1 /* Target-dependent code for the Renesas RX for GDB, the GNU debugger.
3 Copyright (C) 2008-2019 Free Software Foundation, Inc.
5 Contributed by Red Hat, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
24 #include "prologue-value.h"
27 #include "opcode/rx.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
35 #include "dwarf2-frame.h"
41 /* Certain important register numbers. */
62 RX_FRAME_TYPE_EXCEPTION,
63 RX_FRAME_TYPE_FAST_INTERRUPT
66 /* Architecture specific data. */
69 /* The ELF header flags specify the multilib used. */
72 /* Type of PSW and BPSW. */
73 struct type *rx_psw_type;
76 struct type *rx_fpsw_type;
79 /* This structure holds the results of a prologue analysis. */
82 /* Frame type, either a normal frame or one of two types of exception
84 enum rx_frame_type frame_type;
86 /* The offset from the frame base to the stack pointer --- always
89 Calling this a "size" is a bit misleading, but given that the
90 stack grows downwards, using offsets for everything keeps one
91 from going completely sign-crazy: you never change anything's
92 sign for an ADD instruction; always change the second operand's
93 sign for a SUB instruction; and everything takes care of
97 /* Non-zero if this function has initialized the frame pointer from
98 the stack pointer, zero otherwise. */
101 /* If has_frame_ptr is non-zero, this is the offset from the frame
102 base to where the frame pointer points. This is always zero or
104 int frame_ptr_offset;
106 /* The address of the first instruction at which the frame has been
107 set up and the arguments are where the debug info says they are
108 --- as best as we can tell. */
109 CORE_ADDR prologue_end;
111 /* reg_offset[R] is the offset from the CFA at which register R is
112 saved, or 1 if register R has not been saved. (Real values are
113 always zero or negative.) */
114 int reg_offset[RX_NUM_REGS];
117 /* Implement the "register_name" gdbarch method. */
119 rx_register_name (struct gdbarch *gdbarch, int regnr)
121 static const char *const reg_names[] = {
150 return reg_names[regnr];
153 /* Construct the flags type for PSW and BPSW. */
156 rx_psw_type (struct gdbarch *gdbarch)
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
160 if (tdep->rx_psw_type == NULL)
162 tdep->rx_psw_type = arch_flags_type (gdbarch, "rx_psw_type", 32);
163 append_flags_type_flag (tdep->rx_psw_type, 0, "C");
164 append_flags_type_flag (tdep->rx_psw_type, 1, "Z");
165 append_flags_type_flag (tdep->rx_psw_type, 2, "S");
166 append_flags_type_flag (tdep->rx_psw_type, 3, "O");
167 append_flags_type_flag (tdep->rx_psw_type, 16, "I");
168 append_flags_type_flag (tdep->rx_psw_type, 17, "U");
169 append_flags_type_flag (tdep->rx_psw_type, 20, "PM");
170 append_flags_type_flag (tdep->rx_psw_type, 24, "IPL0");
171 append_flags_type_flag (tdep->rx_psw_type, 25, "IPL1");
172 append_flags_type_flag (tdep->rx_psw_type, 26, "IPL2");
173 append_flags_type_flag (tdep->rx_psw_type, 27, "IPL3");
175 return tdep->rx_psw_type;
178 /* Construct flags type for FPSW. */
181 rx_fpsw_type (struct gdbarch *gdbarch)
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185 if (tdep->rx_fpsw_type == NULL)
187 tdep->rx_fpsw_type = arch_flags_type (gdbarch, "rx_fpsw_type", 32);
188 append_flags_type_flag (tdep->rx_fpsw_type, 0, "RM0");
189 append_flags_type_flag (tdep->rx_fpsw_type, 1, "RM1");
190 append_flags_type_flag (tdep->rx_fpsw_type, 2, "CV");
191 append_flags_type_flag (tdep->rx_fpsw_type, 3, "CO");
192 append_flags_type_flag (tdep->rx_fpsw_type, 4, "CZ");
