1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
32 #include "arch-utils.h"
37 #include "parser-defs.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43 #include "dwarf2-frame.h"
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
53 #include "solib-svr4.h"
56 #include "gdb_assert.h"
59 #include "trad-frame.h"
60 #include "frame-unwind.h"
61 #include "frame-base.h"
63 #include "rs6000-tdep.h"
65 /* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
71 The following constants were determined by experimentation on AIX 3.2. */
72 #define SIG_FRAME_PC_OFFSET 96
73 #define SIG_FRAME_LR_OFFSET 108
74 #define SIG_FRAME_FP_OFFSET 284
76 /* To be used by skip_prologue. */
78 struct rs6000_framedata
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
85 int saved_vr; /* smallest # of saved vr */
86 int saved_ev; /* smallest # of saved ev */
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
92 int vr_offset; /* offset of saved vrs from prev sp */
93 int ev_offset; /* offset of saved evs from prev sp */
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
96 int vrsave_offset; /* offset of saved vrsave register */
99 /* Description of a single register. */
103 char *name; /* name of register */
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
106 unsigned char fpr; /* whether register is floating-point */
107 unsigned char pseudo; /* whether register is pseudo */
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
113 /* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
117 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
119 /* Static function prototypes */
121 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
128 altivec_register_p (int regno)
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
138 /* Return true if REGNO is an SPE register, false otherwise. */
140 spe_register_p (int regno)
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
171 /* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
174 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
183 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
191 set_sim_regno (int *table, int gdb_regno, int sim_regno)
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
200 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
204 init_sim_regno_table (struct gdbarch *arch)
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
255 /* vsave is a special-purpose register, so the code below handles it. */
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
284 /* Given a GDB register number REG, return the corresponding SIM
287 rs6000_register_sim_regno (int reg)
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
292 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
293 sim_regno = tdep->sim_regno[reg];
298 return LEGACY_SIM_REGNO_IGNORE;
303 /* Register set support functions. */
306 ppc_supply_reg (struct regcache *regcache, int regnum,
307 const gdb_byte *regs, size_t offset)
309 if (regnum != -1 && offset != -1)
310 regcache_raw_supply (regcache, regnum, regs + offset);
314 ppc_collect_reg (const struct regcache *regcache, int regnum,
315 gdb_byte *regs, size_t offset)
317 if (regnum != -1 && offset != -1)
318 regcache_raw_collect (regcache, regnum, regs + offset);
321 /* Supply register REGNUM in the general-purpose register set REGSET
322 from the buffer specified by GREGS and LEN to register cache
323 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
326 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
327 int regnum, const void *gregs, size_t len)
329 struct gdbarch *gdbarch = get_regcache_arch (regcache);
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 const struct ppc_reg_offsets *offsets = regset->descr;
335 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
336 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
339 if (regnum == -1 || regnum == i)
340 ppc_supply_reg (regcache, i, gregs, offset);
343 if (regnum == -1 || regnum == PC_REGNUM)
344 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
345 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
346 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
347 gregs, offsets->ps_offset);
348 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
349 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
350 gregs, offsets->cr_offset);
351 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
352 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
353 gregs, offsets->lr_offset);
354 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
355 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
356 gregs, offsets->ctr_offset);
357 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
358 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
359 gregs, offsets->cr_offset);
360 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
364 /* Supply register REGNUM in the floating-point register set REGSET
365 from the buffer specified by FPREGS and LEN to register cache
366 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
369 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
370 int regnum, const void *fpregs, size_t len)
372 struct gdbarch *gdbarch = get_regcache_arch (regcache);
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374 const struct ppc_reg_offsets *offsets = regset->descr;
378 gdb_assert (ppc_floating_point_unit_p (gdbarch));
380 offset = offsets->f0_offset;
381 for (i = tdep->ppc_fp0_regnum;
382 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
385 if (regnum == -1 || regnum == i)
386 ppc_supply_reg (regcache, i, fpregs, offset);
389 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
390 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
391 fpregs, offsets->fpscr_offset);
394 /* Collect register REGNUM in the general-purpose register set
395 REGSET. from register cache REGCACHE into the buffer specified by
396 GREGS and LEN. If REGNUM is -1, do this for all registers in
400 ppc_collect_gregset (const struct regset *regset,
401 const struct regcache *regcache,
402 int regnum, void *gregs, size_t len)
404 struct gdbarch *gdbarch = get_regcache_arch (regcache);
405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
406 const struct ppc_reg_offsets *offsets = regset->descr;
410 offset = offsets->r0_offset;
411 for (i = tdep->ppc_gp0_regnum;
412 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
415 if (regnum == -1 || regnum == i)
416 ppc_collect_reg (regcache, i, gregs, offset);
419 if (regnum == -1 || regnum == PC_REGNUM)
420 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
421 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
422 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
423 gregs, offsets->ps_offset);
424 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
425 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
426 gregs, offsets->cr_offset);
427 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
428 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
429 gregs, offsets->lr_offset);
430 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
431 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
432 gregs, offsets->ctr_offset);
433 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
434 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
435 gregs, offsets->xer_offset);
436 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
438 gregs, offsets->mq_offset);
441 /* Collect register REGNUM in the floating-point register set
442 REGSET. from register cache REGCACHE into the buffer specified by
443 FPREGS and LEN. If REGNUM is -1, do this for all registers in
447 ppc_collect_fpregset (const struct regset *regset,
448 const struct regcache *regcache,
449 int regnum, void *fpregs, size_t len)
451 struct gdbarch *gdbarch = get_regcache_arch (regcache);
452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
453 const struct ppc_reg_offsets *offsets = regset->descr;
457 gdb_assert (ppc_floating_point_unit_p (gdbarch));
459 offset = offsets->f0_offset;
460 for (i = tdep->ppc_fp0_regnum;
461 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
464 if (regnum == -1 || regnum == i)
465 ppc_collect_reg (regcache, i, fpregs, offset);
468 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
469 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
470 fpregs, offsets->fpscr_offset);
474 /* Read a LEN-byte address from debugged memory address MEMADDR. */
477 read_memory_addr (CORE_ADDR memaddr, int len)
479 return read_memory_unsigned_integer (memaddr, len);
483 rs6000_skip_prologue (CORE_ADDR pc)
485 struct rs6000_framedata frame;
486 CORE_ADDR limit_pc, func_addr;
488 /* See if we can determine the end of the prologue via the symbol table.
489 If so, then return either PC, or the PC after the prologue, whichever
491 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
493 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
494 if (post_prologue_pc != 0)
495 return max (pc, post_prologue_pc);
498 /* Can't determine prologue from the symbol table, need to examine
501 /* Find an upper limit on the function prologue using the debug
502 information. If the debug information could not be used to provide
503 that bound, then use an arbitrary large number as the upper bound. */
504 limit_pc = skip_prologue_using_sal (pc);
506 limit_pc = pc + 100; /* Magic. */
508 pc = skip_prologue (pc, limit_pc, &frame);
513 insn_changes_sp_or_jumps (unsigned long insn)
515 int opcode = (insn >> 26) & 0x03f;
516 int sd = (insn >> 21) & 0x01f;
517 int a = (insn >> 16) & 0x01f;
518 int subcode = (insn >> 1) & 0x3ff;
520 /* Changes the stack pointer. */
522 /* NOTE: There are many ways to change the value of a given register.
523 The ways below are those used when the register is R1, the SP,
524 in a funtion's epilogue. */
526 if (opcode == 31 && subcode == 444 && a == 1)
527 return 1; /* mr R1,Rn */
528 if (opcode == 14 && sd == 1)
529 return 1; /* addi R1,Rn,simm */
530 if (opcode == 58 && sd == 1)
531 return 1; /* ld R1,ds(Rn) */
533 /* Transfers control. */
539 if (opcode == 19 && subcode == 16)
541 if (opcode == 19 && subcode == 528)
542 return 1; /* bcctr */
547 /* Return true if we are in the function's epilogue, i.e. after the
548 instruction that destroyed the function's stack frame.
