1 /* Target-dependent code for Renesas Super-H, for GDB.
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 Contributed by Steve Chamberlain
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
40 #include "arch-utils.h"
49 /* registers numbers shared with the simulator */
50 #include "gdb/sim-sh.h"
53 /* Information that is dependent on the processor variant. */
66 struct sh64_frame_cache
73 /* Flag showing that a frame has been created in the prologue code. */
78 /* Saved registers. */
79 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
83 /* Registers of SH5 */
87 DEFAULT_RETURN_REGNUM = 2,
88 STRUCT_RETURN_REGNUM = 2,
91 FLOAT_ARGLAST_REGNUM = 11,
97 /* FPP stands for Floating Point Pair, to avoid confusion with
98 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
99 point register. Unfortunately on the sh5, the floating point
100 registers are called FR, and the floating point pairs are called FP. */
102 FPP_LAST_REGNUM = 204,
104 FV_LAST_REGNUM = 220,
106 R_LAST_C_REGNUM = 236,
113 FPSCR_C_REGNUM = 243,
116 FP_LAST_C_REGNUM = 260,
118 DR_LAST_C_REGNUM = 268,
120 FV_LAST_C_REGNUM = 272,
121 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
122 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
123 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
124 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
125 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
129 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
131 static char *register_names[] =
133 /* SH MEDIA MODE (ISA 32) */
134 /* general registers (64-bit) 0-63 */
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
138 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
139 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
141 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
142 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
147 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
150 /* target registers (64-bit) 68-75*/
151 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
153 /* floating point state control register (32-bit) 76 */
156 /* single precision floating point registers (32-bit) 77-140*/
157 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
158 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
159 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
160 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
161 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
162 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
163 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
164 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
166 /* double precision registers (pseudo) 141-172 */
167 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
168 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
169 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
170 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
172 /* floating point pairs (pseudo) 173-204*/
173 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
174 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
175 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
176 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
178 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
179 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
180 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
182 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
183 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
184 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
186 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
188 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return register_names[reg_nr];
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 32-bit function
212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
214 #define MSYMBOL_IS_SPECIAL(msym) \
215 MSYMBOL_TARGET_FLAG_1 (msym)
218 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
226 SYMBOL_VALUE_ADDRESS (msym) |= 1;
230 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232 #define IS_ISA32_ADDR(addr) ((addr) & 1)
233 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
237 pc_is_isa32 (bfd_vma memaddr)
239 struct minimal_symbol *sym;
241 /* If bit 0 of the address is set, assume this is a
242 ISA32 (shmedia) address. */
243 if (IS_ISA32_ADDR (memaddr))
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
249 sym = lookup_minimal_symbol_by_pc (memaddr);
251 return MSYMBOL_IS_SPECIAL (sym);
256 static const unsigned char *
257 sh64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264 /* The BRK instruction for shcompact is
266 which translates in big endian mode to 0x0, 0x3b
267 and in little endian mode to 0x3b, 0x0*/
269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
271 if (pc_is_isa32 (*pcptr))
273 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
274 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
275 *lenptr = sizeof (big_breakpoint_media);
276 return big_breakpoint_media;
280 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
281 *lenptr = sizeof (big_breakpoint_compact);
282 return big_breakpoint_compact;
287 if (pc_is_isa32 (*pcptr))
289 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
290 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
291 *lenptr = sizeof (little_breakpoint_media);
292 return little_breakpoint_media;
296 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
297 *lenptr = sizeof (little_breakpoint_compact);
298 return little_breakpoint_compact;
303 /* Prologue looks like
304 [mov.l <regs>,@-r15]...
309 Actually it can be more complicated than this. For instance, with
327 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
328 with l=1 and n = 18 0110101111110001010010100aaa0000 */
329 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
331 /* STS.L PR,@-r0 0100000000100010
332 r0-4-->r0, PR-->(r0) */
333 #define IS_STS_R0(x) ((x) == 0x4022)
335 /* STS PR, Rm 0000mmmm00101010
337 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
339 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
341 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
343 /* MOV.L R14,@(disp,r15) 000111111110dddd
344 R14-->(dispx4+r15) */
345 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
347 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
348 R18-->(dispx8+R14) */
349 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
351 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
352 R18-->(dispx8+R15) */
353 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
355 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
356 R18-->(dispx4+R15) */
357 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
359 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
360 R14-->(dispx8+R15) */
361 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
363 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx4+R15) */
365 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
367 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
369 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
371 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
373 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
375 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
377 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
379 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
381 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
383 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
385 /* MOV #imm, R0 1110 0000 ssss ssss
387 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
389 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
390 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
392 /* ADD r15,r0 0011 0000 1111 1100
394 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
396 /* MOV.L R14 @-R0 0010 0000 1110 0110
397 R14-->(R0-4), R0-4-->R0 */
398 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
400 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
401 where Rm is one of r2-r9 which are the argument registers. */
402 /* FIXME: Recognize the float and double register moves too! */
403 #define IS_MEDIA_IND_ARG_MOV(x) \
404 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
406 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
407 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
408 where Rm is one of r2-r9 which are the argument registers. */
409 #define IS_MEDIA_ARG_MOV(x) \
410 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
411 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
413 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
414 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
415 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
416 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
417 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
418 #define IS_MEDIA_MOV_TO_R14(x) \
419 ((((x) & 0xfffffc0f) == 0xa0e00000) \
420 || (((x) & 0xfffffc0f) == 0xa4e00000) \
421 || (((x) & 0xfffffc0f) == 0xa8e00000) \
422 || (((x) & 0xfffffc0f) == 0xb4e00000) \
423 || (((x) & 0xfffffc0f) == 0xbce00000))
425 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
427 #define IS_COMPACT_IND_ARG_MOV(x) \
428 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
430 /* compact direct arg move!
