1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
7 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "arch-utils.h"
33 #include "floatformat.h"
35 #include "trad-frame.h"
36 #include "frame-base.h"
37 #include "frame-unwind.h"
38 #include "dwarf2-frame.h"
39 #include "reggroups.h"
42 #include "gdb_assert.h"
44 #include "solib-svr4.h"
45 #include "prologue-value.h"
47 #include "s390-tdep.h"
50 /* The tdep structure. */
55 enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
57 /* Core file register sets. */
58 const struct regset *gregset;
61 const struct regset *fpregset;
66 /* Return the name of register REGNUM. */
68 s390_register_name (struct gdbarch *gdbarch, int regnum)
70 static const char *register_names[S390_NUM_TOTAL_REGS] =
72 /* Program Status Word. */
74 /* General Purpose Registers. */
75 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
76 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
77 /* Access Registers. */
78 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
79 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
80 /* Floating Point Control Word. */
82 /* Floating Point Registers. */
83 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
84 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
85 /* Pseudo registers. */
89 gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS);
90 return register_names[regnum];
93 /* Return the GDB type object for the "standard" data type of data in
96 s390_register_type (struct gdbarch *gdbarch, int regnum)
98 if (regnum == S390_PSWM_REGNUM || regnum == S390_PSWA_REGNUM)
99 return builtin_type (gdbarch)->builtin_long;
100 if (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM)
101 return builtin_type (gdbarch)->builtin_long;
102 if (regnum >= S390_A0_REGNUM && regnum <= S390_A15_REGNUM)
103 return builtin_type (gdbarch)->builtin_int;
104 if (regnum == S390_FPC_REGNUM)
105 return builtin_type (gdbarch)->builtin_int;
106 if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM)
107 return builtin_type (gdbarch)->builtin_double;
108 if (regnum == S390_PC_REGNUM)
109 return builtin_type (gdbarch)->builtin_func_ptr;
110 if (regnum == S390_CC_REGNUM)
111 return builtin_type (gdbarch)->builtin_int;
113 internal_error (__FILE__, __LINE__, _("invalid regnum"));
116 /* DWARF Register Mapping. */
118 static int s390_dwarf_regmap[] =
120 /* General Purpose Registers. */
121 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
122 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
123 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
124 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
126 /* Floating Point Registers. */
127 S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
128 S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
129 S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
130 S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
132 /* Control Registers (not mapped). */
133 -1, -1, -1, -1, -1, -1, -1, -1,
134 -1, -1, -1, -1, -1, -1, -1, -1,
136 /* Access Registers. */
137 S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
138 S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
139 S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
140 S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
142 /* Program Status Word. */
147 /* Convert DWARF register number REG to the appropriate register
148 number used by GDB. */
150 s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
154 if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
155 regnum = s390_dwarf_regmap[reg];
158 warning (_("Unmapped DWARF Register #%d encountered."), reg);
163 /* Pseudo registers - PC and condition code. */
166 s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
167 int regnum, gdb_byte *buf)
174 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
175 store_unsigned_integer (buf, 4, val & 0x7fffffff);
179 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
180 store_unsigned_integer (buf, 4, (val >> 12) & 3);
184 internal_error (__FILE__, __LINE__, _("invalid regnum"));
189 s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
190 int regnum, const gdb_byte *buf)
197 val = extract_unsigned_integer (buf, 4);
198 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
199 psw = (psw & 0x80000000) | (val & 0x7fffffff);
200 regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, psw);
204 val = extract_unsigned_integer (buf, 4);
205 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
206 psw = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
207 regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
211 internal_error (__FILE__, __LINE__, _("invalid regnum"));
216 s390x_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
217 int regnum, gdb_byte *buf)
224 regcache_raw_read (regcache, S390_PSWA_REGNUM, buf);
228 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
229 store_unsigned_integer (buf, 4, (val >> 44) & 3);
233 internal_error (__FILE__, __LINE__, _("invalid regnum"));
238 s390x_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
239 int regnum, const gdb_byte *buf)
246 regcache_raw_write (regcache, S390_PSWA_REGNUM, buf);
250 val = extract_unsigned_integer (buf, 4);
251 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
252 psw = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
253 regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
257 internal_error (__FILE__, __LINE__, _("invalid regnum"));
261 /* 'float' values are stored in the upper half of floating-point
262 registers, even though we are otherwise a big-endian platform. */
264 static struct value *
265 s390_value_from_register (struct type *type, int regnum,
266 struct frame_info *frame)
268 struct value *value = default_value_from_register (type, regnum, frame);
269 int len = TYPE_LENGTH (type);
271 if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8)
272 set_value_offset (value, 0);
277 /* Register groups. */
280 s390_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
281 struct reggroup *group)
283 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 /* Registers displayed via 'info regs'. */
286 if (group == general_reggroup)
287 return (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM)
288 || regnum == S390_PC_REGNUM
289 || regnum == S390_CC_REGNUM;
291 /* Registers displayed via 'info float'. */
292 if (group == float_reggroup)
293 return (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM)
294 || regnum == S390_FPC_REGNUM;
296 /* Registers that need to be saved/restored in order to
297 push or pop frames. */
298 if (group == save_reggroup || group == restore_reggroup)
299 return regnum != S390_PSWM_REGNUM && regnum != S390_PSWA_REGNUM;
301 return default_register_reggroup_p (gdbarch, regnum, group);
305 /* Core file register sets. */
307 int s390_regmap_gregset[S390_NUM_REGS] =
309 /* Program Status Word. */
311 /* General Purpose Registers. */
312 0x08, 0x0c, 0x10, 0x14,
313 0x18, 0x1c, 0x20, 0x24,
314 0x28, 0x2c, 0x30, 0x34,
315 0x38, 0x3c, 0x40, 0x44,
316 /* Access Registers. */
317 0x48, 0x4c, 0x50, 0x54,
318 0x58, 0x5c, 0x60, 0x64,
319 0x68, 0x6c, 0x70, 0x74,
320 0x78, 0x7c, 0x80, 0x84,
321 /* Floating Point Control Word. */
323 /* Floating Point Registers. */
324 -1, -1, -1, -1, -1, -1, -1, -1,
325 -1, -1, -1, -1, -1, -1, -1, -1,
328 int s390x_regmap_gregset[S390_NUM_REGS] =
331 /* General Purpose Registers. */
332 0x10, 0x18, 0x20, 0x28,
333 0x30, 0x38, 0x40, 0x48,
334 0x50, 0x58, 0x60, 0x68,
335 0x70, 0x78, 0x80, 0x88,
336 /* Access Registers. */
337 0x90, 0x94, 0x98, 0x9c,
338 0xa0, 0xa4, 0xa8, 0xac,
339 0xb0, 0xb4, 0xb8, 0xbc,
340 0xc0, 0xc4, 0xc8, 0xcc,
341 /* Floating Point Control Word. */
343 /* Floating Point Registers. */
344 -1, -1, -1, -1, -1, -1, -1, -1,
345 -1, -1, -1, -1, -1, -1, -1, -1,
348 int s390_regmap_fpregset[S390_NUM_REGS] =
350 /* Program Status Word. */
352 /* General Purpose Registers. */
353 -1, -1, -1, -1, -1, -1, -1, -1,
354 -1, -1, -1, -1, -1, -1, -1, -1,
355 /* Access Registers. */
356 -1, -1, -1, -1, -1, -1, -1, -1,
357 -1, -1, -1, -1, -1, -1, -1, -1,
358 /* Floating Point Control Word. */
360 /* Floating Point Registers. */
361 0x08, 0x10, 0x18, 0x20,
