R0_C_REGNUM)
723 return R0_C_REGNUM + rn;
729 /* Given a GDB frame, determine the address of the calling function's
730 frame. This will be used to create a new GDB frame struct, and
731 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
732 will be called for the new frame.
734 For us, the frame address is its stack pointer value, so we look up
735 the function prologue to determine the caller's sp value, and return it. */
737 sh64_frame_chain (struct frame_info *frame)
739 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
740 get_frame_base (frame),
741 get_frame_base (frame)))
742 return get_frame_base (frame); /* dummy frame same as caller's frame */
743 if (get_frame_pc (frame))
745 int media_mode = pc_is_isa32 (get_frame_pc (frame));
747 if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32)
750 size = register_size (current_gdbarch,
751 translate_insn_rn (DEPRECATED_FP_REGNUM,
753 return read_memory_integer (get_frame_base (frame)
754 + get_frame_extra_info (frame)->f_offset,
762 sh64_get_saved_pr (struct frame_info *fi, int pr_regnum)
766 for (; fi; fi = get_next_frame (fi))
767 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
768 get_frame_base (fi)))
769 /* When the caller requests PR from the dummy frame, we return
770 PC because that's where the previous routine appears to have
772 return deprecated_read_register_dummy (get_frame_pc (fi),
773 get_frame_base (fi), pr_regnum);
776 DEPRECATED_FRAME_INIT_SAVED_REGS (fi);
777 if (!get_frame_pc (fi))
780 media_mode = pc_is_isa32 (get_frame_pc (fi));
782 if (deprecated_get_frame_saved_regs (fi)[pr_regnum] != 0)
784 int gdb_reg_num = translate_insn_rn (pr_regnum, media_mode);
785 int size = ((gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32)
787 : register_size (current_gdbarch, gdb_reg_num));
788 return read_memory_integer (deprecated_get_frame_saved_regs (fi)[pr_regnum], size);
791 return read_register (pr_regnum);
794 /* For vectors of 4 floating point registers. */
796 fv_reg_base_num (int fv_regnum)
800 fp_regnum = FP0_REGNUM +
801 (fv_regnum - FV0_REGNUM) * 4;
805 /* For double precision floating point registers, i.e 2 fp regs.*/
807 dr_reg_base_num (int dr_regnum)
811 fp_regnum = FP0_REGNUM +
812 (dr_regnum - DR0_REGNUM) * 2;
816 /* For pairs of floating point registers */
818 fpp_reg_base_num (int fpp_regnum)
822 fp_regnum = FP0_REGNUM +
823 (fpp_regnum - FPP0_REGNUM) * 2;
828 is_media_pseudo (int rn)
830 return (rn >= DR0_REGNUM && rn <= FV_LAST_REGNUM);
834 sh64_media_reg_base_num (int reg_nr)
836 int base_regnum = -1;
838 if (reg_nr >= DR0_REGNUM
839 && reg_nr <= DR_LAST_REGNUM)
840 base_regnum = dr_reg_base_num (reg_nr);
842 else if (reg_nr >= FPP0_REGNUM
843 && reg_nr <= FPP_LAST_REGNUM)
844 base_regnum = fpp_reg_base_num (reg_nr);
846 else if (reg_nr >= FV0_REGNUM
847 && reg_nr <= FV_LAST_REGNUM)
848 base_regnum = fv_reg_base_num (reg_nr);
855 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
856 GDB_REGNUM BASE_REGNUM
916 sh64_compact_reg_base_num (int reg_nr)
918 int base_regnum = -1;
920 /* general register N maps to general register N */
921 if (reg_nr >= R0_C_REGNUM
922 && reg_nr <= R_LAST_C_REGNUM)
923 base_regnum = reg_nr - R0_C_REGNUM;
925 /* floating point register N maps to floating point register N */
926 else if (reg_nr >= FP0_C_REGNUM
927 && reg_nr <= FP_LAST_C_REGNUM)
928 base_regnum = reg_nr - FP0_C_REGNUM + FP0_REGNUM;
930 /* double prec register N maps to base regnum for double prec register N */
931 else if (reg_nr >= DR0_C_REGNUM
932 && reg_nr <= DR_LAST_C_REGNUM)
933 base_regnum = dr_reg_base_num (DR0_REGNUM
934 + reg_nr - DR0_C_REGNUM);
936 /* vector N maps to base regnum for vector register N */
937 else if (reg_nr >= FV0_C_REGNUM
938 && reg_nr <= FV_LAST_C_REGNUM)
939 base_regnum = fv_reg_base_num (FV0_REGNUM
940 + reg_nr - FV0_C_REGNUM);
942 else if (reg_nr == PC_C_REGNUM)
943 base_regnum = PC_REGNUM;
945 else if (reg_nr == GBR_C_REGNUM)
948 else if (reg_nr == MACH_C_REGNUM
949 || reg_nr == MACL_C_REGNUM)
952 else if (reg_nr == PR_C_REGNUM)
955 else if (reg_nr == T_C_REGNUM)
958 else if (reg_nr == FPSCR_C_REGNUM)
959 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
961 else if (reg_nr == FPUL_C_REGNUM)
962 base_regnum = FP0_REGNUM + 32;
967 /* Given a register number RN (according to the gdb scheme) , return
968 its corresponding architectural register. In media mode, only a
969 subset of the registers is pseudo registers. For compact mode, all
970 the registers are pseudo. */
972 translate_rn_to_arch_reg_num (int rn, int media_mode)
977 if (!is_media_pseudo (rn))
980 return sh64_media_reg_base_num (rn);
983 /* All compact registers are pseudo. */
984 return sh64_compact_reg_base_num (rn);
988 sign_extend (int value, int bits)
990 value = value & ((1 << bits) - 1);
991 return (value & (1 << (bits - 1))
992 ? value | (~((1 << bits) - 1))
997 sh64_nofp_frame_init_saved_regs (struct frame_info *fi)
999 int *where = (int *) alloca ((NUM_REGS + NUM_PSEUDO_REGS) * sizeof (int));
1011 int gdb_register_number;
1012 int register_number;
1013 char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi),
1014 get_frame_base (fi));
1015 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1017 if (deprecated_get_frame_saved_regs (fi) == NULL)
1018 frame_saved_regs_zalloc (fi);
1020 memset (deprecated_get_frame_saved_regs (fi), 0, SIZEOF_FRAME_SAVED_REGS);
1024 /* DANGER! This is ONLY going to work if the char buffer format of
1025 the saved registers is byte-for-byte identical to the
1026 CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
1027 memcpy (deprecated_get_frame_saved_regs (fi), dummy_regs, SIZEOF_FRAME_SAVED_REGS);
1031 get_frame_extra_info (fi)->leaf_function = 1;
1032 get_frame_extra_info (fi)->f_offset = 0;
1034 for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
1039 /* Loop around examining the prologue insns until we find something
1040 that does not appear to be part of the prologue. But give up
1041 after 20 of them, since we're getting silly then. */
1043 pc = get_frame_func (fi);
1046 deprecated_update_frame_pc_hack (fi, 0);
1050 if (pc_is_isa32 (pc))
1061 /* The frame pointer register is general register 14 in shmedia and
1062 shcompact modes. In sh compact it is a pseudo register. Same goes
1063 for the stack pointer register, which is register 15. */
1064 fp_regnum = translate_insn_rn (DEPRECATED_FP_REGNUM, media_mode);
1065 sp_regnum = translate_insn_rn (SP_REGNUM, media_mode);
1067 for (opc = pc + (insn_size * 28); pc < opc; pc += insn_size)
1069 insn = read_memory_integer (media_mode ? UNMAKE_ISA32_ADDR (pc) : pc,
1072 if (media_mode == 0)
1074 if (IS_STS_PR (insn))
1076 int next_insn = read_memory_integer (pc + insn_size, insn_size);
1077 if (IS_MOV_TO_R15 (next_insn))
1079 int reg_nr = PR_C_REGNUM;
1081 where[reg_nr] = depth - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
1082 get_frame_extra_info (fi)->leaf_function = 0;
1086 else if (IS_MOV_R14 (insn))
1088 where[fp_regnum] = depth - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
1091 else if (IS_MOV_R0 (insn))
1093 /* Put in R0 the offset from SP at which to store some
1094 registers. We are interested in this value, because it
1095 will tell us where the given registers are stored within
1097 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
1099 else if (IS_ADD_SP_R0 (insn))
1101 /* This instruction still prepares r0, but we don't care.