431 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
432 #define IS_COMPACT_ARG_MOV(x) \
433 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
435 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
436 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
437 #define IS_COMPACT_MOV_TO_R14(x) \
438 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
440 #define IS_JSR_R0(x) ((x) == 0x400b)
441 #define IS_NOP(x) ((x) == 0x0009)
444 /* MOV r15,r14 0110111011110011
446 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
448 /* ADD #imm,r15 01111111iiiiiiii
450 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
452 /* Skip any prologue before the guts of a function */
454 /* Skip the prologue using the debug information. If this fails we'll
455 fall back on the 'guess' method below. */
457 after_prologue (CORE_ADDR pc)
459 struct symtab_and_line sal;
460 CORE_ADDR func_addr, func_end;
462 /* If we can not find the symbol in the partial symbol table, then
463 there is no hope we can determine the function's start address
465 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
469 /* Get the line associated with FUNC_ADDR. */
470 sal = find_pc_line (func_addr, 0);
472 /* There are only two cases to consider. First, the end of the source line
473 is within the function bounds. In that case we return the end of the
474 source line. Second is the end of the source line extends beyond the
475 bounds of the current function. We need to use the slow code to
476 examine instructions in that case. */
477 if (sal.end < func_end)
484 look_for_args_moves (struct gdbarch *gdbarch,
485 CORE_ADDR start_pc, int media_mode)
487 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
490 int insn_size = (media_mode ? 4 : 2);
492 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
496 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
497 insn_size, byte_order);
499 if (IS_MEDIA_IND_ARG_MOV (w))
501 /* This must be followed by a store to r14, so the argument
502 is where the debug info says it is. This can happen after
503 the SP has been saved, unfortunately. */
505 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
506 insn_size, byte_order);
508 if (IS_MEDIA_MOV_TO_R14 (next_insn))
511 else if (IS_MEDIA_ARG_MOV (w))
513 /* These instructions store directly the argument in r14. */
521 w = read_memory_integer (here, insn_size, byte_order);
524 if (IS_COMPACT_IND_ARG_MOV (w))
526 /* This must be followed by a store to r14, so the argument
527 is where the debug info says it is. This can happen after
528 the SP has been saved, unfortunately. */
530 int next_insn = 0xffff & read_memory_integer (here, insn_size,
533 if (IS_COMPACT_MOV_TO_R14 (next_insn))
536 else if (IS_COMPACT_ARG_MOV (w))
538 /* These instructions store directly the argument in r14. */
541 else if (IS_MOVL_R0 (w))
543 /* There is a function that gcc calls to get the arguments
544 passed correctly to the function. Only after this
545 function call the arguments will be found at the place
546 where they are supposed to be. This happens in case the
547 argument has to be stored into a 64-bit register (for
548 instance doubles, long longs). SHcompact doesn't have
549 access to the full 64-bits, so we store the register in
550 stack slot and store the address of the stack slot in
551 the register, then do a call through a wrapper that
552 loads the memory value into the register. A SHcompact
553 callee calls an argument decoder
554 (GCC_shcompact_incoming_args) that stores the 64-bit
555 value in a stack slot and stores the address of the
556 stack slot in the register. GCC thinks the argument is
557 just passed by transparent reference, but this is only
558 true after the argument decoder is called. Such a call
559 needs to be considered part of the prologue. */
561 /* This must be followed by a JSR @r0 instruction and by
562 a NOP instruction. After these, the prologue is over! */
564 int next_insn = 0xffff & read_memory_integer (here, insn_size,
567 if (IS_JSR_R0 (next_insn))
569 next_insn = 0xffff & read_memory_integer (here, insn_size,
573 if (IS_NOP (next_insn))
586 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
597 if (pc_is_isa32 (start_pc) == 0)
603 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
608 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
609 insn_size, byte_order);
611 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
612 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
613 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
617 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
625 /* Don't bail out yet, we may have arguments stored in
626 registers here, according to the debug info, so that
627 gdb can print the frames correctly. */
628 start_pc = look_for_args_moves (gdbarch,
629 here - insn_size, media_mode);
635 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
638 if (IS_STS_R0 (w) || IS_STS_PR (w)
639 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
640 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
644 else if (IS_MOV_SP_FP (w))
652 /* Don't bail out yet, we may have arguments stored in
653 registers here, according to the debug info, so that
654 gdb can print the frames correctly. */
655 start_pc = look_for_args_moves (gdbarch,
656 here - insn_size, media_mode);
666 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
668 CORE_ADDR post_prologue_pc;
670 /* See if we can determine the end of the prologue via the symbol table.
671 If so, then return either PC, or the PC after the prologue, whichever
673 post_prologue_pc = after_prologue (pc);
675 /* If after_prologue returned a useful address, then use it. Else
676 fall back on the instruction skipping code. */
677 if (post_prologue_pc != 0)
678 return max (pc, post_prologue_pc);
680 return sh64_skip_prologue_hard_way (gdbarch, pc);
683 /* Should call_function allocate stack space for a struct return? */
685 sh64_use_struct_convention (struct type *type)
687 return (TYPE_LENGTH (type) > 8);
690 /* For vectors of 4 floating point registers. */
692 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
696 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
700 /* For double precision floating point registers, i.e 2 fp regs.*/
702 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
706 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
710 /* For pairs of floating point registers */
712 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
716 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
722 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
723 GDB_REGNUM BASE_REGNUM
783 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
785 int base_regnum = reg_nr;
787 /* general register N maps to general register N */
788 if (reg_nr >= R0_C_REGNUM
789 && reg_nr <= R_LAST_C_REGNUM)
790 base_regnum = reg_nr - R0_C_REGNUM;
792 /* floating point register N maps to floating point register N */
793 else if (reg_nr >= FP0_C_REGNUM
794 && reg_nr <= FP_LAST_C_REGNUM)
795 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
797 /* double prec register N maps to base regnum for double prec register N */
798 else if (reg_nr >= DR0_C_REGNUM
799 && reg_nr <= DR_LAST_C_REGNUM)
800 base_regnum = sh64_dr_reg_base_num (gdbarch,
801 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
803 /* vector N maps to base regnum for vector register N */
804 else if (reg_nr >= FV0_C_REGNUM
805 && reg_nr <= FV_LAST_C_REGNUM)
806 base_regnum = sh64_fv_reg_base_num (gdbarch,
807 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
809 else if (reg_nr == PC_C_REGNUM)
810 base_regnum = gdbarch_pc_regnum (gdbarch);
812 else if (reg_nr == GBR_C_REGNUM)
815 else if (reg_nr == MACH_C_REGNUM
816 || reg_nr == MACL_C_REGNUM)
819 else if (reg_nr == PR_C_REGNUM)
820 base_regnum = PR_REGNUM;
822 else if (reg_nr == T_C_REGNUM)
825 else if (reg_nr == FPSCR_C_REGNUM)
826 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
828 else if (reg_nr == FPUL_C_REGNUM)
829 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
835 sign_extend (int value, int bits)
837 value = value & ((1 << bits) - 1);
838 return (value & (1 << (bits - 1))
839 ? value | (~((1 << bits) - 1))
844 sh64_analyze_prologue (struct gdbarch *gdbarch,
845 struct sh64_frame_cache *cache,
847 CORE_ADDR current_pc)
855 int gdb_register_number;
857 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
858 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
860 cache->sp_offset = 0;
862 /* Loop around examining the prologue insns until we find something
863 that does not appear to be part of the prologue. But give up
864 after 20 of them, since we're getting silly then. */
868 if (cache->media_mode)
873 opc = pc + (insn_size * 28);
874 if (opc > current_pc)
876 for ( ; pc <= opc; pc += insn_size)
878 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
880 insn_size, byte_order);
882 if (!cache->media_mode)
884 if (IS_STS_PR (insn))
886 int next_insn = read_memory_integer (pc + insn_size,
887 insn_size, byte_order);
888 if (IS_MOV_TO_R15 (next_insn))
890 cache->saved_regs[PR_REGNUM] =
891 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
896 else if (IS_MOV_R14 (insn))
897 cache->saved_regs[MEDIA_FP_REGNUM] =
898 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
900 else if (IS_MOV_R0 (insn))
902 /* Put in R0 the offset from SP at which to store some
903 registers. We are interested in this value, because it
904 will tell us where the given registers are stored within
906 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
909 else if (IS_ADD_SP_R0 (insn))
911 /* This instruction still prepares r0, but we don't care.
