1 /* Target-dependent code for Renesas Super-H, for GDB.
3 Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Steve Chamberlain
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
35 #include "gdb_string.h"
36 #include "gdb_assert.h"
37 #include "arch-utils.h"
38 #include "floatformat.h"
42 #include "reggroups.h"
47 #include "sh64-tdep.h"
50 #include "solib-svr4.h"
55 /* registers numbers shared with the simulator. */
56 #include "gdb/sim-sh.h"
58 /* List of "set sh ..." and "show sh ..." commands. */
59 static struct cmd_list_element *setshcmdlist = NULL;
60 static struct cmd_list_element *showshcmdlist = NULL;
62 static const char sh_cc_gcc[] = "gcc";
63 static const char sh_cc_renesas[] = "renesas";
64 static const char *const sh_cc_enum[] = {
70 static const char *sh_active_calling_convention = sh_cc_gcc;
72 #define SH_NUM_REGS 67
81 /* Flag showing that a frame has been created in the prologue code. */
84 /* Saved registers. */
85 CORE_ADDR saved_regs[SH_NUM_REGS];
90 sh_is_renesas_calling_convention (struct type *func_type)
96 func_type = check_typedef (func_type);
98 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
99 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
101 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
102 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
106 if (sh_active_calling_convention == sh_cc_renesas)
113 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
115 static char *register_names[] = {
116 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
117 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
118 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
120 "", "", "", "", "", "", "", "",
121 "", "", "", "", "", "", "", "",
123 "", "", "", "", "", "", "", "",
124 "", "", "", "", "", "", "", "",
125 "", "", "", "", "", "", "", "",
129 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
131 return register_names[reg_nr];
135 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
137 static char *register_names[] = {
138 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
139 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
140 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
142 "", "", "", "", "", "", "", "",
143 "", "", "", "", "", "", "", "",
145 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
146 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
147 "", "", "", "", "", "", "", "",
151 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
153 return register_names[reg_nr];
157 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
159 static char *register_names[] = {
160 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
161 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
162 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
164 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
165 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
167 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
168 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
169 "", "", "", "", "", "", "", "",
173 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
175 return register_names[reg_nr];
179 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
181 static char *register_names[] = {
182 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
183 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
184 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
186 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
187 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
189 "", "", "", "", "", "", "", "",
190 "", "", "", "", "", "", "", "",
191 "", "", "", "", "", "", "", "",
195 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
197 return register_names[reg_nr];
201 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
203 static char *register_names[] = {
204 /* general registers 0-15 */
205 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
206 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
208 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
211 /* floating point registers 25 - 40 */
212 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
213 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
216 /* 43 - 62. Banked registers. The bank number used is determined by
217 the bank register (63). */
218 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
219 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
220 "machb", "ivnb", "prb", "gbrb", "maclb",
221 /* 63: register bank number, not a real register but used to
222 communicate the register bank currently get/set. This register
223 is hidden to the user, who manipulates it using the pseudo
224 register called "bank" (67). See below. */
227 "ibcr", "ibnr", "tbr",
228 /* 67: register bank number, the user visible pseudo register. */
230 /* double precision (pseudo) 68 - 75 */
231 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
235 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
237 return register_names[reg_nr];
241 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
243 static char *register_names[] = {
244 /* general registers 0-15 */
245 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
246 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
248 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
251 /* floating point registers 25 - 40 */
252 "", "", "", "", "", "", "", "",
253 "", "", "", "", "", "", "", "",
256 /* 43 - 62. Banked registers. The bank number used is determined by
257 the bank register (63). */
258 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
259 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
260 "machb", "ivnb", "prb", "gbrb", "maclb",
261 /* 63: register bank number, not a real register but used to
262 communicate the register bank currently get/set. This register
263 is hidden to the user, who manipulates it using the pseudo
264 register called "bank" (67). See below. */
267 "ibcr", "ibnr", "tbr",
268 /* 67: register bank number, the user visible pseudo register. */
270 /* double precision (pseudo) 68 - 75 */
271 "", "", "", "", "", "", "", "",
275 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
277 return register_names[reg_nr];
281 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
283 static char *register_names[] = {
284 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
285 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
286 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
288 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
289 "y0", "y1", "", "", "", "", "", "mod",
291 "rs", "re", "", "", "", "", "", "",
292 "", "", "", "", "", "", "", "",
293 "", "", "", "", "", "", "", "",
297 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
299 return register_names[reg_nr];
303 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
305 static char *register_names[] = {
306 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
308 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
310 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
311 "y0", "y1", "", "", "", "", "", "mod",
313 "rs", "re", "", "", "", "", "", "",
314 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
315 "", "", "", "", "", "", "", "",
316 "", "", "", "", "", "", "", "",
320 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
322 return register_names[reg_nr];
326 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
328 static char *register_names[] = {
329 /* general registers 0-15 */
330 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
331 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
333 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
336 /* floating point registers 25 - 40 */
337 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
338 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
342 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
344 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
346 "", "", "", "", "", "", "", "",
347 /* pseudo bank register. */
349 /* double precision (pseudo) 68 - 75 */
350 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
351 /* vectors (pseudo) 76 - 79 */
352 "fv0", "fv4", "fv8", "fv12",
353 /* FIXME: missing XF */
354 /* FIXME: missing XD */
358 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
360 return register_names[reg_nr];
364 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
366 static char *register_names[] = {
367 /* general registers 0-15 */
368 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
369 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
371 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
374 /* floating point registers 25 - 40 -- not for nofpu target */
375 "", "", "", "", "", "", "", "",