1102 We already have the offset in r0_val. */
1104 else if (IS_STS_R0 (insn))
1106 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
1107 int reg_nr = PR_C_REGNUM;
1108 where[reg_nr] = depth - (r0_val - 4);
1110 get_frame_extra_info (fi)->leaf_function = 0;
1112 else if (IS_MOV_R14_R0 (insn))
1114 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
1115 where[fp_regnum] = depth - (r0_val - 4);
1119 else if (IS_ADD_SP (insn))
1121 depth -= ((insn & 0xff) ^ 0x80) - 0x80;
1123 else if (IS_MOV_SP_FP (insn))
1128 if (IS_ADDIL_SP_MEDIA (insn)
1129 || IS_ADDI_SP_MEDIA (insn))
1131 depth -= sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
1134 else if (IS_STQ_R18_R15 (insn))
1137 depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
1138 get_frame_extra_info (fi)->leaf_function = 0;
1141 else if (IS_STL_R18_R15 (insn))
1144 depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
1145 get_frame_extra_info (fi)->leaf_function = 0;
1148 else if (IS_STQ_R14_R15 (insn))
1150 where[fp_regnum] = depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
1153 else if (IS_STL_R14_R15 (insn))
1155 where[fp_regnum] = depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
1158 else if (IS_MOV_SP_FP_MEDIA (insn))
1163 /* Now we know how deep things are, we can work out their addresses. */
1164 for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
1166 register_number = translate_rn_to_arch_reg_num (rn, media_mode);
1170 if (rn == fp_regnum)
1173 /* Watch out! saved_regs is only for the real registers, and
1174 doesn't include space for the pseudo registers. */
1175 deprecated_get_frame_saved_regs (fi)[register_number]
1176 = get_frame_base (fi) - where[rn] + depth;
1179 deprecated_get_frame_saved_regs (fi)[register_number] = 0;
1184 /* SP_REGNUM is 15. For shmedia 15 is the real register. For
1185 shcompact 15 is the arch register corresponding to the pseudo
1186 register r15 which still is the SP register. */
1187 /* The place on the stack where fp is stored contains the sp of
1189 /* Again, saved_registers contains only space for the real
1190 registers, so we store in DEPRECATED_FP_REGNUM position. */
1192 if (tdep->sh_abi == SH_ABI_32)
1195 size = register_size (current_gdbarch, fp_regnum);
1196 deprecated_get_frame_saved_regs (fi)[sp_regnum]
1197 = read_memory_integer (deprecated_get_frame_saved_regs (fi)[fp_regnum],
1201 deprecated_get_frame_saved_regs (fi)[sp_regnum] = get_frame_base (fi);
1203 get_frame_extra_info (fi)->f_offset = depth - where[fp_regnum];
1206 /* Initialize the extra info saved in a FRAME */
1208 sh64_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1210 int media_mode = pc_is_isa32 (get_frame_pc (fi));
1212 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1214 if (get_next_frame (fi))
1215 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
1217 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
1218 get_frame_base (fi)))
1220 /* We need to setup fi->frame here because call_function_by_hand
1221 gets it wrong by assuming it's always FP. */
1222 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi), SP_REGNUM));
1223 get_frame_extra_info (fi)->return_pc =
1224 deprecated_read_register_dummy (get_frame_pc (fi),
1225 get_frame_base (fi), PC_REGNUM);
1226 get_frame_extra_info (fi)->f_offset = -4;
1227 get_frame_extra_info (fi)->leaf_function = 0;
1232 DEPRECATED_FRAME_INIT_SAVED_REGS (fi);
1233 get_frame_extra_info (fi)->return_pc =
1234 sh64_get_saved_pr (fi, PR_REGNUM);
1239 sh64_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
1240 struct frame_info *frame, int regnum,
1241 enum lval_type *lval)
1244 int live_regnum = regnum;
1245 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1247 if (!target_has_registers)
1248 error ("No registers.");
1250 /* Normal systems don't optimize out things with register numbers. */
1251 if (optimized != NULL)
1254 if (addrp) /* default assumption: not found in memory */
1258 memset (raw_buffer, 0, sizeof (raw_buffer));
1260 /* We must do this here, before the following while loop changes
1261 frame, and makes it NULL. If this is a media register number,
1262 but we are in compact mode, it will become the corresponding
1263 compact pseudo register. If there is no corresponding compact
1264 pseudo-register what do we do?*/
1265 media_mode = pc_is_isa32 (get_frame_pc (frame));
1266 live_regnum = translate_insn_rn (regnum, media_mode);
1268 /* Note: since the current frame's registers could only have been
1269 saved by frames INTERIOR TO the current frame, we skip examining
1270 the current frame itself: otherwise, we would be getting the
1271 previous frame's registers which were saved by the current frame. */
1273 while (frame && ((frame = get_next_frame (frame)) != NULL))
1275 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1276 get_frame_base (frame),
1277 get_frame_base (frame)))
1279 if (lval) /* found it in a CALL_DUMMY frame */
1283 (deprecated_generic_find_dummy_frame (get_frame_pc (frame), get_frame_base (frame))
1284 + DEPRECATED_REGISTER_BYTE (regnum)),
1285 register_size (current_gdbarch, regnum));
1289 DEPRECATED_FRAME_INIT_SAVED_REGS (frame);
1290 if (deprecated_get_frame_saved_regs (frame) != NULL
1291 && deprecated_get_frame_saved_regs (frame)[regnum] != 0)
1293 if (lval) /* found it saved on the stack */
1294 *lval = lval_memory;
1295 if (regnum == SP_REGNUM)
1297 if (raw_buffer) /* SP register treated specially */
1298 store_unsigned_integer (raw_buffer,
1299 register_size (current_gdbarch,
1301 deprecated_get_frame_saved_regs (frame)[regnum]);
1304 { /* any other register */
1307 *addrp = deprecated_get_frame_saved_regs (frame)[regnum];
1311 if (tdep->sh_abi == SH_ABI_32
1312 && (live_regnum == DEPRECATED_FP_REGNUM
1313 || live_regnum == PR_REGNUM))
1316 size = register_size (current_gdbarch, live_regnum);
1317 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1318 read_memory (deprecated_get_frame_saved_regs (frame)[regnum],
1321 read_memory (deprecated_get_frame_saved_regs (frame)[regnum],
1323 + register_size (current_gdbarch, live_regnum)
1332 /* If we get thru the loop to this point, it means the register was
1333 not saved in any frame. Return the actual live-register value. */
1335 if (lval) /* found it in a live register */
1336 *lval = lval_register;
1338 *addrp = DEPRECATED_REGISTER_BYTE (live_regnum);
1340 deprecated_read_register_gen (live_regnum, raw_buffer);
1344 sh64_extract_struct_value_address (struct regcache *regcache)
1346 /* FIXME: cagney/2004-01-17: Does the ABI guarantee that the return
1347 address regster is preserved across function calls? Probably
1348 not, making this function wrong. */
1350 regcache_raw_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &val);
1355 sh_frame_saved_pc (struct frame_info *frame)
1357 return (get_frame_extra_info (frame)->return_pc);
1360 /* Discard from the stack the innermost frame, restoring all saved registers.