362 0x28, 0x30, 0x38, 0x40,
363 0x48, 0x50, 0x58, 0x60,
364 0x68, 0x70, 0x78, 0x80,
367 /* Supply register REGNUM from the register set REGSET to register cache
368 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
370 s390_supply_regset (const struct regset *regset, struct regcache *regcache,
371 int regnum, const void *regs, size_t len)
373 const int *offset = regset->descr;
376 for (i = 0; i < S390_NUM_REGS; i++)
378 if ((regnum == i || regnum == -1) && offset[i] != -1)
379 regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
383 /* Collect register REGNUM from the register cache REGCACHE and store
384 it in the buffer specified by REGS and LEN as described by the
385 general-purpose register set REGSET. If REGNUM is -1, do this for
386 all registers in REGSET. */
388 s390_collect_regset (const struct regset *regset,
389 const struct regcache *regcache,
390 int regnum, void *regs, size_t len)
392 const int *offset = regset->descr;
395 for (i = 0; i < S390_NUM_REGS; i++)
397 if ((regnum == i || regnum == -1) && offset[i] != -1)
398 regcache_raw_collect (regcache, i, (char *)regs + offset[i]);
402 static const struct regset s390_gregset = {
408 static const struct regset s390x_gregset = {
409 s390x_regmap_gregset,
414 static const struct regset s390_fpregset = {
415 s390_regmap_fpregset,
420 /* Return the appropriate register set for the core section identified
421 by SECT_NAME and SECT_SIZE. */
422 const struct regset *
423 s390_regset_from_core_section (struct gdbarch *gdbarch,
424 const char *sect_name, size_t sect_size)
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
428 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
429 return tdep->gregset;
431 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
432 return tdep->fpregset;
438 /* Decoding S/390 instructions. */
440 /* Named opcode values for the S/390 instructions we recognize. Some
441 instructions have their opcode split across two fields; those are the
442 op1_* and op2_* enums. */
445 op1_lhi = 0xa7, op2_lhi = 0x08,
446 op1_lghi = 0xa7, op2_lghi = 0x09,
447 op1_lgfi = 0xc0, op2_lgfi = 0x01,
451 op1_ly = 0xe3, op2_ly = 0x58,
452 op1_lg = 0xe3, op2_lg = 0x04,
454 op1_lmy = 0xeb, op2_lmy = 0x98,
455 op1_lmg = 0xeb, op2_lmg = 0x04,
457 op1_sty = 0xe3, op2_sty = 0x50,
458 op1_stg = 0xe3, op2_stg = 0x24,
461 op1_stmy = 0xeb, op2_stmy = 0x90,
462 op1_stmg = 0xeb, op2_stmg = 0x24,
463 op1_aghi = 0xa7, op2_aghi = 0x0b,
464 op1_ahi = 0xa7, op2_ahi = 0x0a,
465 op1_agfi = 0xc2, op2_agfi = 0x08,
466 op1_afi = 0xc2, op2_afi = 0x09,
467 op1_algfi= 0xc2, op2_algfi= 0x0a,
468 op1_alfi = 0xc2, op2_alfi = 0x0b,
472 op1_ay = 0xe3, op2_ay = 0x5a,
473 op1_ag = 0xe3, op2_ag = 0x08,
474 op1_slgfi= 0xc2, op2_slgfi= 0x04,
475 op1_slfi = 0xc2, op2_slfi = 0x05,
479 op1_sy = 0xe3, op2_sy = 0x5b,
480 op1_sg = 0xe3, op2_sg = 0x09,
484 op1_lay = 0xe3, op2_lay = 0x71,
485 op1_larl = 0xc0, op2_larl = 0x00,
490 op1_bras = 0xa7, op2_bras = 0x05,
491 op1_brasl= 0xc0, op2_brasl= 0x05,
492 op1_brc = 0xa7, op2_brc = 0x04,
493 op1_brcl = 0xc0, op2_brcl = 0x04,
497 /* Read a single instruction from address AT. */
499 #define S390_MAX_INSTR_SIZE 6
501 s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
503 static int s390_instrlen[] = { 2, 4, 4, 6 };
506 if (target_read_memory (at, &instr[0], 2))
508 instrlen = s390_instrlen[instr[0] >> 6];
511 if (target_read_memory (at + 2, &instr[2], instrlen - 2))
518 /* The functions below are for recognizing and decoding S/390
519 instructions of various formats. Each of them checks whether INSN
520 is an instruction of the given format, with the specified opcodes.
521 If it is, it sets the remaining arguments to the values of the
522 instruction's fields, and returns a non-zero value; otherwise, it
525 These functions' arguments appear in the order they appear in the
526 instruction, not in the machine-language form. So, opcodes always
527 come first, even though they're sometimes scattered around the
528 instructions. And displacements appear before base and extension
529 registers, as they do in the assembly syntax, not at the end, as
530 they do in the machine language. */
532 is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
534 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
536 *r1 = (insn[1] >> 4) & 0xf;
537 /* i2 is a 16-bit signed quantity. */
538 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
547 is_ril (bfd_byte *insn, int op1, int op2,
548 unsigned int *r1, int *i2)
550 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
552 *r1 = (insn[1] >> 4) & 0xf;
553 /* i2 is a signed quantity. If the host 'int' is 32 bits long,
554 no sign extension is necessary, but we don't want to assume
556 *i2 = (((insn[2] << 24)
559 | (insn[5])) ^ 0x80000000) - 0x80000000;
568 is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
572 *r1 = (insn[1] >> 4) & 0xf;
582 is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
584 if (((insn[0] << 8) | insn[1]) == op)
586 /* Yes, insn[3]. insn[2] is unused in RRE format. */
587 *r1 = (insn[3] >> 4) & 0xf;
597 is_rs (bfd_byte *insn, int op,
598 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
602 *r1 = (insn[1] >> 4) & 0xf;
604 *b2 = (insn[2] >> 4) & 0xf;
605 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
614 is_rsy (bfd_byte *insn, int op1, int op2,
615 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
620 *r1 = (insn[1] >> 4) & 0xf;
622 *b2 = (insn[2] >> 4) & 0xf;
623 /* The 'long displacement' is a 20-bit signed integer. */
624 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
625 ^ 0x80000) - 0x80000;
634 is_rx (bfd_byte *insn, int op,
635 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
639 *r1 = (insn[1] >> 4) & 0xf;
641 *b2 = (insn[2] >> 4) & 0xf;
642 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
651 is_rxy (bfd_byte *insn, int op1, int op2,
652 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
657 *r1 = (insn[1] >> 4) & 0xf;
659 *b2 = (insn[2] >> 4) & 0xf;
660 /* The 'long displacement' is a 20-bit signed integer. */
661 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
662 ^ 0x80000) - 0x80000;
670 /* Prologue analysis. */
672 #define S390_NUM_GPRS 16
673 #define S390_NUM_FPRS 16
675 struct s390_prologue_data {
678 struct pv_area *stack;
680 /* The size of a GPR or FPR. */
684 /* The general-purpose registers. */
685 pv_t gpr[S390_NUM_GPRS];
687 /* The floating-point registers. */
688 pv_t fpr[S390_NUM_FPRS];
690 /* The offset relative to the CFA where the incoming GPR N was saved
691 by the function prologue. 0 if not saved or unknown. */
692 int gpr_slot[S390_NUM_GPRS];
694 /* Likewise for FPRs. */
695 int fpr_slot[S390_NUM_FPRS];
697 /* Nonzero if the backchain was saved. This is assumed to be the
698 case when the incoming SP is saved at the current SP location. */
699 int back_chain_saved_p;
702 /* Return the effective address for an X-style instruction, like:
706 Here, X2 and B2 are registers, and D2 is a signed 20-bit
707 constant; the effective address is the sum of all three. If either
708 X2 or B2 are zero, then it doesn't contribute to the sum --- this
709 means that r0 can't be used as either X2 or B2. */
711 s390_addr (struct s390_prologue_data *data,
712 int d2, unsigned int x2, unsigned int b2)
716 result = pv_constant (d2);
718 result = pv_add (result, data->gpr[x2]);
720 result = pv_add (result, data->gpr[b2]);
725 /* Do a SIZE-byte store of VALUE to D2(X2,B2). */
727 s390_store (struct s390_prologue_data *data,
728 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
731 pv_t addr = s390_addr (data, d2, x2, b2);
734 /* Check whether we are storing the backchain. */
735 offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
737 if (pv_is_constant (offset) && offset.k == 0)
738 if (size == data->gpr_size
739 && pv_is_register_k (value, S390_SP_REGNUM, 0))
741 data->back_chain_saved_p = 1;
746 /* Check whether we are storing a register into the stack. */
747 if (!pv_area_store_would_trash (data->stack, addr))
748 pv_area_store (data->stack, addr, size, value);
751 /* Note: If this is some store we cannot identify, you might think we
752 should forget our cached values, as any of those might have been hit.