912 We already have the offset in r0_val. */
915 else if (IS_STS_R0 (insn))
917 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
918 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
922 else if (IS_MOV_R14_R0 (insn))
924 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
925 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
930 else if (IS_ADD_SP (insn))
931 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
933 else if (IS_MOV_SP_FP (insn))
938 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
940 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
942 else if (IS_STQ_R18_R15 (insn))
943 cache->saved_regs[PR_REGNUM] =
944 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
946 else if (IS_STL_R18_R15 (insn))
947 cache->saved_regs[PR_REGNUM] =
948 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
950 else if (IS_STQ_R14_R15 (insn))
951 cache->saved_regs[MEDIA_FP_REGNUM] =
952 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
954 else if (IS_STL_R14_R15 (insn))
955 cache->saved_regs[MEDIA_FP_REGNUM] =
956 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
958 else if (IS_MOV_SP_FP_MEDIA (insn))
963 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
968 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
973 /* Function: push_dummy_call
974 Setup the function arguments for calling a function in the inferior.
976 On the Renesas SH architecture, there are four registers (R4 to R7)
977 which are dedicated for passing function arguments. Up to the first
978 four arguments (depending on size) may go into these registers.
979 The rest go on the stack.
981 Arguments that are smaller than 4 bytes will still take up a whole
982 register or a whole 32-bit word on the stack, and will be
983 right-justified in the register or the stack word. This includes
984 chars, shorts, and small aggregate types.
986 Arguments that are larger than 4 bytes may be split between two or
987 more registers. If there are not enough registers free, an argument
988 may be passed partly in a register (or registers), and partly on the
989 stack. This includes doubles, long longs, and larger aggregates.
990 As far as I know, there is no upper limit to the size of aggregates
991 that will be passed in this way; in other words, the convention of
992 passing a pointer to a large aggregate instead of a copy is not used.
994 An exceptional case exists for struct arguments (and possibly other
995 aggregates such as arrays) if the size is larger than 4 bytes but
996 not a multiple of 4 bytes. In this case the argument is never split
997 between the registers and the stack, but instead is copied in its
998 entirety onto the stack, AND also copied into as many registers as
999 there is room for. In other words, space in registers permitting,
1000 two copies of the same argument are passed in. As far as I can tell,
1001 only the one on the stack is used, although that may be a function
1002 of the level of compiler optimization. I suspect this is a compiler
1003 bug. Arguments of these odd sizes are left-justified within the
1004 word (as opposed to arguments smaller than 4 bytes, which are
1007 If the function is to return an aggregate type such as a struct, it
1008 is either returned in the normal return value register R0 (if its
1009 size is no greater than one byte), or else the caller must allocate
1010 space into which the callee will copy the return value (if the size
1011 is greater than one byte). In this case, a pointer to the return
1012 value location is passed into the callee in register R2, which does
1013 not displace any of the other arguments passed in via registers R4
1016 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1017 non-scalar (struct, union) elements (even if the elements are
1019 FR0-FR11 for single precision floating point (float)
1020 DR0-DR10 for double precision floating point (double)
1022 If a float is argument number 3 (for instance) and arguments number
1023 1,2, and 4 are integer, the mapping will be:
1024 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1026 If a float is argument number 10 (for instance) and arguments number
1027 1 through 10 are integer, the mapping will be:
1028 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1029 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1030 I.e. there is hole in the stack.
1032 Different rules apply for variable arguments functions, and for functions
1033 for which the prototype is not known. */
1036 sh64_push_dummy_call (struct gdbarch *gdbarch,
1037 struct value *function,
1038 struct regcache *regcache,
1040 int nargs, struct value **args,
1041 CORE_ADDR sp, int struct_return,
1042 CORE_ADDR struct_addr)
1044 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1045 int stack_offset, stack_alloc;
1049 int float_arg_index = 0;
1050 int double_arg_index = 0;
1061 memset (fp_args, 0, sizeof (fp_args));
1063 /* first force sp to a 8-byte alignment */
1064 sp = sh64_frame_align (gdbarch, sp);
1066 /* The "struct return pointer" pseudo-argument has its own dedicated
1070 regcache_cooked_write_unsigned (regcache,
1071 STRUCT_RETURN_REGNUM, struct_addr);
1073 /* Now make sure there's space on the stack */
1074 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1075 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1076 sp -= stack_alloc; /* make room on stack for args */
1078 /* Now load as many as possible of the first arguments into
1079 registers, and push the rest onto the stack. There are 64 bytes
1080 in eight registers available. Loop thru args from first to last. */
1082 int_argreg = ARG0_REGNUM;
1083 float_argreg = gdbarch_fp0_regnum (gdbarch);
1084 double_argreg = DR0_REGNUM;
1086 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1088 type = value_type (args[argnum]);
1089 len = TYPE_LENGTH (type);
1090 memset (valbuf, 0, sizeof (valbuf));
1092 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1094 argreg_size = register_size (gdbarch, int_argreg);
1096 if (len < argreg_size)
1098 /* value gets right-justified in the register or stack word */
1099 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1100 memcpy (valbuf + argreg_size - len,
1101 (char *) value_contents (args[argnum]), len);
1103 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1108 val = (char *) value_contents (args[argnum]);
1112 if (int_argreg > ARGLAST_REGNUM)
1114 /* must go on the stack */
1115 write_memory (sp + stack_offset, (const bfd_byte *) val,
1117 stack_offset += 8;/*argreg_size;*/
1119 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1120 That's because some *&^%$ things get passed on the stack
1121 AND in the registers! */
1122 if (int_argreg <= ARGLAST_REGNUM)
1124 /* there's room in a register */
1125 regval = extract_unsigned_integer (val, argreg_size,
1127 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1129 /* Store the value 8 bytes at a time. This means that
1130 things larger than 8 bytes may go partly in registers
1131 and partly on the stack. FIXME: argreg is incremented
1132 before we use its size. */
1140 val = (char *) value_contents (args[argnum]);
1143 /* Where is it going to be stored? */
1144 while (fp_args[float_arg_index])
1147 /* Now float_argreg points to the register where it
1148 should be stored. Are we still within the allowed
1150 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1152 /* Goes in FR0...FR11 */
1153 regcache_cooked_write (regcache,
1154 gdbarch_fp0_regnum (gdbarch)
1157 fp_args[float_arg_index] = 1;
1158 /* Skip the corresponding general argument register. */
1163 /* Store it as the integers, 8 bytes at the time, if
1164 necessary spilling on the stack. */
1169 /* Where is it going to be stored? */
1170 while (fp_args[double_arg_index])
1171 double_arg_index += 2;
1172 /* Now double_argreg points to the register
1173 where it should be stored.