1361 Used in the 'return' command. */
1363 sh64_pop_frame (void)
1365 struct frame_info *frame = get_current_frame ();
1368 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1370 int media_mode = pc_is_isa32 (get_frame_pc (frame));
1372 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1373 get_frame_base (frame),
1374 get_frame_base (frame)))
1375 deprecated_pop_dummy_frame ();
1378 fp = get_frame_base (frame);
1379 DEPRECATED_FRAME_INIT_SAVED_REGS (frame);
1381 /* Copy regs from where they were saved in the frame */
1382 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
1383 if (deprecated_get_frame_saved_regs (frame)[regnum])
1386 if (tdep->sh_abi == SH_ABI_32
1387 && (regnum == DEPRECATED_FP_REGNUM
1388 || regnum == PR_REGNUM))
1391 size = register_size (current_gdbarch,
1392 translate_insn_rn (regnum, media_mode));
1393 write_register (regnum,
1394 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
1398 write_register (PC_REGNUM, get_frame_extra_info (frame)->return_pc);
1399 write_register (SP_REGNUM, fp + 8);
1401 flush_cached_frames ();
1405 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
1410 /* Function: push_arguments
1411 Setup the function arguments for calling a function in the inferior.
1413 On the Renesas SH architecture, there are four registers (R4 to R7)
1414 which are dedicated for passing function arguments. Up to the first
1415 four arguments (depending on size) may go into these registers.
1416 The rest go on the stack.
1418 Arguments that are smaller than 4 bytes will still take up a whole
1419 register or a whole 32-bit word on the stack, and will be
1420 right-justified in the register or the stack word. This includes
1421 chars, shorts, and small aggregate types.
1423 Arguments that are larger than 4 bytes may be split between two or
1424 more registers. If there are not enough registers free, an argument
1425 may be passed partly in a register (or registers), and partly on the
1426 stack. This includes doubles, long longs, and larger aggregates.
1427 As far as I know, there is no upper limit to the size of aggregates
1428 that will be passed in this way; in other words, the convention of
1429 passing a pointer to a large aggregate instead of a copy is not used.
1431 An exceptional case exists for struct arguments (and possibly other
1432 aggregates such as arrays) if the size is larger than 4 bytes but
1433 not a multiple of 4 bytes. In this case the argument is never split
1434 between the registers and the stack, but instead is copied in its
1435 entirety onto the stack, AND also copied into as many registers as
1436 there is room for. In other words, space in registers permitting,
1437 two copies of the same argument are passed in. As far as I can tell,
1438 only the one on the stack is used, although that may be a function
1439 of the level of compiler optimization. I suspect this is a compiler
1440 bug. Arguments of these odd sizes are left-justified within the
1441 word (as opposed to arguments smaller than 4 bytes, which are
1444 If the function is to return an aggregate type such as a struct, it
1445 is either returned in the normal return value register R0 (if its
1446 size is no greater than one byte), or else the caller must allocate
1447 space into which the callee will copy the return value (if the size
1448 is greater than one byte). In this case, a pointer to the return
1449 value location is passed into the callee in register R2, which does
1450 not displace any of the other arguments passed in via registers R4
1453 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1454 non-scalar (struct, union) elements (even if the elements are
1456 FR0-FR11 for single precision floating point (float)
1457 DR0-DR10 for double precision floating point (double)
1459 If a float is argument number 3 (for instance) and arguments number
1460 1,2, and 4 are integer, the mapping will be:
1461 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1463 If a float is argument number 10 (for instance) and arguments number
1464 1 through 10 are integer, the mapping will be:
1465 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1466 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1467 I.e. there is hole in the stack.
1469 Different rules apply for variable arguments functions, and for functions
1470 for which the prototype is not known. */
1473 sh64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1474 int struct_return, CORE_ADDR struct_addr)
1476 int stack_offset, stack_alloc;
1480 int float_arg_index = 0;
1481 int double_arg_index = 0;
1492 memset (fp_args, 0, sizeof (fp_args));
1494 /* first force sp to a 8-byte alignment */
1497 /* The "struct return pointer" pseudo-argument has its own dedicated
1501 write_register (STRUCT_RETURN_REGNUM, struct_addr);
1503 /* Now make sure there's space on the stack */
1504 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1505 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 7) & ~7);
1506 sp -= stack_alloc; /* make room on stack for args */
1508 /* Now load as many as possible of the first arguments into
1509 registers, and push the rest onto the stack. There are 64 bytes
1510 in eight registers available. Loop thru args from first to last. */
1512 int_argreg = ARG0_REGNUM;
1513 float_argreg = FP0_REGNUM;
1514 double_argreg = DR0_REGNUM;
1516 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1518 type = VALUE_TYPE (args[argnum]);
1519 len = TYPE_LENGTH (type);
1520 memset (valbuf, 0, sizeof (valbuf));
1522 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1524 argreg_size = register_size (current_gdbarch, int_argreg);
1526 if (len < argreg_size)
1528 /* value gets right-justified in the register or stack word */
1529 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1530 memcpy (valbuf + argreg_size - len,
1531 (char *) VALUE_CONTENTS (args[argnum]), len);
1533 memcpy (valbuf, (char *) VALUE_CONTENTS (args[argnum]), len);
1538 val = (char *) VALUE_CONTENTS (args[argnum]);
1542 if (int_argreg > ARGLAST_REGNUM)
1544 /* must go on the stack */
1545 write_memory (sp + stack_offset, val, argreg_size);
1546 stack_offset += 8;/*argreg_size;*/
1548 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1549 That's because some *&^%$ things get passed on the stack
1550 AND in the registers! */
1551 if (int_argreg <= ARGLAST_REGNUM)
1553 /* there's room in a register */
1554 regval = extract_unsigned_integer (val, argreg_size);
1555 write_register (int_argreg, regval);
1557 /* Store the value 8 bytes at a time. This means that
1558 things larger than 8 bytes may go partly in registers
1559 and partly on the stack. FIXME: argreg is incremented
1560 before we use its size. */
1568 val = (char *) VALUE_CONTENTS (args[argnum]);
1571 /* Where is it going to be stored? */
1572 while (fp_args[float_arg_index])
1575 /* Now float_argreg points to the register where it
1576 should be stored. Are we still within the allowed
1578 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1580 /* Goes in FR0...FR11 */
1581 deprecated_write_register_gen (FP0_REGNUM + float_arg_index,
1583 fp_args[float_arg_index] = 1;
1584 /* Skip the corresponding general argument register. */
1589 /* Store it as the integers, 8 bytes at the time, if
1590 necessary spilling on the stack. */
1595 /* Where is it going to be stored? */
1596 while (fp_args[double_arg_index])
1597 double_arg_index += 2;
1598 /* Now double_argreg points to the register
1599 where it should be stored.