754 However, we make the assumption that the register save areas are only
755 ever stored to once in any given function, and we do recognize these
756 stores. Thus every store we cannot recognize does not hit our data. */
759 /* Do a SIZE-byte load from D2(X2,B2). */
761 s390_load (struct s390_prologue_data *data,
762 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
765 pv_t addr = s390_addr (data, d2, x2, b2);
768 /* If it's a load from an in-line constant pool, then we can
769 simulate that, under the assumption that the code isn't
770 going to change between the time the processor actually
771 executed it creating the current frame, and the time when
772 we're analyzing the code to unwind past that frame. */
773 if (pv_is_constant (addr))
775 struct section_table *secp;
776 secp = target_section_by_addr (¤t_target, addr.k);
778 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
780 return pv_constant (read_memory_integer (addr.k, size));
783 /* Check whether we are accessing one of our save slots. */
784 return pv_area_fetch (data->stack, addr, size);
787 /* Function for finding saved registers in a 'struct pv_area'; we pass
788 this to pv_area_scan.
790 If VALUE is a saved register, ADDR says it was saved at a constant
791 offset from the frame base, and SIZE indicates that the whole
792 register was saved, record its offset in the reg_offset table in
795 s390_check_for_saved (void *data_untyped, pv_t addr, CORE_ADDR size, pv_t value)
797 struct s390_prologue_data *data = data_untyped;
800 if (!pv_is_register (addr, S390_SP_REGNUM))
803 offset = 16 * data->gpr_size + 32 - addr.k;
805 /* If we are storing the original value of a register, we want to
806 record the CFA offset. If the same register is stored multiple
807 times, the stack slot with the highest address counts. */
809 for (i = 0; i < S390_NUM_GPRS; i++)
810 if (size == data->gpr_size
811 && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
812 if (data->gpr_slot[i] == 0
813 || data->gpr_slot[i] > offset)
815 data->gpr_slot[i] = offset;
819 for (i = 0; i < S390_NUM_FPRS; i++)
820 if (size == data->fpr_size
821 && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
822 if (data->fpr_slot[i] == 0
823 || data->fpr_slot[i] > offset)
825 data->fpr_slot[i] = offset;
830 /* Analyze the prologue of the function starting at START_PC,
831 continuing at most until CURRENT_PC. Initialize DATA to
832 hold all information we find out about the state of the registers
833 and stack slots. Return the address of the instruction after
834 the last one that changed the SP, FP, or back chain; or zero
837 s390_analyze_prologue (struct gdbarch *gdbarch,
839 CORE_ADDR current_pc,
840 struct s390_prologue_data *data)
842 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
845 The address of the instruction after the last one that changed
846 the SP, FP, or back chain; zero if we got an error trying to
848 CORE_ADDR result = start_pc;
850 /* The current PC for our abstract interpretation. */
853 /* The address of the next instruction after that. */
856 /* Set up everything's initial value. */
860 data->stack = make_pv_area (S390_SP_REGNUM);
862 /* For the purpose of prologue tracking, we consider the GPR size to
863 be equal to the ABI word size, even if it is actually larger
864 (i.e. when running a 32-bit binary under a 64-bit kernel). */
865 data->gpr_size = word_size;
868 for (i = 0; i < S390_NUM_GPRS; i++)
869 data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
871 for (i = 0; i < S390_NUM_FPRS; i++)
872 data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
874 for (i = 0; i < S390_NUM_GPRS; i++)
875 data->gpr_slot[i] = 0;
877 for (i = 0; i < S390_NUM_FPRS; i++)
878 data->fpr_slot[i] = 0;
880 data->back_chain_saved_p = 0;
883 /* Start interpreting instructions, until we hit the frame's
884 current PC or the first branch instruction. */
885 for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
887 bfd_byte insn[S390_MAX_INSTR_SIZE];
888 int insn_len = s390_readinstruction (insn, pc);
890 bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
891 bfd_byte *insn32 = word_size == 4 ? insn : dummy;
892 bfd_byte *insn64 = word_size == 8 ? insn : dummy;
894 /* Fields for various kinds of instructions. */
895 unsigned int b2, r1, r2, x2, r3;
898 /* The values of SP and FP before this instruction,
899 for detecting instructions that change them. */
900 pv_t pre_insn_sp, pre_insn_fp;
901 /* Likewise for the flag whether the back chain was saved. */
902 int pre_insn_back_chain_saved_p;
904 /* If we got an error trying to read the instruction, report it. */
911 next_pc = pc + insn_len;
913 pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
914 pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
915 pre_insn_back_chain_saved_p = data->back_chain_saved_p;
918 /* LHI r1, i2 --- load halfword immediate. */
919 /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
920 /* LGFI r1, i2 --- load fullword immediate. */
921 if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
922 || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
923 || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
924 data->gpr[r1] = pv_constant (i2);
926 /* LR r1, r2 --- load from register. */
927 /* LGR r1, r2 --- load from register (64-bit version). */
928 else if (is_rr (insn32, op_lr, &r1, &r2)
929 || is_rre (insn64, op_lgr, &r1, &r2))
930 data->gpr[r1] = data->gpr[r2];
932 /* L r1, d2(x2, b2) --- load. */
933 /* LY r1, d2(x2, b2) --- load (long-displacement version). */
934 /* LG r1, d2(x2, b2) --- load (64-bit version). */
935 else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
936 || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
937 || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
938 data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
940 /* ST r1, d2(x2, b2) --- store. */
941 /* STY r1, d2(x2, b2) --- store (long-displacement version). */
942 /* STG r1, d2(x2, b2) --- store (64-bit version). */
943 else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
944 || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
945 || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
946 s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
948 /* STD r1, d2(x2,b2) --- store floating-point register. */
949 else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
950 s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
952 /* STM r1, r3, d2(b2) --- store multiple. */
953 /* STMY r1, r3, d2(b2) --- store multiple (long-displacement version). */
954 /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
955 else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
956 || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
957 || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
959 for (; r1 <= r3; r1++, d2 += data->gpr_size)
960 s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
963 /* AHI r1, i2 --- add halfword immediate. */
964 /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
965 /* AFI r1, i2 --- add fullword immediate. */
966 /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
967 else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
968 || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
969 || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
970 || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
971 data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
973 /* ALFI r1, i2 --- add logical immediate. */
974 /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
975 else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
976 || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
977 data->gpr[r1] = pv_add_constant (data->gpr[r1],
978 (CORE_ADDR)i2 & 0xffffffff);
980 /* AR r1, r2 -- add register. */
981 /* AGR r1, r2 -- add register (64-bit version). */
982 else if (is_rr (insn32, op_ar, &r1, &r2)
983 || is_rre (insn64, op_agr, &r1, &r2))
984 data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
986 /* A r1, d2(x2, b2) -- add. */
987 /* AY r1, d2(x2, b2) -- add (long-displacement version). */
988 /* AG r1, d2(x2, b2) -- add (64-bit version). */
