1 /* Target-dependent code for Renesas Super-H, for GDB.
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Steve Chamberlain
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
35 #include "arch-utils.h"
44 /* Register numbers shared with the simulator. */
45 #include "gdb/sim-sh.h"
47 #include "sh64-tdep.h"
49 /* Information that is dependent on the processor variant. */
62 struct sh64_frame_cache
69 /* Flag showing that a frame has been created in the prologue code. */
74 /* Saved registers. */
75 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
79 /* Registers of SH5 */
83 DEFAULT_RETURN_REGNUM = 2,
84 STRUCT_RETURN_REGNUM = 2,
87 FLOAT_ARGLAST_REGNUM = 11,
93 /* FPP stands for Floating Point Pair, to avoid confusion with
94 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
95 point register. Unfortunately on the sh5, the floating point
96 registers are called FR, and the floating point pairs are called FP. */
98 FPP_LAST_REGNUM = 204,
100 FV_LAST_REGNUM = 220,
102 R_LAST_C_REGNUM = 236,
109 FPSCR_C_REGNUM = 243,
112 FP_LAST_C_REGNUM = 260,
114 DR_LAST_C_REGNUM = 268,
116 FV_LAST_C_REGNUM = 272,
117 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
118 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
119 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
120 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
121 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
125 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
127 static char *register_names[] =
129 /* SH MEDIA MODE (ISA 32) */
130 /* general registers (64-bit) 0-63 */
131 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
132 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
133 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
134 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
135 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
136 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
137 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
138 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
143 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
146 /* target registers (64-bit) 68-75 */
147 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
149 /* floating point state control register (32-bit) 76 */
152 /* single precision floating point registers (32-bit) 77-140 */
153 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
154 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
155 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
156 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
157 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
158 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
159 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
160 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
162 /* double precision registers (pseudo) 141-172 */
163 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
164 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
165 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
166 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
168 /* floating point pairs (pseudo) 173-204 */
169 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
170 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
171 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
172 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
174 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
175 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
176 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
178 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
179 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
180 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
182 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
184 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
185 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
186 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
187 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
188 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
189 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
190 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
191 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
196 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return register_names[reg_nr];
201 #define NUM_PSEUDO_REGS_SH_MEDIA 80
202 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204 /* Macros and functions for setting and testing a bit in a minimal
205 symbol that marks it as 32-bit function. The MSB of the minimal
206 symbol's "info" field is used for this purpose.
208 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
209 i.e. refers to a 32-bit function, and sets a "special" bit in a
210 minimal symbol to mark it as a 32-bit function
211 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
213 #define MSYMBOL_IS_SPECIAL(msym) \
214 MSYMBOL_TARGET_FLAG_1 (msym)
217 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
222 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
225 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
229 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
230 are some macros to test, set, or clear bit 0 of addresses. */
231 #define IS_ISA32_ADDR(addr) ((addr) & 1)
232 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
233 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236 pc_is_isa32 (bfd_vma memaddr)
238 struct bound_minimal_symbol sym;
240 /* If bit 0 of the address is set, assume this is a
241 ISA32 (shmedia) address. */
242 if (IS_ISA32_ADDR (memaddr))
245 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
246 the high bit of the info field. Use this to decide if the function is
248 sym = lookup_minimal_symbol_by_pc (memaddr);
250 return MSYMBOL_IS_SPECIAL (sym.minsym);
255 static const unsigned char *
256 sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
257 CORE_ADDR *pcptr, int *lenptr)
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264 /* The BRK instruction for shcompact is
266 which translates in big endian mode to 0x0, 0x3b
267 and in little endian mode to 0x3b, 0x0 */
269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
271 if (pc_is_isa32 (*pcptr))
273 static unsigned char big_breakpoint_media[] = {
274 0x6f, 0xf5, 0xff, 0xf0
276 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
277 *lenptr = sizeof (big_breakpoint_media);
278 return big_breakpoint_media;
282 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
283 *lenptr = sizeof (big_breakpoint_compact);
284 return big_breakpoint_compact;
289 if (pc_is_isa32 (*pcptr))
291 static unsigned char little_breakpoint_media[] = {
292 0xf0, 0xff, 0xf5, 0x6f
294 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
295 *lenptr = sizeof (little_breakpoint_media);
296 return little_breakpoint_media;
300 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
301 *lenptr = sizeof (little_breakpoint_compact);
302 return little_breakpoint_compact;
307 /* Prologue looks like
308 [mov.l <regs>,@-r15]...
313 Actually it can be more complicated than this. For instance, with
331 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
332 with l=1 and n = 18 0110101111110001010010100aaa0000 */
333 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
335 /* STS.L PR,@-r0 0100000000100010
336 r0-4-->r0, PR-->(r0) */
337 #define IS_STS_R0(x) ((x) == 0x4022)
339 /* STS PR, Rm 0000mmmm00101010
341 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
343 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
345 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
347 /* MOV.L R14,@(disp,r15) 000111111110dddd
348 R14-->(dispx4+r15) */
349 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
351 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
352 R18-->(dispx8+R14) */
353 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
355 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
356 R18-->(dispx8+R15) */
357 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
359 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
360 R18-->(dispx4+R15) */
361 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
363 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx8+R15) */
365 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
367 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
368 R14-->(dispx4+R15) */
369 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
371 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
373 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
375 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
377 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
379 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
381 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
383 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
385 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
387 #define IS_MOV_SP_FP_MEDIA(x) \
388 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
390 /* MOV #imm, R0 1110 0000 ssss ssss
392 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
394 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
395 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
397 /* ADD r15,r0 0011 0000 1111 1100
399 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
401 /* MOV.L R14 @-R0 0010 0000 1110 0110
402 R14-->(R0-4), R0-4-->R0 */
403 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
405 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
406 where Rm is one of r2-r9 which are the argument registers. */
407 /* FIXME: Recognize the float and double register moves too! */
408 #define IS_MEDIA_IND_ARG_MOV(x) \
409 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
410 && (((x) & 0x03f00000) >= 0x00200000 \
411 && ((x) & 0x03f00000) <= 0x00900000))
413 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
414 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
415 where Rm is one of r2-r9 which are the argument registers. */
416 #define IS_MEDIA_ARG_MOV(x) \
417 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
418 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
420 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
421 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
422 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
423 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
424 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
425 #define IS_MEDIA_MOV_TO_R14(x) \
426 ((((x) & 0xfffffc0f) == 0xa0e00000) \
427 || (((x) & 0xfffffc0f) == 0xa4e00000) \
428 || (((x) & 0xfffffc0f) == 0xa8e00000) \
429 || (((x) & 0xfffffc0f) == 0xb4e00000) \
430 || (((x) & 0xfffffc0f) == 0xbce00000))
432 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
434 #define IS_COMPACT_IND_ARG_MOV(x) \
435 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
436 && (((x) & 0x00f0) <= 0x0090))
438 /* compact direct arg move!