1600 Are we still within the allowed register set? */
1601 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1603 /* Goes in DR0...DR10 */
1604 /* The numbering of the DRi registers is consecutive,
1605 i.e. includes odd numbers. */
1606 int double_register_offset = double_arg_index / 2;
1607 int regnum = DR0_REGNUM +
1608 double_register_offset;
1610 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1612 memset (valbuf_tmp, 0, sizeof (valbuf_tmp));
1613 DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL (regnum,
1619 /* Note: must use write_register_gen here instead
1620 of regcache_raw_write, because
1621 regcache_raw_write works only for real
1622 registers, not pseudo. write_register_gen will
1623 call the gdbarch function to do register
1624 writes, and that will properly know how to deal
1626 deprecated_write_register_gen (regnum, val);
1627 fp_args[double_arg_index] = 1;
1628 fp_args[double_arg_index + 1] = 1;
1629 /* Skip the corresponding general argument register. */
1634 /* Store it as the integers, 8 bytes at the time, if
1635 necessary spilling on the stack. */
1642 /* Function: push_return_address (pc)
1643 Set up the return address for the inferior function call.
1644 Needed for targets where we don't actually execute a JSR/BSR instruction */
1647 sh64_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1649 write_register (PR_REGNUM, entry_point_address ());
1653 /* Find a function's return value in the appropriate registers (in
1654 regbuf), and copy it into valbuf. Extract from an array REGBUF
1655 containing the (raw) register state a function return value of type
1656 TYPE, and copy that, in virtual format, into VALBUF. */
1658 sh64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
1661 int return_register;
1662 int len = TYPE_LENGTH (type);
1664 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1668 /* Return value stored in FP0_REGNUM */
1669 return_register = FP0_REGNUM;
1670 offset = DEPRECATED_REGISTER_BYTE (return_register);
1671 memcpy (valbuf, (char *) regbuf + offset, len);
1675 /* return value stored in DR0_REGNUM */
1678 return_register = DR0_REGNUM;
1679 offset = DEPRECATED_REGISTER_BYTE (return_register);
1681 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1682 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1683 (char *) regbuf + offset, &val);
1685 floatformat_to_doublest (&floatformat_ieee_double_big,
1686 (char *) regbuf + offset, &val);
1687 store_typed_floating (valbuf, type, val);
1694 /* Result is in register 2. If smaller than 8 bytes, it is padded
1695 at the most significant end. */
1696 return_register = DEFAULT_RETURN_REGNUM;
1697 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1698 offset = DEPRECATED_REGISTER_BYTE (return_register) +
1699 register_size (current_gdbarch, return_register) - len;
1701 offset = DEPRECATED_REGISTER_BYTE (return_register);
1702 memcpy (valbuf, (char *) regbuf + offset, len);
1705 error ("bad size for return value");
1709 /* Write into appropriate registers a function return value
1710 of type TYPE, given in virtual format.
1711 If the architecture is sh4 or sh3e, store a function's return value
1712 in the R0 general register or in the FP0 floating point register,
1713 depending on the type of the return value. In all the other cases
1714 the result is stored in r0, left-justified. */
1717 sh64_store_return_value (struct type *type, char *valbuf)
1719 char buf[64]; /* more than enough... */
1720 int len = TYPE_LENGTH (type);
1722 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1726 /* Return value stored in FP0_REGNUM */
1727 deprecated_write_register_gen (FP0_REGNUM, valbuf);
1731 /* return value stored in DR0_REGNUM */
1732 /* FIXME: Implement */
1737 int return_register = DEFAULT_RETURN_REGNUM;
1740 if (len <= register_size (current_gdbarch, return_register))
1742 /* Pad with zeros. */
1743 memset (buf, 0, register_size (current_gdbarch, return_register));
1744 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1745 offset = 0; /*register_size (current_gdbarch,
1746 return_register) - len;*/
1748 offset = register_size (current_gdbarch, return_register) - len;
1750 memcpy (buf + offset, valbuf, len);
1751 deprecated_write_register_gen (return_register, buf);
1754 deprecated_write_register_gen (return_register, valbuf);
1759 sh64_show_media_regs (void)
1763 printf_filtered ("PC=%s SR=%016llx \n",
1764 paddr (read_register (PC_REGNUM)),
1765 (long long) read_register (SR_REGNUM));
1767 printf_filtered ("SSR=%016llx SPC=%016llx \n",
1768 (long long) read_register (SSR_REGNUM),
1769 (long long) read_register (SPC_REGNUM));
1770 printf_filtered ("FPSCR=%016lx\n ",
1771 (long) read_register (FPSCR_REGNUM));
1773 for (i = 0; i < 64; i = i + 4)
1774 printf_filtered ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1776 (long long) read_register (i + 0),
1777 (long long) read_register (i + 1),
1778 (long long) read_register (i + 2),
1779 (long long) read_register (i + 3));
1781 printf_filtered ("\n");
1783 for (i = 0; i < 64; i = i + 8)
1784 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1786 (long) read_register (FP0_REGNUM + i + 0),
1787 (long) read_register (FP0_REGNUM + i + 1),
1788 (long) read_register (FP0_REGNUM + i + 2),
1789 (long) read_register (FP0_REGNUM + i + 3),
1790 (long) read_register (FP0_REGNUM + i + 4),
1791 (long) read_register (FP0_REGNUM + i + 5),
1792 (long) read_register (FP0_REGNUM + i + 6),
1793 (long) read_register (FP0_REGNUM + i + 7));
1797 sh64_show_compact_regs (void)
1801 printf_filtered ("PC=%s \n",
1802 paddr (read_register (PC_C_REGNUM)));
1804 printf_filtered ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1805 (long) read_register (GBR_C_REGNUM),
1806 (long) read_register (MACH_C_REGNUM),
1807 (long) read_register (MACL_C_REGNUM),
1808 (long) read_register (PR_C_REGNUM),
1809 (long) read_register (T_C_REGNUM));
1810 printf_filtered ("FPSCR=%08lx FPUL=%08lx\n",
1811 (long) read_register (FPSCR_C_REGNUM),
1812 (long) read_register (FPUL_C_REGNUM));
1814 for (i = 0; i < 16; i = i + 4)
1815 printf_filtered ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1817 (long) read_register (i + 0),
1818 (long) read_register (i + 1),
1819 (long) read_register (i + 2),
1820 (long) read_register (i + 3));
1822 printf_filtered ("\n");
1824 for (i = 0; i < 16; i = i + 8)
1825 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1827 (long) read_register (FP0_REGNUM + i + 0),
1828 (long) read_register (FP0_REGNUM + i + 1),
1829 (long) read_register (FP0_REGNUM + i + 2),
1830 (long) read_register (FP0_REGNUM + i + 3),
1831 (long) read_register (FP0_REGNUM + i + 4),
1832 (long) read_register (FP0_REGNUM + i + 5),
1833 (long) read_register (FP0_REGNUM + i + 6),
1834 (long) read_register (FP0_REGNUM + i + 7));
1837 /* FIXME!!! This only shows the registers for shmedia, excluding the
1838 pseudo registers. */
1840 sh64_show_regs (void)
1842 if (deprecated_selected_frame
1843 && pc_is_isa32 (get_frame_pc (deprecated_selected_frame)))
1844 sh64_show_media_regs ();
1846 sh64_show_compact_regs ();
1851 SH MEDIA MODE (ISA 32)
1852 general registers (64-bit) 0-63
1853 0 r0, r1, r2, r3, r4, r5, r6, r7,
1854 64 r8, r9, r10, r11, r12, r13, r14, r15,
1855 128 r16, r17, r18, r19, r20, r21, r22, r23,
1856 192 r24, r25, r26, r27, r28, r29, r30, r31,
1857 256 r32, r33, r34, r35, r36, r37, r38, r39,
1858 320 r40, r41, r42, r43, r44, r45, r46, r47,
1859 384 r48, r49, r50, r51, r52, r53, r54, r55,
1860 448 r56, r57, r58, r59, r60, r61, r62, r63,
1865 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1868 target registers (64-bit) 68-75
1869 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1871 floating point state control register (32-bit) 76
1874 single precision floating point registers (32-bit) 77-140
1875 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1876 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1877 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1878 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1879 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1880 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1881 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1882 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1884 TOTAL SPACE FOR REGISTERS: 868 bytes