376 "", "", "", "", "", "", "", "",
380 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
382 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
384 "", "", "", "", "", "", "", "",
385 /* pseudo bank register. */
387 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
388 "", "", "", "", "", "", "", "",
389 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
394 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
396 return register_names[reg_nr];
400 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
402 static char *register_names[] = {
403 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
404 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
405 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
407 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
408 "y0", "y1", "", "", "", "", "", "mod",
410 "rs", "re", "", "", "", "", "", "",
411 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
412 "", "", "", "", "", "", "", "",
413 "", "", "", "", "", "", "", "",
417 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
419 return register_names[reg_nr];
422 static const unsigned char *
423 sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
425 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
426 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
428 /* For remote stub targets, trapa #20 is used. */
429 if (strcmp (target_shortname, "remote") == 0)
431 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
432 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
434 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
436 *lenptr = sizeof (big_remote_breakpoint);
437 return big_remote_breakpoint;
441 *lenptr = sizeof (little_remote_breakpoint);
442 return little_remote_breakpoint;
446 *lenptr = sizeof (breakpoint);
450 /* Prologue looks like
454 sub <room_for_loca_vars>,r15
457 Actually it can be more complicated than this but that's it, basically. */
459 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
460 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
462 /* JSR @Rm 0100mmmm00001011 */
463 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
465 /* STS.L PR,@-r15 0100111100100010
466 r15-4-->r15, PR-->(r15) */
467 #define IS_STS(x) ((x) == 0x4f22)
469 /* STS.L MACL,@-r15 0100111100010010
470 r15-4-->r15, MACL-->(r15) */
471 #define IS_MACL_STS(x) ((x) == 0x4f12)
473 /* MOV.L Rm,@-r15 00101111mmmm0110
474 r15-4-->r15, Rm-->(R15) */
475 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
477 /* MOV r15,r14 0110111011110011
479 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
481 /* ADD #imm,r15 01111111iiiiiiii
483 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
485 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
486 #define IS_SHLL_R3(x) ((x) == 0x4300)
488 /* ADD r3,r15 0011111100111100
490 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
492 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
493 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
494 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
495 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
496 make this entirely clear. */
497 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
498 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
500 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
501 #define IS_MOV_ARG_TO_REG(x) \
502 (((x) & 0xf00f) == 0x6003 && \
503 ((x) & 0x00f0) >= 0x0040 && \
504 ((x) & 0x00f0) <= 0x0070)
505 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
506 #define IS_MOV_ARG_TO_IND_R14(x) \
507 (((x) & 0xff0f) == 0x2e02 && \
508 ((x) & 0x00f0) >= 0x0040 && \
509 ((x) & 0x00f0) <= 0x0070)
510 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
511 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
512 (((x) & 0xff00) == 0x1e00 && \
513 ((x) & 0x00f0) >= 0x0040 && \
514 ((x) & 0x00f0) <= 0x0070)
516 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
517 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
518 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
519 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
520 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
521 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
522 /* SUB Rn,R15 00111111nnnn1000 */
523 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
525 #define FPSCR_SZ (1 << 20)
527 /* The following instructions are used for epilogue testing. */
528 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
529 #define IS_RTS(x) ((x) == 0x000b)
530 #define IS_LDS(x) ((x) == 0x4f26)
531 #define IS_MACL_LDS(x) ((x) == 0x4f16)
532 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
533 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
534 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
537 sh_analyze_prologue (struct gdbarch *gdbarch,
538 CORE_ADDR pc, CORE_ADDR limit_pc,
539 struct sh_frame_cache *cache, ULONGEST fpscr)
541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
546 int reg, sav_reg = -1;
549 for (; pc < limit_pc; pc += 2)
551 inst = read_memory_unsigned_integer (pc, 2, byte_order);
552 /* See where the registers will be saved to. */
555 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
556 cache->sp_offset += 4;
558 else if (IS_STS (inst))
560 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
561 cache->sp_offset += 4;
563 else if (IS_MACL_STS (inst))
565 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
566 cache->sp_offset += 4;
568 else if (IS_MOV_R3 (inst))
570 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
572 else if (IS_SHLL_R3 (inst))
576 else if (IS_ADD_R3SP (inst))
578 cache->sp_offset += -r3_val;
580 else if (IS_ADD_IMM_SP (inst))
582 offset = ((inst & 0xff) ^ 0x80) - 0x80;
583 cache->sp_offset -= offset;
585 else if (IS_MOVW_PCREL_TO_REG (inst))
589 reg = GET_TARGET_REG (inst);
593 offset = (inst & 0xff) << 1;
595 read_memory_integer ((pc + 4) + offset, 2, byte_order);
599 else if (IS_MOVL_PCREL_TO_REG (inst))
603 reg = GET_TARGET_REG (inst);
607 offset = (inst & 0xff) << 2;
609 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
614 else if (IS_MOVI20 (inst)
615 && (pc + 2 < limit_pc))
619 reg = GET_TARGET_REG (inst);
623 sav_offset = GET_SOURCE_REG (inst) << 16;
624 /* MOVI20 is a 32 bit instruction! */
627 |= read_memory_unsigned_integer (pc, 2, byte_order);
628 /* Now sav_offset contains an unsigned 20 bit value.
629 It must still get sign extended. */
630 if (sav_offset & 0x00080000)
631 sav_offset |= 0xfff00000;
635 else if (IS_SUB_REG_FROM_SP (inst))
637 reg = GET_SOURCE_REG (inst);
638 if (sav_reg > 0 && reg == sav_reg)
642 cache->sp_offset += sav_offset;
644 else if (IS_FPUSH (inst))
646 if (fpscr & FPSCR_SZ)
648 cache->sp_offset += 8;
652 cache->sp_offset += 4;
655 else if (IS_MOV_SP_FP (inst))
658 /* Don't go any further than six more instructions. */
659 limit_pc = min (limit_pc, pc + (2 * 6));
662 /* At this point, only allow argument register moves to other
663 registers or argument register moves to @(X,fp) which are
664 moving the register arguments onto the stack area allocated
665 by a former add somenumber to SP call. Don't allow moving
666 to an fp indirect address above fp + cache->sp_offset. */
667 for (; pc < limit_pc; pc += 2)
669 inst = read_memory_integer (pc, 2, byte_order);
670 if (IS_MOV_ARG_TO_IND_R14 (inst))
672 reg = GET_SOURCE_REG (inst);
673 if (cache->sp_offset > 0)
674 cache->saved_regs[reg] = cache->sp_offset;
676 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
678 reg = GET_SOURCE_REG (inst);
679 offset = (inst & 0xf) * 4;
680 if (cache->sp_offset > offset)
681 cache->saved_regs[reg] = cache->sp_offset - offset;
683 else if (IS_MOV_ARG_TO_REG (inst))
690 else if (IS_JSR (inst))
692 /* We have found a jsr that has been scheduled into the prologue.
693 If we continue the scan and return a pc someplace after this,
694 then setting a breakpoint on this function will cause it to
695 appear to be called after the function it is calling via the
696 jsr, which will be very confusing. Most likely the next
697 instruction is going to be IS_MOV_SP_FP in the delay slot. If
698 so, note that before returning the current pc. */
699 if (pc + 2 < limit_pc)
701 inst = read_memory_integer (pc + 2, 2, byte_order);
702 if (IS_MOV_SP_FP (inst))
707 #if 0 /* This used to just stop when it found an instruction
708 that was not considered part of the prologue. Now,
709 we just keep going looking for likely
719 /* Skip any prologue before the guts of a function. */
721 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
723 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
724 struct sh_frame_cache cache;
726 /* See if we can determine the end of the prologue via the symbol table.