439 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
440 #define IS_COMPACT_ARG_MOV(x) \
441 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
442 && ((x) & 0x00f0) <= 0x0090))
444 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
445 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
446 #define IS_COMPACT_MOV_TO_R14(x) \
447 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
449 #define IS_JSR_R0(x) ((x) == 0x400b)
450 #define IS_NOP(x) ((x) == 0x0009)
453 /* MOV r15,r14 0110111011110011
455 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
457 /* ADD #imm,r15 01111111iiiiiiii
459 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
461 /* Skip any prologue before the guts of a function. */
463 /* Skip the prologue using the debug information. If this fails we'll
464 fall back on the 'guess' method below. */
466 after_prologue (CORE_ADDR pc)
468 struct symtab_and_line sal;
469 CORE_ADDR func_addr, func_end;
471 /* If we can not find the symbol in the partial symbol table, then
472 there is no hope we can determine the function's start address
474 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
478 /* Get the line associated with FUNC_ADDR. */
479 sal = find_pc_line (func_addr, 0);
481 /* There are only two cases to consider. First, the end of the source line
482 is within the function bounds. In that case we return the end of the
483 source line. Second is the end of the source line extends beyond the
484 bounds of the current function. We need to use the slow code to
485 examine instructions in that case. */
486 if (sal.end < func_end)
493 look_for_args_moves (struct gdbarch *gdbarch,
494 CORE_ADDR start_pc, int media_mode)
496 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
499 int insn_size = (media_mode ? 4 : 2);
501 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
505 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
506 insn_size, byte_order);
508 if (IS_MEDIA_IND_ARG_MOV (w))
510 /* This must be followed by a store to r14, so the argument
511 is where the debug info says it is. This can happen after
512 the SP has been saved, unfortunately. */
514 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
515 insn_size, byte_order);
517 if (IS_MEDIA_MOV_TO_R14 (next_insn))
520 else if (IS_MEDIA_ARG_MOV (w))
522 /* These instructions store directly the argument in r14. */
530 w = read_memory_integer (here, insn_size, byte_order);
533 if (IS_COMPACT_IND_ARG_MOV (w))
535 /* This must be followed by a store to r14, so the argument
536 is where the debug info says it is. This can happen after
537 the SP has been saved, unfortunately. */
539 int next_insn = 0xffff & read_memory_integer (here, insn_size,
542 if (IS_COMPACT_MOV_TO_R14 (next_insn))
545 else if (IS_COMPACT_ARG_MOV (w))
547 /* These instructions store directly the argument in r14. */
550 else if (IS_MOVL_R0 (w))
552 /* There is a function that gcc calls to get the arguments
553 passed correctly to the function. Only after this
554 function call the arguments will be found at the place
555 where they are supposed to be. This happens in case the
556 argument has to be stored into a 64-bit register (for
557 instance doubles, long longs). SHcompact doesn't have
558 access to the full 64-bits, so we store the register in
559 stack slot and store the address of the stack slot in
560 the register, then do a call through a wrapper that
561 loads the memory value into the register. A SHcompact
562 callee calls an argument decoder
563 (GCC_shcompact_incoming_args) that stores the 64-bit
564 value in a stack slot and stores the address of the
565 stack slot in the register. GCC thinks the argument is
566 just passed by transparent reference, but this is only
567 true after the argument decoder is called. Such a call
568 needs to be considered part of the prologue. */
570 /* This must be followed by a JSR @r0 instruction and by
571 a NOP instruction. After these, the prologue is over! */
573 int next_insn = 0xffff & read_memory_integer (here, insn_size,
576 if (IS_JSR_R0 (next_insn))
578 next_insn = 0xffff & read_memory_integer (here, insn_size,
582 if (IS_NOP (next_insn))
595 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
606 if (pc_is_isa32 (start_pc) == 0)
612 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
617 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
618 insn_size, byte_order);
620 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
621 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
622 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
623 || IS_PTABSL_R18 (w))
627 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
635 /* Don't bail out yet, we may have arguments stored in
636 registers here, according to the debug info, so that
637 gdb can print the frames correctly. */
638 start_pc = look_for_args_moves (gdbarch,
639 here - insn_size, media_mode);
645 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
648 if (IS_STS_R0 (w) || IS_STS_PR (w)
649 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
650 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
654 else if (IS_MOV_SP_FP (w))
662 /* Don't bail out yet, we may have arguments stored in
663 registers here, according to the debug info, so that
664 gdb can print the frames correctly. */
665 start_pc = look_for_args_moves (gdbarch,
666 here - insn_size, media_mode);
676 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
678 CORE_ADDR post_prologue_pc;
680 /* See if we can determine the end of the prologue via the symbol table.