1174 Are we still within the allowed register set? */
1175 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1177 /* Goes in DR0...DR10 */
1178 /* The numbering of the DRi registers is consecutive,
1179 i.e. includes odd numbers. */
1180 int double_register_offset = double_arg_index / 2;
1181 int regnum = DR0_REGNUM + double_register_offset;
1182 regcache_cooked_write (regcache, regnum, val);
1183 fp_args[double_arg_index] = 1;
1184 fp_args[double_arg_index + 1] = 1;
1185 /* Skip the corresponding general argument register. */
1190 /* Store it as the integers, 8 bytes at the time, if
1191 necessary spilling on the stack. */
1195 /* Store return address. */
1196 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1198 /* Update stack pointer. */
1199 regcache_cooked_write_unsigned (regcache,
1200 gdbarch_sp_regnum (gdbarch), sp);
1205 /* Find a function's return value in the appropriate registers (in
1206 regbuf), and copy it into valbuf. Extract from an array REGBUF
1207 containing the (raw) register state a function return value of type
1208 TYPE, and copy that, in virtual format, into VALBUF. */
1210 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1213 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1214 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1215 int len = TYPE_LENGTH (type);
1217 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1221 /* Return value stored in gdbarch_fp0_regnum */
1222 regcache_raw_read (regcache,
1223 gdbarch_fp0_regnum (gdbarch), valbuf);
1227 /* return value stored in DR0_REGNUM */
1231 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1233 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1234 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1237 floatformat_to_doublest (&floatformat_ieee_double_big,
1239 store_typed_floating (valbuf, type, val);
1248 /* Result is in register 2. If smaller than 8 bytes, it is padded
1249 at the most significant end. */
1250 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1252 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1253 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1257 memcpy (valbuf, buf + offset, len);
1260 error ("bad size for return value");
1264 /* Write into appropriate registers a function return value
1265 of type TYPE, given in virtual format.
1266 If the architecture is sh4 or sh3e, store a function's return value
1267 in the R0 general register or in the FP0 floating point register,
1268 depending on the type of the return value. In all the other cases
1269 the result is stored in r0, left-justified. */
1272 sh64_store_return_value (struct type *type, struct regcache *regcache,
1275 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1276 char buf[64]; /* more than enough... */
1277 int len = TYPE_LENGTH (type);
1279 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1281 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1282 for (i = 0; i < len; i += 4)
1283 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1284 regcache_raw_write (regcache, regnum++,
1285 (char *) valbuf + len - 4 - i);
1287 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1291 int return_register = DEFAULT_RETURN_REGNUM;
1294 if (len <= register_size (gdbarch, return_register))
1296 /* Pad with zeros. */
1297 memset (buf, 0, register_size (gdbarch, return_register));
1298 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1299 offset = 0; /*register_size (gdbarch,
1300 return_register) - len;*/
1302 offset = register_size (gdbarch, return_register) - len;
1304 memcpy (buf + offset, valbuf, len);
1305 regcache_raw_write (regcache, return_register, buf);
1308 regcache_raw_write (regcache, return_register, valbuf);
1312 static enum return_value_convention
1313 sh64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1314 struct type *type, struct regcache *regcache,
1315 gdb_byte *readbuf, const gdb_byte *writebuf)
1317 if (sh64_use_struct_convention (type))
1318 return RETURN_VALUE_STRUCT_CONVENTION;
1320 sh64_store_return_value (type, regcache, writebuf);
1322 sh64_extract_return_value (type, regcache, readbuf);
1323 return RETURN_VALUE_REGISTER_CONVENTION;
1327 sh64_show_media_regs (struct frame_info *frame)
1329 struct gdbarch *gdbarch = get_frame_arch (frame);
1333 ("PC=%s SR=%016llx \n",
1334 phex (get_frame_register_unsigned (frame,
1335 gdbarch_pc_regnum (gdbarch)), 8),
1336 (long long) get_frame_register_unsigned (frame, SR_REGNUM));
1339 ("SSR=%016llx SPC=%016llx \n",
1340 (long long) get_frame_register_unsigned (frame, SSR_REGNUM),
1341 (long long) get_frame_register_unsigned (frame, SPC_REGNUM));
1344 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1346 for (i = 0; i < 64; i = i + 4)
1348 ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1350 (long long) get_frame_register_unsigned (frame, i + 0),
1351 (long long) get_frame_register_unsigned (frame, i + 1),
1352 (long long) get_frame_register_unsigned (frame, i + 2),
1353 (long long) get_frame_register_unsigned (frame, i + 3));
1355 printf_filtered ("\n");
1357 for (i = 0; i < 64; i = i + 8)
1359 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1361 (long) get_frame_register_unsigned
1362 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1363 (long) get_frame_register_unsigned
1364 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1365 (long) get_frame_register_unsigned
1366 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1367 (long) get_frame_register_unsigned
1368 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1369 (long) get_frame_register_unsigned
1370 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1371 (long) get_frame_register_unsigned
1372 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1373 (long) get_frame_register_unsigned
1374 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1375 (long) get_frame_register_unsigned
1376 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1380 sh64_show_compact_regs (struct frame_info *frame)
1382 struct gdbarch *gdbarch = get_frame_arch (frame);
1387 phex (get_frame_register_unsigned (frame, PC_C_REGNUM), 8));
1390 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1391 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1392 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1393 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1394 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1395 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1397 ("FPSCR=%08lx FPUL=%08lx\n",
1398 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1399 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
1401 for (i = 0; i < 16; i = i + 4)
1403 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1405 (long) get_frame_register_unsigned (frame, i + 0),
1406 (long) get_frame_register_unsigned (frame, i + 1),
1407 (long) get_frame_register_unsigned (frame, i + 2),
1408 (long) get_frame_register_unsigned (frame, i + 3));
1410 printf_filtered ("\n");
1412 for (i = 0; i < 16; i = i + 8)
1414 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1416 (long) get_frame_register_unsigned
1417 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1418 (long) get_frame_register_unsigned
1419 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1420 (long) get_frame_register_unsigned
1421 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1422 (long) get_frame_register_unsigned
1423 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1424 (long) get_frame_register_unsigned
1425 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1426 (long) get_frame_register_unsigned
1427 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1428 (long) get_frame_register_unsigned
1429 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1430 (long) get_frame_register_unsigned
1431 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1434 /* FIXME!!! This only shows the registers for shmedia, excluding the
1435 pseudo registers. */
1437 sh64_show_regs (struct frame_info *frame)
1439 if (pc_is_isa32 (get_frame_pc (frame)))
1440 sh64_show_media_regs (frame);
1442 sh64_show_compact_regs (frame);
1447 SH MEDIA MODE (ISA 32)
1448 general registers (64-bit) 0-63
1449 0 r0, r1, r2, r3, r4, r5, r6, r7,
1450 64 r8, r9, r10, r11, r12, r13, r14, r15,
1451 128 r16, r17, r18, r19, r20, r21, r22, r23,
1452 192 r24, r25, r26, r27, r28, r29, r30, r31,
1453 256 r32, r33, r34, r35, r36, r37, r38, r39,
1454 320 r40, r41, r42, r43, r44, r45, r46, r47,
1455 384 r48, r49, r50, r51, r52, r53, r54, r55,
1456 448 r56, r57, r58, r59, r60, r61, r62, r63,
1461 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1464 target registers (64-bit) 68-75
1465 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1467 floating point state control register (32-bit) 76
1470 single precision floating point registers (32-bit) 77-140
1471 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1472 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1473 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1474 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1475 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1476 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1477 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1478 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1480 TOTAL SPACE FOR REGISTERS: 868 bytes