193 append_flags_type_flag (tdep->rx_fpsw_type, 5, "CU");
194 append_flags_type_flag (tdep->rx_fpsw_type, 6, "CX");
195 append_flags_type_flag (tdep->rx_fpsw_type, 7, "CE");
196 append_flags_type_flag (tdep->rx_fpsw_type, 8, "DN");
197 append_flags_type_flag (tdep->rx_fpsw_type, 10, "EV");
198 append_flags_type_flag (tdep->rx_fpsw_type, 11, "EO");
199 append_flags_type_flag (tdep->rx_fpsw_type, 12, "EZ");
200 append_flags_type_flag (tdep->rx_fpsw_type, 13, "EU");
201 append_flags_type_flag (tdep->rx_fpsw_type, 14, "EX");
202 append_flags_type_flag (tdep->rx_fpsw_type, 26, "FV");
203 append_flags_type_flag (tdep->rx_fpsw_type, 27, "FO");
204 append_flags_type_flag (tdep->rx_fpsw_type, 28, "FZ");
205 append_flags_type_flag (tdep->rx_fpsw_type, 29, "FU");
206 append_flags_type_flag (tdep->rx_fpsw_type, 30, "FX");
207 append_flags_type_flag (tdep->rx_fpsw_type, 31, "FS");
210 return tdep->rx_fpsw_type;
213 /* Implement the "register_type" gdbarch method. */
215 rx_register_type (struct gdbarch *gdbarch, int reg_nr)
217 if (reg_nr == RX_PC_REGNUM)
218 return builtin_type (gdbarch)->builtin_func_ptr;
219 else if (reg_nr == RX_PSW_REGNUM || reg_nr == RX_BPSW_REGNUM)
220 return rx_psw_type (gdbarch);
221 else if (reg_nr == RX_FPSW_REGNUM)
222 return rx_fpsw_type (gdbarch);
223 else if (reg_nr == RX_ACC_REGNUM)
224 return builtin_type (gdbarch)->builtin_unsigned_long_long;
226 return builtin_type (gdbarch)->builtin_unsigned_long;
230 /* Function for finding saved registers in a 'struct pv_area'; this
231 function is passed to pv_area::scan.
233 If VALUE is a saved register, ADDR says it was saved at a constant
234 offset from the frame base, and SIZE indicates that the whole
235 register was saved, record its offset. */
237 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
239 struct rx_prologue *result = (struct rx_prologue *) result_untyped;
241 if (value.kind == pvk_register
243 && pv_is_register (addr, RX_SP_REGNUM)
244 && size == register_size (target_gdbarch (), value.reg))
245 result->reg_offset[value.reg] = addr.k;
248 /* Define a "handle" struct for fetching the next opcode. */
249 struct rx_get_opcode_byte_handle
254 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
255 the memory address of the next byte to fetch. If successful,
256 the address in the handle is updated and the byte fetched is
257 returned as the value of the function. If not successful, -1
260 rx_get_opcode_byte (void *handle)
262 struct rx_get_opcode_byte_handle *opcdata
263 = (struct rx_get_opcode_byte_handle *) handle;
267 status = target_read_code (opcdata->pc, &byte, 1);
277 /* Analyze a prologue starting at START_PC, going no further than
278 LIMIT_PC. Fill in RESULT as appropriate. */
281 rx_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
282 enum rx_frame_type frame_type,
283 struct rx_prologue *result)
285 CORE_ADDR pc, next_pc;
287 pv_t reg[RX_NUM_REGS];
288 CORE_ADDR after_last_frame_setup_insn = start_pc;
290 memset (result, 0, sizeof (*result));
292 result->frame_type = frame_type;
294 for (rn = 0; rn < RX_NUM_REGS; rn++)
296 reg[rn] = pv_register (rn, 0);
297 result->reg_offset[rn] = 1;
300 pv_area stack (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
302 if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT)
304 /* This code won't do anything useful at present, but this is
305 what happens for fast interrupts. */
306 reg[RX_BPSW_REGNUM] = reg[RX_PSW_REGNUM];
307 reg[RX_BPC_REGNUM] = reg[RX_PC_REGNUM];
311 /* When an exception occurs, the PSW is saved to the interrupt stack