681 If so, then return either PC, or the PC after the prologue, whichever
683 post_prologue_pc = after_prologue (pc);
685 /* If after_prologue returned a useful address, then use it. Else
686 fall back on the instruction skipping code. */
687 if (post_prologue_pc != 0)
688 return max (pc, post_prologue_pc);
690 return sh64_skip_prologue_hard_way (gdbarch, pc);
693 /* Should call_function allocate stack space for a struct return? */
695 sh64_use_struct_convention (struct type *type)
697 return (TYPE_LENGTH (type) > 8);
700 /* For vectors of 4 floating point registers. */
702 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
706 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
710 /* For double precision floating point registers, i.e 2 fp regs. */
712 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
716 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
720 /* For pairs of floating point registers. */
722 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
726 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
732 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
733 GDB_REGNUM BASE_REGNUM
793 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
795 int base_regnum = reg_nr;
797 /* general register N maps to general register N */
798 if (reg_nr >= R0_C_REGNUM
799 && reg_nr <= R_LAST_C_REGNUM)
800 base_regnum = reg_nr - R0_C_REGNUM;
802 /* floating point register N maps to floating point register N */
803 else if (reg_nr >= FP0_C_REGNUM
804 && reg_nr <= FP_LAST_C_REGNUM)
805 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
807 /* double prec register N maps to base regnum for double prec register N */
808 else if (reg_nr >= DR0_C_REGNUM
809 && reg_nr <= DR_LAST_C_REGNUM)
810 base_regnum = sh64_dr_reg_base_num (gdbarch,
811 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
813 /* vector N maps to base regnum for vector register N */
814 else if (reg_nr >= FV0_C_REGNUM
815 && reg_nr <= FV_LAST_C_REGNUM)
816 base_regnum = sh64_fv_reg_base_num (gdbarch,
817 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
819 else if (reg_nr == PC_C_REGNUM)
820 base_regnum = gdbarch_pc_regnum (gdbarch);
822 else if (reg_nr == GBR_C_REGNUM)
825 else if (reg_nr == MACH_C_REGNUM
826 || reg_nr == MACL_C_REGNUM)
829 else if (reg_nr == PR_C_REGNUM)
830 base_regnum = PR_REGNUM;
832 else if (reg_nr == T_C_REGNUM)
835 else if (reg_nr == FPSCR_C_REGNUM)
836 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
838 else if (reg_nr == FPUL_C_REGNUM)
839 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
845 sign_extend (int value, int bits)
847 value = value & ((1 << bits) - 1);
848 return (value & (1 << (bits - 1))
849 ? value | (~((1 << bits) - 1))
854 sh64_analyze_prologue (struct gdbarch *gdbarch,
855 struct sh64_frame_cache *cache,
857 CORE_ADDR current_pc)
864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
866 cache->sp_offset = 0;
868 /* Loop around examining the prologue insns until we find something
869 that does not appear to be part of the prologue. But give up
870 after 20 of them, since we're getting silly then. */
874 if (cache->media_mode)
879 opc = pc + (insn_size * 28);
880 if (opc > current_pc)
882 for ( ; pc <= opc; pc += insn_size)
884 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
886 insn_size, byte_order);
888 if (!cache->media_mode)
890 if (IS_STS_PR (insn))
892 int next_insn = read_memory_integer (pc + insn_size,
893 insn_size, byte_order);
894 if (IS_MOV_TO_R15 (next_insn))
896 cache->saved_regs[PR_REGNUM]
897 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
903 else if (IS_MOV_R14 (insn))
904 cache->saved_regs[MEDIA_FP_REGNUM] =
905 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
907 else if (IS_MOV_R0 (insn))
909 /* Put in R0 the offset from SP at which to store some
910 registers. We are interested in this value, because it
911 will tell us where the given registers are stored within
913 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
916 else if (IS_ADD_SP_R0 (insn))
918 /* This instruction still prepares r0, but we don't care.
919 We already have the offset in r0_val. */
922 else if (IS_STS_R0 (insn))
924 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
925 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
929 else if (IS_MOV_R14_R0 (insn))
931 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
932 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
937 else if (IS_ADD_SP (insn))
938 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
940 else if (IS_MOV_SP_FP (insn))
945 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
947 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
949 else if (IS_STQ_R18_R15 (insn))
950 cache->saved_regs[PR_REGNUM]
951 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
954 else if (IS_STL_R18_R15 (insn))
955 cache->saved_regs[PR_REGNUM]
956 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
959 else if (IS_STQ_R14_R15 (insn))
960 cache->saved_regs[MEDIA_FP_REGNUM]
961 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
964 else if (IS_STL_R14_R15 (insn))
965 cache->saved_regs[MEDIA_FP_REGNUM]
966 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
969 else if (IS_MOV_SP_FP_MEDIA (insn))
974 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
979 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
984 /* Function: push_dummy_call
985 Setup the function arguments for calling a function in the inferior.
987 On the Renesas SH architecture, there are four registers (R4 to R7)
988 which are dedicated for passing function arguments. Up to the first
989 four arguments (depending on size) may go into these registers.
990 The rest go on the stack.
992 Arguments that are smaller than 4 bytes will still take up a whole
993 register or a whole 32-bit word on the stack, and will be
994 right-justified in the register or the stack word. This includes
995 chars, shorts, and small aggregate types.
997 Arguments that are larger than 4 bytes may be split between two or
998 more registers. If there are not enough registers free, an argument
999 may be passed partly in a register (or registers), and partly on the
1000 stack. This includes doubles, long longs, and larger aggregates.
1001 As far as I know, there is no upper limit to the size of aggregates
1002 that will be passed in this way; in other words, the convention of
1003 passing a pointer to a large aggregate instead of a copy is not used.
1005 An exceptional case exists for struct arguments (and possibly other
1006 aggregates such as arrays) if the size is larger than 4 bytes but
1007 not a multiple of 4 bytes. In this case the argument is never split
1008 between the registers and the stack, but instead is copied in its
1009 entirety onto the stack, AND also copied into as many registers as
1010 there is room for. In other words, space in registers permitting,
1011 two copies of the same argument are passed in. As far as I can tell,
1012 only the one on the stack is used, although that may be a function
1013 of the level of compiler optimization. I suspect this is a compiler
1014 bug. Arguments of these odd sizes are left-justified within the
1015 word (as opposed to arguments smaller than 4 bytes, which are
1018 If the function is to return an aggregate type such as a struct, it
1019 is either returned in the normal return value register R0 (if its
1020 size is no greater than one byte), or else the caller must allocate
1021 space into which the callee will copy the return value (if the size
1022 is greater than one byte). In this case, a pointer to the return
1023 value location is passed into the callee in register R2, which does
1024 not displace any of the other arguments passed in via registers R4
1027 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1028 non-scalar (struct, union) elements (even if the elements are
1030 FR0-FR11 for single precision floating point (float)
1031 DR0-DR10 for double precision floating point (double)
1033 If a float is argument number 3 (for instance) and arguments number
1034 1,2, and 4 are integer, the mapping will be:
1035 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1037 If a float is argument number 10 (for instance) and arguments number
1038 1 through 10 are integer, the mapping will be:
1039 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1040 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1041 arg11->stack(16,SP). I.e. there is hole in the stack.