727 If so, then return either PC, or the PC after the prologue, whichever
729 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
731 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
732 if (post_prologue_pc != 0)
733 return max (pc, post_prologue_pc);
736 /* Can't determine prologue from the symbol table, need to examine
739 /* Find an upper limit on the function prologue using the debug
740 information. If the debug information could not be used to provide
741 that bound, then use an arbitrary large number as the upper bound. */
742 limit_pc = skip_prologue_using_sal (gdbarch, pc);
744 /* Don't go any further than 28 instructions. */
745 limit_pc = pc + (2 * 28);
747 /* Do not allow limit_pc to be past the function end, if we know
748 where that end is... */
749 if (func_end_addr != 0)
750 limit_pc = min (limit_pc, func_end_addr);
752 cache.sp_offset = -4;
753 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
755 pc = post_prologue_pc;
762 Aggregate types not bigger than 8 bytes that have the same size and
763 alignment as one of the integer scalar types are returned in the
764 same registers as the integer type they match.
766 For example, a 2-byte aligned structure with size 2 bytes has the
767 same size and alignment as a short int, and will be returned in R0.
768 A 4-byte aligned structure with size 8 bytes has the same size and
769 alignment as a long long int, and will be returned in R0 and R1.
771 When an aggregate type is returned in R0 and R1, R0 contains the
772 first four bytes of the aggregate, and R1 contains the
773 remainder. If the size of the aggregate type is not a multiple of 4
774 bytes, the aggregate is tail-padded up to a multiple of 4
775 bytes. The value of the padding is undefined. For little-endian
776 targets the padding will appear at the most significant end of the
777 last element, for big-endian targets the padding appears at the
778 least significant end of the last element.
780 All other aggregate types are returned by address. The caller
781 function passes the address of an area large enough to hold the
782 aggregate value in R2. The called function stores the result in
785 To reiterate, structs smaller than 8 bytes could also be returned
786 in memory, if they don't pass the "same size and alignment as an
791 struct s { char c[3]; } wibble;
792 struct s foo(void) { return wibble; }
794 the return value from foo() will be in memory, not
795 in R0, because there is no 3-byte integer type.
799 struct s { char c[2]; } wibble;
800 struct s foo(void) { return wibble; }
802 because a struct containing two chars has alignment 1, that matches
803 type char, but size 2, that matches type short. There's no integer
804 type that has alignment 1 and size 2, so the struct is returned in
808 sh_use_struct_convention (int renesas_abi, struct type *type)
810 int len = TYPE_LENGTH (type);
811 int nelem = TYPE_NFIELDS (type);
813 /* The Renesas ABI returns aggregate types always on stack. */
814 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
815 || TYPE_CODE (type) == TYPE_CODE_UNION))
818 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
819 fit in two registers anyway) use struct convention. */
820 if (len != 1 && len != 2 && len != 4 && len != 8)
823 /* Scalar types and aggregate types with exactly one field are aligned
824 by definition. They are returned in registers. */
828 /* If the first field in the aggregate has the same length as the entire
829 aggregate type, the type is returned in registers. */
830 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
833 /* If the size of the aggregate is 8 bytes and the first field is
834 of size 4 bytes its alignment is equal to long long's alignment,
835 so it's returned in registers. */
836 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
839 /* Otherwise use struct convention. */
844 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
846 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
847 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
849 return sh_use_struct_convention (renesas_abi, type);
853 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
858 /* Function: push_dummy_call (formerly push_arguments)
859 Setup the function arguments for calling a function in the inferior.
861 On the Renesas SH architecture, there are four registers (R4 to R7)
862 which are dedicated for passing function arguments. Up to the first
863 four arguments (depending on size) may go into these registers.
864 The rest go on the stack.
866 MVS: Except on SH variants that have floating point registers.
867 In that case, float and double arguments are passed in the same
868 manner, but using FP registers instead of GP registers.
870 Arguments that are smaller than 4 bytes will still take up a whole
871 register or a whole 32-bit word on the stack, and will be
872 right-justified in the register or the stack word. This includes
873 chars, shorts, and small aggregate types.
875 Arguments that are larger than 4 bytes may be split between two or
876 more registers. If there are not enough registers free, an argument
877 may be passed partly in a register (or registers), and partly on the
878 stack. This includes doubles, long longs, and larger aggregates.
879 As far as I know, there is no upper limit to the size of aggregates
880 that will be passed in this way; in other words, the convention of
881 passing a pointer to a large aggregate instead of a copy is not used.
883 MVS: The above appears to be true for the SH variants that do not
884 have an FPU, however those that have an FPU appear to copy the
885 aggregate argument onto the stack (and not place it in registers)
886 if it is larger than 16 bytes (four GP registers).
888 An exceptional case exists for struct arguments (and possibly other
889 aggregates such as arrays) if the size is larger than 4 bytes but
890 not a multiple of 4 bytes. In this case the argument is never split
891 between the registers and the stack, but instead is copied in its
892 entirety onto the stack, AND also copied into as many registers as
893 there is room for. In other words, space in registers permitting,
894 two copies of the same argument are passed in. As far as I can tell,
895 only the one on the stack is used, although that may be a function
896 of the level of compiler optimization. I suspect this is a compiler
897 bug. Arguments of these odd sizes are left-justified within the
898 word (as opposed to arguments smaller than 4 bytes, which are
901 If the function is to return an aggregate type such as a struct, it
902 is either returned in the normal return value register R0 (if its
903 size is no greater than one byte), or else the caller must allocate
904 space into which the callee will copy the return value (if the size
905 is greater than one byte). In this case, a pointer to the return
906 value location is passed into the callee in register R2, which does
907 not displace any of the other arguments passed in via registers R4
910 /* Helper function to justify value in register according to endianess. */
912 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
914 static char valbuf[4];
916 memset (valbuf, 0, sizeof (valbuf));
919 /* value gets right-justified in the register or stack word. */
920 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
921 memcpy (valbuf + (4 - len), (char *) value_contents (val), len);
923 memcpy (valbuf, (char *) value_contents (val), len);
926 return (char *) value_contents (val);
929 /* Helper function to eval number of bytes to allocate on stack. */
931 sh_stack_allocsize (int nargs, struct value **args)
935 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
939 /* Helper functions for getting the float arguments right. Registers usage
940 depends on the ABI and the endianess. The comments should enlighten how
941 it's intended to work. */
943 /* This array stores which of the float arg registers are already in use. */
944 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
946 /* This function just resets the above array to "no reg used so far". */
948 sh_init_flt_argreg (void)
950 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
953 /* This function returns the next register to use for float arg passing.