989 else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
990 || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
991 || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
992 data->gpr[r1] = pv_add (data->gpr[r1],
993 s390_load (data, d2, x2, b2, data->gpr_size));
995 /* SLFI r1, i2 --- subtract logical immediate. */
996 /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
997 else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
998 || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
999 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1000 -((CORE_ADDR)i2 & 0xffffffff));
1002 /* SR r1, r2 -- subtract register. */
1003 /* SGR r1, r2 -- subtract register (64-bit version). */
1004 else if (is_rr (insn32, op_sr, &r1, &r2)
1005 || is_rre (insn64, op_sgr, &r1, &r2))
1006 data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
1008 /* S r1, d2(x2, b2) -- subtract. */
1009 /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
1010 /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
1011 else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
1012 || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
1013 || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
1014 data->gpr[r1] = pv_subtract (data->gpr[r1],
1015 s390_load (data, d2, x2, b2, data->gpr_size));
1017 /* LA r1, d2(x2, b2) --- load address. */
1018 /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
1019 else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
1020 || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
1021 data->gpr[r1] = s390_addr (data, d2, x2, b2);
1023 /* LARL r1, i2 --- load address relative long. */
1024 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1025 data->gpr[r1] = pv_constant (pc + i2 * 2);
1027 /* BASR r1, 0 --- branch and save.
1028 Since r2 is zero, this saves the PC in r1, but doesn't branch. */
1029 else if (is_rr (insn, op_basr, &r1, &r2)
1031 data->gpr[r1] = pv_constant (next_pc);
1033 /* BRAS r1, i2 --- branch relative and save. */
1034 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
1036 data->gpr[r1] = pv_constant (next_pc);
1037 next_pc = pc + i2 * 2;
1039 /* We'd better not interpret any backward branches. We'll
1045 /* Terminate search when hitting any other branch instruction. */
1046 else if (is_rr (insn, op_basr, &r1, &r2)
1047 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
1048 || is_rr (insn, op_bcr, &r1, &r2)
1049 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1050 || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1051 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1052 || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
1056 /* An instruction we don't know how to simulate. The only
1057 safe thing to do would be to set every value we're tracking
1058 to 'unknown'. Instead, we'll be optimistic: we assume that
1059 we *can* interpret every instruction that the compiler uses
1060 to manipulate any of the data we're interested in here --
1061 then we can just ignore anything else. */
1064 /* Record the address after the last instruction that changed
1065 the FP, SP, or backlink. Ignore instructions that changed
1066 them back to their original values --- those are probably
1067 restore instructions. (The back chain is never restored,
1070 pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1071 pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1073 if ((! pv_is_identical (pre_insn_sp, sp)
1074 && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
1075 && sp.kind != pvk_unknown)
1076 || (! pv_is_identical (pre_insn_fp, fp)
1077 && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
1078 && fp.kind != pvk_unknown)
1079 || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
1084 /* Record where all the registers were saved. */
1085 pv_area_scan (data->stack, s390_check_for_saved, data);
1087 free_pv_area (data->stack);
1093 /* Advance PC across any function entry prologue instructions to reach
1094 some "real" code. */
1096 s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1098 struct s390_prologue_data data;
1100 skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
1101 return skip_pc ? skip_pc : pc;
1104 /* Return true if we are in the functin's epilogue, i.e. after the
1105 instruction that destroyed the function's stack frame. */
1107 s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1109 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1111 /* In frameless functions, there's not frame to destroy and thus
1112 we don't care about the epilogue.
1114 In functions with frame, the epilogue sequence is a pair of
1115 a LM-type instruction that restores (amongst others) the
1116 return register %r14 and the stack pointer %r15, followed
1117 by a branch 'br %r14' --or equivalent-- that effects the
1120 In that situation, this function needs to return 'true' in
1121 exactly one case: when pc points to that branch instruction.
1123 Thus we try to disassemble the one instructions immediately
1124 preceeding pc and check whether it is an LM-type instruction
1125 modifying the stack pointer.
1127 Note that disassembling backwards is not reliable, so there
1128 is a slight chance of false positives here ... */
1131 unsigned int r1, r3, b2;
1135 && !target_read_memory (pc - 4, insn, 4)
1136 && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
1137 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1141 && !target_read_memory (pc - 6, insn, 6)
1142 && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
1143 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1147 && !target_read_memory (pc - 6, insn, 6)
1148 && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
1149 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1156 /* Normal stack frames. */
1158 struct s390_unwind_cache {
1161 CORE_ADDR frame_base;
1162 CORE_ADDR local_base;
1164 struct trad_frame_saved_reg *saved_regs;
1168 s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
1169 struct s390_unwind_cache *info)
1171 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1172 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1173 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1174 struct s390_prologue_data data;
1175 pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1176 pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1186 /* Try to find the function start address. If we can't find it, we don't
1187 bother searching for it -- with modern compilers this would be mostly
1188 pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
1189 or else a valid backchain ... */
1190 func = get_frame_func (this_frame);
1194 /* Try to analyze the prologue. */
1195 result = s390_analyze_prologue (gdbarch, func,
1196 get_frame_pc (this_frame), &data);
1200 /* If this was successful, we should have found the instruction that
1201 sets the stack pointer register to the previous value of the stack
1202 pointer minus the frame size. */
1203 if (!pv_is_register (*sp, S390_SP_REGNUM))
1206 /* A frame size of zero at this point can mean either a real
1207 frameless function, or else a failure to find the prologue.
1208 Perform some sanity checks to verify we really have a
1209 frameless function. */
1212 /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
1213 size zero. This is only possible if the next frame is a sentinel
1214 frame, a dummy frame, or a signal trampoline frame. */
1215 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
1216 needed, instead the code should simpliy rely on its
1218 if (get_next_frame (this_frame)
1219 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
1222 /* If we really have a frameless function, %r14 must be valid
1223 -- in particular, it must point to a different function. */
1224 reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
1225 reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
1226 if (get_pc_function_start (reg) == func)
1228 /* However, there is one case where it *is* valid for %r14
1229 to point to the same function -- if this is a recursive
1230 call, and we have stopped in the prologue *before* the
1231 stack frame was allocated.