1043 Different rules apply for variable arguments functions, and for functions
1044 for which the prototype is not known. */
1047 sh64_push_dummy_call (struct gdbarch *gdbarch,
1048 struct value *function,
1049 struct regcache *regcache,
1051 int nargs, struct value **args,
1052 CORE_ADDR sp, int struct_return,
1053 CORE_ADDR struct_addr)
1055 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1056 int stack_offset, stack_alloc;
1058 int float_arg_index = 0;
1059 int double_arg_index = 0;
1063 const gdb_byte *val;
1069 memset (fp_args, 0, sizeof (fp_args));
1071 /* First force sp to a 8-byte alignment. */
1072 sp = sh64_frame_align (gdbarch, sp);
1074 /* The "struct return pointer" pseudo-argument has its own dedicated
1078 regcache_cooked_write_unsigned (regcache,
1079 STRUCT_RETURN_REGNUM, struct_addr);
1081 /* Now make sure there's space on the stack. */
1082 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1083 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1084 sp -= stack_alloc; /* Make room on stack for args. */
1086 /* Now load as many as possible of the first arguments into
1087 registers, and push the rest onto the stack. There are 64 bytes
1088 in eight registers available. Loop thru args from first to last. */
1090 int_argreg = ARG0_REGNUM;
1092 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1094 type = value_type (args[argnum]);
1095 len = TYPE_LENGTH (type);
1096 memset (valbuf, 0, sizeof (valbuf));
1098 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1100 argreg_size = register_size (gdbarch, int_argreg);
1102 if (len < argreg_size)
1104 /* value gets right-justified in the register or stack word. */
1105 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1106 memcpy (valbuf + argreg_size - len,
1107 value_contents (args[argnum]), len);
1109 memcpy (valbuf, value_contents (args[argnum]), len);
1114 val = value_contents (args[argnum]);
1118 if (int_argreg > ARGLAST_REGNUM)
1120 /* Must go on the stack. */
1121 write_memory (sp + stack_offset, val, argreg_size);
1122 stack_offset += 8;/*argreg_size;*/
1124 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1125 That's because some *&^%$ things get passed on the stack
1126 AND in the registers! */
1127 if (int_argreg <= ARGLAST_REGNUM)
1129 /* There's room in a register. */
1130 regval = extract_unsigned_integer (val, argreg_size,
1132 regcache_cooked_write_unsigned (regcache,
1133 int_argreg, regval);
1135 /* Store the value 8 bytes at a time. This means that
1136 things larger than 8 bytes may go partly in registers
1137 and partly on the stack. FIXME: argreg is incremented
1138 before we use its size. */
1146 val = value_contents (args[argnum]);
1149 /* Where is it going to be stored? */
1150 while (fp_args[float_arg_index])
1153 /* Now float_argreg points to the register where it
1154 should be stored. Are we still within the allowed
1156 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1158 /* Goes in FR0...FR11 */
1159 regcache_cooked_write (regcache,
1160 gdbarch_fp0_regnum (gdbarch)
1163 fp_args[float_arg_index] = 1;
1164 /* Skip the corresponding general argument register. */
1169 /* Store it as the integers, 8 bytes at the time, if
1170 necessary spilling on the stack. */
1175 /* Where is it going to be stored? */
1176 while (fp_args[double_arg_index])
1177 double_arg_index += 2;
1178 /* Now double_argreg points to the register
1179 where it should be stored.
1180 Are we still within the allowed register set? */
1181 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1183 /* Goes in DR0...DR10 */
1184 /* The numbering of the DRi registers is consecutive,
1185 i.e. includes odd numbers. */
1186 int double_register_offset = double_arg_index / 2;
1187 int regnum = DR0_REGNUM + double_register_offset;
1188 regcache_cooked_write (regcache, regnum, val);
1189 fp_args[double_arg_index] = 1;
1190 fp_args[double_arg_index + 1] = 1;
1191 /* Skip the corresponding general argument register. */
1196 /* Store it as the integers, 8 bytes at the time, if
1197 necessary spilling on the stack. */
1202 /* Store return address. */
1203 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1205 /* Update stack pointer. */
1206 regcache_cooked_write_unsigned (regcache,
1207 gdbarch_sp_regnum (gdbarch), sp);
1212 /* Find a function's return value in the appropriate registers (in
1213 regbuf), and copy it into valbuf. Extract from an array REGBUF
1214 containing the (raw) register state a function return value of type
1215 TYPE, and copy that, in virtual format, into VALBUF. */
1217 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1220 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1221 int len = TYPE_LENGTH (type);
1223 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1227 /* Return value stored in gdbarch_fp0_regnum. */
1228 regcache_raw_read (regcache,
1229 gdbarch_fp0_regnum (gdbarch), valbuf);
1233 /* return value stored in DR0_REGNUM. */
1237 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1239 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1240 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1243 floatformat_to_doublest (&floatformat_ieee_double_big,
1245 store_typed_floating (valbuf, type, val);
1254 /* Result is in register 2. If smaller than 8 bytes, it is padded
1255 at the most significant end. */
1256 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1258 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1259 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1263 memcpy (valbuf, buf + offset, len);
1266 error (_("bad size for return value"));
1270 /* Write into appropriate registers a function return value
1271 of type TYPE, given in virtual format.
1272 If the architecture is sh4 or sh3e, store a function's return value
1273 in the R0 general register or in the FP0 floating point register,
1274 depending on the type of the return value. In all the other cases
1275 the result is stored in r0, left-justified. */
1278 sh64_store_return_value (struct type *type, struct regcache *regcache,
1279 const gdb_byte *valbuf)
1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1282 gdb_byte buf[64]; /* more than enough... */
1283 int len = TYPE_LENGTH (type);
1285 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1287 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1288 for (i = 0; i < len; i += 4)
1289 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1290 regcache_raw_write (regcache, regnum++,
1291 valbuf + len - 4 - i);
1293 regcache_raw_write (regcache, regnum++, valbuf + i);
1297 int return_register = DEFAULT_RETURN_REGNUM;
1300 if (len <= register_size (gdbarch, return_register))
1302 /* Pad with zeros. */
1303 memset (buf, 0, register_size (gdbarch, return_register));
1304 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1305 offset = 0; /*register_size (gdbarch,
1306 return_register) - len;*/
1308 offset = register_size (gdbarch, return_register) - len;
1310 memcpy (buf + offset, valbuf, len);
1311 regcache_raw_write (regcache, return_register, buf);
1314 regcache_raw_write (regcache, return_register, valbuf);
1318 static enum return_value_convention
1319 sh64_return_value (struct gdbarch *gdbarch, struct value *function,
1320 struct type *type, struct regcache *regcache,
1321 gdb_byte *readbuf, const gdb_byte *writebuf)
1323 if (sh64_use_struct_convention (type))
1324 return RETURN_VALUE_STRUCT_CONVENTION;
1326 sh64_store_return_value (type, regcache, writebuf);
1328 sh64_extract_return_value (type, regcache, readbuf);
1329 return RETURN_VALUE_REGISTER_CONVENTION;
1334 SH MEDIA MODE (ISA 32)
1335 general registers (64-bit) 0-63
1336 0 r0, r1, r2, r3, r4, r5, r6, r7,
1337 64 r8, r9, r10, r11, r12, r13, r14, r15,
1338 128 r16, r17, r18, r19, r20, r21, r22, r23,
1339 192 r24, r25, r26, r27, r28, r29, r30, r31,
1340 256 r32, r33, r34, r35, r36, r37, r38, r39,
1341 320 r40, r41, r42, r43, r44, r45, r46, r47,
1342 384 r48, r49, r50, r51, r52, r53, r54, r55,
1343 448 r56, r57, r58, r59, r60, r61, r62, r63,
1348 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1351 target registers (64-bit) 68-75
1352 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1354 floating point state control register (32-bit) 76
1357 single precision floating point registers (32-bit) 77-140
1358 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1359 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1360 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1361 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1362 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1363 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1364 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1365 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1367 TOTAL SPACE FOR REGISTERS: 868 bytes