954 It returns either a valid value between FLOAT_ARG0_REGNUM and
955 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
956 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
958 Note that register number 0 in flt_argreg_array corresponds with the
959 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
960 29) the parity of the register number is preserved, which is important
961 for the double register passing test (see the "argreg & 1" test below). */
963 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
967 /* First search for the next free register. */
968 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
970 if (!flt_argreg_array[argreg])
973 /* No register left? */
974 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
975 return FLOAT_ARGLAST_REGNUM + 1;
979 /* Doubles are always starting in a even register number. */
982 /* In gcc ABI, the skipped register is lost for further argument
983 passing now. Not so in Renesas ABI. */
984 if (!sh_is_renesas_calling_convention (func_type))
985 flt_argreg_array[argreg] = 1;
989 /* No register left? */
990 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
991 return FLOAT_ARGLAST_REGNUM + 1;
993 /* Also mark the next register as used. */
994 flt_argreg_array[argreg + 1] = 1;
996 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
997 && !sh_is_renesas_calling_convention (func_type))
999 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
1000 if (!flt_argreg_array[argreg + 1])
1003 flt_argreg_array[argreg] = 1;
1004 return FLOAT_ARG0_REGNUM + argreg;
1007 /* Helper function which figures out, if a type is treated like a float type.
1009 The FPU ABIs have a special way how to treat types as float types.
1010 Structures with exactly one member, which is of type float or double, are
1011 treated exactly as the base types float or double:
1021 are handled the same way as just
1027 As a result, arguments of these struct types are pushed into floating point
1028 registers exactly as floats or doubles, using the same decision algorithm.
1030 The same is valid if these types are used as function return types. The
1031 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1032 or even using struct convention as it is for other structs. */
1035 sh_treat_as_flt_p (struct type *type)
1037 /* Ordinary float types are obviously treated as float. */
1038 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1040 /* Otherwise non-struct types are not treated as float. */
1041 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1043 /* Otherwise structs with more than one memeber are not treated as float. */
1044 if (TYPE_NFIELDS (type) != 1)
1046 /* Otherwise if the type of that member is float, the whole type is
1047 treated as float. */
1048 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1050 /* Otherwise it's not treated as float. */
1055 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1056 struct value *function,
1057 struct regcache *regcache,
1058 CORE_ADDR bp_addr, int nargs,
1059 struct value **args,
1060 CORE_ADDR sp, int struct_return,
1061 CORE_ADDR struct_addr)
1063 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1064 int stack_offset = 0;
1065 int argreg = ARG0_REGNUM;
1068 struct type *func_type = value_type (function);
1072 int len, reg_size = 0;
1073 int pass_on_stack = 0;
1075 int last_reg_arg = INT_MAX;
1077 /* The Renesas ABI expects all varargs arguments, plus the last
1078 non-vararg argument to be on the stack, no matter how many
1079 registers have been used so far. */
1080 if (sh_is_renesas_calling_convention (func_type)
1081 && TYPE_VARARGS (func_type))
1082 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1084 /* First force sp to a 4-byte alignment. */
1085 sp = sh_frame_align (gdbarch, sp);
1087 /* Make room on stack for args. */
1088 sp -= sh_stack_allocsize (nargs, args);
1090 /* Initialize float argument mechanism. */
1091 sh_init_flt_argreg ();
1093 /* Now load as many as possible of the first arguments into
1094 registers, and push the rest onto the stack. There are 16 bytes
1095 in four registers available. Loop thru args from first to last. */
1096 for (argnum = 0; argnum < nargs; argnum++)
1098 type = value_type (args[argnum]);
1099 len = TYPE_LENGTH (type);
1100 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1102 /* Some decisions have to be made how various types are handled.
1103 This also differs in different ABIs. */
1106 /* Find out the next register to use for a floating point value. */
1107 treat_as_flt = sh_treat_as_flt_p (type);
1109 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1110 /* In Renesas ABI, long longs and aggregate types are always passed
1112 else if (sh_is_renesas_calling_convention (func_type)
1113 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1114 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1115 || TYPE_CODE (type) == TYPE_CODE_UNION))
1117 /* In contrast to non-FPU CPUs, arguments are never split between
1118 registers and stack. If an argument doesn't fit in the remaining
1119 registers it's always pushed entirely on the stack. */
1120 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1125 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1126 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1128 || argnum > last_reg_arg)
1130 /* The data goes entirely on the stack, 4-byte aligned. */
1131 reg_size = (len + 3) & ~3;
1132 write_memory (sp + stack_offset, val, reg_size);
1133 stack_offset += reg_size;
1135 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1137 /* Argument goes in a float argument register. */
1138 reg_size = register_size (gdbarch, flt_argreg);
1139 regval = extract_unsigned_integer (val, reg_size, byte_order);
1140 /* In little endian mode, float types taking two registers
1141 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1142 be stored swapped in the argument registers. The below
1143 code first writes the first 32 bits in the next but one
1144 register, increments the val and len values accordingly
1145 and then proceeds as normal by writing the second 32 bits
1146 into the next register. */
1147 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1148 && TYPE_LENGTH (type) == 2 * reg_size)
1150 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1154 regval = extract_unsigned_integer (val, reg_size,
1157 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1159 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1161 /* there's room in a register */
1162 reg_size = register_size (gdbarch, argreg);
1163 regval = extract_unsigned_integer (val, reg_size, byte_order);
1164 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1166 /* Store the value one register at a time or in one step on
1175 if (sh_is_renesas_calling_convention (func_type))
1176 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1177 the stack and store the struct return address there. */
1178 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1180 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1181 its own dedicated register. */
1182 regcache_cooked_write_unsigned (regcache,
1183 STRUCT_RETURN_REGNUM, struct_addr);
1186 /* Store return address. */
1187 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1189 /* Update stack pointer. */
1190 regcache_cooked_write_unsigned (regcache,
1191 gdbarch_sp_regnum (gdbarch), sp);
1197 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1198 struct value *function,
1199 struct regcache *regcache,
1201 int nargs, struct value **args,
1202 CORE_ADDR sp, int struct_return,
1203 CORE_ADDR struct_addr)
1205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1206 int stack_offset = 0;
1207 int argreg = ARG0_REGNUM;
1209 struct type *func_type = value_type (function);
1213 int len, reg_size = 0;
1214 int pass_on_stack = 0;
1215 int last_reg_arg = INT_MAX;
1217 /* The Renesas ABI expects all varargs arguments, plus the last
1218 non-vararg argument to be on the stack, no matter how many
1219 registers have been used so far. */
1220 if (sh_is_renesas_calling_convention (func_type)
1221 && TYPE_VARARGS (func_type))
1222 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1224 /* First force sp to a 4-byte alignment. */
1225 sp = sh_frame_align (gdbarch, sp);
1227 /* Make room on stack for args. */
1228 sp -= sh_stack_allocsize (nargs, args);
1230 /* Now load as many as possible of the first arguments into
1231 registers, and push the rest onto the stack. There are 16 bytes
1232 in four registers available. Loop thru args from first to last. */
1233 for (argnum = 0; argnum < nargs; argnum++)
1235 type = value_type (args[argnum]);
1236 len = TYPE_LENGTH (type);
1237 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1239 /* Some decisions have to be made how various types are handled.