1482 From here on they are all pseudo registers: no memory allocated.
1483 REGISTER_BYTE returns the register byte for the base register.
1485 double precision registers (pseudo) 141-172
1486 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1487 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1488 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1489 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1491 floating point pairs (pseudo) 173-204
1492 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1493 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1494 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1495 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1497 floating point vectors (4 floating point regs) (pseudo) 205-220
1498 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1499 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1501 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1502 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1503 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1505 gbr_c, mach_c, macl_c, pr_c, t_c,
1507 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1508 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1509 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1510 fv0_c, fv4_c, fv8_c, fv12_c
1513 static struct type *
1514 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1516 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1520 /* Return the GDB type object for the "standard" data type
1521 of data in register REG_NR. */
1522 static struct type *
1523 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1525 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1526 && reg_nr <= FP_LAST_REGNUM)
1527 || (reg_nr >= FP0_C_REGNUM
1528 && reg_nr <= FP_LAST_C_REGNUM))
1529 return builtin_type (gdbarch)->builtin_float;
1530 else if ((reg_nr >= DR0_REGNUM
1531 && reg_nr <= DR_LAST_REGNUM)
1532 || (reg_nr >= DR0_C_REGNUM
1533 && reg_nr <= DR_LAST_C_REGNUM))
1534 return builtin_type (gdbarch)->builtin_double;
1535 else if (reg_nr >= FPP0_REGNUM
1536 && reg_nr <= FPP_LAST_REGNUM)
1537 return sh64_build_float_register_type (gdbarch, 1);
1538 else if ((reg_nr >= FV0_REGNUM
1539 && reg_nr <= FV_LAST_REGNUM)
1540 ||(reg_nr >= FV0_C_REGNUM
1541 && reg_nr <= FV_LAST_C_REGNUM))
1542 return sh64_build_float_register_type (gdbarch, 3);
1543 else if (reg_nr == FPSCR_REGNUM)
1544 return builtin_type (gdbarch)->builtin_int;
1545 else if (reg_nr >= R0_C_REGNUM
1546 && reg_nr < FP0_C_REGNUM)
1547 return builtin_type (gdbarch)->builtin_int;
1549 return builtin_type (gdbarch)->builtin_long_long;
1553 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1554 struct type *type, char *from, char *to)
1556 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1558 /* It is a no-op. */
1559 memcpy (to, from, register_size (gdbarch, regnum));
1563 if ((regnum >= DR0_REGNUM
1564 && regnum <= DR_LAST_REGNUM)
1565 || (regnum >= DR0_C_REGNUM
1566 && regnum <= DR_LAST_C_REGNUM))
1569 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1571 store_typed_floating (to, type, val);
1574 error ("sh64_register_convert_to_virtual called with non DR register number");
1578 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1579 int regnum, const void *from, void *to)
1581 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1583 /* It is a no-op. */
1584 memcpy (to, from, register_size (gdbarch, regnum));
1588 if ((regnum >= DR0_REGNUM
1589 && regnum <= DR_LAST_REGNUM)
1590 || (regnum >= DR0_C_REGNUM
1591 && regnum <= DR_LAST_C_REGNUM))
1593 DOUBLEST val = extract_typed_floating (from, type);
1594 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1598 error ("sh64_register_convert_to_raw called with non DR register number");
1602 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1603 int reg_nr, gdb_byte *buffer)
1605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1609 char temp_buffer[MAX_REGISTER_SIZE];
1611 if (reg_nr >= DR0_REGNUM
1612 && reg_nr <= DR_LAST_REGNUM)
1614 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1616 /* Build the value in the provided buffer. */
1617 /* DR regs are double precision registers obtained by
1618 concatenating 2 single precision floating point registers. */
1619 for (portion = 0; portion < 2; portion++)
1620 regcache_raw_read (regcache, base_regnum + portion,
1622 + register_size (gdbarch, base_regnum) * portion));
1624 /* We must pay attention to the endianness. */
1625 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1626 register_type (gdbarch, reg_nr),
1627 temp_buffer, buffer);
1631 else if (reg_nr >= FPP0_REGNUM
1632 && reg_nr <= FPP_LAST_REGNUM)
1634 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1636 /* Build the value in the provided buffer. */
1637 /* FPP regs are pairs of single precision registers obtained by
1638 concatenating 2 single precision floating point registers. */
1639 for (portion = 0; portion < 2; portion++)
1640 regcache_raw_read (regcache, base_regnum + portion,
1642 + register_size (gdbarch, base_regnum) * portion));
1645 else if (reg_nr >= FV0_REGNUM
1646 && reg_nr <= FV_LAST_REGNUM)
1648 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1650 /* Build the value in the provided buffer. */
1651 /* FV regs are vectors of single precision registers obtained by
1652 concatenating 4 single precision floating point registers. */
1653 for (portion = 0; portion < 4; portion++)
1654 regcache_raw_read (regcache, base_regnum + portion,
1656 + register_size (gdbarch, base_regnum) * portion));
1659 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1660 else if (reg_nr >= R0_C_REGNUM
1661 && reg_nr <= T_C_REGNUM)
1663 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1665 /* Build the value in the provided buffer. */
1666 regcache_raw_read (regcache, base_regnum, temp_buffer);
1667 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1669 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1672 else if (reg_nr >= FP0_C_REGNUM
1673 && reg_nr <= FP_LAST_C_REGNUM)
1675 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1677 /* Build the value in the provided buffer. */
1678 /* Floating point registers map 1-1 to the media fp regs,
1679 they have the same size and endianness. */
1680 regcache_raw_read (regcache, base_regnum, buffer);