1369 From here on they are all pseudo registers: no memory allocated.
1370 REGISTER_BYTE returns the register byte for the base register.
1372 double precision registers (pseudo) 141-172
1373 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1374 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1375 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1376 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1378 floating point pairs (pseudo) 173-204
1379 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1380 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1381 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1382 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1384 floating point vectors (4 floating point regs) (pseudo) 205-220
1385 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1386 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1388 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1389 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1390 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1392 gbr_c, mach_c, macl_c, pr_c, t_c,
1394 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1395 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1396 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1397 fv0_c, fv4_c, fv8_c, fv12_c
1400 static struct type *
1401 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1403 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1407 /* Return the GDB type object for the "standard" data type
1408 of data in register REG_NR. */
1409 static struct type *
1410 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1412 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1413 && reg_nr <= FP_LAST_REGNUM)
1414 || (reg_nr >= FP0_C_REGNUM
1415 && reg_nr <= FP_LAST_C_REGNUM))
1416 return builtin_type (gdbarch)->builtin_float;
1417 else if ((reg_nr >= DR0_REGNUM
1418 && reg_nr <= DR_LAST_REGNUM)
1419 || (reg_nr >= DR0_C_REGNUM
1420 && reg_nr <= DR_LAST_C_REGNUM))
1421 return builtin_type (gdbarch)->builtin_double;
1422 else if (reg_nr >= FPP0_REGNUM
1423 && reg_nr <= FPP_LAST_REGNUM)
1424 return sh64_build_float_register_type (gdbarch, 1);
1425 else if ((reg_nr >= FV0_REGNUM
1426 && reg_nr <= FV_LAST_REGNUM)
1427 ||(reg_nr >= FV0_C_REGNUM
1428 && reg_nr <= FV_LAST_C_REGNUM))
1429 return sh64_build_float_register_type (gdbarch, 3);
1430 else if (reg_nr == FPSCR_REGNUM)
1431 return builtin_type (gdbarch)->builtin_int;
1432 else if (reg_nr >= R0_C_REGNUM
1433 && reg_nr < FP0_C_REGNUM)
1434 return builtin_type (gdbarch)->builtin_int;
1436 return builtin_type (gdbarch)->builtin_long_long;
1440 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1441 struct type *type, gdb_byte *from, gdb_byte *to)
1443 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1445 /* It is a no-op. */
1446 memcpy (to, from, register_size (gdbarch, regnum));
1450 if ((regnum >= DR0_REGNUM
1451 && regnum <= DR_LAST_REGNUM)
1452 || (regnum >= DR0_C_REGNUM
1453 && regnum <= DR_LAST_C_REGNUM))
1456 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1458 store_typed_floating (to, type, val);
1461 error (_("sh64_register_convert_to_virtual "
1462 "called with non DR register number"));
1466 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1467 int regnum, const void *from, void *to)
1469 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1471 /* It is a no-op. */
1472 memcpy (to, from, register_size (gdbarch, regnum));
1476 if ((regnum >= DR0_REGNUM
1477 && regnum <= DR_LAST_REGNUM)
1478 || (regnum >= DR0_C_REGNUM
1479 && regnum <= DR_LAST_C_REGNUM))
1481 DOUBLEST val = extract_typed_floating (from, type);
1482 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1486 error (_("sh64_register_convert_to_raw called "
1487 "with non DR register number"));
1490 /* Concatenate PORTIONS contiguous raw registers starting at
1491 BASE_REGNUM into BUFFER. */
1493 static enum register_status
1494 pseudo_register_read_portions (struct gdbarch *gdbarch,
1495 struct regcache *regcache,
1497 int base_regnum, gdb_byte *buffer)
1501 for (portion = 0; portion < portions; portion++)
1503 enum register_status status;
1506 b = buffer + register_size (gdbarch, base_regnum) * portion;
1507 status = regcache_raw_read (regcache, base_regnum + portion, b);
1508 if (status != REG_VALID)
1515 static enum register_status
1516 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1517 int reg_nr, gdb_byte *buffer)
1519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1522 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1523 enum register_status status;
1525 if (reg_nr >= DR0_REGNUM
1526 && reg_nr <= DR_LAST_REGNUM)
1528 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1530 /* Build the value in the provided buffer. */
1531 /* DR regs are double precision registers obtained by
1532 concatenating 2 single precision floating point registers. */
1533 status = pseudo_register_read_portions (gdbarch, regcache,
1534 2, base_regnum, temp_buffer);
1535 if (status == REG_VALID)
1537 /* We must pay attention to the endianness. */
1538 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1539 register_type (gdbarch, reg_nr),
1540 temp_buffer, buffer);
1546 else if (reg_nr >= FPP0_REGNUM
1547 && reg_nr <= FPP_LAST_REGNUM)
1549 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1551 /* Build the value in the provided buffer. */
1552 /* FPP regs are pairs of single precision registers obtained by
1553 concatenating 2 single precision floating point registers. */
1554 return pseudo_register_read_portions (gdbarch, regcache,
1555 2, base_regnum, buffer);
1558 else if (reg_nr >= FV0_REGNUM
1559 && reg_nr <= FV_LAST_REGNUM)
1561 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1563 /* Build the value in the provided buffer. */
1564 /* FV regs are vectors of single precision registers obtained by
1565 concatenating 4 single precision floating point registers. */
1566 return pseudo_register_read_portions (gdbarch, regcache,
1567 4, base_regnum, buffer);
1570 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1571 else if (reg_nr >= R0_C_REGNUM
1572 && reg_nr <= T_C_REGNUM)
1574 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1576 /* Build the value in the provided buffer. */
1577 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1578 if (status != REG_VALID)
1580 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1583 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1587 else if (reg_nr >= FP0_C_REGNUM
1588 && reg_nr <= FP_LAST_C_REGNUM)
1590 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1592 /* Build the value in the provided buffer. */