313 if (frame_type == RX_FRAME_TYPE_EXCEPTION)
315 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
316 stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PSW_REGNUM]);
319 /* The call instruction (or an exception/interrupt) has saved the return
320 address on the stack. */
321 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
322 stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]);
328 while (pc < limit_pc)
331 struct rx_get_opcode_byte_handle opcode_handle;
332 RX_Opcode_Decoded opc;
334 opcode_handle.pc = pc;
335 bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
337 next_pc = pc + bytes_read;
339 if (opc.id == RXO_pushm /* pushm r1, r2 */
340 && opc.op[1].type == RX_Operand_Register
341 && opc.op[2].type == RX_Operand_Register)
348 for (r = r2; r >= r1; r--)
350 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
351 stack.store (reg[RX_SP_REGNUM], 4, reg[r]);
353 after_last_frame_setup_insn = next_pc;
355 else if (opc.id == RXO_mov /* mov.l rdst, rsrc */
356 && opc.op[0].type == RX_Operand_Register
357 && opc.op[1].type == RX_Operand_Register
358 && opc.size == RX_Long)
362 rdst = opc.op[0].reg;
363 rsrc = opc.op[1].reg;
364 reg[rdst] = reg[rsrc];
365 if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM)
366 after_last_frame_setup_insn = next_pc;
368 else if (opc.id == RXO_mov /* mov.l rsrc, [-SP] */
369 && opc.op[0].type == RX_Operand_Predec
370 && opc.op[0].reg == RX_SP_REGNUM
371 && opc.op[1].type == RX_Operand_Register
372 && opc.size == RX_Long)
376 rsrc = opc.op[1].reg;
377 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
378 stack.store (reg[RX_SP_REGNUM], 4, reg[rsrc]);
379 after_last_frame_setup_insn = next_pc;
381 else if (opc.id == RXO_add /* add #const, rsrc, rdst */
382 && opc.op[0].type == RX_Operand_Register
383 && opc.op[1].type == RX_Operand_Immediate
384 && opc.op[2].type == RX_Operand_Register)
386 int rdst = opc.op[0].reg;
387 int addend = opc.op[1].addend;
388 int rsrc = opc.op[2].reg;
389 reg[rdst] = pv_add_constant (reg[rsrc], addend);
390 /* Negative adjustments to the stack pointer or frame pointer
391 are (most likely) part of the prologue. */
392 if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0)
393 after_last_frame_setup_insn = next_pc;
395 else if (opc.id == RXO_mov
396 && opc.op[0].type == RX_Operand_Indirect
397 && opc.op[1].type == RX_Operand_Register
398 && opc.size == RX_Long
399 && (opc.op[0].reg == RX_SP_REGNUM
400 || opc.op[0].reg == RX_FP_REGNUM)
401 && (RX_R1_REGNUM <= opc.op[1].reg
402 && opc.op[1].reg <= RX_R4_REGNUM))
404 /* This moves an argument register to the stack. Don't
405 record it, but allow it to be a part of the prologue. */
407 else if (opc.id == RXO_branch
408 && opc.op[0].type == RX_Operand_Immediate
409 && next_pc < opc.op[0].addend)
411 /* When a loop appears as the first statement of a function
412 body, gcc 4.x will use a BRA instruction to branch to the
413 loop condition checking code. This BRA instruction is
414 marked as part of the prologue. We therefore set next_pc
415 to this branch target and also stop the prologue scan.
416 The instructions at and beyond the branch target should
417 no longer be associated with the prologue.
419 Note that we only consider forward branches here. We
420 presume that a forward branch is being used to skip over
423 A backwards branch is covered by the default case below.
424 If we were to encounter a backwards branch, that would
425 most likely mean that we've scanned through a loop body.