1233 Recognize this case by looking ahead a bit ... */
1235 struct s390_prologue_data data2;
1236 pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1238 if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
1239 && pv_is_register (*sp, S390_SP_REGNUM)
1246 /* OK, we've found valid prologue data. */
1249 /* If the frame pointer originally also holds the same value
1250 as the stack pointer, we're probably using it. If it holds
1251 some other value -- even a constant offset -- it is most
1252 likely used as temp register. */
1253 if (pv_is_identical (*sp, *fp))
1254 frame_pointer = S390_FRAME_REGNUM;
1256 frame_pointer = S390_SP_REGNUM;
1258 /* If we've detected a function with stack frame, we'll still have to
1259 treat it as frameless if we're currently within the function epilog
1260 code at a point where the frame pointer has already been restored.
1261 This can only happen in an innermost frame. */
1262 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
1263 instead the code should simpliy rely on its analysis. */
1265 && (!get_next_frame (this_frame)
1266 || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
1268 /* See the comment in s390_in_function_epilogue_p on why this is
1269 not completely reliable ... */
1270 if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame)))
1272 memset (&data, 0, sizeof (data));
1274 frame_pointer = S390_SP_REGNUM;
1278 /* Once we know the frame register and the frame size, we can unwind
1279 the current value of the frame register from the next frame, and
1280 add back the frame size to arrive that the previous frame's
1281 stack pointer value. */
1282 prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
1283 cfa = prev_sp + 16*word_size + 32;
1285 /* Record the addresses of all register spill slots the prologue parser
1286 has recognized. Consider only registers defined as call-saved by the
1287 ABI; for call-clobbered registers the parser may have recognized
1290 for (i = 6; i <= 15; i++)
1291 if (data.gpr_slot[i] != 0)
1292 info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
1296 case ABI_LINUX_S390:
1297 if (data.fpr_slot[4] != 0)
1298 info->saved_regs[S390_F4_REGNUM].addr = cfa - data.fpr_slot[4];
1299 if (data.fpr_slot[6] != 0)
1300 info->saved_regs[S390_F6_REGNUM].addr = cfa - data.fpr_slot[6];
1303 case ABI_LINUX_ZSERIES:
1304 for (i = 8; i <= 15; i++)
1305 if (data.fpr_slot[i] != 0)
1306 info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
1310 /* Function return will set PC to %r14. */
1311 info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
1313 /* In frameless functions, we unwind simply by moving the return
1314 address to the PC. However, if we actually stored to the
1315 save area, use that -- we might only think the function frameless
1316 because we're in the middle of the prologue ... */
1318 && !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
1320 info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
1323 /* Another sanity check: unless this is a frameless function,
1324 we should have found spill slots for SP and PC.
1325 If not, we cannot unwind further -- this happens e.g. in
1326 libc's thread_start routine. */
1329 if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
1330 || !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
1334 /* We use the current value of the frame register as local_base,
1335 and the top of the register save area as frame_base. */
1338 info->frame_base = prev_sp + 16*word_size + 32;
1339 info->local_base = prev_sp - size;
1347 s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
1348 struct s390_unwind_cache *info)
1350 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1351 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1352 CORE_ADDR backchain;
1356 /* Get the backchain. */
1357 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1358 backchain = read_memory_unsigned_integer (reg, word_size);
1360 /* A zero backchain terminates the frame chain. As additional
1361 sanity check, let's verify that the spill slot for SP in the
1362 save area pointed to by the backchain in fact links back to
1365 && safe_read_memory_integer (backchain + 15*word_size, word_size, &sp)
1366 && (CORE_ADDR)sp == backchain)
1368 /* We don't know which registers were saved, but it will have
1369 to be at least %r14 and %r15. This will allow us to continue
1370 unwinding, but other prev-frame registers may be incorrect ... */
1371 info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
1372 info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
1374 /* Function return will set PC to %r14. */
1375 info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
1377 /* We use the current value of the frame register as local_base,
1378 and the top of the register save area as frame_base. */
1379 info->frame_base = backchain + 16*word_size + 32;
1380 info->local_base = reg;
1383 info->func = get_frame_pc (this_frame);
1386 static struct s390_unwind_cache *
1387 s390_frame_unwind_cache (struct frame_info *this_frame,
1388 void **this_prologue_cache)
1390 struct s390_unwind_cache *info;
1391 if (*this_prologue_cache)
1392 return *this_prologue_cache;
1394 info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
1395 *this_prologue_cache = info;
1396 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1398 info->frame_base = -1;
1399 info->local_base = -1;
1401 /* Try to use prologue analysis to fill the unwind cache.
1402 If this fails, fall back to reading the stack backchain. */
1403 if (!s390_prologue_frame_unwind_cache (this_frame, info))
1404 s390_backchain_frame_unwind_cache (this_frame, info);
1410 s390_frame_this_id (struct frame_info *this_frame,
1411 void **this_prologue_cache,
1412 struct frame_id *this_id)
1414 struct s390_unwind_cache *info
1415 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
1417 if (info->frame_base == -1)
1420 *this_id = frame_id_build (info->frame_base, info->func);
1423 static struct value *
1424 s390_frame_prev_register (struct frame_info *this_frame,
1425 void **this_prologue_cache, int regnum)
1427 struct s390_unwind_cache *info
1428 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
1429 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1432 static const struct frame_unwind s390_frame_unwind = {
1435 s390_frame_prev_register,
1437 default_frame_sniffer
1441 /* Code stubs and their stack frames. For things like PLTs and NULL
1442 function calls (where there is no true frame and the return address
1443 is in the RETADDR register). */
1445 struct s390_stub_unwind_cache
1447 CORE_ADDR frame_base;
1448 struct trad_frame_saved_reg *saved_regs;
1451 static struct s390_stub_unwind_cache *
1452 s390_stub_frame_unwind_cache (struct frame_info *this_frame,
1453 void **this_prologue_cache)
1455 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1456 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1457 struct s390_stub_unwind_cache *info;
1460 if (*this_prologue_cache)
1461 return *this_prologue_cache;
1463 info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
1464 *this_prologue_cache = info;
1465 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1467 /* The return address is in register %r14. */
1468 info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
1470 /* Retrieve stack pointer and determine our frame base. */
1471 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1472 info->frame_base = reg + 16*word_size + 32;
1478 s390_stub_frame_this_id (struct frame_info *this_frame,
1479 void **this_prologue_cache,
1480 struct frame_id *this_id)
1482 struct s390_stub_unwind_cache *info
1483 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1484 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
1487 static struct value *
1488 s390_stub_frame_prev_register (struct frame_info *this_frame,
1489 void **this_prologue_cache, int regnum)
1491 struct s390_stub_unwind_cache *info
1492 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1493 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1497 s390_stub_frame_sniffer (const struct frame_unwind *self,
1498 struct frame_info *this_frame,
1499 void **this_prologue_cache)
1501 CORE_ADDR addr_in_block;
1502 bfd_byte insn[S390_MAX_INSTR_SIZE];
1504 /* If the current PC points to non-readable memory, we assume we
1505 have trapped due to an invalid function pointer call. We handle
1506 the non-existing current function like a PLT stub. */