1240 This also differs in different ABIs. */
1242 /* Renesas ABI pushes doubles and long longs entirely on stack.
1243 Same goes for aggregate types. */
1244 if (sh_is_renesas_calling_convention (func_type)
1245 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1246 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1247 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (type) == TYPE_CODE_UNION))
1252 if (argreg > ARGLAST_REGNUM || pass_on_stack
1253 || argnum > last_reg_arg)
1255 /* The remainder of the data goes entirely on the stack,
1257 reg_size = (len + 3) & ~3;
1258 write_memory (sp + stack_offset, val, reg_size);
1259 stack_offset += reg_size;
1261 else if (argreg <= ARGLAST_REGNUM)
1263 /* There's room in a register. */
1264 reg_size = register_size (gdbarch, argreg);
1265 regval = extract_unsigned_integer (val, reg_size, byte_order);
1266 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1268 /* Store the value reg_size bytes at a time. This means that things
1269 larger than reg_size bytes may go partly in registers and partly
1278 if (sh_is_renesas_calling_convention (func_type))
1279 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1280 the stack and store the struct return address there. */
1281 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1283 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1284 its own dedicated register. */
1285 regcache_cooked_write_unsigned (regcache,
1286 STRUCT_RETURN_REGNUM, struct_addr);
1289 /* Store return address. */
1290 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1292 /* Update stack pointer. */
1293 regcache_cooked_write_unsigned (regcache,
1294 gdbarch_sp_regnum (gdbarch), sp);
1299 /* Find a function's return value in the appropriate registers (in
1300 regbuf), and copy it into valbuf. Extract from an array REGBUF
1301 containing the (raw) register state a function return value of type
1302 TYPE, and copy that, in virtual format, into VALBUF. */
1304 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1307 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1309 int len = TYPE_LENGTH (type);
1310 int return_register = R0_REGNUM;
1317 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1318 store_unsigned_integer (valbuf, len, byte_order, c);
1322 int i, regnum = R0_REGNUM;
1323 for (i = 0; i < len; i += 4)
1324 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1327 error (_("bad size for return value"));
1331 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1334 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1335 if (sh_treat_as_flt_p (type))
1337 int len = TYPE_LENGTH (type);
1338 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1339 for (i = 0; i < len; i += 4)
1340 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1341 regcache_raw_read (regcache, regnum++,
1342 (char *) valbuf + len - 4 - i);
1344 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1347 sh_extract_return_value_nofpu (type, regcache, valbuf);
1350 /* Write into appropriate registers a function return value
1351 of type TYPE, given in virtual format.
1352 If the architecture is sh4 or sh3e, store a function's return value
1353 in the R0 general register or in the FP0 floating point register,
1354 depending on the type of the return value. In all the other cases
1355 the result is stored in r0, left-justified. */
1357 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1360 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1363 int len = TYPE_LENGTH (type);
1367 val = extract_unsigned_integer (valbuf, len, byte_order);
1368 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1372 int i, regnum = R0_REGNUM;
1373 for (i = 0; i < len; i += 4)
1374 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1379 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1382 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1383 if (sh_treat_as_flt_p (type))
1385 int len = TYPE_LENGTH (type);
1386 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1387 for (i = 0; i < len; i += 4)
1388 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1389 regcache_raw_write (regcache, regnum++,
1390 (char *) valbuf + len - 4 - i);
1392 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1395 sh_store_return_value_nofpu (type, regcache, valbuf);
1398 static enum return_value_convention
1399 sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
1400 struct type *type, struct regcache *regcache,
1401 gdb_byte *readbuf, const gdb_byte *writebuf)
1403 struct type *func_type = function ? value_type (function) : NULL;
1405 if (sh_use_struct_convention_nofpu (
1406 sh_is_renesas_calling_convention (func_type), type))
1407 return RETURN_VALUE_STRUCT_CONVENTION;
1409 sh_store_return_value_nofpu (type, regcache, writebuf);
1411 sh_extract_return_value_nofpu (type, regcache, readbuf);
1412 return RETURN_VALUE_REGISTER_CONVENTION;
1415 static enum return_value_convention
1416 sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
1417 struct type *type, struct regcache *regcache,
1418 gdb_byte *readbuf, const gdb_byte *writebuf)
1420 struct type *func_type = function ? value_type (function) : NULL;
1422 if (sh_use_struct_convention (
1423 sh_is_renesas_calling_convention (func_type), type))
1424 return RETURN_VALUE_STRUCT_CONVENTION;
1426 sh_store_return_value_fpu (type, regcache, writebuf);
1428 sh_extract_return_value_fpu (type, regcache, readbuf);
1429 return RETURN_VALUE_REGISTER_CONVENTION;
1432 static struct type *
1433 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1435 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1436 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1437 return builtin_type (gdbarch)->builtin_float;
1438 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1439 return builtin_type (gdbarch)->builtin_double;
1441 return builtin_type (gdbarch)->builtin_int;
1444 /* Return the GDB type object for the "standard" data type
1445 of data in register N. */
1446 static struct type *
1447 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1449 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1450 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1451 return builtin_type (gdbarch)->builtin_float;
1453 return builtin_type (gdbarch)->builtin_int;
1456 static struct type *
1457 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
1459 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1463 static struct type *
1464 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1466 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1467 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1468 return builtin_type (gdbarch)->builtin_float;
1469 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1470 return builtin_type (gdbarch)->builtin_double;
1471 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1472 return sh_sh4_build_float_register_type (gdbarch, 3);
1474 return builtin_type (gdbarch)->builtin_int;
1477 static struct type *
1478 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1480 return builtin_type (gdbarch)->builtin_int;
1483 /* Is a register in a reggroup?
1484 The default code in reggroup.c doesn't identify system registers, some
1485 float registers or any of the vector registers.