1593 /* Floating point registers map 1-1 to the media fp regs,
1594 they have the same size and endianness. */
1595 return regcache_raw_read (regcache, base_regnum, buffer);
1598 else if (reg_nr >= DR0_C_REGNUM
1599 && reg_nr <= DR_LAST_C_REGNUM)
1601 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1603 /* DR_C regs are double precision registers obtained by
1604 concatenating 2 single precision floating point registers. */
1605 status = pseudo_register_read_portions (gdbarch, regcache,
1606 2, base_regnum, temp_buffer);
1607 if (status == REG_VALID)
1609 /* We must pay attention to the endianness. */
1610 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1611 register_type (gdbarch, reg_nr),
1612 temp_buffer, buffer);
1617 else if (reg_nr >= FV0_C_REGNUM
1618 && reg_nr <= FV_LAST_C_REGNUM)
1620 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1622 /* Build the value in the provided buffer. */
1623 /* FV_C regs are vectors of single precision registers obtained by
1624 concatenating 4 single precision floating point registers. */
1625 return pseudo_register_read_portions (gdbarch, regcache,
1626 4, base_regnum, buffer);
1629 else if (reg_nr == FPSCR_C_REGNUM)
1631 int fpscr_base_regnum;
1633 unsigned int fpscr_value;
1634 unsigned int sr_value;
1635 unsigned int fpscr_c_value;
1636 unsigned int fpscr_c_part1_value;
1637 unsigned int fpscr_c_part2_value;
1639 fpscr_base_regnum = FPSCR_REGNUM;
1640 sr_base_regnum = SR_REGNUM;
1642 /* Build the value in the provided buffer. */
1643 /* FPSCR_C is a very weird register that contains sparse bits
1644 from the FPSCR and the SR architectural registers.
1651 2-17 Bit 2-18 of FPSCR
1652 18-20 Bits 12,13,14 of SR
1656 /* Get FPSCR into a local buffer. */
1657 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1658 if (status != REG_VALID)
1660 /* Get value as an int. */
1661 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1662 /* Get SR into a local buffer */
1663 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1664 if (status != REG_VALID)
1666 /* Get value as an int. */
1667 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1668 /* Build the new value. */
1669 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1670 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1671 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1672 /* Store that in out buffer!!! */
1673 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1674 /* FIXME There is surely an endianness gotcha here. */
1679 else if (reg_nr == FPUL_C_REGNUM)
1681 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1683 /* FPUL_C register is floating point register 32,
1684 same size, same endianness. */
1685 return regcache_raw_read (regcache, base_regnum, buffer);
1688 gdb_assert_not_reached ("invalid pseudo register number");
1692 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1693 int reg_nr, const gdb_byte *buffer)
1695 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1696 int base_regnum, portion;
1698 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1700 if (reg_nr >= DR0_REGNUM
1701 && reg_nr <= DR_LAST_REGNUM)
1703 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1704 /* We must pay attention to the endianness. */
1705 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1707 buffer, temp_buffer);
1709 /* Write the real regs for which this one is an alias. */
1710 for (portion = 0; portion < 2; portion++)
1711 regcache_raw_write (regcache, base_regnum + portion,
1713 + register_size (gdbarch,
1714 base_regnum) * portion));
1717 else if (reg_nr >= FPP0_REGNUM
1718 && reg_nr <= FPP_LAST_REGNUM)
1720 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1722 /* Write the real regs for which this one is an alias. */
1723 for (portion = 0; portion < 2; portion++)
1724 regcache_raw_write (regcache, base_regnum + portion,
1725 (buffer + register_size (gdbarch,
1726 base_regnum) * portion));
1729 else if (reg_nr >= FV0_REGNUM
1730 && reg_nr <= FV_LAST_REGNUM)
1732 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1734 /* Write the real regs for which this one is an alias. */
1735 for (portion = 0; portion < 4; portion++)
1736 regcache_raw_write (regcache, base_regnum + portion,
1737 (buffer + register_size (gdbarch,
1738 base_regnum) * portion));
1741 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1742 register but only 4 bytes of it. */
1743 else if (reg_nr >= R0_C_REGNUM
1744 && reg_nr <= T_C_REGNUM)
1746 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1747 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1748 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1752 /* Let's read the value of the base register into a temporary
1753 buffer, so that overwriting the last four bytes with the new
1754 value of the pseudo will leave the upper 4 bytes unchanged. */
1755 regcache_raw_read (regcache, base_regnum, temp_buffer);
1756 /* Write as an 8 byte quantity. */
1757 memcpy (temp_buffer + offset, buffer, 4);
1758 regcache_raw_write (regcache, base_regnum, temp_buffer);
1761 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1762 registers. Both are 4 bytes. */
1763 else if (reg_nr >= FP0_C_REGNUM
1764 && reg_nr <= FP_LAST_C_REGNUM)
1766 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1767 regcache_raw_write (regcache, base_regnum, buffer);
1770 else if (reg_nr >= DR0_C_REGNUM
1771 && reg_nr <= DR_LAST_C_REGNUM)
1773 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1774 for (portion = 0; portion < 2; portion++)
1776 /* We must pay attention to the endianness. */
1777 sh64_register_convert_to_raw (gdbarch,
1778 register_type (gdbarch, reg_nr),
1780 buffer, temp_buffer);
1782 regcache_raw_write (regcache, base_regnum + portion,
1784 + register_size (gdbarch,
1785 base_regnum) * portion));
1789 else if (reg_nr >= FV0_C_REGNUM
1790 && reg_nr <= FV_LAST_C_REGNUM)
1792 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1794 for (portion = 0; portion < 4; portion++)
1796 regcache_raw_write (regcache, base_regnum + portion,
1798 + register_size (gdbarch,
1799 base_regnum) * portion));
1803 else if (reg_nr == FPSCR_C_REGNUM)
1805 int fpscr_base_regnum;
1807 unsigned int fpscr_value;
1808 unsigned int sr_value;
1809 unsigned int old_fpscr_value;
1810 unsigned int old_sr_value;
1811 unsigned int fpscr_c_value;
1812 unsigned int fpscr_mask;
1813 unsigned int sr_mask;
1815 fpscr_base_regnum = FPSCR_REGNUM;
1816 sr_base_regnum = SR_REGNUM;
1818 /* FPSCR_C is a very weird register that contains sparse bits
1819 from the FPSCR and the SR architectural registers.