1886 From here on they are all pseudo registers: no memory allocated.
1887 REGISTER_BYTE returns the register byte for the base register.
1889 double precision registers (pseudo) 141-172
1890 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1891 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1892 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1893 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1895 floating point pairs (pseudo) 173-204
1896 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1897 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1898 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1899 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1901 floating point vectors (4 floating point regs) (pseudo) 205-220
1902 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1903 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1905 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1906 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1907 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1909 gbr_c, mach_c, macl_c, pr_c, t_c,
1911 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1912 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1913 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1914 fv0_c, fv4_c, fv8_c, fv12_c
1918 sh64_register_byte (int reg_nr)
1920 int base_regnum = -1;
1922 /* If it is a pseudo register, get the number of the first floating
1923 point register that is part of it. */
1924 if (reg_nr >= DR0_REGNUM
1925 && reg_nr <= DR_LAST_REGNUM)
1926 base_regnum = dr_reg_base_num (reg_nr);
1928 else if (reg_nr >= FPP0_REGNUM
1929 && reg_nr <= FPP_LAST_REGNUM)
1930 base_regnum = fpp_reg_base_num (reg_nr);
1932 else if (reg_nr >= FV0_REGNUM
1933 && reg_nr <= FV_LAST_REGNUM)
1934 base_regnum = fv_reg_base_num (reg_nr);
1936 /* sh compact pseudo register. FPSCR is a pathological case, need to
1937 treat it as special. */
1938 else if ((reg_nr >= R0_C_REGNUM
1939 && reg_nr <= FV_LAST_C_REGNUM)
1940 && reg_nr != FPSCR_C_REGNUM)
1941 base_regnum = sh64_compact_reg_base_num (reg_nr);
1943 /* Now return the offset in bytes within the register cache. */
1944 /* sh media pseudo register, i.e. any of DR, FFP, FV registers. */
1945 if (reg_nr >= DR0_REGNUM
1946 && reg_nr <= FV_LAST_REGNUM)
1947 return (base_regnum - FP0_REGNUM + 1) * 4
1948 + (TR7_REGNUM + 1) * 8;
1950 /* sh compact pseudo register: general register */
1951 if ((reg_nr >= R0_C_REGNUM
1952 && reg_nr <= R_LAST_C_REGNUM))
1953 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1954 ? base_regnum * 8 + 4
1957 /* sh compact pseudo register: */
1958 if (reg_nr == PC_C_REGNUM
1959 || reg_nr == GBR_C_REGNUM
1960 || reg_nr == MACL_C_REGNUM
1961 || reg_nr == PR_C_REGNUM)
1962 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1963 ? base_regnum * 8 + 4
1966 if (reg_nr == MACH_C_REGNUM)
1967 return base_regnum * 8;
1969 if (reg_nr == T_C_REGNUM)
1970 return base_regnum * 8; /* FIXME??? how do we get bit 0? Do we have to? */
1972 /* sh compact pseudo register: floating point register */
1973 else if (reg_nr >= FP0_C_REGNUM
1974 && reg_nr <= FV_LAST_C_REGNUM)
1975 return (base_regnum - FP0_REGNUM) * 4
1976 + (TR7_REGNUM + 1) * 8 + 4;
1978 else if (reg_nr == FPSCR_C_REGNUM)
1979 /* This is complicated, for now return the beginning of the
1980 architectural FPSCR register. */
1981 return (TR7_REGNUM + 1) * 8;
1983 else if (reg_nr == FPUL_C_REGNUM)
1984 return ((base_regnum - FP0_REGNUM) * 4 +
1985 (TR7_REGNUM + 1) * 8 + 4);
1987 /* It is not a pseudo register. */
1988 /* It is a 64 bit register. */
1989 else if (reg_nr <= TR7_REGNUM)
1992 /* It is a 32 bit register. */
1993 else if (reg_nr == FPSCR_REGNUM)
1994 return (FPSCR_REGNUM * 8);
1996 /* It is floating point 32-bit register */
1998 return ((TR7_REGNUM + 1) * 8
1999 + (reg_nr - FP0_REGNUM + 1) * 4);
2002 static struct type *
2003 sh64_build_float_register_type (int high)
2007 temp = create_range_type (NULL, builtin_type_int, 0, high);
2008 return create_array_type (NULL, builtin_type_float, temp);
2011 /* Return the GDB type object for the "standard" data type
2012 of data in register REG_NR. */
2013 static struct type *
2014 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
2016 if ((reg_nr >= FP0_REGNUM
2017 && reg_nr <= FP_LAST_REGNUM)
2018 || (reg_nr >= FP0_C_REGNUM
2019 && reg_nr <= FP_LAST_C_REGNUM))
2020 return builtin_type_float;
2021 else if ((reg_nr >= DR0_REGNUM
2022 && reg_nr <= DR_LAST_REGNUM)
2023 || (reg_nr >= DR0_C_REGNUM
2024 && reg_nr <= DR_LAST_C_REGNUM))
2025 return builtin_type_double;
2026 else if (reg_nr >= FPP0_REGNUM
2027 && reg_nr <= FPP_LAST_REGNUM)
2028 return sh64_build_float_register_type (1);
2029 else if ((reg_nr >= FV0_REGNUM
2030 && reg_nr <= FV_LAST_REGNUM)
2031 ||(reg_nr >= FV0_C_REGNUM
2032 && reg_nr <= FV_LAST_C_REGNUM))
2033 return sh64_build_float_register_type (3);
2034 else if (reg_nr == FPSCR_REGNUM)
2035 return builtin_type_int;
2036 else if (reg_nr >= R0_C_REGNUM
2037 && reg_nr < FP0_C_REGNUM)
2038 return builtin_type_int;
2040 return builtin_type_long_long;
2044 sh64_register_convert_to_virtual (int regnum, struct type *type,
2045 char *from, char *to)
2047 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
2049 /* It is a no-op. */
2050 memcpy (to, from, register_size (current_gdbarch, regnum));
2054 if ((regnum >= DR0_REGNUM
2055 && regnum <= DR_LAST_REGNUM)
2056 || (regnum >= DR0_C_REGNUM
2057 && regnum <= DR_LAST_C_REGNUM))
2060 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
2062 store_typed_floating (to, type, val);
2065 error ("sh64_register_convert_to_virtual called with non DR register number");
2069 sh64_register_convert_to_raw (struct type *type, int regnum,
2070 const void *from, void *to)
2072 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
2074 /* It is a no-op. */
2075 memcpy (to, from, register_size (current_gdbarch, regnum));
2079 if ((regnum >= DR0_REGNUM
2080 && regnum <= DR_LAST_REGNUM)
2081 || (regnum >= DR0_C_REGNUM
2082 && regnum <= DR_LAST_C_REGNUM))
2084 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
2085 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
2089 error ("sh64_register_convert_to_raw called with non DR register number");
2093 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2094 int reg_nr, void *buffer)
2099 char temp_buffer[MAX_REGISTER_SIZE];
2101 if (reg_nr >= DR0_REGNUM
2102 && reg_nr <= DR_LAST_REGNUM)
2104 base_regnum = dr_reg_base_num (reg_nr);
2106 /* Build the value in the provided buffer. */
2107 /* DR regs are double precision registers obtained by
2108 concatenating 2 single precision floating point registers. */
2109 for (portion = 0; portion < 2; portion++)
2110 regcache_raw_read (regcache, base_regnum + portion,
2112 + register_size (gdbarch, base_regnum) * portion));
2114 /* We must pay attention to the endianness. */
2115 sh64_register_convert_to_virtual (reg_nr,
2116 gdbarch_register_type (gdbarch,
2118 temp_buffer, buffer);
2122 else if (reg_nr >= FPP0_REGNUM
2123 && reg_nr <= FPP_LAST_REGNUM)
2125 base_regnum = fpp_reg_base_num (reg_nr);
2127 /* Build the value in the provided buffer. */
2128 /* FPP regs are pairs of single precision registers obtained by
2129 concatenating 2 single precision floating point registers. */
2130 for (portion = 0; portion < 2; portion++)
2131 regcache_raw_read (regcache, base_regnum + portion,
2133 + register_size (gdbarch, base_regnum) * portion));