426 We definitely want to stop the prologue scan when this
427 happens and that is precisely what is done by the default
430 after_last_frame_setup_insn = opc.op[0].addend;
431 break; /* Scan no further if we hit this case. */
435 /* Terminate the prologue scan. */
442 /* Is the frame size (offset, really) a known constant? */
443 if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM))
444 result->frame_size = reg[RX_SP_REGNUM].k;
446 /* Was the frame pointer initialized? */
447 if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM))
449 result->has_frame_ptr = 1;
450 result->frame_ptr_offset = reg[RX_FP_REGNUM].k;
453 /* Record where all the registers were saved. */
454 stack.scan (check_for_saved, (void *) result);
456 result->prologue_end = after_last_frame_setup_insn;
460 /* Implement the "skip_prologue" gdbarch method. */
462 rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
465 CORE_ADDR func_addr, func_end;
466 struct rx_prologue p;
468 /* Try to find the extent of the function that contains PC. */
469 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
472 /* The frame type doesn't matter here, since we only care about
473 where the prologue ends. We'll use RX_FRAME_TYPE_NORMAL. */
474 rx_analyze_prologue (pc, func_end, RX_FRAME_TYPE_NORMAL, &p);
475 return p.prologue_end;
478 /* Given a frame described by THIS_FRAME, decode the prologue of its
479 associated function if there is not cache entry as specified by
480 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
481 return that struct as the value of this function. */
483 static struct rx_prologue *
484 rx_analyze_frame_prologue (struct frame_info *this_frame,
485 enum rx_frame_type frame_type,
486 void **this_prologue_cache)
488 if (!*this_prologue_cache)
490 CORE_ADDR func_start, stop_addr;
492 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue);
494 func_start = get_frame_func (this_frame);
495 stop_addr = get_frame_pc (this_frame);
497 /* If we couldn't find any function containing the PC, then
498 just initialize the prologue cache, but don't do anything. */
500 stop_addr = func_start;
502 rx_analyze_prologue (func_start, stop_addr, frame_type,
503 (struct rx_prologue *) *this_prologue_cache);
506 return (struct rx_prologue *) *this_prologue_cache;
509 /* Determine type of frame by scanning the function for a return
512 static enum rx_frame_type
513 rx_frame_type (struct frame_info *this_frame, void **this_cache)
516 CORE_ADDR pc, start_pc, lim_pc;
518 struct rx_get_opcode_byte_handle opcode_handle;
519 RX_Opcode_Decoded opc;
521 gdb_assert (this_cache != NULL);
523 /* If we have a cached value, return it. */
525 if (*this_cache != NULL)
527 struct rx_prologue *p = (struct rx_prologue *) *this_cache;
529 return p->frame_type;
532 /* No cached value; scan the function. The frame type is cached in
533 rx_analyze_prologue / rx_analyze_frame_prologue. */
535 pc = get_frame_pc (this_frame);
537 /* Attempt to find the last address in the function. If it cannot
538 be determined, set the limit to be a short ways past the frame's
540 if (!find_pc_partial_function (pc, &name, &start_pc, &lim_pc))
545 opcode_handle.pc = pc;
546 bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
549 if (bytes_read <= 0 || opc.id == RXO_rts)
550 return RX_FRAME_TYPE_NORMAL;
551 else if (opc.id == RXO_rtfi)
552 return RX_FRAME_TYPE_FAST_INTERRUPT;
553 else if (opc.id == RXO_rte)
554 return RX_FRAME_TYPE_EXCEPTION;
559 return RX_FRAME_TYPE_NORMAL;
563 /* Given the next frame and a prologue cache, return this frame's
567 rx_frame_base (struct frame_info *this_frame, void **this_cache)
569 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
570 struct rx_prologue *p
571 = rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
573 /* In functions that use alloca, the distance between the stack
574 pointer and the frame base varies dynamically, so we can't use
575 the SP plus static information like prologue analysis to find the
576 frame base. However, such functions must have a frame pointer,
577 to be able to restore the SP on exit. So whenever we do have a
578 frame pointer, use that to find the base. */
579 if (p->has_frame_ptr)
581 CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM);
582 return fp - p->frame_ptr_offset;
586 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM);
587 return sp - p->frame_size;
591 /* Implement the "frame_this_id" method for unwinding frames. */
594 rx_frame_this_id (struct frame_info *this_frame, void **this_cache,
595 struct frame_id *this_id)
597 *this_id = frame_id_build (rx_frame_base (this_frame, this_cache),
598 get_frame_func (this_frame));