550 1) scan forward from the point of execution:
551 a) If you find an instruction that modifies the stack pointer
552 or transfers control (except a return), execution is not in
554 b) Stop scanning if you find a return instruction or reach the
555 end of the function or reach the hard limit for the size of
557 2) scan backward from the point of execution:
558 a) If you find an instruction that modifies the stack pointer,
559 execution *is* in an epilogue, return.
560 b) Stop scanning if you reach an instruction that transfers
561 control or the beginning of the function or reach the hard
562 limit for the size of an epilogue. */
565 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
567 bfd_byte insn_buf[PPC_INSN_SIZE];
568 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
570 struct frame_info *curfrm;
572 /* Find the search limits based on function boundaries and hard limit. */
574 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
577 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
578 if (epilogue_start < func_start) epilogue_start = func_start;
580 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
581 if (epilogue_end > func_end) epilogue_end = func_end;
583 curfrm = get_current_frame ();
585 /* Scan forward until next 'blr'. */
587 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
589 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
591 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
592 if (insn == 0x4e800020)
594 if (insn_changes_sp_or_jumps (insn))
598 /* Scan backward until adjustment to stack pointer (R1). */
600 for (scan_pc = pc - PPC_INSN_SIZE;
601 scan_pc >= epilogue_start;
602 scan_pc -= PPC_INSN_SIZE)
604 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
606 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
607 if (insn_changes_sp_or_jumps (insn))
615 /* Fill in fi->saved_regs */
617 struct frame_extra_info
619 /* Functions calling alloca() change the value of the stack
620 pointer. We need to use initial stack pointer (which is saved in
621 r31 by gcc) in such cases. If a compiler emits traceback table,
622 then we should use the alloca register specified in traceback
624 CORE_ADDR initial_sp; /* initial stack pointer. */
627 /* Get the ith function argument for the current function. */
629 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
632 return get_frame_register_unsigned (frame, 3 + argi);
635 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
638 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
645 absolute = (int) ((instr >> 1) & 1);
650 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
654 dest = pc + immediate;
658 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
662 dest = pc + immediate;
666 ext_op = (instr >> 1) & 0x3ff;
668 if (ext_op == 16) /* br conditional register */
670 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
672 /* If we are about to return from a signal handler, dest is
673 something like 0x3c90. The current frame is a signal handler
674 caller frame, upon completion of the sigreturn system call
675 execution will return to the saved PC in the frame. */
676 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
678 struct frame_info *fi;
680 fi = get_current_frame ();
682 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
683 gdbarch_tdep (current_gdbarch)->wordsize);
687 else if (ext_op == 528) /* br cond to count reg */
689 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
691 /* If we are about to execute a system call, dest is something
692 like 0x22fc or 0x3b00. Upon completion the system call
693 will return to the address in the link register. */
694 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
695 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
704 return (dest < gdbarch_tdep (current_gdbarch)->text_segment_base) ? safety : dest;
708 /* Sequence of bytes for breakpoint instruction. */
710 const static unsigned char *
711 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
713 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
714 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
716 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
717 return big_breakpoint;
719 return little_breakpoint;
723 /* AIX does not support PT_STEP. Simulate it. */
726 rs6000_software_single_step (struct regcache *regcache)
730 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
738 insn = read_memory_integer (loc, 4);
740 breaks[0] = loc + breakp_sz;
742 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
744 /* Don't put two breakpoints on the same address. */
745 if (breaks[1] == breaks[0])
748 for (ii = 0; ii < 2; ++ii)
750 /* ignore invalid breakpoint. */
751 if (breaks[ii] == -1)
753 insert_single_step_breakpoint (breaks[ii]);
756 errno = 0; /* FIXME, don't ignore errors! */
757 /* What errors? {read,write}_memory call error(). */
762 /* return pc value after skipping a function prologue and also return
763 information about a function frame.
765 in struct rs6000_framedata fdata:
766 - frameless is TRUE, if function does not have a frame.
767 - nosavedpc is TRUE, if function does not save %pc value in its frame.
768 - offset is the initial size of this stack frame --- the amount by
769 which we decrement the sp to allocate the frame.
770 - saved_gpr is the number of the first saved gpr.
771 - saved_fpr is the number of the first saved fpr.
772 - saved_vr is the number of the first saved vr.
773 - saved_ev is the number of the first saved ev.
774 - alloca_reg is the number of the register used for alloca() handling.
776 - gpr_offset is the offset of the first saved gpr from the previous frame.
777 - fpr_offset is the offset of the first saved fpr from the previous frame.
778 - vr_offset is the offset of the first saved vr from the previous frame.
779 - ev_offset is the offset of the first saved ev from the previous frame.
780 - lr_offset is the offset of the saved lr
781 - cr_offset is the offset of the saved cr
782 - vrsave_offset is the offset of the saved vrsave register
785 #define SIGNED_SHORT(x) \
786 ((sizeof (short) == 2) \
787 ? ((int)(short)(x)) \
788 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
790 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
792 /* Limit the number of skipped non-prologue instructions, as the examining
793 of the prologue is expensive. */
794 static int max_skip_non_prologue_insns = 10;
796 /* Return nonzero if the given instruction OP can be part of the prologue
797 of a function and saves a parameter on the stack. FRAMEP should be
798 set if one of the previous instructions in the function has set the
802 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
804 /* Move parameters from argument registers to temporary register. */
805 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
807 /* Rx must be scratch register r0. */
808 const int rx_regno = (op >> 16) & 31;
809 /* Ry: Only r3 - r10 are used for parameter passing. */
810 const int ry_regno = GET_SRC_REG (op);
812 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
814 *r0_contains_arg = 1;
821 /* Save a General Purpose Register on stack. */
823 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
824 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
826 /* Rx: Only r3 - r10 are used for parameter passing. */
827 const int rx_regno = GET_SRC_REG (op);
829 return (rx_regno >= 3 && rx_regno <= 10);
832 /* Save a General Purpose Register on stack via the Frame Pointer. */
835 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
836 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
837 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
839 /* Rx: Usually, only r3 - r10 are used for parameter passing.
840 However, the compiler sometimes uses r0 to hold an argument. */
841 const int rx_regno = GET_SRC_REG (op);
843 return ((rx_regno >= 3 && rx_regno <= 10)
844 || (rx_regno == 0 && *r0_contains_arg));
847 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
849 /* Only f2 - f8 are used for parameter passing. */
850 const int src_regno = GET_SRC_REG (op);
852 return (src_regno >= 2 && src_regno <= 8);
855 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
857 /* Only f2 - f8 are used for parameter passing. */
858 const int src_regno = GET_SRC_REG (op);
860 return (src_regno >= 2 && src_regno <= 8);
863 /* Not an insn that saves a parameter on stack. */
867 /* Assuming that INSN is a "bl" instruction located at PC, return
868 nonzero if the destination of the branch is a "blrl" instruction.