1507 addr_in_block = get_frame_address_in_block (this_frame);
1508 if (in_plt_section (addr_in_block, NULL)
1509 || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
1514 static const struct frame_unwind s390_stub_frame_unwind = {
1516 s390_stub_frame_this_id,
1517 s390_stub_frame_prev_register,
1519 s390_stub_frame_sniffer
1523 /* Signal trampoline stack frames. */
1525 struct s390_sigtramp_unwind_cache {
1526 CORE_ADDR frame_base;
1527 struct trad_frame_saved_reg *saved_regs;
1530 static struct s390_sigtramp_unwind_cache *
1531 s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
1532 void **this_prologue_cache)
1534 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1535 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1536 struct s390_sigtramp_unwind_cache *info;
1537 ULONGEST this_sp, prev_sp;
1538 CORE_ADDR next_ra, next_cfa, sigreg_ptr;
1541 if (*this_prologue_cache)
1542 return *this_prologue_cache;
1544 info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
1545 *this_prologue_cache = info;
1546 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1548 this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1549 next_ra = get_frame_pc (this_frame);
1550 next_cfa = this_sp + 16*word_size + 32;
1552 /* New-style RT frame:
1553 retcode + alignment (8 bytes)
1555 ucontext (contains sigregs at offset 5 words) */
1556 if (next_ra == next_cfa)
1558 sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
1561 /* Old-style RT frame and all non-RT frames:
1562 old signal mask (8 bytes)
1563 pointer to sigregs */
1566 sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8, word_size);
1569 /* The sigregs structure looks like this:
1578 /* Let's ignore the PSW mask, it will not be restored anyway. */
1579 sigreg_ptr += word_size;
1581 /* Next comes the PSW address. */
1582 info->saved_regs[S390_PC_REGNUM].addr = sigreg_ptr;
1583 sigreg_ptr += word_size;
1585 /* Then the GPRs. */
1586 for (i = 0; i < 16; i++)
1588 info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
1589 sigreg_ptr += word_size;
1592 /* Then the ACRs. */
1593 for (i = 0; i < 16; i++)
1595 info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
1599 /* The floating-point control word. */
1600 info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
1603 /* And finally the FPRs. */
1604 for (i = 0; i < 16; i++)
1606 info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
1610 /* Restore the previous frame's SP. */
1611 prev_sp = read_memory_unsigned_integer (
1612 info->saved_regs[S390_SP_REGNUM].addr,
1615 /* Determine our frame base. */
1616 info->frame_base = prev_sp + 16*word_size + 32;
1622 s390_sigtramp_frame_this_id (struct frame_info *this_frame,
1623 void **this_prologue_cache,
1624 struct frame_id *this_id)
1626 struct s390_sigtramp_unwind_cache *info
1627 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
1628 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
1631 static struct value *
1632 s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
1633 void **this_prologue_cache, int regnum)
1635 struct s390_sigtramp_unwind_cache *info
1636 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
1637 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1641 s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
1642 struct frame_info *this_frame,
1643 void **this_prologue_cache)
1645 CORE_ADDR pc = get_frame_pc (this_frame);
1646 bfd_byte sigreturn[2];
1648 if (target_read_memory (pc, sigreturn, 2))
1651 if (sigreturn[0] != 0x0a /* svc */)
1654 if (sigreturn[1] != 119 /* sigreturn */
1655 && sigreturn[1] != 173 /* rt_sigreturn */)
1661 static const struct frame_unwind s390_sigtramp_frame_unwind = {
1663 s390_sigtramp_frame_this_id,
1664 s390_sigtramp_frame_prev_register,
1666 s390_sigtramp_frame_sniffer
1670 /* Frame base handling. */
1673 s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
1675 struct s390_unwind_cache *info
1676 = s390_frame_unwind_cache (this_frame, this_cache);
1677 return info->frame_base;
1681 s390_local_base_address (struct frame_info *this_frame, void **this_cache)
1683 struct s390_unwind_cache *info
1684 = s390_frame_unwind_cache (this_frame, this_cache);
1685 return info->local_base;
1688 static const struct frame_base s390_frame_base = {
1690 s390_frame_base_address,
1691 s390_local_base_address,
1692 s390_local_base_address
1696 s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1699 pc = frame_unwind_register_unsigned (next_frame, S390_PC_REGNUM);
1700 return gdbarch_addr_bits_remove (gdbarch, pc);
1704 s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1707 sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
1708 return gdbarch_addr_bits_remove (gdbarch, sp);
1712 /* DWARF-2 frame support. */
1715 s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1716 struct dwarf2_frame_state_reg *reg,
1717 struct frame_info *this_frame)
1719 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1723 case ABI_LINUX_S390:
1724 /* Call-saved registers. */
1725 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
1726 || regnum == S390_F4_REGNUM
1727 || regnum == S390_F6_REGNUM)
1728 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1730 /* Call-clobbered registers. */
1731 else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
1732 || (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
1733 && regnum != S390_F4_REGNUM && regnum != S390_F6_REGNUM))
1734 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1736 /* The return address column. */
1737 else if (regnum == S390_PC_REGNUM)
1738 reg->how = DWARF2_FRAME_REG_RA;
1741 case ABI_LINUX_ZSERIES:
1742 /* Call-saved registers. */
1743 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
1744 || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM))
1745 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1747 /* Call-clobbered registers. */
1748 else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
1749 || (regnum >= S390_F0_REGNUM && regnum <= S390_F7_REGNUM))
1750 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1752 /* The return address column. */
1753 else if (regnum == S390_PC_REGNUM)
1754 reg->how = DWARF2_FRAME_REG_RA;
1760 /* Dummy function calls. */
1762 /* Return non-zero if TYPE is an integer-like type, zero otherwise.
1763 "Integer-like" types are those that should be passed the way
1764 integers are: integers, enums, ranges, characters, and booleans. */
1766 is_integer_like (struct type *type)
1768 enum type_code code = TYPE_CODE (type);
1770 return (code == TYPE_CODE_INT
1771 || code == TYPE_CODE_ENUM
1772 || code == TYPE_CODE_RANGE
1773 || code == TYPE_CODE_CHAR
1774 || code == TYPE_CODE_BOOL);
1777 /* Return non-zero if TYPE is a pointer-like type, zero otherwise.
1778 "Pointer-like" types are those that should be passed the way
1779 pointers are: pointers and references. */
1781 is_pointer_like (struct type *type)
1783 enum type_code code = TYPE_CODE (type);
1785 return (code == TYPE_CODE_PTR
1786 || code == TYPE_CODE_REF);
1790 /* Return non-zero if TYPE is a `float singleton' or `double
1791 singleton', zero otherwise.
1793 A `T singleton' is a struct type with one member, whose type is
1794 either T or a `T singleton'. So, the following are all float
1798 struct { struct { float x; } x; };
1799 struct { struct { struct { float x; } x; } x; };
1803 All such structures are passed as if they were floats or doubles,
1804 as the (revised) ABI says. */
1806 is_float_singleton (struct type *type)
1808 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1810 struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
1811 CHECK_TYPEDEF (singleton_type);
1813 return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
1814 || TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT
1815 || is_float_singleton (singleton_type));
1822 /* Return non-zero if TYPE is a struct-like type, zero otherwise.
1823 "Struct-like" types are those that should be passed as structs are:
1826 As an odd quirk, not mentioned in the ABI, GCC passes float and
1827 double singletons as if they were a plain float, double, etc. (The
1828 corresponding union types are handled normally.) So we exclude
1829 those types here. *shrug* */
1831 is_struct_like (struct type *type)
1833 enum type_code code = TYPE_CODE (type);
1835 return (code == TYPE_CODE_UNION
1836 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
1840 /* Return non-zero if TYPE is a float-like type, zero otherwise.