601 /* Implement the "frame_prev_register" method for unwinding frames. */
603 static struct value *
604 rx_frame_prev_register (struct frame_info *this_frame, void **this_cache,
607 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
608 struct rx_prologue *p
609 = rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
610 CORE_ADDR frame_base = rx_frame_base (this_frame, this_cache);
612 if (regnum == RX_SP_REGNUM)
614 if (frame_type == RX_FRAME_TYPE_EXCEPTION)
616 struct value *psw_val;
619 psw_val = rx_frame_prev_register (this_frame, this_cache,
621 psw = extract_unsigned_integer (value_contents_all (psw_val), 4,
623 get_frame_arch (this_frame)));
625 if ((psw & 0x20000 /* U bit */) != 0)
626 return rx_frame_prev_register (this_frame, this_cache,
629 /* Fall through for the case where U bit is zero. */
632 return frame_unwind_got_constant (this_frame, regnum, frame_base);
635 if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT)
637 if (regnum == RX_PC_REGNUM)
638 return rx_frame_prev_register (this_frame, this_cache,
640 if (regnum == RX_PSW_REGNUM)
641 return rx_frame_prev_register (this_frame, this_cache,
645 /* If prologue analysis says we saved this register somewhere,
646 return a description of the stack slot holding it. */
647 if (p->reg_offset[regnum] != 1)
648 return frame_unwind_got_memory (this_frame, regnum,
649 frame_base + p->reg_offset[regnum]);
651 /* Otherwise, presume we haven't changed the value of this
652 register, and get it from the next frame. */
653 return frame_unwind_got_register (this_frame, regnum, regnum);
656 /* Return TRUE if the frame indicated by FRAME_TYPE is a normal frame. */
659 normal_frame_p (enum rx_frame_type frame_type)
661 return (frame_type == RX_FRAME_TYPE_NORMAL);
664 /* Return TRUE if the frame indicated by FRAME_TYPE is an exception
668 exception_frame_p (enum rx_frame_type frame_type)
670 return (frame_type == RX_FRAME_TYPE_EXCEPTION
671 || frame_type == RX_FRAME_TYPE_FAST_INTERRUPT);
674 /* Common code used by both normal and exception frame sniffers. */
677 rx_frame_sniffer_common (const struct frame_unwind *self,
678 struct frame_info *this_frame,
680 int (*sniff_p)(enum rx_frame_type) )
682 gdb_assert (this_cache != NULL);
684 if (*this_cache == NULL)
686 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
688 if (sniff_p (frame_type))
690 /* The call below will fill in the cache, including the frame
692 (void) rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
701 struct rx_prologue *p = (struct rx_prologue *) *this_cache;
703 return sniff_p (p->frame_type);
707 /* Frame sniffer for normal (non-exception) frames. */
710 rx_frame_sniffer (const struct frame_unwind *self,
711 struct frame_info *this_frame,
714 return rx_frame_sniffer_common (self, this_frame, this_cache,
718 /* Frame sniffer for exception frames. */
721 rx_exception_sniffer (const struct frame_unwind *self,
722 struct frame_info *this_frame,
725 return rx_frame_sniffer_common (self, this_frame, this_cache,
729 /* Data structure for normal code using instruction-based prologue
732 static const struct frame_unwind rx_frame_unwind = {
734 default_frame_unwind_stop_reason,
736 rx_frame_prev_register,
741 /* Data structure for exception code using instruction-based prologue
744 static const struct frame_unwind rx_exception_unwind = {
745 /* SIGTRAMP_FRAME could be used here, but backtraces are less informative. */
747 default_frame_unwind_stop_reason,
749 rx_frame_prev_register,
754 /* Implement the "unwind_pc" gdbarch method. */
756 rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
760 pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM);
764 /* Implement the "unwind_sp" gdbarch method. */
766 rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
770 sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM);
774 /* Implement the "dummy_id" gdbarch method. */
775 static struct frame_id
776 rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
779 frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM),
780 get_frame_pc (this_frame));
783 /* Implement the "push_dummy_call" gdbarch method. */
785 rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
786 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
787 struct value **args, CORE_ADDR sp,
788 function_call_return_method return_method,
789 CORE_ADDR struct_addr)
791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
795 int num_register_candidate_args;
797 struct type *func_type = value_type (function);
799 /* Dereference function pointer types. */
800 while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
801 func_type = TYPE_TARGET_TYPE (func_type);