870 This sequence is sometimes found in certain function prologues.
871 It allows the function to load the LR register with a value that
872 they can use to access PIC data using PC-relative offsets. */
875 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
877 const int opcode = 18;
878 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
882 return 0; /* Should never happen, but just return zero to be safe. */
884 dest_insn = read_memory_integer (dest, 4);
885 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
892 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
894 CORE_ADDR orig_pc = pc;
895 CORE_ADDR last_prologue_pc = pc;
896 CORE_ADDR li_found_pc = 0;
900 long vr_saved_offset = 0;
909 int minimal_toc_loaded = 0;
910 int prev_insn_was_prologue_insn = 1;
911 int num_skip_non_prologue_insns = 0;
912 int r0_contains_arg = 0;
913 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
914 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
916 memset (fdata, 0, sizeof (struct rs6000_framedata));
917 fdata->saved_gpr = -1;
918 fdata->saved_fpr = -1;
919 fdata->saved_vr = -1;
920 fdata->saved_ev = -1;
921 fdata->alloca_reg = -1;
922 fdata->frameless = 1;
923 fdata->nosavedpc = 1;
927 /* Sometimes it isn't clear if an instruction is a prologue
928 instruction or not. When we encounter one of these ambiguous
929 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
930 Otherwise, we'll assume that it really is a prologue instruction. */
931 if (prev_insn_was_prologue_insn)
932 last_prologue_pc = pc;
934 /* Stop scanning if we've hit the limit. */
938 prev_insn_was_prologue_insn = 1;
940 /* Fetch the instruction and convert it to an integer. */
941 if (target_read_memory (pc, buf, 4))
943 op = extract_unsigned_integer (buf, 4);
945 if ((op & 0xfc1fffff) == 0x7c0802a6)
947 /* Since shared library / PIC code, which needs to get its
948 address at runtime, can appear to save more than one link
962 remember just the first one, but skip over additional
965 lr_reg = (op & 0x03e00000);
970 else if ((op & 0xfc1fffff) == 0x7c000026)
972 cr_reg = (op & 0x03e00000);
978 else if ((op & 0xfc1f0000) == 0xd8010000)
979 { /* stfd Rx,NUM(r1) */
980 reg = GET_SRC_REG (op);
981 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
983 fdata->saved_fpr = reg;
984 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
989 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
990 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
991 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
992 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
995 reg = GET_SRC_REG (op);
996 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
998 fdata->saved_gpr = reg;
999 if ((op & 0xfc1f0003) == 0xf8010000)
1001 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1006 else if ((op & 0xffff0000) == 0x60000000)
1009 /* Allow nops in the prologue, but do not consider them to
1010 be part of the prologue unless followed by other prologue
1012 prev_insn_was_prologue_insn = 0;
1016 else if ((op & 0xffff0000) == 0x3c000000)
1017 { /* addis 0,0,NUM, used
1018 for >= 32k frames */
1019 fdata->offset = (op & 0x0000ffff) << 16;
1020 fdata->frameless = 0;
1021 r0_contains_arg = 0;
1025 else if ((op & 0xffff0000) == 0x60000000)
1026 { /* ori 0,0,NUM, 2nd ha
1027 lf of >= 32k frames */
1028 fdata->offset |= (op & 0x0000ffff);
1029 fdata->frameless = 0;
1030 r0_contains_arg = 0;
1034 else if (lr_reg >= 0 &&
1035 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1036 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1037 /* stw Rx, NUM(r1) */
1038 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1039 /* stwu Rx, NUM(r1) */
1040 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1041 { /* where Rx == lr */
1042 fdata->lr_offset = offset;
1043 fdata->nosavedpc = 0;
1044 /* Invalidate lr_reg, but don't set it to -1.
1045 That would mean that it had never been set. */
1047 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1048 (op & 0xfc000000) == 0x90000000) /* stw */
1050 /* Does not update r1, so add displacement to lr_offset. */
1051 fdata->lr_offset += SIGNED_SHORT (op);
1056 else if (cr_reg >= 0 &&
1057 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1058 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1059 /* stw Rx, NUM(r1) */
1060 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1061 /* stwu Rx, NUM(r1) */
1062 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1063 { /* where Rx == cr */
1064 fdata->cr_offset = offset;
1065 /* Invalidate cr_reg, but don't set it to -1.
1066 That would mean that it had never been set. */
1068 if ((op & 0xfc000003) == 0xf8000000 ||
1069 (op & 0xfc000000) == 0x90000000)
1071 /* Does not update r1, so add displacement to cr_offset. */
1072 fdata->cr_offset += SIGNED_SHORT (op);
1077 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1079 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1080 prediction bits. If the LR has already been saved, we can
1084 else if (op == 0x48000005)
1090 else if (op == 0x48000004)
1095 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1096 in V.4 -mminimal-toc */
1097 (op & 0xffff0000) == 0x3bde0000)
1098 { /* addi 30,30,foo@l */
1102 else if ((op & 0xfc000001) == 0x48000001)
1106 fdata->frameless = 0;
1108 /* If the return address has already been saved, we can skip
1109 calls to blrl (for PIC). */
1110 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1113 /* Don't skip over the subroutine call if it is not within
1114 the first three instructions of the prologue and either
1115 we have no line table information or the line info tells
1116 us that the subroutine call is not part of the line
1117 associated with the prologue. */
1118 if ((pc - orig_pc) > 8)
1120 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1121 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1123 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1127 op = read_memory_integer (pc + 4, 4);
1129 /* At this point, make sure this is not a trampoline
1130 function (a function that simply calls another functions,
1131 and nothing else). If the next is not a nop, this branch
1132 was part of the function prologue. */
1134 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1135 break; /* don't skip over
1140 /* update stack pointer */
1141 else if ((op & 0xfc1f0000) == 0x94010000)
1142 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1143 fdata->frameless = 0;
1144 fdata->offset = SIGNED_SHORT (op);
1145 offset = fdata->offset;
1148 else if ((op & 0xfc1f016a) == 0x7c01016e)
1149 { /* stwux rX,r1,rY */
1150 /* no way to figure out what r1 is going to be */
1151 fdata->frameless = 0;
1152 offset = fdata->offset;
1155 else if ((op & 0xfc1f0003) == 0xf8010001)
1156 { /* stdu rX,NUM(r1) */
1157 fdata->frameless = 0;
1158 fdata->offset = SIGNED_SHORT (op & ~3UL);
1159 offset = fdata->offset;
1162 else if ((op & 0xfc1f016a) == 0x7c01016a)
1163 { /* stdux rX,r1,rY */
1164 /* no way to figure out what r1 is going to be */
1165 fdata->frameless = 0;
1166 offset = fdata->offset;
1169 else if ((op & 0xffff0000) == 0x38210000)
1170 { /* addi r1,r1,SIMM */
1171 fdata->frameless = 0;
1172 fdata->offset += SIGNED_SHORT (op);
1173 offset = fdata->offset;
1176 /* Load up minimal toc pointer. Do not treat an epilogue restore
1177 of r31 as a minimal TOC load. */
1178 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1179 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1181 && !minimal_toc_loaded)
1183 minimal_toc_loaded = 1;
1186 /* move parameters from argument registers to local variable
1189 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1190 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1191 (((op >> 21) & 31) <= 10) &&
1192 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1196 /* store parameters in stack */
1198 /* Move parameters from argument registers to temporary register. */
1199 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1203 /* Set up frame pointer */
1205 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1206 || op == 0x7c3f0b78)
1208 fdata->frameless = 0;
1210 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1213 /* Another way to set up the frame pointer. */
1215 else if ((op & 0xfc1fffff) == 0x38010000)
1216 { /* addi rX, r1, 0x0 */
1217 fdata->frameless = 0;
1219 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1220 + ((op & ~0x38010000) >> 21));
1223 /* AltiVec related instructions. */
1224 /* Store the vrsave register (spr 256) in another register for
1225 later manipulation, or load a register into the vrsave
1226 register. 2 instructions are used: mfvrsave and
1227 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1228 and mtspr SPR256, Rn. */
1229 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1230 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1231 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1233 vrsave_reg = GET_SRC_REG (op);
1236 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1240 /* Store the register where vrsave was saved to onto the stack:
1241 rS is the register where vrsave was stored in a previous
1243 /* 100100 sssss 00001 dddddddd dddddddd */
1244 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1246 if (vrsave_reg == GET_SRC_REG (op))
1248 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1253 /* Compute the new value of vrsave, by modifying the register
1254 where vrsave was saved to. */
1255 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1256 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1260 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1261 in a pair of insns to save the vector registers on the
1263 /* 001110 00000 00000 iiii iiii iiii iiii */
1264 /* 001110 01110 00000 iiii iiii iiii iiii */
1265 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1266 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1268 if ((op & 0xffff0000) == 0x38000000)
1269 r0_contains_arg = 0;
1271 vr_saved_offset = SIGNED_SHORT (op);
1273 /* This insn by itself is not part of the prologue, unless
1274 if part of the pair of insns mentioned above. So do not
1275 record this insn as part of the prologue yet. */
1276 prev_insn_was_prologue_insn = 0;
1278 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1279 /* 011111 sssss 11111 00000 00111001110 */
1280 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1282 if (pc == (li_found_pc + 4))
1284 vr_reg = GET_SRC_REG (op);
1285 /* If this is the first vector reg to be saved, or if
1286 it has a lower number than others previously seen,
1287 reupdate the frame info. */
1288 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1290 fdata->saved_vr = vr_reg;
1291 fdata->vr_offset = vr_saved_offset + offset;
1293 vr_saved_offset = -1;
1298 /* End AltiVec related instructions. */
1300 /* Start BookE related instructions. */
1301 /* Store gen register S at (r31+uimm).