1841 "Float-like" types are those that should be passed as
1842 floating-point values are.
1844 You'd think this would just be floats, doubles, long doubles, etc.
1845 But as an odd quirk, not mentioned in the ABI, GCC passes float and
1846 double singletons as if they were a plain float, double, etc. (The
1847 corresponding union types are handled normally.) So we include
1848 those types here. *shrug* */
1850 is_float_like (struct type *type)
1852 return (TYPE_CODE (type) == TYPE_CODE_FLT
1853 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1854 || is_float_singleton (type));
1859 is_power_of_two (unsigned int n)
1861 return ((n & (n - 1)) == 0);
1864 /* Return non-zero if TYPE should be passed as a pointer to a copy,
1867 s390_function_arg_pass_by_reference (struct type *type)
1869 unsigned length = TYPE_LENGTH (type);
1873 /* FIXME: All complex and vector types are also returned by reference. */
1874 return is_struct_like (type) && !is_power_of_two (length);
1877 /* Return non-zero if TYPE should be passed in a float register
1880 s390_function_arg_float (struct type *type)
1882 unsigned length = TYPE_LENGTH (type);
1886 return is_float_like (type);
1889 /* Return non-zero if TYPE should be passed in an integer register
1890 (or a pair of integer registers) if possible. */
1892 s390_function_arg_integer (struct type *type)
1894 unsigned length = TYPE_LENGTH (type);
1898 return is_integer_like (type)
1899 || is_pointer_like (type)
1900 || (is_struct_like (type) && is_power_of_two (length));
1903 /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
1904 word as required for the ABI. */
1906 extend_simple_arg (struct value *arg)
1908 struct type *type = value_type (arg);
1910 /* Even structs get passed in the least significant bits of the
1911 register / memory word. It's not really right to extract them as
1912 an integer, but it does take care of the extension. */
1913 if (TYPE_UNSIGNED (type))
1914 return extract_unsigned_integer (value_contents (arg),
1915 TYPE_LENGTH (type));
1917 return extract_signed_integer (value_contents (arg),
1918 TYPE_LENGTH (type));
1922 /* Return the alignment required by TYPE. */
1924 alignment_of (struct type *type)
1928 if (is_integer_like (type)
1929 || is_pointer_like (type)
1930 || TYPE_CODE (type) == TYPE_CODE_FLT
1931 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1932 alignment = TYPE_LENGTH (type);
1933 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1934 || TYPE_CODE (type) == TYPE_CODE_UNION)
1939 for (i = 0; i < TYPE_NFIELDS (type); i++)
1941 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
1943 if (field_alignment > alignment)
1944 alignment = field_alignment;
1950 /* Check that everything we ever return is a power of two. Lots of
1951 code doesn't want to deal with aligning things to arbitrary
1953 gdb_assert ((alignment & (alignment - 1)) == 0);
1959 /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
1960 place to be passed to a function, as specified by the "GNU/Linux
1961 for S/390 ELF Application Binary Interface Supplement".
1963 SP is the current stack pointer. We must put arguments, links,
1964 padding, etc. whereever they belong, and return the new stack
1967 If STRUCT_RETURN is non-zero, then the function we're calling is
1968 going to return a structure by value; STRUCT_ADDR is the address of
1969 a block we've allocated for it on the stack.
1971 Our caller has taken care of any type promotions needed to satisfy
1972 prototypes or the old K&R argument-passing rules. */
1974 s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1975 struct regcache *regcache, CORE_ADDR bp_addr,
1976 int nargs, struct value **args, CORE_ADDR sp,
1977 int struct_return, CORE_ADDR struct_addr)
1979 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1980 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1984 /* If the i'th argument is passed as a reference to a copy, then
1985 copy_addr[i] is the address of the copy we made. */
1986 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
1988 /* Build the reference-to-copy area. */
1989 for (i = 0; i < nargs; i++)
1991 struct value *arg = args[i];
1992 struct type *type = value_type (arg);
1993 unsigned length = TYPE_LENGTH (type);
1995 if (s390_function_arg_pass_by_reference (type))
1998 sp = align_down (sp, alignment_of (type));
1999 write_memory (sp, value_contents (arg), length);
2004 /* Reserve space for the parameter area. As a conservative
2005 simplification, we assume that everything will be passed on the
2006 stack. Since every argument larger than 8 bytes will be
2007 passed by reference, we use this simple upper bound. */
2010 /* After all that, make sure it's still aligned on an eight-byte
2012 sp = align_down (sp, 8);
2014 /* Finally, place the actual parameters, working from SP towards
2015 higher addresses. The code above is supposed to reserve enough
2020 CORE_ADDR starg = sp;
2022 /* A struct is returned using general register 2. */
2025 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2030 for (i = 0; i < nargs; i++)
2032 struct value *arg = args[i];
2033 struct type *type = value_type (arg);
2034 unsigned length = TYPE_LENGTH (type);
2036 if (s390_function_arg_pass_by_reference (type))
2040 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2046 write_memory_unsigned_integer (starg, word_size, copy_addr[i]);
2050 else if (s390_function_arg_float (type))
2052 /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
2053 the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
2054 if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
2056 /* When we store a single-precision value in an FP register,
2057 it occupies the leftmost bits. */
2058 regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
2059 0, length, value_contents (arg));
2064 /* When we store a single-precision value in a stack slot,
2065 it occupies the rightmost bits. */
2066 starg = align_up (starg + length, word_size);
2067 write_memory (starg - length, value_contents (arg), length);
2070 else if (s390_function_arg_integer (type) && length <= word_size)
2074 /* Integer arguments are always extended to word size. */
2075 regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
2076 extend_simple_arg (arg));
2081 /* Integer arguments are always extended to word size. */
2082 write_memory_signed_integer (starg, word_size,
2083 extend_simple_arg (arg));
2087 else if (s390_function_arg_integer (type) && length == 2*word_size)
2091 regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
2092 value_contents (arg));
2093 regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
2094 value_contents (arg) + word_size);
2099 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
2100 in it, then don't go back and use it again later. */
2103 write_memory (starg, value_contents (arg), length);
2108 internal_error (__FILE__, __LINE__, _("unknown argument type"));
2112 /* Allocate the standard frame areas: the register save area, the
2113 word reserved for the compiler (which seems kind of meaningless),
2114 and the back chain pointer. */
2115 sp -= 16*word_size + 32;
2117 /* Store return address. */
2118 regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
2120 /* Store updated stack pointer. */
2121 regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
2123 /* We need to return the 'stack part' of the frame ID,
2124 which is actually the top of the register save area. */
2125 return sp + 16*word_size + 32;
2128 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
2129 dummy frame. The frame ID's base needs to match the TOS value
2130 returned by push_dummy_call, and the PC match the dummy frame's
2132 static struct frame_id
2133 s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2135 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2136 CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2137 sp = gdbarch_addr_bits_remove (gdbarch, sp);
2139 return frame_id_build (sp + 16*word_size + 32,
2140 get_frame_pc (this_frame));
2144 s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2146 /* Both the 32- and 64-bit ABI's say that the stack pointer should
2147 always be aligned on an eight-byte boundary. */
2152 /* Function return value access. */
2154 static enum return_value_convention
2155 s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