1683 else if (reg_nr >= DR0_C_REGNUM
1684 && reg_nr <= DR_LAST_C_REGNUM)
1686 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1688 /* DR_C regs are double precision registers obtained by
1689 concatenating 2 single precision floating point registers. */
1690 for (portion = 0; portion < 2; portion++)
1691 regcache_raw_read (regcache, base_regnum + portion,
1693 + register_size (gdbarch, base_regnum) * portion));
1695 /* We must pay attention to the endianness. */
1696 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1697 register_type (gdbarch, reg_nr),
1698 temp_buffer, buffer);
1701 else if (reg_nr >= FV0_C_REGNUM
1702 && reg_nr <= FV_LAST_C_REGNUM)
1704 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1706 /* Build the value in the provided buffer. */
1707 /* FV_C regs are vectors of single precision registers obtained by
1708 concatenating 4 single precision floating point registers. */
1709 for (portion = 0; portion < 4; portion++)
1710 regcache_raw_read (regcache, base_regnum + portion,
1712 + register_size (gdbarch, base_regnum) * portion));
1715 else if (reg_nr == FPSCR_C_REGNUM)
1717 int fpscr_base_regnum;
1719 unsigned int fpscr_value;
1720 unsigned int sr_value;
1721 unsigned int fpscr_c_value;
1722 unsigned int fpscr_c_part1_value;
1723 unsigned int fpscr_c_part2_value;
1725 fpscr_base_regnum = FPSCR_REGNUM;
1726 sr_base_regnum = SR_REGNUM;
1728 /* Build the value in the provided buffer. */
1729 /* FPSCR_C is a very weird register that contains sparse bits
1730 from the FPSCR and the SR architectural registers.
1737 2-17 Bit 2-18 of FPSCR
1738 18-20 Bits 12,13,14 of SR
1742 /* Get FPSCR into a local buffer */
1743 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1744 /* Get value as an int. */
1745 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1746 /* Get SR into a local buffer */
1747 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1748 /* Get value as an int. */
1749 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1750 /* Build the new value. */
1751 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1752 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1753 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1754 /* Store that in out buffer!!! */
1755 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1756 /* FIXME There is surely an endianness gotcha here. */
1759 else if (reg_nr == FPUL_C_REGNUM)
1761 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1763 /* FPUL_C register is floating point register 32,
1764 same size, same endianness. */
1765 regcache_raw_read (regcache, base_regnum, buffer);
1770 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1771 int reg_nr, const gdb_byte *buffer)
1773 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1774 int base_regnum, portion;
1776 char temp_buffer[MAX_REGISTER_SIZE];
1778 if (reg_nr >= DR0_REGNUM
1779 && reg_nr <= DR_LAST_REGNUM)
1781 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1782 /* We must pay attention to the endianness. */
1783 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1785 buffer, temp_buffer);
1787 /* Write the real regs for which this one is an alias. */
1788 for (portion = 0; portion < 2; portion++)
1789 regcache_raw_write (regcache, base_regnum + portion,
1791 + register_size (gdbarch,
1792 base_regnum) * portion));
1795 else if (reg_nr >= FPP0_REGNUM
1796 && reg_nr <= FPP_LAST_REGNUM)
1798 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1800 /* Write the real regs for which this one is an alias. */
1801 for (portion = 0; portion < 2; portion++)
1802 regcache_raw_write (regcache, base_regnum + portion,
1804 + register_size (gdbarch,
1805 base_regnum) * portion));
1808 else if (reg_nr >= FV0_REGNUM
1809 && reg_nr <= FV_LAST_REGNUM)
1811 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1813 /* Write the real regs for which this one is an alias. */
1814 for (portion = 0; portion < 4; portion++)
1815 regcache_raw_write (regcache, base_regnum + portion,
1817 + register_size (gdbarch,
1818 base_regnum) * portion));
1821 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1822 register but only 4 bytes of it. */
1823 else if (reg_nr >= R0_C_REGNUM
1824 && reg_nr <= T_C_REGNUM)
1826 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1827 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1828 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1832 /* Let's read the value of the base register into a temporary
1833 buffer, so that overwriting the last four bytes with the new
1834 value of the pseudo will leave the upper 4 bytes unchanged. */
1835 regcache_raw_read (regcache, base_regnum, temp_buffer);
1836 /* Write as an 8 byte quantity */
1837 memcpy (temp_buffer + offset, buffer, 4);
1838 regcache_raw_write (regcache, base_regnum, temp_buffer);
1841 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1842 registers. Both are 4 bytes. */
1843 else if (reg_nr >= FP0_C_REGNUM
1844 && reg_nr <= FP_LAST_C_REGNUM)
1846 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1847 regcache_raw_write (regcache, base_regnum, buffer);
1850 else if (reg_nr >= DR0_C_REGNUM
1851 && reg_nr <= DR_LAST_C_REGNUM)
1853 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1854 for (portion = 0; portion < 2; portion++)
1856 /* We must pay attention to the endianness. */
1857 sh64_register_convert_to_raw (gdbarch,
1858 register_type (gdbarch, reg_nr),
1860 buffer, temp_buffer);
1862 regcache_raw_write (regcache, base_regnum + portion,
1864 + register_size (gdbarch,
1865 base_regnum) * portion));
1869 else if (reg_nr >= FV0_C_REGNUM
1870 && reg_nr <= FV_LAST_C_REGNUM)
1872 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1874 for (portion = 0; portion < 4; portion++)
1876 regcache_raw_write (regcache, base_regnum + portion,
1878 + register_size (gdbarch,
1879 base_regnum) * portion));
1883 else if (reg_nr == FPSCR_C_REGNUM)
1885 int fpscr_base_regnum;
1887 unsigned int fpscr_value;
1888 unsigned int sr_value;
1889 unsigned int old_fpscr_value;
1890 unsigned int old_sr_value;
1891 unsigned int fpscr_c_value;
1892 unsigned int fpscr_mask;
1893 unsigned int sr_mask;
1895 fpscr_base_regnum = FPSCR_REGNUM;
1896 sr_base_regnum = SR_REGNUM;
1898 /* FPSCR_C is a very weird register that contains sparse bits
1899 from the FPSCR and the SR architectural registers.