1302 Any register less than r13 is volatile, so we don't care. */
1303 /* 000100 sssss 11111 iiiii 01100100001 */
1304 else if (arch_info->mach == bfd_mach_ppc_e500
1305 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1307 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1310 ev_reg = GET_SRC_REG (op);
1311 imm = (op >> 11) & 0x1f;
1312 ev_offset = imm * 8;
1313 /* If this is the first vector reg to be saved, or if
1314 it has a lower number than others previously seen,
1315 reupdate the frame info. */
1316 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1318 fdata->saved_ev = ev_reg;
1319 fdata->ev_offset = ev_offset + offset;
1324 /* Store gen register rS at (r1+rB). */
1325 /* 000100 sssss 00001 bbbbb 01100100000 */
1326 else if (arch_info->mach == bfd_mach_ppc_e500
1327 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1329 if (pc == (li_found_pc + 4))
1331 ev_reg = GET_SRC_REG (op);
1332 /* If this is the first vector reg to be saved, or if
1333 it has a lower number than others previously seen,
1334 reupdate the frame info. */
1335 /* We know the contents of rB from the previous instruction. */
1336 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1338 fdata->saved_ev = ev_reg;
1339 fdata->ev_offset = vr_saved_offset + offset;
1341 vr_saved_offset = -1;
1347 /* Store gen register r31 at (rA+uimm). */
1348 /* 000100 11111 aaaaa iiiii 01100100001 */
1349 else if (arch_info->mach == bfd_mach_ppc_e500
1350 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1352 /* Wwe know that the source register is 31 already, but
1353 it can't hurt to compute it. */
1354 ev_reg = GET_SRC_REG (op);
1355 ev_offset = ((op >> 11) & 0x1f) * 8;
1356 /* If this is the first vector reg to be saved, or if
1357 it has a lower number than others previously seen,
1358 reupdate the frame info. */
1359 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1361 fdata->saved_ev = ev_reg;
1362 fdata->ev_offset = ev_offset + offset;
1367 /* Store gen register S at (r31+r0).
1368 Store param on stack when offset from SP bigger than 4 bytes. */
1369 /* 000100 sssss 11111 00000 01100100000 */
1370 else if (arch_info->mach == bfd_mach_ppc_e500
1371 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1373 if (pc == (li_found_pc + 4))
1375 if ((op & 0x03e00000) >= 0x01a00000)
1377 ev_reg = GET_SRC_REG (op);
1378 /* If this is the first vector reg to be saved, or if
1379 it has a lower number than others previously seen,
1380 reupdate the frame info. */
1381 /* We know the contents of r0 from the previous
1383 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1385 fdata->saved_ev = ev_reg;
1386 fdata->ev_offset = vr_saved_offset + offset;
1390 vr_saved_offset = -1;
1395 /* End BookE related instructions. */
1399 /* Not a recognized prologue instruction.
1400 Handle optimizer code motions into the prologue by continuing
1401 the search if we have no valid frame yet or if the return
1402 address is not yet saved in the frame. */
1403 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1406 if (op == 0x4e800020 /* blr */
1407 || op == 0x4e800420) /* bctr */
1408 /* Do not scan past epilogue in frameless functions or
1411 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1412 /* Never skip branches. */
1415 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1416 /* Do not scan too many insns, scanning insns is expensive with
1420 /* Continue scanning. */
1421 prev_insn_was_prologue_insn = 0;
1427 /* I have problems with skipping over __main() that I need to address
1428 * sometime. Previously, I used to use misc_function_vector which
1429 * didn't work as well as I wanted to be. -MGO */
1431 /* If the first thing after skipping a prolog is a branch to a function,
1432 this might be a call to an initializer in main(), introduced by gcc2.
1433 We'd like to skip over it as well. Fortunately, xlc does some extra
1434 work before calling a function right after a prologue, thus we can
1435 single out such gcc2 behaviour. */
1438 if ((op & 0xfc000001) == 0x48000001)
1439 { /* bl foo, an initializer function? */
1440 op = read_memory_integer (pc + 4, 4);
1442 if (op == 0x4def7b82)
1443 { /* cror 0xf, 0xf, 0xf (nop) */
1445 /* Check and see if we are in main. If so, skip over this
1446 initializer function as well. */
1448 tmp = find_pc_misc_function (pc);
1450 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1456 fdata->offset = -fdata->offset;
1457 return last_prologue_pc;
1461 /*************************************************************************
1462 Support for creating pushing a dummy frame into the stack, and popping
1464 *************************************************************************/
1467 /* All the ABI's require 16 byte alignment. */
1469 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1471 return (addr & -16);
1474 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1475 the first eight words of the argument list (that might be less than
1476 eight parameters if some parameters occupy more than one word) are
1477 passed in r3..r10 registers. float and double parameters are
1478 passed in fpr's, in addition to that. Rest of the parameters if any
1479 are passed in user stack. There might be cases in which half of the
1480 parameter is copied into registers, the other half is pushed into
1483 Stack must be aligned on 64-bit boundaries when synthesizing
1486 If the function is returning a structure, then the return address is passed
1487 in r3, then the first 7 words of the parameters can be passed in registers,
1488 starting from r4. */
1491 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1492 struct regcache *regcache, CORE_ADDR bp_addr,
1493 int nargs, struct value **args, CORE_ADDR sp,
1494 int struct_return, CORE_ADDR struct_addr)
1496 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1499 int argno; /* current argument number */
1500 int argbytes; /* current argument byte */
1501 gdb_byte tmp_buffer[50];
1502 int f_argno = 0; /* current floating point argno */
1503 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1504 CORE_ADDR func_addr = find_function_addr (function, NULL);
1506 struct value *arg = 0;
1511 /* The calling convention this function implements assumes the
1512 processor has floating-point registers. We shouldn't be using it
1513 on PPC variants that lack them. */
1514 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1516 /* The first eight words of ther arguments are passed in registers.
1517 Copy them appropriately. */
1520 /* If the function is returning a `struct', then the first word
1521 (which will be passed in r3) is used for struct return address.
1522 In that case we should advance one word and start from r4
1523 register to copy parameters. */
1526 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1532 effectively indirect call... gcc does...
1534 return_val example( float, int);
1537 float in fp0, int in r3
1538 offset of stack on overflow 8/16
1539 for varargs, must go by type.
1541 float in r3&r4, int in r5
1542 offset of stack on overflow different
1544 return in r3 or f0. If no float, must study how gcc emulates floats;
1545 pay attention to arg promotion.
1546 User may have to cast\args to handle promotion correctly
1547 since gdb won't know if prototype supplied or not.
1550 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1552 int reg_size = register_size (current_gdbarch, ii + 3);
1555 type = check_typedef (value_type (arg));
1556 len = TYPE_LENGTH (type);
1558 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1561 /* Floating point arguments are passed in fpr's, as well as gpr's.