1486 TODO: sh2a and dsp registers. */
1488 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1489 struct reggroup *reggroup)
1491 if (gdbarch_register_name (gdbarch, regnum) == NULL
1492 || *gdbarch_register_name (gdbarch, regnum) == '\0')
1495 if (reggroup == float_reggroup
1496 && (regnum == FPUL_REGNUM
1497 || regnum == FPSCR_REGNUM))
1500 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1502 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1504 if (reggroup == general_reggroup)
1508 if (regnum == VBR_REGNUM
1509 || regnum == SR_REGNUM
1510 || regnum == FPSCR_REGNUM
1511 || regnum == SSR_REGNUM
1512 || regnum == SPC_REGNUM)
1514 if (reggroup == system_reggroup)
1516 if (reggroup == general_reggroup)
1520 /* The default code can cope with any other registers. */
1521 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1524 /* On the sh4, the DRi pseudo registers are problematic if the target
1525 is little endian. When the user writes one of those registers, for
1526 instance with 'set var $dr0=1', we want the double to be stored
1528 fr0 = 0x00 0x00 0xf0 0x3f
1529 fr1 = 0x00 0x00 0x00 0x00
1531 This corresponds to little endian byte order & big endian word
1532 order. However if we let gdb write the register w/o conversion, it
1533 will write fr0 and fr1 this way:
1534 fr0 = 0x00 0x00 0x00 0x00
1535 fr1 = 0x00 0x00 0xf0 0x3f
1536 because it will consider fr0 and fr1 as a single LE stretch of memory.
1538 To achieve what we want we must force gdb to store things in
1539 floatformat_ieee_double_littlebyte_bigword (which is defined in
1540 include/floatformat.h and libiberty/floatformat.c.
1542 In case the target is big endian, there is no problem, the
1543 raw bytes will look like:
1544 fr0 = 0x3f 0xf0 0x00 0x00
1545 fr1 = 0x00 0x00 0x00 0x00
1547 The other pseudo registers (the FVs) also don't pose a problem
1548 because they are stored as 4 individual FP elements. */
1551 sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1552 struct type *type, char *from, char *to)
1554 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1556 /* It is a no-op. */
1557 memcpy (to, from, register_size (gdbarch, regnum));
1561 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1564 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1566 store_typed_floating (to, type, val);
1570 ("sh_register_convert_to_virtual called with non DR register number");
1574 sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1575 int regnum, const void *from, void *to)
1577 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1579 /* It is a no-op. */
1580 memcpy (to, from, register_size (gdbarch, regnum));
1584 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1586 DOUBLEST val = extract_typed_floating (from, type);
1587 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1591 error (_("sh_register_convert_to_raw called with non DR register number"));
1594 /* For vectors of 4 floating point registers. */
1596 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1600 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1601 + (fv_regnum - FV0_REGNUM) * 4;
1605 /* For double precision floating point registers, i.e 2 fp regs. */
1607 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1611 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1612 + (dr_regnum - DR0_REGNUM) * 2;
1616 /* Concatenate PORTIONS contiguous raw registers starting at
1617 BASE_REGNUM into BUFFER. */
1619 static enum register_status
1620 pseudo_register_read_portions (struct gdbarch *gdbarch,
1621 struct regcache *regcache,
1623 int base_regnum, gdb_byte *buffer)
1627 for (portion = 0; portion < portions; portion++)
1629 enum register_status status;
1632 b = buffer + register_size (gdbarch, base_regnum) * portion;
1633 status = regcache_raw_read (regcache, base_regnum + portion, b);
1634 if (status != REG_VALID)
1641 static enum register_status
1642 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1643 int reg_nr, gdb_byte *buffer)
1646 char temp_buffer[MAX_REGISTER_SIZE];
1647 enum register_status status;
1649 if (reg_nr == PSEUDO_BANK_REGNUM)
1650 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1651 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1653 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1655 /* Build the value in the provided buffer. */
1656 /* Read the real regs for which this one is an alias. */
1657 status = pseudo_register_read_portions (gdbarch, regcache,
1658 2, base_regnum, temp_buffer);
1659 if (status == REG_VALID)
1661 /* We must pay attention to the endiannes. */
1662 sh_register_convert_to_virtual (gdbarch, reg_nr,
1663 register_type (gdbarch, reg_nr),
1664 temp_buffer, buffer);
1668 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1670 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1672 /* Read the real regs for which this one is an alias. */
1673 return pseudo_register_read_portions (gdbarch, regcache,
1674 4, base_regnum, buffer);
1677 gdb_assert_not_reached ("invalid pseudo register number");
1681 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1682 int reg_nr, const gdb_byte *buffer)
1684 int base_regnum, portion;
1685 char temp_buffer[MAX_REGISTER_SIZE];
1687 if (reg_nr == PSEUDO_BANK_REGNUM)
1689 /* When the bank register is written to, the whole register bank
1690 is switched and all values in the bank registers must be read
1691 from the target/sim again. We're just invalidating the regcache
1692 so that a re-read happens next time it's necessary. */
1695 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1696 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1697 regcache_invalidate (regcache, bregnum);
1699 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1701 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1703 /* We must pay attention to the endiannes. */
1704 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1705 reg_nr, buffer, temp_buffer);
1707 /* Write the real regs for which this one is an alias. */
1708 for (portion = 0; portion < 2; portion++)
1709 regcache_raw_write (regcache, base_regnum + portion,
1711 + register_size (gdbarch,
1712 base_regnum) * portion));
1714 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1716 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1718 /* Write the real regs for which this one is an alias. */
1719 for (portion = 0; portion < 4; portion++)
1720 regcache_raw_write (regcache, base_regnum + portion,
1722 + register_size (gdbarch,
1723 base_regnum) * portion));
1728 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
1730 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1731 return legacy_register_sim_regno (gdbarch, nr);
1732 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1733 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1734 if (nr == MOD_REGNUM)
1735 return SIM_SH_MOD_REGNUM;
1736 if (nr == RS_REGNUM)
1737 return SIM_SH_RS_REGNUM;
1738 if (nr == RE_REGNUM)
1739 return SIM_SH_RE_REGNUM;
1740 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1741 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1746 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
1751 return SIM_SH_TBR_REGNUM;
1753 return SIM_SH_IBNR_REGNUM;
1755 return SIM_SH_IBCR_REGNUM;
1757 return SIM_SH_BANK_REGNUM;
1759 return SIM_SH_BANK_MACL_REGNUM;
1761 return SIM_SH_BANK_GBR_REGNUM;
1763 return SIM_SH_BANK_PR_REGNUM;
1765 return SIM_SH_BANK_IVN_REGNUM;
1767 return SIM_SH_BANK_MACH_REGNUM;
1771 return legacy_register_sim_regno (gdbarch, nr);
1774 /* Set up the register unwinding such that call-clobbered registers are
1775 not displayed in frames >0 because the true value is not certain.