1906 2-17 Bit 2-18 of FPSCR
1907 18-20 Bits 12,13,14 of SR
1911 /* Get value as an int. */
1912 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1914 /* Build the new values. */
1915 fpscr_mask = 0x0003fffd;
1916 sr_mask = 0x001c0000;
1918 fpscr_value = fpscr_c_value & fpscr_mask;
1919 sr_value = (fpscr_value & sr_mask) >> 6;
1921 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1922 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1923 old_fpscr_value &= 0xfffc0002;
1924 fpscr_value |= old_fpscr_value;
1925 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1926 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1928 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1929 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1930 old_sr_value &= 0xffff8fff;
1931 sr_value |= old_sr_value;
1932 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1933 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1936 else if (reg_nr == FPUL_C_REGNUM)
1938 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1939 regcache_raw_write (regcache, base_regnum, buffer);
1943 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1944 shmedia REGISTERS. */
1945 /* Control registers, compact mode. */
1947 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1950 switch (cr_c_regnum)
1953 fprintf_filtered (file, "pc_c\t0x%08x\n",
1954 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1957 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1958 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1961 fprintf_filtered (file, "mach_c\t0x%08x\n",
1962 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1965 fprintf_filtered (file, "macl_c\t0x%08x\n",
1966 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1969 fprintf_filtered (file, "pr_c\t0x%08x\n",
1970 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1973 fprintf_filtered (file, "t_c\t0x%08x\n",
1974 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1976 case FPSCR_C_REGNUM:
1977 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1978 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1981 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1982 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1988 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1989 struct frame_info *frame, int regnum)
1990 { /* do values for FP (float) regs */
1991 unsigned char *raw_buffer;
1992 double flt; /* double extracted from raw hex data */
1996 /* Allocate space for the float. */
1997 raw_buffer = (unsigned char *) alloca
1998 (register_size (gdbarch,
2002 /* Get the data in raw format. */
2003 if (!frame_register_read (frame, regnum, raw_buffer))
2004 error ("can't read register %d (%s)",
2005 regnum, gdbarch_register_name (gdbarch, regnum));
2007 /* Get the register as a number */
2008 flt = unpack_double (builtin_type (gdbarch)->builtin_float, raw_buffer, &inv);
2010 /* Print the name and some spaces. */
2011 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2012 print_spaces_filtered (15 - strlen (gdbarch_register_name
2013 (gdbarch, regnum)), file);
2015 /* Print the value. */
2017 fprintf_filtered (file, "<invalid float>");
2019 fprintf_filtered (file, "%-10.9g", flt);
2021 /* Print the fp register as hex. */
2022 fprintf_filtered (file, "\t(raw 0x");
2023 for (j = 0; j < register_size (gdbarch, regnum); j++)
2025 int idx = gdbarch_byte_order (gdbarch)
2026 == BFD_ENDIAN_BIG ? j : register_size
2027 (gdbarch, regnum) - 1 - j;
2028 fprintf_filtered (file, "%02x", raw_buffer[idx]);
2030 fprintf_filtered (file, ")");
2031 fprintf_filtered (file, "\n");
2035 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2036 struct frame_info *frame, int regnum)
2038 /* All the sh64-compact mode registers are pseudo registers. */
2040 if (regnum < gdbarch_num_regs (gdbarch)
2041 || regnum >= gdbarch_num_regs (gdbarch)
2042 + NUM_PSEUDO_REGS_SH_MEDIA
2043 + NUM_PSEUDO_REGS_SH_COMPACT)
2044 internal_error (__FILE__, __LINE__,
2045 _("Invalid pseudo register number %d\n"), regnum);
2047 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2049 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
2050 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2051 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2052 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2055 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2057 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2058 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2059 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2060 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2063 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2065 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
2066 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2067 regnum - FV0_REGNUM,
2068 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2069 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2070 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2071 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2074 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2076 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2077 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2078 regnum - FV0_C_REGNUM,
2079 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2080 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2081 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2082 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2085 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2087 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2088 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2089 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2090 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2093 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2095 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2096 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2097 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2099 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2100 /* This should work also for pseudoregs. */
2101 sh64_do_fp_register (gdbarch, file, frame, regnum);
2102 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2103 sh64_do_cr_c_register_info (file, frame, regnum);
2107 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2108 struct frame_info *frame, int regnum)
2110 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2111 struct value_print_options opts;
2113 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2114 print_spaces_filtered (15 - strlen (gdbarch_register_name
2115 (gdbarch, regnum)), file);
2117 /* Get the data in raw format. */
2118 if (!frame_register_read (frame, regnum, raw_buffer))
2119 fprintf_filtered (file, "*value not available*\n");
2121 get_formatted_print_options (&opts, 'x');
2123 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2124 file, 0, &opts, current_language);
2125 fprintf_filtered (file, "\t");
2126 get_formatted_print_options (&opts, 0);
2128 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2129 file, 0, &opts, current_language);
2130 fprintf_filtered (file, "\n");
2134 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2135 struct frame_info *frame, int regnum)
2137 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2138 + gdbarch_num_pseudo_regs (gdbarch))
2139 internal_error (__FILE__, __LINE__,
2140 _("Invalid register number %d\n"), regnum);
2142 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2144 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2145 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2147 sh64_do_register (gdbarch, file, frame, regnum);
2150 else if (regnum < gdbarch_num_regs (gdbarch)
2151 + gdbarch_num_pseudo_regs (gdbarch))
2152 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2156 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2157 struct frame_info *frame, int regnum,
2160 if (regnum != -1) /* do one specified register */
2162 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2163 error ("Not a valid register for the current processor type");
2165 sh64_print_register (gdbarch, file, frame, regnum);
2168 /* do all (or most) registers */
2171 while (regnum < gdbarch_num_regs (gdbarch))
2173 /* If the register name is empty, it is undefined for this
2174 processor, so don't display anything. */
2175 if (gdbarch_register_name (gdbarch, regnum) == NULL
2176 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2182 if (TYPE_CODE (register_type (gdbarch, regnum))
2187 /* true for "INFO ALL-REGISTERS" command */
2188 sh64_do_fp_register (gdbarch, file, frame, regnum);
2192 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2197 sh64_do_register (gdbarch, file, frame, regnum);
2203 while (regnum < gdbarch_num_regs (gdbarch)
2204 + gdbarch_num_pseudo_regs (gdbarch))
2206 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2213 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2214 struct ui_file *file,
2215 struct frame_info *frame, int regnum,
2218 if (regnum != -1) /* do one specified register */
2220 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2221 error ("Not a valid register for the current processor type");
2223 if (regnum >= 0 && regnum < R0_C_REGNUM)
2224 error ("Not a valid register for the current processor mode.");
2226 sh64_print_register (gdbarch, file, frame, regnum);
2229 /* do all compact registers */
2231 regnum = R0_C_REGNUM;
2232 while (regnum < gdbarch_num_regs (gdbarch)
2233 + gdbarch_num_pseudo_regs (gdbarch))
2235 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2242 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2243 struct frame_info *frame, int regnum, int fpregs)
2245 if (pc_is_isa32 (get_frame_pc (frame)))
2246 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2248 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2251 static struct sh64_frame_cache *
2252 sh64_alloc_frame_cache (void)
2254 struct sh64_frame_cache *cache;
2257 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2261 cache->saved_sp = 0;
2262 cache->sp_offset = 0;
2265 /* Frameless until proven otherwise. */
2268 /* Saved registers. We initialize these to -1 since zero is a valid
2269 offset (that's where fp is supposed to be stored). */
2270 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2272 cache->saved_regs[i] = -1;
2278 static struct sh64_frame_cache *
2279 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2281 struct gdbarch *gdbarch;
2282 struct sh64_frame_cache *cache;
2283 CORE_ADDR current_pc;
2289 gdbarch = get_frame_arch (this_frame);
2290 cache = sh64_alloc_frame_cache ();
2291 *this_cache = cache;
2293 current_pc = get_frame_pc (this_frame);
2294 cache->media_mode = pc_is_isa32 (current_pc);
2296 /* In principle, for normal frames, fp holds the frame pointer,
2297 which holds the base address for the current stack frame.