1562 There are 13 fpr's reserved for passing parameters. At this point
1563 there is no way we would run out of them. */
1565 gdb_assert (len <= 8);
1567 regcache_cooked_write (regcache,
1568 tdep->ppc_fp0_regnum + 1 + f_argno,
1569 value_contents (arg));
1576 /* Argument takes more than one register. */
1577 while (argbytes < len)
1579 gdb_byte word[MAX_REGISTER_SIZE];
1580 memset (word, 0, reg_size);
1582 ((char *) value_contents (arg)) + argbytes,
1583 (len - argbytes) > reg_size
1584 ? reg_size : len - argbytes);
1585 regcache_cooked_write (regcache,
1586 tdep->ppc_gp0_regnum + 3 + ii,
1588 ++ii, argbytes += reg_size;
1591 goto ran_out_of_registers_for_arguments;
1598 /* Argument can fit in one register. No problem. */
1599 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1600 gdb_byte word[MAX_REGISTER_SIZE];
1602 memset (word, 0, reg_size);
1603 memcpy (word, value_contents (arg), len);
1604 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1609 ran_out_of_registers_for_arguments:
1611 saved_sp = read_sp ();
1613 /* Location for 8 parameters are always reserved. */
1616 /* Another six words for back chain, TOC register, link register, etc. */
1619 /* Stack pointer must be quadword aligned. */
1622 /* If there are more arguments, allocate space for them in
1623 the stack, then push them starting from the ninth one. */
1625 if ((argno < nargs) || argbytes)
1631 space += ((len - argbytes + 3) & -4);
1637 for (; jj < nargs; ++jj)
1639 struct value *val = args[jj];
1640 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1643 /* Add location required for the rest of the parameters. */
1644 space = (space + 15) & -16;
1647 /* This is another instance we need to be concerned about
1648 securing our stack space. If we write anything underneath %sp
1649 (r1), we might conflict with the kernel who thinks he is free
1650 to use this area. So, update %sp first before doing anything
1653 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1655 /* If the last argument copied into the registers didn't fit there
1656 completely, push the rest of it into stack. */
1660 write_memory (sp + 24 + (ii * 4),
1661 value_contents (arg) + argbytes,
1664 ii += ((len - argbytes + 3) & -4) / 4;
1667 /* Push the rest of the arguments into stack. */
1668 for (; argno < nargs; ++argno)
1672 type = check_typedef (value_type (arg));
1673 len = TYPE_LENGTH (type);
1676 /* Float types should be passed in fpr's, as well as in the
1678 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1681 gdb_assert (len <= 8);
1683 regcache_cooked_write (regcache,
1684 tdep->ppc_fp0_regnum + 1 + f_argno,
1685 value_contents (arg));
1689 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1690 ii += ((len + 3) & -4) / 4;
1694 /* Set the stack pointer. According to the ABI, the SP is meant to
1695 be set _before_ the corresponding stack space is used. On AIX,
1696 this even applies when the target has been completely stopped!
1697 Not doing this can lead to conflicts with the kernel which thinks
1698 that it still has control over this not-yet-allocated stack
1700 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1702 /* Set back chain properly. */
1703 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1704 write_memory (sp, tmp_buffer, wordsize);
1706 /* Point the inferior function call's return address at the dummy's
1708 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1710 /* Set the TOC register, get the value from the objfile reader
1711 which, in turn, gets it from the VMAP table. */
1712 if (rs6000_find_toc_address_hook != NULL)
1714 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1715 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1718 target_store_registers (-1);
1722 static enum return_value_convention
1723 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1724 struct regcache *regcache, gdb_byte *readbuf,
1725 const gdb_byte *writebuf)
1727 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1730 /* The calling convention this function implements assumes the
1731 processor has floating-point registers. We shouldn't be using it
1732 on PowerPC variants that lack them. */
1733 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1735 /* AltiVec extension: Functions that declare a vector data type as a
1736 return value place that return value in VR2. */
1737 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1738 && TYPE_LENGTH (valtype) == 16)
1741 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1743 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1745 return RETURN_VALUE_REGISTER_CONVENTION;
1748 /* If the called subprogram returns an aggregate, there exists an
1749 implicit first argument, whose value is the address of a caller-
1750 allocated buffer into which the callee is assumed to store its
1751 return value. All explicit parameters are appropriately
1753 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1754 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1755 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1756 return RETURN_VALUE_STRUCT_CONVENTION;
1758 /* Scalar floating-point values are returned in FPR1 for float or
1759 double, and in FPR1:FPR2 for quadword precision. Fortran
1760 complex*8 and complex*16 are returned in FPR1:FPR2, and
1761 complex*32 is returned in FPR1:FPR4. */
1762 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1763 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1765 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1768 /* FIXME: kettenis/2007-01-01: Add support for quadword
1769 precision and complex. */
1773 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1774 convert_typed_floating (regval, regtype, readbuf, valtype);
1778 convert_typed_floating (writebuf, valtype, regval, regtype);
1779 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1782 return RETURN_VALUE_REGISTER_CONVENTION;
1785 /* Values of the types int, long, short, pointer, and char (length
1786 is less than or equal to four bytes), as well as bit values of
1787 lengths less than or equal to 32 bits, must be returned right
1788 justified in GPR3 with signed values sign extended and unsigned
1789 values zero extended, as necessary. */
1790 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1796 /* For reading we don't have to worry about sign extension. */
1797 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1799 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1803 /* For writing, use unpack_long since that should handle any
1804 required sign extension. */
1805 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1806 unpack_long (valtype, writebuf));
1809 return RETURN_VALUE_REGISTER_CONVENTION;
1812 /* Eight-byte non-floating-point scalar values must be returned in
1815 if (TYPE_LENGTH (valtype) == 8)
1817 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1818 gdb_assert (tdep->wordsize == 4);
1824 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1825 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1827 memcpy (readbuf, regval, 8);
1831 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1832 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1836 return RETURN_VALUE_REGISTER_CONVENTION;
1839 return RETURN_VALUE_STRUCT_CONVENTION;
1842 /* Return whether handle_inferior_event() should proceed through code
1843 starting at PC in function NAME when stepping.
1845 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1846 handle memory references that are too distant to fit in instructions
1847 generated by the compiler. For example, if 'foo' in the following
1852 is greater than 32767, the linker might replace the lwz with a branch to
1853 somewhere in @FIX1 that does the load in 2 instructions and then branches
1854 back to where execution should continue.
1856 GDB should silently step over @FIX code, just like AIX dbx does.
1857 Unfortunately, the linker uses the "b" instruction for the
1858 branches, meaning that the link register doesn't get set.
1859 Therefore, GDB's usual step_over_function () mechanism won't work.
1861 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1862 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1866 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1868 return name && !strncmp (name, "@FIX", 4);
1871 /* Skip code that the user doesn't want to see when stepping:
1873 1. Indirect function calls use a piece of trampoline code to do context
1874 switching, i.e. to set the new TOC table. Skip such code if we are on
1875 its first instruction (as when we have single-stepped to here).
1877 2. Skip shared library trampoline code (which is different from
1878 indirect function call trampolines).
1880 3. Skip bigtoc fixup code.