1776 The 'undefined' registers will show up as 'not available' unless the
1779 This function is currently set up for SH4 and compatible only. */
1782 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1783 struct dwarf2_frame_state_reg *reg,
1784 struct frame_info *this_frame)
1786 /* Mark the PC as the destination for the return address. */
1787 if (regnum == gdbarch_pc_regnum (gdbarch))
1788 reg->how = DWARF2_FRAME_REG_RA;
1790 /* Mark the stack pointer as the call frame address. */
1791 else if (regnum == gdbarch_sp_regnum (gdbarch))
1792 reg->how = DWARF2_FRAME_REG_CFA;
1794 /* The above was taken from the default init_reg in dwarf2-frame.c
1795 while the below is SH specific. */
1797 /* Caller save registers. */
1798 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1799 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1800 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1801 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1802 || (regnum == MACH_REGNUM)
1803 || (regnum == MACL_REGNUM)
1804 || (regnum == FPUL_REGNUM)
1805 || (regnum == SR_REGNUM))
1806 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1808 /* Callee save registers. */
1809 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1810 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1811 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1812 || (regnum == FV0_REGNUM+3))
1813 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1815 /* Other registers. These are not in the ABI and may or may not
1816 mean anything in frames >0 so don't show them. */
1817 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1818 || (regnum == GBR_REGNUM)
1819 || (regnum == VBR_REGNUM)
1820 || (regnum == FPSCR_REGNUM)
1821 || (regnum == SSR_REGNUM)
1822 || (regnum == SPC_REGNUM))
1823 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1826 static struct sh_frame_cache *
1827 sh_alloc_frame_cache (void)
1829 struct sh_frame_cache *cache;
1832 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1836 cache->saved_sp = 0;
1837 cache->sp_offset = 0;
1840 /* Frameless until proven otherwise. */
1843 /* Saved registers. We initialize these to -1 since zero is a valid
1844 offset (that's where fp is supposed to be stored). */
1845 for (i = 0; i < SH_NUM_REGS; i++)
1847 cache->saved_regs[i] = -1;
1853 static struct sh_frame_cache *
1854 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1856 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1857 struct sh_frame_cache *cache;
1858 CORE_ADDR current_pc;
1864 cache = sh_alloc_frame_cache ();
1865 *this_cache = cache;
1867 /* In principle, for normal frames, fp holds the frame pointer,
1868 which holds the base address for the current stack frame.
1869 However, for functions that don't need it, the frame pointer is
1870 optional. For these "frameless" functions the frame pointer is
1871 actually the frame pointer of the calling frame. */
1872 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1873 if (cache->base == 0)
1876 cache->pc = get_frame_func (this_frame);
1877 current_pc = get_frame_pc (this_frame);
1882 /* Check for the existence of the FPSCR register. If it exists,
1883 fetch its value for use in prologue analysis. Passing a zero
1884 value is the best choice for architecture variants upon which
1885 there's no FPSCR register. */
1886 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1887 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1891 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
1894 if (!cache->uses_fp)
1896 /* We didn't find a valid frame, which means that CACHE->base
1897 currently holds the frame pointer for our calling frame. If
1898 we're at the start of a function, or somewhere half-way its
1899 prologue, the function's frame probably hasn't been fully
1900 setup yet. Try to reconstruct the base address for the stack
1901 frame by looking at the stack pointer. For truly "frameless"
1902 functions this might work too. */
1903 cache->base = get_frame_register_unsigned
1904 (this_frame, gdbarch_sp_regnum (gdbarch));
1907 /* Now that we have the base address for the stack frame we can
1908 calculate the value of sp in the calling frame. */
1909 cache->saved_sp = cache->base + cache->sp_offset;
1911 /* Adjust all the saved registers such that they contain addresses
1912 instead of offsets. */
1913 for (i = 0; i < SH_NUM_REGS; i++)
1914 if (cache->saved_regs[i] != -1)
1915 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1920 static struct value *
1921 sh_frame_prev_register (struct frame_info *this_frame,
1922 void **this_cache, int regnum)
1924 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1925 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1927 gdb_assert (regnum >= 0);
1929 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1930 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1932 /* The PC of the previous frame is stored in the PR register of
1933 the current frame. Frob regnum so that we pull the value from
1934 the correct place. */
1935 if (regnum == gdbarch_pc_regnum (gdbarch))
1938 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1939 return frame_unwind_got_memory (this_frame, regnum,
1940 cache->saved_regs[regnum]);
1942 return frame_unwind_got_register (this_frame, regnum, regnum);
1946 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
1947 struct frame_id *this_id)
1949 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1951 /* This marks the outermost frame. */
1952 if (cache->base == 0)
1955 *this_id = frame_id_build (cache->saved_sp, cache->pc);
1958 static const struct frame_unwind sh_frame_unwind = {
1960 default_frame_unwind_stop_reason,
1962 sh_frame_prev_register,
1964 default_frame_sniffer
1968 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1970 return frame_unwind_register_unsigned (next_frame,
1971 gdbarch_sp_regnum (gdbarch));
1975 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1977 return frame_unwind_register_unsigned (next_frame,
1978 gdbarch_pc_regnum (gdbarch));
1981 static struct frame_id
1982 sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1984 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1985 gdbarch_sp_regnum (gdbarch));
1986 return frame_id_build (sp, get_frame_pc (this_frame));
1990 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
1992 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1997 static const struct frame_base sh_frame_base = {
1999 sh_frame_base_address,
2000 sh_frame_base_address,
2001 sh_frame_base_address
2004 static struct sh_frame_cache *
2005 sh_make_stub_cache (struct frame_info *this_frame)
2007 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2008 struct sh_frame_cache *cache;
2010 cache = sh_alloc_frame_cache ();
2013 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2019 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2020 struct frame_id *this_id)
2022 struct sh_frame_cache *cache;
2024 if (*this_cache == NULL)
2025 *this_cache = sh_make_stub_cache (this_frame);
2026 cache = *this_cache;
2028 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2032 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2033 struct frame_info *this_frame,
2034 void **this_prologue_cache)
2036 CORE_ADDR addr_in_block;
2038 addr_in_block = get_frame_address_in_block (this_frame);
2039 if (in_plt_section (addr_in_block, NULL))
2045 static const struct frame_unwind sh_stub_unwind =
2048 default_frame_unwind_stop_reason,
2050 sh_frame_prev_register,
2052 sh_stub_unwind_sniffer
2055 /* The epilogue is defined here as the area at the end of a function,
2056 either on the `ret' instruction itself or after an instruction which
2057 destroys the function's stack frame. */
2059 sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2062 CORE_ADDR func_addr = 0, func_end = 0;
2064 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2067 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2068 for a nop and some fixed data (e.g. big offsets) which are
2069 unfortunately also treated as part of the function (which
2070 means, they are below func_end. */
2071 CORE_ADDR addr = func_end - 28;
2072 if (addr < func_addr + 4)
2073 addr = func_addr + 4;
2077 /* First search forward until hitting an rts. */
2078 while (addr < func_end
2079 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2081 if (addr >= func_end)
2084 /* At this point we should find a mov.l @r15+,r14 instruction,
2085 either before or after the rts. If not, then the function has
2086 probably no "normal" epilogue and we bail out here. */
2087 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2088 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2091 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2095 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2097 /* Step over possible lds.l @r15+,macl. */
2098 if (IS_MACL_LDS (inst))
2101 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2104 /* Step over possible lds.l @r15+,pr. */
2108 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2111 /* Step over possible mov r14,r15. */
2112 if (IS_MOV_FP_SP (inst))
2115 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2118 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2120 while (addr > func_addr + 4
2121 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2124 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2127 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2128 That's allowed for the epilogue. */
2129 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2130 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2131 && addr > func_addr + 6
2132 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2143 /* Supply register REGNUM from the buffer specified by REGS and LEN
2144 in the register set REGSET to register cache REGCACHE.