2136 else if (reg_nr >= FV0_REGNUM
2137 && reg_nr <= FV_LAST_REGNUM)
2139 base_regnum = fv_reg_base_num (reg_nr);
2141 /* Build the value in the provided buffer. */
2142 /* FV regs are vectors of single precision registers obtained by
2143 concatenating 4 single precision floating point registers. */
2144 for (portion = 0; portion < 4; portion++)
2145 regcache_raw_read (regcache, base_regnum + portion,
2147 + register_size (gdbarch, base_regnum) * portion));
2150 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
2151 else if (reg_nr >= R0_C_REGNUM
2152 && reg_nr <= T_C_REGNUM)
2154 base_regnum = sh64_compact_reg_base_num (reg_nr);
2156 /* Build the value in the provided buffer. */
2157 regcache_raw_read (regcache, base_regnum, temp_buffer);
2158 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2160 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
2163 else if (reg_nr >= FP0_C_REGNUM
2164 && reg_nr <= FP_LAST_C_REGNUM)
2166 base_regnum = sh64_compact_reg_base_num (reg_nr);
2168 /* Build the value in the provided buffer. */
2169 /* Floating point registers map 1-1 to the media fp regs,
2170 they have the same size and endianness. */
2171 regcache_raw_read (regcache, base_regnum, buffer);
2174 else if (reg_nr >= DR0_C_REGNUM
2175 && reg_nr <= DR_LAST_C_REGNUM)
2177 base_regnum = sh64_compact_reg_base_num (reg_nr);
2179 /* DR_C regs are double precision registers obtained by
2180 concatenating 2 single precision floating point registers. */
2181 for (portion = 0; portion < 2; portion++)
2182 regcache_raw_read (regcache, base_regnum + portion,
2184 + register_size (gdbarch, base_regnum) * portion));
2186 /* We must pay attention to the endianness. */
2187 sh64_register_convert_to_virtual (reg_nr,
2188 gdbarch_register_type (gdbarch,
2190 temp_buffer, buffer);
2193 else if (reg_nr >= FV0_C_REGNUM
2194 && reg_nr <= FV_LAST_C_REGNUM)
2196 base_regnum = sh64_compact_reg_base_num (reg_nr);
2198 /* Build the value in the provided buffer. */
2199 /* FV_C regs are vectors of single precision registers obtained by
2200 concatenating 4 single precision floating point registers. */
2201 for (portion = 0; portion < 4; portion++)
2202 regcache_raw_read (regcache, base_regnum + portion,
2204 + register_size (gdbarch, base_regnum) * portion));
2207 else if (reg_nr == FPSCR_C_REGNUM)
2209 int fpscr_base_regnum;
2211 unsigned int fpscr_value;
2212 unsigned int sr_value;
2213 unsigned int fpscr_c_value;
2214 unsigned int fpscr_c_part1_value;
2215 unsigned int fpscr_c_part2_value;
2217 fpscr_base_regnum = FPSCR_REGNUM;
2218 sr_base_regnum = SR_REGNUM;
2220 /* Build the value in the provided buffer. */
2221 /* FPSCR_C is a very weird register that contains sparse bits
2222 from the FPSCR and the SR architectural registers.
2229 2-17 Bit 2-18 of FPSCR
2230 18-20 Bits 12,13,14 of SR
2234 /* Get FPSCR into a local buffer */
2235 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
2236 /* Get value as an int. */
2237 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
2238 /* Get SR into a local buffer */
2239 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
2240 /* Get value as an int. */
2241 sr_value = extract_unsigned_integer (temp_buffer, 4);
2242 /* Build the new value. */
2243 fpscr_c_part1_value = fpscr_value & 0x3fffd;
2244 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
2245 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
2246 /* Store that in out buffer!!! */
2247 store_unsigned_integer (buffer, 4, fpscr_c_value);
2248 /* FIXME There is surely an endianness gotcha here. */
2251 else if (reg_nr == FPUL_C_REGNUM)
2253 base_regnum = sh64_compact_reg_base_num (reg_nr);
2255 /* FPUL_C register is floating point register 32,
2256 same size, same endianness. */
2257 regcache_raw_read (regcache, base_regnum, buffer);
2262 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2263 int reg_nr, const void *buffer)
2265 int base_regnum, portion;
2267 char temp_buffer[MAX_REGISTER_SIZE];
2269 if (reg_nr >= DR0_REGNUM
2270 && reg_nr <= DR_LAST_REGNUM)
2272 base_regnum = dr_reg_base_num (reg_nr);
2273 /* We must pay attention to the endianness. */
2274 sh64_register_convert_to_raw (gdbarch_register_type (gdbarch, reg_nr),
2276 buffer, temp_buffer);
2278 /* Write the real regs for which this one is an alias. */
2279 for (portion = 0; portion < 2; portion++)
2280 regcache_raw_write (regcache, base_regnum + portion,
2282 + register_size (gdbarch,
2283 base_regnum) * portion));
2286 else if (reg_nr >= FPP0_REGNUM
2287 && reg_nr <= FPP_LAST_REGNUM)
2289 base_regnum = fpp_reg_base_num (reg_nr);
2291 /* Write the real regs for which this one is an alias. */
2292 for (portion = 0; portion < 2; portion++)
2293 regcache_raw_write (regcache, base_regnum + portion,
2295 + register_size (gdbarch,
2296 base_regnum) * portion));
2299 else if (reg_nr >= FV0_REGNUM
2300 && reg_nr <= FV_LAST_REGNUM)
2302 base_regnum = fv_reg_base_num (reg_nr);
2304 /* Write the real regs for which this one is an alias. */
2305 for (portion = 0; portion < 4; portion++)
2306 regcache_raw_write (regcache, base_regnum + portion,
2308 + register_size (gdbarch,
2309 base_regnum) * portion));
2312 /* sh compact general pseudo registers. 1-to-1 with a shmedia
2313 register but only 4 bytes of it. */
2314 else if (reg_nr >= R0_C_REGNUM
2315 && reg_nr <= T_C_REGNUM)
2317 base_regnum = sh64_compact_reg_base_num (reg_nr);
2318 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
2319 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2323 /* Let's read the value of the base register into a temporary
2324 buffer, so that overwriting the last four bytes with the new
2325 value of the pseudo will leave the upper 4 bytes unchanged. */
2326 regcache_raw_read (regcache, base_regnum, temp_buffer);
2327 /* Write as an 8 byte quantity */
2328 memcpy (temp_buffer + offset, buffer, 4);
2329 regcache_raw_write (regcache, base_regnum, temp_buffer);
2332 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
2333 registers. Both are 4 bytes. */
2334 else if (reg_nr >= FP0_C_REGNUM
2335 && reg_nr <= FP_LAST_C_REGNUM)
2337 base_regnum = sh64_compact_reg_base_num (reg_nr);
2338 regcache_raw_write (regcache, base_regnum, buffer);
2341 else if (reg_nr >= DR0_C_REGNUM
2342 && reg_nr <= DR_LAST_C_REGNUM)
2344 base_regnum = sh64_compact_reg_base_num (reg_nr);
2345 for (portion = 0; portion < 2; portion++)
2347 /* We must pay attention to the endianness. */
2348 sh64_register_convert_to_raw (gdbarch_register_type (gdbarch,
2351 buffer, temp_buffer);
2353 regcache_raw_write (regcache, base_regnum + portion,
2355 + register_size (gdbarch,
2356 base_regnum) * portion));
2360 else if (reg_nr >= FV0_C_REGNUM
2361 && reg_nr <= FV_LAST_C_REGNUM)
2363 base_regnum = sh64_compact_reg_base_num (reg_nr);
2365 for (portion = 0; portion < 4; portion++)
2367 regcache_raw_write (regcache, base_regnum + portion,
2369 + register_size (gdbarch,
2370 base_regnum) * portion));
2374 else if (reg_nr == FPSCR_C_REGNUM)
2376 int fpscr_base_regnum;
2378 unsigned int fpscr_value;
2379 unsigned int sr_value;
2380 unsigned int old_fpscr_value;
2381 unsigned int old_sr_value;
2382 unsigned int fpscr_c_value;
2383 unsigned int fpscr_mask;
2384 unsigned int sr_mask;
2386 fpscr_base_regnum = FPSCR_REGNUM;
2387 sr_base_regnum = SR_REGNUM;
2389 /* FPSCR_C is a very weird register that contains sparse bits
2390 from the FPSCR and the SR architectural registers.