1882 Result is desired PC to step until, or NULL if we are not in
1883 code that should be skipped. */
1886 rs6000_skip_trampoline_code (CORE_ADDR pc)
1888 unsigned int ii, op;
1890 CORE_ADDR solib_target_pc;
1891 struct minimal_symbol *msymbol;
1893 static unsigned trampoline_code[] =
1895 0x800b0000, /* l r0,0x0(r11) */
1896 0x90410014, /* st r2,0x14(r1) */
1897 0x7c0903a6, /* mtctr r0 */
1898 0x804b0004, /* l r2,0x4(r11) */
1899 0x816b0008, /* l r11,0x8(r11) */
1900 0x4e800420, /* bctr */
1901 0x4e800020, /* br */
1905 /* Check for bigtoc fixup code. */
1906 msymbol = lookup_minimal_symbol_by_pc (pc);
1908 && rs6000_in_solib_return_trampoline (pc,
1909 DEPRECATED_SYMBOL_NAME (msymbol)))
1911 /* Double-check that the third instruction from PC is relative "b". */
1912 op = read_memory_integer (pc + 8, 4);
1913 if ((op & 0xfc000003) == 0x48000000)
1915 /* Extract bits 6-29 as a signed 24-bit relative word address and
1916 add it to the containing PC. */
1917 rel = ((int)(op << 6) >> 6);
1918 return pc + 8 + rel;
1922 /* If pc is in a shared library trampoline, return its target. */
1923 solib_target_pc = find_solib_trampoline_target (pc);
1924 if (solib_target_pc)
1925 return solib_target_pc;
1927 for (ii = 0; trampoline_code[ii]; ++ii)
1929 op = read_memory_integer (pc + (ii * 4), 4);
1930 if (op != trampoline_code[ii])
1933 ii = read_register (11); /* r11 holds destination addr */
1934 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1938 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1939 isn't available with that word size, return 0. */
1942 regsize (const struct reg *reg, int wordsize)
1944 return wordsize == 8 ? reg->sz64 : reg->sz32;
1947 /* Return the name of register number N, or null if no such register exists
1948 in the current architecture. */
1951 rs6000_register_name (int n)
1953 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1954 const struct reg *reg = tdep->regs + n;
1956 if (!regsize (reg, tdep->wordsize))
1961 /* Return the GDB type object for the "standard" data type
1962 of data in register N. */
1964 static struct type *
1965 rs6000_register_type (struct gdbarch *gdbarch, int n)
1967 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1968 const struct reg *reg = tdep->regs + n;
1971 return builtin_type_double;
1974 int size = regsize (reg, tdep->wordsize);
1978 return builtin_type_int0;
1980 return builtin_type_uint32;
1982 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1983 return builtin_type_vec64;
1985 return builtin_type_uint64;
1988 return builtin_type_vec128;
1991 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
1997 /* Is REGNUM a member of REGGROUP? */
1999 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2000 struct reggroup *group)
2002 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2007 if (REGISTER_NAME (regnum) == NULL
2008 || *REGISTER_NAME (regnum) == '\0')
2010 if (group == all_reggroup)
2013 float_p = (regnum == tdep->ppc_fpscr_regnum
2014 || (regnum >= tdep->ppc_fp0_regnum
2015 && regnum < tdep->ppc_fp0_regnum + 32));
2016 if (group == float_reggroup)
2019 vector_p = ((tdep->ppc_vr0_regnum >= 0
2020 && regnum >= tdep->ppc_vr0_regnum
2021 && regnum < tdep->ppc_vr0_regnum + 32)
2022 || (tdep->ppc_ev0_regnum >= 0
2023 && regnum >= tdep->ppc_ev0_regnum
2024 && regnum < tdep->ppc_ev0_regnum + 32)
2025 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2026 || regnum == tdep->ppc_vrsave_regnum
2027 || regnum == tdep->ppc_acc_regnum
2028 || regnum == tdep->ppc_spefscr_regnum);
2029 if (group == vector_reggroup)
2032 /* Note that PS aka MSR isn't included - it's a system register (and
2033 besides, due to GCC's CFI foobar you do not want to restore
2035 general_p = ((regnum >= tdep->ppc_gp0_regnum
2036 && regnum < tdep->ppc_gp0_regnum + 32)
2037 || regnum == tdep->ppc_toc_regnum
2038 || regnum == tdep->ppc_cr_regnum
2039 || regnum == tdep->ppc_lr_regnum
2040 || regnum == tdep->ppc_ctr_regnum
2041 || regnum == tdep->ppc_xer_regnum
2042 || regnum == PC_REGNUM);
2043 if (group == general_reggroup)
2046 if (group == save_reggroup || group == restore_reggroup)
2047 return general_p || vector_p || float_p;
2052 /* The register format for RS/6000 floating point registers is always
2053 double, we need a conversion if the memory format is float. */
2056 rs6000_convert_register_p (int regnum, struct type *type)
2058 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2061 && TYPE_CODE (type) == TYPE_CODE_FLT
2062 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2066 rs6000_register_to_value (struct frame_info *frame,
2071 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2072 gdb_byte from[MAX_REGISTER_SIZE];
2074 gdb_assert (reg->fpr);
2075 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2077 get_frame_register (frame, regnum, from);
2078 convert_typed_floating (from, builtin_type_double, to, type);
2082 rs6000_value_to_register (struct frame_info *frame,
2085 const gdb_byte *from)
2087 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2088 gdb_byte to[MAX_REGISTER_SIZE];
2090 gdb_assert (reg->fpr);
2091 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2093 convert_typed_floating (from, type, to, builtin_type_double);
2094 put_frame_register (frame, regnum, to);
2097 /* Move SPE vector register values between a 64-bit buffer and the two
2098 32-bit raw register halves in a regcache. This function handles
2099 both splitting a 64-bit value into two 32-bit halves, and joining
2100 two halves into a whole 64-bit value, depending on the function
2101 passed as the MOVE argument.
2103 EV_REG must be the number of an SPE evN vector register --- a
2104 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2107 Call MOVE once for each 32-bit half of that register, passing
2108 REGCACHE, the number of the raw register corresponding to that
2109 half, and the address of the appropriate half of BUFFER.
2111 For example, passing 'regcache_raw_read' as the MOVE function will
2112 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2113 'regcache_raw_supply' will supply the contents of BUFFER to the
2114 appropriate pair of raw registers in REGCACHE.
2116 You may need to cast away some 'const' qualifiers when passing
2117 MOVE, since this function can't tell at compile-time which of
2118 REGCACHE or BUFFER is acting as the source of the data. If C had
2119 co-variant type qualifiers, ... */
2121 e500_move_ev_register (void (*move) (struct regcache *regcache,
2122 int regnum, gdb_byte *buf),
2123 struct regcache *regcache, int ev_reg,
2126 struct gdbarch *arch = get_regcache_arch (regcache);
2127 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2129 gdb_byte *byte_buffer = buffer;
2131 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2132 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2134 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2136 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2138 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2139 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2143 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2144 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2149 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2150 int reg_nr, gdb_byte *buffer)
2152 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2155 gdb_assert (regcache_arch == gdbarch);
2157 if (tdep->ppc_ev0_regnum <= reg_nr
2158 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2159 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2161 internal_error (__FILE__, __LINE__,
2162 _("e500_pseudo_register_read: "
2163 "called on unexpected register '%s' (%d)"),
2164 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2168 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2169 int reg_nr, const gdb_byte *buffer)
2171 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2172 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2174 gdb_assert (regcache_arch == gdbarch);
2176 if (tdep->ppc_ev0_regnum <= reg_nr
2177 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2178 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2180 regcache, reg_nr, (gdb_byte *) buffer);
2182 internal_error (__FILE__, __LINE__,
2183 _("e500_pseudo_register_read: "
2184 "called on unexpected register '%s' (%d)"),
2185 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2188 /* The E500 needs a custom reggroup function: it has anonymous raw
2189 registers, and default_register_reggroup_p assumes that anonymous
2190 registers are not members of any reggroup. */
2192 e500_register_reggroup_p (struct gdbarch *gdbarch,
2194 struct reggroup *group)
2196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2198 /* The save and restore register groups need to include the
2199 upper-half registers, even though they're anonymous. */
2200 if ((group == save_reggroup
2201 || group == restore_reggroup)
2202 && (tdep->ppc_ev0_upper_regnum <= regnum
2203 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2206 /* In all other regards, the default reggroup definition is fine. */
2207 return default_register_reggroup_p (gdbarch, regnum, group);
2210 /* Convert a DBX STABS register number to a GDB register number. */
2212 rs6000_stab_reg_to_regnum (int num)
2214 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2216 if (0 <= num && num <= 31)
2217 return tdep->ppc_gp0_regnum + num;
2218 else if (32 <= num && num <= 63)
2219 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2220 specifies registers the architecture doesn't have? Our
2221 callers don't check the value we return. */
2222 return tdep->ppc_fp0_regnum + (num - 32);
2223 else if (77 <= num && num <= 108)
2224 return tdep->ppc_vr0_regnum + (num - 77);
2225 else if (1200 <= num && num < 1200 + 32)
2226 return tdep->ppc_ev0_regnum + (num - 1200);
2231 return tdep->ppc_mq_regnum;
2233 return tdep->ppc_lr_regnum;
2235 return tdep->ppc_ctr_regnum;
2237 return tdep->ppc_xer_regnum;
2239 return tdep->ppc_vrsave_regnum;
2241 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2243 return tdep->ppc_acc_regnum;
2245 return tdep->ppc_spefscr_regnum;