1826 2-17 Bit 2-18 of FPSCR
1827 18-20 Bits 12,13,14 of SR
1831 /* Get value as an int. */
1832 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1834 /* Build the new values. */
1835 fpscr_mask = 0x0003fffd;
1836 sr_mask = 0x001c0000;
1838 fpscr_value = fpscr_c_value & fpscr_mask;
1839 sr_value = (fpscr_value & sr_mask) >> 6;
1841 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1842 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1843 old_fpscr_value &= 0xfffc0002;
1844 fpscr_value |= old_fpscr_value;
1845 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1846 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1848 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1849 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1850 old_sr_value &= 0xffff8fff;
1851 sr_value |= old_sr_value;
1852 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1853 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1856 else if (reg_nr == FPUL_C_REGNUM)
1858 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1859 regcache_raw_write (regcache, base_regnum, buffer);
1863 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1864 shmedia REGISTERS. */
1865 /* Control registers, compact mode. */
1867 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1870 switch (cr_c_regnum)
1873 fprintf_filtered (file, "pc_c\t0x%08x\n",
1874 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1877 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1878 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1881 fprintf_filtered (file, "mach_c\t0x%08x\n",
1882 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1885 fprintf_filtered (file, "macl_c\t0x%08x\n",
1886 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1889 fprintf_filtered (file, "pr_c\t0x%08x\n",
1890 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1893 fprintf_filtered (file, "t_c\t0x%08x\n",
1894 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1896 case FPSCR_C_REGNUM:
1897 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1898 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1901 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1902 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1908 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1909 struct frame_info *frame, int regnum)
1910 { /* Do values for FP (float) regs. */
1911 unsigned char *raw_buffer;
1912 double flt; /* Double extracted from raw hex data. */
1915 /* Allocate space for the float. */
1916 raw_buffer = (unsigned char *)
1917 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
1919 /* Get the data in raw format. */
1920 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
1921 error (_("can't read register %d (%s)"),
1922 regnum, gdbarch_register_name (gdbarch, regnum));
1924 /* Get the register as a number. */
1925 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1928 /* Print the name and some spaces. */
1929 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
1930 print_spaces_filtered (15 - strlen (gdbarch_register_name
1931 (gdbarch, regnum)), file);
1933 /* Print the value. */
1935 fprintf_filtered (file, "<invalid float>");
1937 fprintf_filtered (file, "%-10.9g", flt);
1939 /* Print the fp register as hex. */
1940 fprintf_filtered (file, "\t(raw ");
1941 print_hex_chars (file, raw_buffer,
1942 register_size (gdbarch, regnum),
1943 gdbarch_byte_order (gdbarch));
1944 fprintf_filtered (file, ")");
1945 fprintf_filtered (file, "\n");
1949 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1950 struct frame_info *frame, int regnum)
1952 /* All the sh64-compact mode registers are pseudo registers. */
1954 if (regnum < gdbarch_num_regs (gdbarch)
1955 || regnum >= gdbarch_num_regs (gdbarch)
1956 + NUM_PSEUDO_REGS_SH_MEDIA
1957 + NUM_PSEUDO_REGS_SH_COMPACT)
1958 internal_error (__FILE__, __LINE__,
1959 _("Invalid pseudo register number %d\n"), regnum);
1961 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1963 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
1964 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1965 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1966 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1969 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1971 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1972 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1973 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1974 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1977 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1979 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
1980 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1981 regnum - FV0_REGNUM,
1982 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1984 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1985 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1988 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1990 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1991 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1992 regnum - FV0_C_REGNUM,
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1995 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1996 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1999 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2001 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2002 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2007 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2009 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2010 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2011 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2013 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2014 /* This should work also for pseudoregs. */
2015 sh64_do_fp_register (gdbarch, file, frame, regnum);
2016 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2017 sh64_do_cr_c_register_info (file, frame, regnum);
2021 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2022 struct frame_info *frame, int regnum)
2024 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2025 struct value_print_options opts;
2027 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2028 print_spaces_filtered (15 - strlen (gdbarch_register_name
2029 (gdbarch, regnum)), file);
2031 /* Get the data in raw format. */
2032 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
2034 fprintf_filtered (file, "*value not available*\n");
2038 get_formatted_print_options (&opts, 'x');
2040 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2041 file, 0, NULL, &opts, current_language);
2042 fprintf_filtered (file, "\t");
2043 get_formatted_print_options (&opts, 0);
2045 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2046 file, 0, NULL, &opts, current_language);
2047 fprintf_filtered (file, "\n");
2051 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2052 struct frame_info *frame, int regnum)
2054 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2055 + gdbarch_num_pseudo_regs (gdbarch))
2056 internal_error (__FILE__, __LINE__,
2057 _("Invalid register number %d\n"), regnum);
2059 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2061 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2062 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2064 sh64_do_register (gdbarch, file, frame, regnum);
2067 else if (regnum < gdbarch_num_regs (gdbarch)
2068 + gdbarch_num_pseudo_regs (gdbarch))
2069 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2073 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2074 struct frame_info *frame, int regnum,
2077 if (regnum != -1) /* Do one specified register. */
2079 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2080 error (_("Not a valid register for the current processor type"));
2082 sh64_print_register (gdbarch, file, frame, regnum);
2085 /* Do all (or most) registers. */
2088 while (regnum < gdbarch_num_regs (gdbarch))
2090 /* If the register name is empty, it is undefined for this
2091 processor, so don't display anything. */
2092 if (gdbarch_register_name (gdbarch, regnum) == NULL
2093 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2099 if (TYPE_CODE (register_type (gdbarch, regnum))
2104 /* true for "INFO ALL-REGISTERS" command. */
2105 sh64_do_fp_register (gdbarch, file, frame, regnum);
2109 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2114 sh64_do_register (gdbarch, file, frame, regnum);
2120 while (regnum < gdbarch_num_regs (gdbarch)
2121 + gdbarch_num_pseudo_regs (gdbarch))
2123 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2130 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2131 struct ui_file *file,
2132 struct frame_info *frame, int regnum,
2135 if (regnum != -1) /* Do one specified register. */
2137 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2138 error (_("Not a valid register for the current processor type"));
2140 if (regnum >= 0 && regnum < R0_C_REGNUM)
2141 error (_("Not a valid register for the current processor mode."));
2143 sh64_print_register (gdbarch, file, frame, regnum);
2146 /* Do all compact registers. */
2148 regnum = R0_C_REGNUM;
2149 while (regnum < gdbarch_num_regs (gdbarch)
2150 + gdbarch_num_pseudo_regs (gdbarch))
2152 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2159 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2160 struct frame_info *frame, int regnum, int fpregs)
2162 if (pc_is_isa32 (get_frame_pc (frame)))
2163 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2165 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2168 static struct sh64_frame_cache *
2169 sh64_alloc_frame_cache (void)
2171 struct sh64_frame_cache *cache;
2174 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2178 cache->saved_sp = 0;
2179 cache->sp_offset = 0;
2182 /* Frameless until proven otherwise. */
2185 /* Saved registers. We initialize these to -1 since zero is a valid
2186 offset (that's where fp is supposed to be stored). */
2187 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2189 cache->saved_regs[i] = -1;
2195 static struct sh64_frame_cache *
2196 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2198 struct gdbarch *gdbarch;
2199 struct sh64_frame_cache *cache;
2200 CORE_ADDR current_pc;
2204 return (struct sh64_frame_cache *) *this_cache;
2206 gdbarch = get_frame_arch (this_frame);
2207 cache = sh64_alloc_frame_cache ();
2208 *this_cache = cache;
2210 current_pc = get_frame_pc (this_frame);
2211 cache->media_mode = pc_is_isa32 (current_pc);
2213 /* In principle, for normal frames, fp holds the frame pointer,
2214 which holds the base address for the current stack frame.