803 /* The end result had better be a function or a method. */
804 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
805 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
807 /* Functions with a variable number of arguments have all of their
808 variable arguments and the last non-variable argument passed
811 Otherwise, we can pass up to four arguments on the stack.
813 Once computed, we leave this value alone. I.e. we don't update
814 it in case of a struct return going in a register or an argument
815 requiring multiple registers, etc. We rely instead on the value
816 of the ``arg_reg'' variable to get these other details correct. */
818 if (TYPE_VARARGS (func_type))
819 num_register_candidate_args = TYPE_NFIELDS (func_type) - 1;
821 num_register_candidate_args = 4;
823 /* We make two passes; the first does the stack allocation,
824 the second actually stores the arguments. */
825 for (write_pass = 0; write_pass <= 1; write_pass++)
828 int arg_reg = RX_R1_REGNUM;
831 sp = align_down (sp - sp_off, 4);
834 if (return_method == return_method_struct)
836 struct type *return_type = TYPE_TARGET_TYPE (func_type);
838 gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT
839 || TYPE_CODE (func_type) == TYPE_CODE_UNION);
841 if (TYPE_LENGTH (return_type) > 16
842 || TYPE_LENGTH (return_type) % 4 != 0)
845 regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
850 /* Push the arguments. */
851 for (i = 0; i < nargs; i++)
853 struct value *arg = args[i];
854 const gdb_byte *arg_bits = value_contents_all (arg);
855 struct type *arg_type = check_typedef (value_type (arg));
856 ULONGEST arg_size = TYPE_LENGTH (arg_type);
858 if (i == 0 && struct_addr != 0
859 && return_method != return_method_struct
860 && TYPE_CODE (arg_type) == TYPE_CODE_PTR
861 && extract_unsigned_integer (arg_bits, 4,
862 byte_order) == struct_addr)
864 /* This argument represents the address at which C++ (and
865 possibly other languages) store their return value.
866 Put this value in R15. */
868 regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
871 else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT
872 && TYPE_CODE (arg_type) != TYPE_CODE_UNION
875 /* Argument is a scalar. */
878 if (i < num_register_candidate_args
879 && arg_reg <= RX_R4_REGNUM - 1)
881 /* If argument registers are going to be used to pass
882 an 8 byte scalar, the ABI specifies that two registers
883 must be available. */
886 regcache_cooked_write_unsigned (regcache, arg_reg,
887 extract_unsigned_integer
890 regcache_cooked_write_unsigned (regcache,
892 extract_unsigned_integer
900 sp_off = align_up (sp_off, 4);
901 /* Otherwise, pass the 8 byte scalar on the stack. */
903 write_memory (sp + sp_off, arg_bits, 8);
911 gdb_assert (arg_size <= 4);
914 extract_unsigned_integer (arg_bits, arg_size, byte_order);
916 if (i < num_register_candidate_args
917 && arg_reg <= RX_R4_REGNUM)
920 regcache_cooked_write_unsigned (regcache, arg_reg, u);
927 if (TYPE_PROTOTYPED (func_type)
928 && i < TYPE_NFIELDS (func_type))
930 struct type *p_arg_type =
931 TYPE_FIELD_TYPE (func_type, i);
932 p_arg_size = TYPE_LENGTH (p_arg_type);
935 sp_off = align_up (sp_off, p_arg_size);
938 write_memory_unsigned_integer (sp + sp_off,
939 p_arg_size, byte_order,
941 sp_off += p_arg_size;
947 /* Argument is a struct or union. Pass as much of the struct
948 in registers, if possible. Pass the rest on the stack. */
951 if (i < num_register_candidate_args
952 && arg_reg <= RX_R4_REGNUM
953 && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1)
954 && arg_size % 4 == 0)
956 int len = std::min (arg_size, (ULONGEST) 4);
959 regcache_cooked_write_unsigned (regcache, arg_reg,
960 extract_unsigned_integer
969 sp_off = align_up (sp_off, 4);
971 write_memory (sp + sp_off, arg_bits, arg_size);
972 sp_off += align_up (arg_size, 4);
980 /* Keep track of the stack address prior to pushing the return address.