2252 /* Convert a Dwarf 2 register number to a GDB register number. */
2254 rs6000_dwarf2_reg_to_regnum (int num)
2256 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2258 if (0 <= num && num <= 31)
2259 return tdep->ppc_gp0_regnum + num;
2260 else if (32 <= num && num <= 63)
2261 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2262 specifies registers the architecture doesn't have? Our
2263 callers don't check the value we return. */
2264 return tdep->ppc_fp0_regnum + (num - 32);
2265 else if (1124 <= num && num < 1124 + 32)
2266 return tdep->ppc_vr0_regnum + (num - 1124);
2267 else if (1200 <= num && num < 1200 + 32)
2268 return tdep->ppc_ev0_regnum + (num - 1200);
2273 return tdep->ppc_cr_regnum;
2275 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2277 return tdep->ppc_acc_regnum;
2279 return tdep->ppc_mq_regnum;
2281 return tdep->ppc_xer_regnum;
2283 return tdep->ppc_lr_regnum;
2285 return tdep->ppc_ctr_regnum;
2287 return tdep->ppc_vrsave_regnum;
2289 return tdep->ppc_spefscr_regnum;
2295 /* Translate a .eh_frame register to DWARF register, or adjust a
2296 .debug_frame register. */
2299 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2301 /* GCC releases before 3.4 use GCC internal register numbering in
2302 .debug_frame (and .debug_info, et cetera). The numbering is
2303 different from the standard SysV numbering for everything except
2304 for GPRs and FPRs. We can not detect this problem in most cases
2305 - to get accurate debug info for variables living in lr, ctr, v0,
2306 et cetera, use a newer version of GCC. But we must detect
2307 one important case - lr is in column 65 in .debug_frame output,
2310 GCC 3.4, and the "hammer" branch, have a related problem. They
2311 record lr register saves in .debug_frame as 108, but still record
2312 the return column as 65. We fix that up too.
2314 We can do this because 65 is assigned to fpsr, and GCC never
2315 generates debug info referring to it. To add support for
2316 handwritten debug info that restores fpsr, we would need to add a
2317 producer version check to this. */
2326 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2327 internal register numbering; translate that to the standard DWARF2
2328 register numbering. */
2329 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2331 else if (68 <= num && num <= 75) /* cr0-cr8 */
2332 return num - 68 + 86;
2333 else if (77 <= num && num <= 108) /* vr0-vr31 */
2334 return num - 77 + 1124;
2346 case 109: /* vrsave */
2348 case 110: /* vscr */
2350 case 111: /* spe_acc */
2352 case 112: /* spefscr */
2359 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2361 Usually a function pointer's representation is simply the address
2362 of the function. On the RS/6000 however, a function pointer is
2363 represented by a pointer to an OPD entry. This OPD entry contains
2364 three words, the first word is the address of the function, the
2365 second word is the TOC pointer (r2), and the third word is the
2366 static chain value. Throughout GDB it is currently assumed that a
2367 function pointer contains the address of the function, which is not
2368 easy to fix. In addition, the conversion of a function address to
2369 a function pointer would require allocation of an OPD entry in the
2370 inferior's memory space, with all its drawbacks. To be able to
2371 call C++ virtual methods in the inferior (which are called via
2372 function pointers), find_function_addr uses this function to get the
2373 function address from a function pointer. */
2375 /* Return real function address if ADDR (a function pointer) is in the data
2376 space and is therefore a special function pointer. */
2379 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2381 struct target_ops *targ)
2383 struct obj_section *s;
2385 s = find_pc_section (addr);
2386 if (s && s->the_bfd_section->flags & SEC_CODE)
2389 /* ADDR is in the data space, so it's a special function pointer. */
2390 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
2394 /* Handling the various POWER/PowerPC variants. */
2397 /* The arrays here called registers_MUMBLE hold information about available
2400 For each family of PPC variants, I've tried to isolate out the
2401 common registers and put them up front, so that as long as you get
2402 the general family right, GDB will correctly identify the registers
2403 common to that family. The common register sets are:
2405 For the 60x family: hid0 hid1 iabr dabr pir
2407 For the 505 and 860 family: eie eid nri
2409 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2410 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2413 Most of these register groups aren't anything formal. I arrived at
2414 them by looking at the registers that occurred in more than one
2417 Note: kevinb/2002-04-30: Support for the fpscr register was added
2418 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2419 for Power. For PowerPC, slot 70 was unused and was already in the
2420 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2421 slot 70 was being used for "mq", so the next available slot (71)
2422 was chosen. It would have been nice to be able to make the
2423 register numbers the same across processor cores, but this wasn't
2424 possible without either 1) renumbering some registers for some
2425 processors or 2) assigning fpscr to a really high slot that's
2426 larger than any current register number. Doing (1) is bad because
2427 existing stubs would break. Doing (2) is undesirable because it
2428 would introduce a really large gap between fpscr and the rest of
2429 the registers for most processors. */
2431 /* Convenience macros for populating register arrays. */
2433 /* Within another macro, convert S to a string. */
2437 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2438 and 64 bits on 64-bit systems. */
2439 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2441 /* Return a struct reg defining register NAME that's 32 bits on all
2443 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2445 /* Return a struct reg defining register NAME that's 64 bits on all
2447 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2449 /* Return a struct reg defining register NAME that's 128 bits on all
2451 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2453 /* Return a struct reg defining floating-point register NAME. */
2454 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2456 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2457 long on all systems. */
2458 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2460 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2461 systems and that doesn't exist on 64-bit systems. */
2462 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2464 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2465 systems and that doesn't exist on 32-bit systems. */
2466 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2468 /* Return a struct reg placeholder for a register that doesn't exist. */
2469 #define R0 { 0, 0, 0, 0, 0, -1 }
2471 /* Return a struct reg defining an anonymous raw register that's 32
2472 bits on all systems. */
2473 #define A4 { 0, 4, 4, 0, 0, -1 }
2475 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2476 32-bit systems and 64 bits on 64-bit systems. */
2477 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2479 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2481 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2483 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2484 all systems, and whose SPR number is NUMBER. */
2485 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2487 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2488 64-bit systems and that doesn't exist on 32-bit systems. */
2489 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2491 /* UISA registers common across all architectures, including POWER. */
2493 #define COMMON_UISA_REGS \
2494 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2495 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2496 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2497 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2498 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2499 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2500 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2501 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2502 /* 64 */ R(pc), R(ps)
2504 /* UISA-level SPRs for PowerPC. */
2505 #define PPC_UISA_SPRS \
2506 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2508 /* UISA-level SPRs for PowerPC without floating point support. */
2509 #define PPC_UISA_NOFP_SPRS \
2510 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2512 /* Segment registers, for PowerPC. */
2513 #define PPC_SEGMENT_REGS \
2514 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2515 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2516 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2517 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2519 /* OEA SPRs for PowerPC. */
2520 #define PPC_OEA_SPRS \
2522 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2523 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2524 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2525 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2526 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2527 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2528 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2529 /* 116 */ S4(dec), S(dabr), S4(ear)
2531 /* AltiVec registers. */
2532 #define PPC_ALTIVEC_REGS \
2533 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2534 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2535 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2536 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2537 /*151*/R4(vscr), R4(vrsave)
2540 /* On machines supporting the SPE APU, the general-purpose registers
2541 are 64 bits long. There are SIMD vector instructions to treat them
2542 as pairs of floats, but the rest of the instruction set treats them
2543 as 32-bit registers, and only operates on their lower halves.