2298 However, for functions that don't need it, the frame pointer is
2299 optional. For these "frameless" functions the frame pointer is
2300 actually the frame pointer of the calling frame. */
2301 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2302 if (cache->base == 0)
2305 cache->pc = get_frame_func (this_frame);
2307 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2309 if (!cache->uses_fp)
2311 /* We didn't find a valid frame, which means that CACHE->base
2312 currently holds the frame pointer for our calling frame. If
2313 we're at the start of a function, or somewhere half-way its
2314 prologue, the function's frame probably hasn't been fully
2315 setup yet. Try to reconstruct the base address for the stack
2316 frame by looking at the stack pointer. For truly "frameless"
2317 functions this might work too. */
2318 cache->base = get_frame_register_unsigned
2319 (this_frame, gdbarch_sp_regnum (gdbarch));
2322 /* Now that we have the base address for the stack frame we can
2323 calculate the value of sp in the calling frame. */
2324 cache->saved_sp = cache->base + cache->sp_offset;
2326 /* Adjust all the saved registers such that they contain addresses
2327 instead of offsets. */
2328 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2329 if (cache->saved_regs[i] != -1)
2330 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2335 static struct value *
2336 sh64_frame_prev_register (struct frame_info *this_frame,
2337 void **this_cache, int regnum)
2339 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2340 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2341 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2343 gdb_assert (regnum >= 0);
2345 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2346 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2348 /* The PC of the previous frame is stored in the PR register of
2349 the current frame. Frob regnum so that we pull the value from
2350 the correct place. */
2351 if (regnum == gdbarch_pc_regnum (gdbarch))
2354 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2356 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2357 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2360 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2362 return frame_unwind_got_constant (this_frame, regnum, val);
2365 return frame_unwind_got_memory (this_frame, regnum,
2366 cache->saved_regs[regnum]);
2369 return frame_unwind_got_register (this_frame, regnum, regnum);
2373 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2374 struct frame_id *this_id)
2376 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2378 /* This marks the outermost frame. */
2379 if (cache->base == 0)
2382 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2385 static const struct frame_unwind sh64_frame_unwind = {
2388 sh64_frame_prev_register,
2390 default_frame_sniffer
2394 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2396 return frame_unwind_register_unsigned (next_frame,
2397 gdbarch_sp_regnum (gdbarch));
2401 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2403 return frame_unwind_register_unsigned (next_frame,
2404 gdbarch_pc_regnum (gdbarch));
2407 static struct frame_id
2408 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2410 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2411 gdbarch_sp_regnum (gdbarch));
2412 return frame_id_build (sp, get_frame_pc (this_frame));
2416 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2418 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2423 static const struct frame_base sh64_frame_base = {
2425 sh64_frame_base_address,
2426 sh64_frame_base_address,
2427 sh64_frame_base_address
2432 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2434 struct gdbarch *gdbarch;
2435 struct gdbarch_tdep *tdep;
2437 /* If there is already a candidate, use it. */
2438 arches = gdbarch_list_lookup_by_info (arches, &info);
2440 return arches->gdbarch;
2442 /* None found, create a new architecture from the information
2444 tdep = XMALLOC (struct gdbarch_tdep);
2445 gdbarch = gdbarch_alloc (&info, tdep);
2447 /* Determine the ABI */
2448 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2450 /* If the ABI is the 64-bit one, it can only be sh-media. */
2451 tdep->sh_abi = SH_ABI_64;
2452 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2453 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2457 /* If the ABI is the 32-bit one it could be either media or
2459 tdep->sh_abi = SH_ABI_32;
2460 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2461 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2464 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2465 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2466 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2467 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2468 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2469 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2470 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2472 /* The number of real registers is the same whether we are in
2473 ISA16(compact) or ISA32(media). */
2474 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2475 set_gdbarch_sp_regnum (gdbarch, 15);
2476 set_gdbarch_pc_regnum (gdbarch, 64);
2477 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2478 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2479 + NUM_PSEUDO_REGS_SH_COMPACT);
2481 set_gdbarch_register_name (gdbarch, sh64_register_name);
2482 set_gdbarch_register_type (gdbarch, sh64_register_type);
2484 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2485 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2487 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2489 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2490 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2492 set_gdbarch_return_value (gdbarch, sh64_return_value);
2494 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2495 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2497 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2499 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2501 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2502 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2503 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2504 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2505 frame_base_set_default (gdbarch, &sh64_frame_base);
2507 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2509 set_gdbarch_elf_make_msymbol_special (gdbarch,
2510 sh64_elf_make_msymbol_special);
2512 /* Hook in ABI-specific overrides, if they have been registered. */
2513 gdbarch_init_osabi (info, gdbarch);
2515 dwarf2_append_unwinders (gdbarch);
2516 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);