2145 REGTABLE specifies where each register can be found in REGS.
2146 If REGNUM is -1, do this for all registers in REGSET. */
2149 sh_corefile_supply_regset (const struct regset *regset,
2150 struct regcache *regcache,
2151 int regnum, const void *regs, size_t len)
2153 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2155 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2156 ? tdep->core_gregmap
2157 : tdep->core_fpregmap);
2160 for (i = 0; regmap[i].regnum != -1; i++)
2162 if ((regnum == -1 || regnum == regmap[i].regnum)
2163 && regmap[i].offset + 4 <= len)
2164 regcache_raw_supply (regcache, regmap[i].regnum,
2165 (char *)regs + regmap[i].offset);
2169 /* Collect register REGNUM in the register set REGSET from register cache
2170 REGCACHE into the buffer specified by REGS and LEN.
2171 REGTABLE specifies where each register can be found in REGS.
2172 If REGNUM is -1, do this for all registers in REGSET. */
2175 sh_corefile_collect_regset (const struct regset *regset,
2176 const struct regcache *regcache,
2177 int regnum, void *regs, size_t len)
2179 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2181 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2182 ? tdep->core_gregmap
2183 : tdep->core_fpregmap);
2186 for (i = 0; regmap[i].regnum != -1; i++)
2188 if ((regnum == -1 || regnum == regmap[i].regnum)
2189 && regmap[i].offset + 4 <= len)
2190 regcache_raw_collect (regcache, regmap[i].regnum,
2191 (char *)regs + regmap[i].offset);
2195 /* The following two regsets have the same contents, so it is tempting to
2196 unify them, but they are distiguished by their address, so don't. */
2198 struct regset sh_corefile_gregset =
2201 sh_corefile_supply_regset,
2202 sh_corefile_collect_regset
2205 static struct regset sh_corefile_fpregset =
2208 sh_corefile_supply_regset,
2209 sh_corefile_collect_regset
2212 static const struct regset *
2213 sh_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name,
2216 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2218 if (tdep->core_gregmap && strcmp (sect_name, ".reg") == 0)
2219 return &sh_corefile_gregset;
2221 if (tdep->core_fpregmap && strcmp (sect_name, ".reg2") == 0)
2222 return &sh_corefile_fpregset;
2227 /* This is the implementation of gdbarch method
2228 return_in_first_hidden_param_p. */
2231 sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2239 static struct gdbarch *
2240 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2242 struct gdbarch *gdbarch;
2243 struct gdbarch_tdep *tdep;
2245 /* SH5 is handled entirely in sh64-tdep.c. */
2246 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2247 return sh64_gdbarch_init (info, arches);
2249 /* If there is already a candidate, use it. */
2250 arches = gdbarch_list_lookup_by_info (arches, &info);
2252 return arches->gdbarch;
2254 /* None found, create a new architecture from the information
2256 tdep = XZALLOC (struct gdbarch_tdep);
2257 gdbarch = gdbarch_alloc (&info, tdep);
2259 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2260 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2261 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2262 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2263 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2264 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2265 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2266 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2268 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2269 set_gdbarch_sp_regnum (gdbarch, 15);
2270 set_gdbarch_pc_regnum (gdbarch, 16);
2271 set_gdbarch_fp0_regnum (gdbarch, -1);
2272 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2274 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2275 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2277 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2279 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2280 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2282 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2284 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2285 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2287 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2288 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2289 sh_return_in_first_hidden_param_p);
2291 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2293 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2294 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2295 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2296 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
2297 frame_base_set_default (gdbarch, &sh_frame_base);
2299 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
2301 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2303 set_gdbarch_regset_from_core_section (gdbarch, sh_regset_from_core_section);
2305 switch (info.bfd_arch_info->mach)
2308 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2312 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2316 /* doubles on sh2e and sh3e are actually 4 byte. */
2317 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2318 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2320 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2321 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2322 set_gdbarch_fp0_regnum (gdbarch, 25);
2323 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2324 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2328 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2329 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2330 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2332 set_gdbarch_fp0_regnum (gdbarch, 25);
2333 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2334 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2335 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2336 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2337 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2340 case bfd_mach_sh2a_nofpu:
2341 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2342 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2344 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2345 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2346 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2349 case bfd_mach_sh_dsp:
2350 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2351 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2355 case bfd_mach_sh3_nommu:
2356 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2357 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2361 case bfd_mach_sh2a_or_sh3e:
2362 /* doubles on sh2e and sh3e are actually 4 byte. */
2363 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2364 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2366 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2367 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2368 set_gdbarch_fp0_regnum (gdbarch, 25);
2369 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2370 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2373 case bfd_mach_sh3_dsp:
2374 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2375 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2380 case bfd_mach_sh2a_or_sh4:
2381 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2382 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2383 set_gdbarch_fp0_regnum (gdbarch, 25);
2384 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2385 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2386 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2387 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2388 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2391 case bfd_mach_sh4_nofpu:
2392 case bfd_mach_sh4a_nofpu:
2393 case bfd_mach_sh4_nommu_nofpu:
2394 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2395 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2398 case bfd_mach_sh4al_dsp:
2399 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2400 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2404 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2408 /* Hook in ABI-specific overrides, if they have been registered. */
2409 gdbarch_init_osabi (info, gdbarch);
2411 dwarf2_append_unwinders (gdbarch);
2412 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
2413 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
2419 show_sh_command (char *args, int from_tty)
2421 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2425 set_sh_command (char *args, int from_tty)
2428 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2429 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2432 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
2435 _initialize_sh_tdep (void)
2437 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2439 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2440 &setshcmdlist, "set sh ", 0, &setlist);
2441 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2442 &showshcmdlist, "show sh ", 0, &showlist);
2444 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2445 &sh_active_calling_convention,
2446 _("Set calling convention used when calling target "
2447 "functions from GDB."),
2448 _("Show calling convention used when calling target "
2449 "functions from GDB."),
2450 _("gcc - Use GCC calling convention (default).\n"
2451 "renesas - Enforce Renesas calling convention."),
2453 &setshcmdlist, &showshcmdlist);