2215 However, for functions that don't need it, the frame pointer is
2216 optional. For these "frameless" functions the frame pointer is
2217 actually the frame pointer of the calling frame. */
2218 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2219 if (cache->base == 0)
2222 cache->pc = get_frame_func (this_frame);
2224 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2226 if (!cache->uses_fp)
2228 /* We didn't find a valid frame, which means that CACHE->base
2229 currently holds the frame pointer for our calling frame. If
2230 we're at the start of a function, or somewhere half-way its
2231 prologue, the function's frame probably hasn't been fully
2232 setup yet. Try to reconstruct the base address for the stack
2233 frame by looking at the stack pointer. For truly "frameless"
2234 functions this might work too. */
2235 cache->base = get_frame_register_unsigned
2236 (this_frame, gdbarch_sp_regnum (gdbarch));
2239 /* Now that we have the base address for the stack frame we can
2240 calculate the value of sp in the calling frame. */
2241 cache->saved_sp = cache->base + cache->sp_offset;
2243 /* Adjust all the saved registers such that they contain addresses
2244 instead of offsets. */
2245 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2246 if (cache->saved_regs[i] != -1)
2247 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2252 static struct value *
2253 sh64_frame_prev_register (struct frame_info *this_frame,
2254 void **this_cache, int regnum)
2256 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2257 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2260 gdb_assert (regnum >= 0);
2262 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2263 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2265 /* The PC of the previous frame is stored in the PR register of
2266 the current frame. Frob regnum so that we pull the value from
2267 the correct place. */
2268 if (regnum == gdbarch_pc_regnum (gdbarch))
2271 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2273 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2274 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2277 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2279 return frame_unwind_got_constant (this_frame, regnum, val);
2282 return frame_unwind_got_memory (this_frame, regnum,
2283 cache->saved_regs[regnum]);
2286 return frame_unwind_got_register (this_frame, regnum, regnum);
2290 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2291 struct frame_id *this_id)
2293 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2295 /* This marks the outermost frame. */
2296 if (cache->base == 0)
2299 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2302 static const struct frame_unwind sh64_frame_unwind = {
2304 default_frame_unwind_stop_reason,
2306 sh64_frame_prev_register,
2308 default_frame_sniffer
2312 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2314 return frame_unwind_register_unsigned (next_frame,
2315 gdbarch_sp_regnum (gdbarch));
2319 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2321 return frame_unwind_register_unsigned (next_frame,
2322 gdbarch_pc_regnum (gdbarch));
2325 static struct frame_id
2326 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2328 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2329 gdbarch_sp_regnum (gdbarch));
2330 return frame_id_build (sp, get_frame_pc (this_frame));
2334 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2336 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2341 static const struct frame_base sh64_frame_base = {
2343 sh64_frame_base_address,
2344 sh64_frame_base_address,
2345 sh64_frame_base_address
2350 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2352 struct gdbarch *gdbarch;
2353 struct gdbarch_tdep *tdep;
2355 /* If there is already a candidate, use it. */
2356 arches = gdbarch_list_lookup_by_info (arches, &info);
2358 return arches->gdbarch;
2360 /* None found, create a new architecture from the information
2362 tdep = XNEW (struct gdbarch_tdep);
2363 gdbarch = gdbarch_alloc (&info, tdep);
2365 /* Determine the ABI */
2366 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2368 /* If the ABI is the 64-bit one, it can only be sh-media. */
2369 tdep->sh_abi = SH_ABI_64;
2370 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2371 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2375 /* If the ABI is the 32-bit one it could be either media or
2377 tdep->sh_abi = SH_ABI_32;
2378 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2379 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2382 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2383 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2384 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2385 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2386 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2387 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2388 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2390 /* The number of real registers is the same whether we are in
2391 ISA16(compact) or ISA32(media). */
2392 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2393 set_gdbarch_sp_regnum (gdbarch, 15);
2394 set_gdbarch_pc_regnum (gdbarch, 64);
2395 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2396 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2397 + NUM_PSEUDO_REGS_SH_COMPACT);
2399 set_gdbarch_register_name (gdbarch, sh64_register_name);
2400 set_gdbarch_register_type (gdbarch, sh64_register_type);
2402 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2403 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2405 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2407 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2408 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2410 set_gdbarch_return_value (gdbarch, sh64_return_value);
2412 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2413 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2415 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2417 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2419 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2420 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2421 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2422 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2423 frame_base_set_default (gdbarch, &sh64_frame_base);
2425 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2427 set_gdbarch_elf_make_msymbol_special (gdbarch,
2428 sh64_elf_make_msymbol_special);
2430 /* Hook in ABI-specific overrides, if they have been registered. */
2431 gdbarch_init_osabi (info, gdbarch);
2433 dwarf2_append_unwinders (gdbarch);
2434 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);