2397 2-17 Bit 2-18 of FPSCR
2398 18-20 Bits 12,13,14 of SR
2402 /* Get value as an int. */
2403 fpscr_c_value = extract_unsigned_integer (buffer, 4);
2405 /* Build the new values. */
2406 fpscr_mask = 0x0003fffd;
2407 sr_mask = 0x001c0000;
2409 fpscr_value = fpscr_c_value & fpscr_mask;
2410 sr_value = (fpscr_value & sr_mask) >> 6;
2412 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
2413 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
2414 old_fpscr_value &= 0xfffc0002;
2415 fpscr_value |= old_fpscr_value;
2416 store_unsigned_integer (temp_buffer, 4, fpscr_value);
2417 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
2419 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
2420 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
2421 old_sr_value &= 0xffff8fff;
2422 sr_value |= old_sr_value;
2423 store_unsigned_integer (temp_buffer, 4, sr_value);
2424 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
2427 else if (reg_nr == FPUL_C_REGNUM)
2429 base_regnum = sh64_compact_reg_base_num (reg_nr);
2430 regcache_raw_write (regcache, base_regnum, buffer);
2434 /* Floating point vector of 4 float registers. */
2436 do_fv_register_info (struct gdbarch *gdbarch, struct ui_file *file,
2439 int first_fp_reg_num = fv_reg_base_num (fv_regnum);
2440 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2441 fv_regnum - FV0_REGNUM,
2442 (int) read_register (first_fp_reg_num),
2443 (int) read_register (first_fp_reg_num + 1),
2444 (int) read_register (first_fp_reg_num + 2),
2445 (int) read_register (first_fp_reg_num + 3));
2448 /* Floating point vector of 4 float registers, compact mode. */
2450 do_fv_c_register_info (int fv_regnum)
2452 int first_fp_reg_num = sh64_compact_reg_base_num (fv_regnum);
2453 printf_filtered ("fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2454 fv_regnum - FV0_C_REGNUM,
2455 (int) read_register (first_fp_reg_num),
2456 (int) read_register (first_fp_reg_num + 1),
2457 (int) read_register (first_fp_reg_num + 2),
2458 (int) read_register (first_fp_reg_num + 3));
2461 /* Pairs of single regs. The DR are instead double precision
2464 do_fpp_register_info (int fpp_regnum)
2466 int first_fp_reg_num = fpp_reg_base_num (fpp_regnum);
2468 printf_filtered ("fpp%d\t0x%08x\t0x%08x\n",
2469 fpp_regnum - FPP0_REGNUM,
2470 (int) read_register (first_fp_reg_num),
2471 (int) read_register (first_fp_reg_num + 1));
2474 /* Double precision registers. */
2476 do_dr_register_info (struct gdbarch *gdbarch, struct ui_file *file,
2479 int first_fp_reg_num = dr_reg_base_num (dr_regnum);
2481 fprintf_filtered (file, "dr%d\t0x%08x%08x\n",
2482 dr_regnum - DR0_REGNUM,
2483 (int) read_register (first_fp_reg_num),
2484 (int) read_register (first_fp_reg_num + 1));
2487 /* Double precision registers, compact mode. */
2489 do_dr_c_register_info (int dr_regnum)
2491 int first_fp_reg_num = sh64_compact_reg_base_num (dr_regnum);
2493 printf_filtered ("dr%d_c\t0x%08x%08x\n",
2494 dr_regnum - DR0_C_REGNUM,
2495 (int) read_register (first_fp_reg_num),
2496 (int) read_register (first_fp_reg_num +1));
2499 /* General register in compact mode. */
2501 do_r_c_register_info (int r_c_regnum)
2503 int regnum = sh64_compact_reg_base_num (r_c_regnum);
2505 printf_filtered ("r%d_c\t0x%08x\n",
2506 r_c_regnum - R0_C_REGNUM,
2507 /*FIXME!!!*/ (int) read_register (regnum));
2510 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
2511 shmedia REGISTERS. */
2512 /* Control registers, compact mode. */
2514 do_cr_c_register_info (int cr_c_regnum)
2516 switch (cr_c_regnum)
2518 case 237: printf_filtered ("pc_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2520 case 238: printf_filtered ("gbr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2522 case 239: printf_filtered ("mach_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2524 case 240: printf_filtered ("macl_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2526 case 241: printf_filtered ("pr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2528 case 242: printf_filtered ("t_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2530 case 243: printf_filtered ("fpscr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2532 case 244: printf_filtered ("fpul_c\t0x%08x\n", (int)read_register (cr_c_regnum));
2538 sh_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
2539 { /* do values for FP (float) regs */
2541 double flt; /* double extracted from raw hex data */
2545 /* Allocate space for the float. */
2546 raw_buffer = (char *) alloca (register_size (gdbarch, FP0_REGNUM));
2548 /* Get the data in raw format. */
2549 if (!frame_register_read (get_selected_frame (), regnum, raw_buffer))
2550 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2552 /* Get the register as a number */
2553 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
2555 /* Print the name and some spaces. */
2556 fputs_filtered (REGISTER_NAME (regnum), file);
2557 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
2559 /* Print the value. */
2561 fprintf_filtered (file, "<invalid float>");
2563 fprintf_filtered (file, "%-10.9g", flt);
2565 /* Print the fp register as hex. */
2566 fprintf_filtered (file, "\t(raw 0x");
2567 for (j = 0; j < register_size (gdbarch, regnum); j++)
2569 int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
2570 : register_size (gdbarch, regnum) - 1 - j;
2571 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
2573 fprintf_filtered (file, ")");
2574 fprintf_filtered (file, "\n");
2578 sh64_do_pseudo_register (int regnum)
2580 /* All the sh64-compact mode registers are pseudo registers. */
2582 if (regnum < NUM_REGS
2583 || regnum >= NUM_REGS + NUM_PSEUDO_REGS_SH_MEDIA + NUM_PSEUDO_REGS_SH_COMPACT)
2584 internal_error (__FILE__, __LINE__,
2585 "Invalid pseudo register number %d\n", regnum);
2587 else if ((regnum >= DR0_REGNUM
2588 && regnum <= DR_LAST_REGNUM))
2589 do_dr_register_info (current_gdbarch, gdb_stdout, regnum);
2591 else if ((regnum >= DR0_C_REGNUM
2592 && regnum <= DR_LAST_C_REGNUM))
2593 do_dr_c_register_info (regnum);
2595 else if ((regnum >= FV0_REGNUM
2596 && regnum <= FV_LAST_REGNUM))
2597 do_fv_register_info (current_gdbarch, gdb_stdout, regnum);
2599 else if ((regnum >= FV0_C_REGNUM
2600 && regnum <= FV_LAST_C_REGNUM))
2601 do_fv_c_register_info (regnum);
2603 else if (regnum >= FPP0_REGNUM
2604 && regnum <= FPP_LAST_REGNUM)
2605 do_fpp_register_info (regnum);
2607 else if (regnum >= R0_C_REGNUM
2608 && regnum <= R_LAST_C_REGNUM)
2609 /* FIXME, this function will not print the right format. */
2610 do_r_c_register_info (regnum);
2611 else if (regnum >= FP0_C_REGNUM
2612 && regnum <= FP_LAST_C_REGNUM)
2613 /* This should work also for pseudoregs. */
2614 sh_do_fp_register (current_gdbarch, gdb_stdout, regnum);
2615 else if (regnum >= PC_C_REGNUM
2616 && regnum <= FPUL_C_REGNUM)
2617 do_cr_c_register_info (regnum);
2621 sh_do_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
2623 char raw_buffer[MAX_REGISTER_SIZE];
2625 fputs_filtered (REGISTER_NAME (regnum), file);
2626 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
2628 /* Get the data in raw format. */
2629 if (!frame_register_read (get_selected_frame (), regnum, raw_buffer))
2630 fprintf_filtered (file, "*value not available*\n");
2632 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
2633 file, 'x', 1, 0, Val_pretty_default);
2634 fprintf_filtered (file, "\t");
2635 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
2636 file, 0, 1, 0, Val_pretty_default);
2637 fprintf_filtered (file, "\n");
2641 sh_print_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
2643 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
2644 internal_error (__FILE__, __LINE__,