981 This is the value that we'll return. */
984 /* Push the return address. */
986 write_memory_unsigned_integer (sp, 4, byte_order, bp_addr);
988 /* Update the stack pointer. */
989 regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp);
994 /* Implement the "return_value" gdbarch method. */
995 static enum return_value_convention
996 rx_return_value (struct gdbarch *gdbarch,
997 struct value *function,
998 struct type *valtype,
999 struct regcache *regcache,
1000 gdb_byte *readbuf, const gdb_byte *writebuf)
1002 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1003 ULONGEST valtype_len = TYPE_LENGTH (valtype);
1005 if (TYPE_LENGTH (valtype) > 16
1006 || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1007 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
1008 && TYPE_LENGTH (valtype) % 4 != 0))
1009 return RETURN_VALUE_STRUCT_CONVENTION;
1014 int argreg = RX_R1_REGNUM;
1017 while (valtype_len > 0)
1019 int len = std::min (valtype_len, (ULONGEST) 4);
1021 regcache_cooked_read_unsigned (regcache, argreg, &u);
1022 store_unsigned_integer (readbuf + offset, len, byte_order, u);
1032 int argreg = RX_R1_REGNUM;
1035 while (valtype_len > 0)
1037 int len = std::min (valtype_len, (ULONGEST) 4);
1039 u = extract_unsigned_integer (writebuf + offset, len, byte_order);
1040 regcache_cooked_write_unsigned (regcache, argreg, u);
1047 return RETURN_VALUE_REGISTER_CONVENTION;
1050 constexpr gdb_byte rx_break_insn[] = { 0x00 };
1052 typedef BP_MANIPULATION (rx_break_insn) rx_breakpoint;
1054 /* Implement the dwarf_reg_to_regnum" gdbarch method. */
1057 rx_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1059 if (0 <= reg && reg <= 15)
1062 return RX_PSW_REGNUM;
1064 return RX_PC_REGNUM;
1069 /* Allocate and initialize a gdbarch object. */
1070 static struct gdbarch *
1071 rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1073 struct gdbarch *gdbarch;
1074 struct gdbarch_tdep *tdep;
1077 /* Extract the elf_flags if available. */
1078 if (info.abfd != NULL
1079 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1080 elf_flags = elf_elfheader (info.abfd)->e_flags;
1085 /* Try to find the architecture in the list of already defined
1087 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1089 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1091 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1094 return arches->gdbarch;
1097 /* None found, create a new architecture from the information
1099 tdep = XCNEW (struct gdbarch_tdep);
1100 gdbarch = gdbarch_alloc (&info, tdep);
1101 tdep->elf_flags = elf_flags;
1103 set_gdbarch_num_regs (gdbarch, RX_NUM_REGS);
1104 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1105 set_gdbarch_register_name (gdbarch, rx_register_name);
1106 set_gdbarch_register_type (gdbarch, rx_register_type);
1107 set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM);
1108 set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM);
1109 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1110 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1111 set_gdbarch_breakpoint_kind_from_pc (gdbarch, rx_breakpoint::kind_from_pc);
1112 set_gdbarch_sw_breakpoint_from_kind (gdbarch, rx_breakpoint::bp_from_kind);
1113 set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue);
1115 set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc);
1116 set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp);
1118 /* Target builtin data types. */
1119 set_gdbarch_char_signed (gdbarch, 0);
1120 set_gdbarch_short_bit (gdbarch, 16);
1121 set_gdbarch_int_bit (gdbarch, 32);
1122 set_gdbarch_long_bit (gdbarch, 32);
1123 set_gdbarch_long_long_bit (gdbarch, 64);
1124 set_gdbarch_ptr_bit (gdbarch, 32);
1125 set_gdbarch_float_bit (gdbarch, 32);
1126 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1127 if (elf_flags & E_FLAG_RX_64BIT_DOUBLES)
1129 set_gdbarch_double_bit (gdbarch, 64);
1130 set_gdbarch_long_double_bit (gdbarch, 64);
1131 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1132 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1136 set_gdbarch_double_bit (gdbarch, 32);
1137 set_gdbarch_long_double_bit (gdbarch, 32);
1138 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1139 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1142 /* DWARF register mapping. */
1143 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rx_dwarf_reg_to_regnum);
1145 /* Frame unwinding. */
1146 frame_unwind_append_unwinder (gdbarch, &rx_exception_unwind);
1147 dwarf2_append_unwinders (gdbarch);
1148 frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind);
1150 /* Methods for saving / extracting a dummy frame's ID.
1151 The ID's stack address must match the SP value returned by
1152 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1153 set_gdbarch_dummy_id (gdbarch, rx_dummy_id);
1154 set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call);
1155 set_gdbarch_return_value (gdbarch, rx_return_value);
1157 /* Virtual tables. */
1158 set_gdbarch_vbit_in_delta (gdbarch, 1);
1163 /* Register the above initialization routine. */
1166 _initialize_rx_tdep (void)
1168 register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init);