2157 int length = TYPE_LENGTH (type);
2159 return RETURN_VALUE_STRUCT_CONVENTION;
2161 switch (TYPE_CODE (type))
2163 case TYPE_CODE_STRUCT:
2164 case TYPE_CODE_UNION:
2165 case TYPE_CODE_ARRAY:
2166 return RETURN_VALUE_STRUCT_CONVENTION;
2169 return RETURN_VALUE_REGISTER_CONVENTION;
2173 static enum return_value_convention
2174 s390_return_value (struct gdbarch *gdbarch, struct type *func_type,
2175 struct type *type, struct regcache *regcache,
2176 gdb_byte *out, const gdb_byte *in)
2178 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2179 int length = TYPE_LENGTH (type);
2180 enum return_value_convention rvc =
2181 s390_return_value_convention (gdbarch, type);
2186 case RETURN_VALUE_REGISTER_CONVENTION:
2187 if (TYPE_CODE (type) == TYPE_CODE_FLT
2188 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2190 /* When we store a single-precision value in an FP register,
2191 it occupies the leftmost bits. */
2192 regcache_cooked_write_part (regcache, S390_F0_REGNUM,
2195 else if (length <= word_size)
2197 /* Integer arguments are always extended to word size. */
2198 if (TYPE_UNSIGNED (type))
2199 regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
2200 extract_unsigned_integer (in, length));
2202 regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
2203 extract_signed_integer (in, length));
2205 else if (length == 2*word_size)
2207 regcache_cooked_write (regcache, S390_R2_REGNUM, in);
2208 regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
2211 internal_error (__FILE__, __LINE__, _("invalid return type"));
2214 case RETURN_VALUE_STRUCT_CONVENTION:
2215 error (_("Cannot set function return value."));
2223 case RETURN_VALUE_REGISTER_CONVENTION:
2224 if (TYPE_CODE (type) == TYPE_CODE_FLT
2225 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2227 /* When we store a single-precision value in an FP register,
2228 it occupies the leftmost bits. */
2229 regcache_cooked_read_part (regcache, S390_F0_REGNUM,
2232 else if (length <= word_size)
2234 /* Integer arguments occupy the rightmost bits. */
2235 regcache_cooked_read_part (regcache, S390_R2_REGNUM,
2236 word_size - length, length, out);
2238 else if (length == 2*word_size)
2240 regcache_cooked_read (regcache, S390_R2_REGNUM, out);
2241 regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
2244 internal_error (__FILE__, __LINE__, _("invalid return type"));
2247 case RETURN_VALUE_STRUCT_CONVENTION:
2248 error (_("Function return value unknown."));
2259 static const gdb_byte *
2260 s390_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
2262 static const gdb_byte breakpoint[] = { 0x0, 0x1 };
2264 *lenptr = sizeof (breakpoint);
2269 /* Address handling. */
2272 s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2274 return addr & 0x7fffffff;
2278 s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
2281 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2287 s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
2289 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
2296 s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name,
2297 int *type_flags_ptr)
2299 if (strcmp (name, "mode32") == 0)
2301 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2308 /* Set up gdbarch struct. */
2310 static struct gdbarch *
2311 s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2313 struct gdbarch *gdbarch;
2314 struct gdbarch_tdep *tdep;
2316 /* First see if there is already a gdbarch that can satisfy the request. */
2317 arches = gdbarch_list_lookup_by_info (arches, &info);
2319 return arches->gdbarch;
2321 /* None found: is the request for a s390 architecture? */
2322 if (info.bfd_arch_info->arch != bfd_arch_s390)
2323 return NULL; /* No; then it's not for us. */
2325 /* Yes: create a new gdbarch for the specified machine type. */
2326 tdep = XCALLOC (1, struct gdbarch_tdep);
2327 gdbarch = gdbarch_alloc (&info, tdep);
2329 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
2330 set_gdbarch_char_signed (gdbarch, 0);
2332 /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
2333 We can safely let them default to 128-bit, since the debug info
2334 will give the size of type actually used in each case. */
2335 set_gdbarch_long_double_bit (gdbarch, 128);
2336 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2338 /* Amount PC must be decremented by after a breakpoint. This is
2339 often the number of bytes returned by gdbarch_breakpoint_from_pc but not
2341 set_gdbarch_decr_pc_after_break (gdbarch, 2);
2342 /* Stack grows downward. */
2343 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2344 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
2345 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
2346 set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
2348 set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
2349 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
2350 set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
2351 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
2352 set_gdbarch_num_pseudo_regs (gdbarch, S390_NUM_PSEUDO_REGS);
2353 set_gdbarch_register_name (gdbarch, s390_register_name);
2354 set_gdbarch_register_type (gdbarch, s390_register_type);
2355 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
2356 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
2357 set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
2358 set_gdbarch_register_reggroup_p (gdbarch, s390_register_reggroup_p);
2359 set_gdbarch_regset_from_core_section (gdbarch,
2360 s390_regset_from_core_section);
2362 /* Inferior function calls. */
2363 set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
2364 set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
2365 set_gdbarch_frame_align (gdbarch, s390_frame_align);
2366 set_gdbarch_return_value (gdbarch, s390_return_value);
2368 /* Frame handling. */
2369 dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
2370 dwarf2_append_unwinders (gdbarch);
2371 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
2372 frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
2373 frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
2374 frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
2375 frame_base_set_default (gdbarch, &s390_frame_base);
2376 set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
2377 set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
2379 switch (info.bfd_arch_info->mach)
2381 case bfd_mach_s390_31:
2382 tdep->abi = ABI_LINUX_S390;
2384 tdep->gregset = &s390_gregset;
2385 tdep->sizeof_gregset = s390_sizeof_gregset;
2386 tdep->fpregset = &s390_fpregset;
2387 tdep->sizeof_fpregset = s390_sizeof_fpregset;
2389 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
2390 set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
2391 set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
2392 set_solib_svr4_fetch_link_map_offsets
2393 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
2396 case bfd_mach_s390_64:
2397 tdep->abi = ABI_LINUX_ZSERIES;
2399 tdep->gregset = &s390x_gregset;
2400 tdep->sizeof_gregset = s390x_sizeof_gregset;
2401 tdep->fpregset = &s390_fpregset;
2402 tdep->sizeof_fpregset = s390_sizeof_fpregset;
2404 set_gdbarch_long_bit (gdbarch, 64);
2405 set_gdbarch_long_long_bit (gdbarch, 64);
2406 set_gdbarch_ptr_bit (gdbarch, 64);
2407 set_gdbarch_pseudo_register_read (gdbarch, s390x_pseudo_register_read);
2408 set_gdbarch_pseudo_register_write (gdbarch, s390x_pseudo_register_write);
2409 set_solib_svr4_fetch_link_map_offsets
2410 (gdbarch, svr4_lp64_fetch_link_map_offsets);
2411 set_gdbarch_address_class_type_flags (gdbarch,
2412 s390_address_class_type_flags);
2413 set_gdbarch_address_class_type_flags_to_name (gdbarch,
2414 s390_address_class_type_flags_to_name);
2415 set_gdbarch_address_class_name_to_type_flags (gdbarch,
2416 s390_address_class_name_to_type_flags);
2420 set_gdbarch_print_insn (gdbarch, print_insn_s390);
2422 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2424 /* Enable TLS support. */
2425 set_gdbarch_fetch_tls_load_module_address (gdbarch,
2426 svr4_fetch_objfile_link_map);
2433 extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
2436 _initialize_s390_tdep (void)
2439 /* Hook us into the gdbarch mechanism. */
2440 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);