2645 "Invalid register number %d\n", regnum);
2647 else if (regnum >= 0 && regnum < NUM_REGS)
2649 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2650 sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
2652 sh_do_register (gdbarch, file, regnum); /* All other regs */
2655 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2656 sh64_do_pseudo_register (regnum);
2660 sh_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2661 struct frame_info *frame, int regnum, int fpregs)
2663 if (regnum != -1) /* do one specified register */
2665 if (*(REGISTER_NAME (regnum)) == '\0')
2666 error ("Not a valid register for the current processor type");
2668 sh_print_register (gdbarch, file, regnum);
2671 /* do all (or most) registers */
2674 while (regnum < NUM_REGS)
2676 /* If the register name is empty, it is undefined for this
2677 processor, so don't display anything. */
2678 if (REGISTER_NAME (regnum) == NULL
2679 || *(REGISTER_NAME (regnum)) == '\0')
2685 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2689 /* true for "INFO ALL-REGISTERS" command */
2690 sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
2694 regnum += FP_LAST_REGNUM - FP0_REGNUM; /* skip FP regs */
2698 sh_do_register (gdbarch, file, regnum); /* All other regs */
2704 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2706 sh64_do_pseudo_register (regnum);
2713 sh_compact_do_registers_info (int regnum, int fpregs)
2715 if (regnum != -1) /* do one specified register */
2717 if (*(REGISTER_NAME (regnum)) == '\0')
2718 error ("Not a valid register for the current processor type");
2720 if (regnum >= 0 && regnum < R0_C_REGNUM)
2721 error ("Not a valid register for the current processor mode.");
2723 sh_print_register (current_gdbarch, gdb_stdout, regnum);
2726 /* do all compact registers */
2728 regnum = R0_C_REGNUM;
2729 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2731 sh64_do_pseudo_register (regnum);
2738 sh64_do_registers_info (int regnum, int fpregs)
2740 if (pc_is_isa32 (get_frame_pc (deprecated_selected_frame)))
2741 sh_print_registers_info (current_gdbarch, gdb_stdout,
2742 deprecated_selected_frame, regnum, fpregs);
2744 sh_compact_do_registers_info (regnum, fpregs);
2747 #ifdef SVR4_SHARED_LIBS
2749 /* Fetch (and possibly build) an appropriate link_map_offsets structure
2750 for native i386 linux targets using the struct offsets defined in
2751 link.h (but without actual reference to that file).
2753 This makes it possible to access i386-linux shared libraries from
2754 a gdb that was not built on an i386-linux host (for cross debugging).
2757 struct link_map_offsets *
2758 sh_linux_svr4_fetch_link_map_offsets (void)
2760 static struct link_map_offsets lmo;
2761 static struct link_map_offsets *lmp = 0;
2767 lmo.r_debug_size = 8; /* 20 not actual size but all we need */
2769 lmo.r_map_offset = 4;
2772 lmo.link_map_size = 20; /* 552 not actual size but all we need */
2774 lmo.l_addr_offset = 0;
2775 lmo.l_addr_size = 4;
2777 lmo.l_name_offset = 4;
2778 lmo.l_name_size = 4;
2780 lmo.l_next_offset = 12;
2781 lmo.l_next_size = 4;
2783 lmo.l_prev_offset = 16;
2784 lmo.l_prev_size = 4;
2789 #endif /* SVR4_SHARED_LIBS */
2791 gdbarch_init_ftype sh64_gdbarch_init;
2794 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2796 struct gdbarch *gdbarch;
2797 struct gdbarch_tdep *tdep;
2799 /* If there is already a candidate, use it. */
2800 arches = gdbarch_list_lookup_by_info (arches, &info);
2802 return arches->gdbarch;
2804 /* None found, create a new architecture from the information
2806 tdep = XMALLOC (struct gdbarch_tdep);
2807 gdbarch = gdbarch_alloc (&info, tdep);
2809 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2810 ready to unwind the PC first (see frame.c:get_prev_frame()). */
2811 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
2813 /* Determine the ABI */
2814 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2816 /* If the ABI is the 64-bit one, it can only be sh-media. */
2817 tdep->sh_abi = SH_ABI_64;
2818 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2819 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2823 /* If the ABI is the 32-bit one it could be either media or
2825 tdep->sh_abi = SH_ABI_32;
2826 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2827 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2830 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2831 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2832 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2833 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2834 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2835 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2837 set_gdbarch_sp_regnum (gdbarch, 15);
2838 set_gdbarch_deprecated_fp_regnum (gdbarch, 14);
2840 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
2841 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2843 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2845 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2846 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2848 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, legacy_frameless_look_for_prologue);
2849 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2851 set_gdbarch_deprecated_frame_saved_pc (gdbarch, sh_frame_saved_pc);
2852 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, sh_saved_pc_after_call);
2853 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2855 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA + NUM_PSEUDO_REGS_SH_COMPACT);
2856 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2857 set_gdbarch_pc_regnum (gdbarch, 64);
2859 /* The number of real registers is the same whether we are in
2860 ISA16(compact) or ISA32(media). */
2861 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2862 set_gdbarch_deprecated_register_bytes (gdbarch,
2863 ((SIM_SH64_NR_FP_REGS + 1) * 4)
2864 + (SIM_SH64_NR_REGS - SIM_SH64_NR_FP_REGS -1) * 8);
2866 set_gdbarch_register_name (gdbarch, sh64_register_name);
2867 set_gdbarch_register_type (gdbarch, sh64_register_type);
2868 set_gdbarch_deprecated_store_return_value (gdbarch, sh64_store_return_value);
2869 set_gdbarch_deprecated_register_byte (gdbarch, sh64_register_byte);
2870 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2871 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2873 set_gdbarch_deprecated_do_registers_info (gdbarch, sh64_do_registers_info);
2874 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, sh64_nofp_frame_init_saved_regs);
2875 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2877 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, sh64_init_extra_frame_info);
2878 set_gdbarch_deprecated_frame_chain (gdbarch, sh64_frame_chain);
2879 set_gdbarch_deprecated_get_saved_register (gdbarch, sh64_get_saved_register);
2880 set_gdbarch_deprecated_extract_return_value (gdbarch, sh64_extract_return_value);
2881 set_gdbarch_deprecated_push_arguments (gdbarch, sh64_push_arguments);
2882 set_gdbarch_deprecated_push_return_address (gdbarch, sh64_push_return_address);
2883 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
2884 set_gdbarch_deprecated_store_struct_return (gdbarch, sh64_store_struct_return);
2885 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sh64_extract_struct_value_address);
2886 set_gdbarch_use_struct_convention (gdbarch, sh64_use_struct_convention);
2887 set_gdbarch_deprecated_pop_frame (gdbarch, sh64_pop_frame);
2888 set_gdbarch_elf_make_msymbol_special (gdbarch,
2889 sh64_elf_make_msymbol_special);
2891 /* Hook in ABI-specific overrides, if they have been registered. */
2892 gdbarch_init_osabi (info, gdbarch);