2545 In the GDB regcache, we treat their high and low halves as separate
2546 registers. The low halves we present as the general-purpose
2547 registers, and then we have pseudo-registers that stitch together
2548 the upper and lower halves and present them as pseudo-registers. */
2550 /* SPE GPR lower halves --- raw registers. */
2551 #define PPC_SPE_GP_REGS \
2552 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2553 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2554 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2555 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2557 /* SPE GPR upper halves --- anonymous raw registers. */
2558 #define PPC_SPE_UPPER_GP_REGS \
2559 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2560 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2561 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2562 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2564 /* SPE GPR vector registers --- pseudo registers based on underlying
2565 gprs and the anonymous upper half raw registers. */
2566 #define PPC_EV_PSEUDO_REGS \
2567 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2568 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2569 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2570 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2572 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2573 user-level SPR's. */
2574 static const struct reg registers_power[] =
2577 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2581 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2582 view of the PowerPC. */
2583 static const struct reg registers_powerpc[] =
2592 Some notes about the "tcr" special-purpose register:
2593 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2594 403's programmable interval timer, fixed interval timer, and
2596 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2597 watchdog timer, and nothing else.
2599 Some of the fields are similar between the two, but they're not
2600 compatible with each other. Since the two variants have different
2601 registers, with different numbers, but the same name, we can't
2602 splice the register name to get the SPR number. */
2603 static const struct reg registers_403[] =
2609 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2610 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2611 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2612 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2613 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2614 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2617 /* IBM PowerPC 403GC.
2618 See the comments about 'tcr' for the 403, above. */
2619 static const struct reg registers_403GC[] =
2625 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2626 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2627 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2628 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2629 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2630 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2631 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2632 /* 147 */ S(tbhu), S(tblu)
2635 /* Motorola PowerPC 505. */
2636 static const struct reg registers_505[] =
2642 /* 119 */ S(eie), S(eid), S(nri)
2645 /* Motorola PowerPC 860 or 850. */
2646 static const struct reg registers_860[] =
2652 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2653 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2654 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2655 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2656 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2657 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2658 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2659 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2660 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2661 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2662 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2663 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2666 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2667 for reading and writing RTCU and RTCL. However, how one reads and writes a
2668 register is the stub's problem. */
2669 static const struct reg registers_601[] =
2675 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2676 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2679 /* Motorola PowerPC 602.
2680 See the notes under the 403 about 'tcr'. */
2681 static const struct reg registers_602[] =
2687 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2688 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2689 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2692 /* Motorola/IBM PowerPC 603 or 603e. */
2693 static const struct reg registers_603[] =
2699 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2700 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2701 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2704 /* Motorola PowerPC 604 or 604e. */
2705 static const struct reg registers_604[] =
2711 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2712 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2713 /* 127 */ S(sia), S(sda)
2716 /* Motorola/IBM PowerPC 750 or 740. */
2717 static const struct reg registers_750[] =
2723 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2724 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2725 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2726 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2727 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2728 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2732 /* Motorola PowerPC 7400. */
2733 static const struct reg registers_7400[] =
2735 /* gpr0-gpr31, fpr0-fpr31 */
2737 /* cr, lr, ctr, xer, fpscr */
2742 /* vr0-vr31, vrsave, vscr */
2744 /* FIXME? Add more registers? */
2747 /* Motorola e500. */
2748 static const struct reg registers_e500[] =
2750 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2751 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2752 /* 64 .. 65 */ R(pc), R(ps),
2753 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2754 /* 71 .. 72 */ R8(acc), S4(spefscr),
2755 /* NOTE: Add new registers here the end of the raw register
2756 list and just before the first pseudo register. */
2757 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2760 /* Information about a particular processor variant. */
2764 /* Name of this variant. */
2767 /* English description of the variant. */
2770 /* bfd_arch_info.arch corresponding to variant. */
2771 enum bfd_architecture arch;
2773 /* bfd_arch_info.mach corresponding to variant. */
2776 /* Number of real registers. */
2779 /* Number of pseudo registers. */
2782 /* Number of total registers (the sum of nregs and npregs). */
2785 /* Table of register names; registers[R] is the name of the register
2787 const struct reg *regs;
2790 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2793 num_registers (const struct reg *reg_list, int num_tot_regs)
2798 for (i = 0; i < num_tot_regs; i++)
2799 if (!reg_list[i].pseudo)
2806 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2811 for (i = 0; i < num_tot_regs; i++)
2812 if (reg_list[i].pseudo)
2818 /* Information in this table comes from the following web sites:
2819 IBM: http://www.chips.ibm.com:80/products/embedded/
2820 Motorola: http://www.mot.com/SPS/PowerPC/
2822 I'm sure I've got some of the variant descriptions not quite right.
2823 Please report any inaccuracies you find to GDB's maintainer.
2825 If you add entries to this table, please be sure to allow the new
2826 value as an argument to the --with-cpu flag, in configure.in. */
2828 static struct variant variants[] =
2831 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2832 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2834 {"power", "POWER user-level", bfd_arch_rs6000,
2835 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2837 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2838 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2840 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2841 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2843 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2844 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2846 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2847 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2849 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2850 604, -1, -1, tot_num_registers (registers_604),
2852 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2853 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2855 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2856 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2858 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2859 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2861 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2862 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2864 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2865 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2867 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2868 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2872 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2873 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2875 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2876 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2878 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2879 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2881 {"a35", "PowerPC A35", bfd_arch_powerpc,
2882 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2884 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2885 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2887 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2888 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2891 /* FIXME: I haven't checked the register sets of the following. */
2892 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2893 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2895 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2896 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2898 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2899 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2902 {0, 0, 0, 0, 0, 0, 0, 0}
2905 /* Initialize the number of registers and pseudo registers in each variant. */
2908 init_variants (void)
2912 for (v = variants; v->name; v++)
2915 v->nregs = num_registers (v->regs, v->num_tot_regs);
2916 if (v->npregs == -1)
2917 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2921 /* Return the variant corresponding to architecture ARCH and machine number
2922 MACH. If no such variant exists, return null. */
2924 static const struct variant *
2925 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2927 const struct variant *v;
2929 for (v = variants; v->name; v++)
2930 if (arch == v->arch && mach == v->mach)
2937 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2939 if (!info->disassembler_options)
2940 info->disassembler_options = "any";
2942 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2943 return print_insn_big_powerpc (memaddr, info);
2945 return print_insn_little_powerpc (memaddr, info);
2949 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2951 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2954 static struct frame_id
2955 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2957 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2959 frame_pc_unwind (next_frame));
2962 struct rs6000_frame_cache
2965 CORE_ADDR initial_sp;
2966 struct trad_frame_saved_reg *saved_regs;
2969 static struct rs6000_frame_cache *
2970 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2972 struct rs6000_frame_cache *cache;
2973 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2974 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2975 struct rs6000_framedata fdata;
2976 int wordsize = tdep->wordsize;
2979 if ((*this_cache) != NULL)
2980 return (*this_cache);
2981 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2982 (*this_cache) = cache;
2983 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2985 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2986 pc = frame_pc_unwind (next_frame);
2987 skip_prologue (func, pc, &fdata);
2989 /* Figure out the parent's stack pointer. */
2991 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2992 address of the current frame. Things might be easier if the
2993 ->frame pointed to the outer-most address of the frame. In
2994 the mean time, the address of the prev frame is used as the
2995 base address of this frame. */
2996 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2998 /* If the function appears to be frameless, check a couple of likely
2999 indicators that we have simply failed to find the frame setup.
3000 Two common cases of this are missing symbols (i.e.
3001 frame_func_unwind returns the wrong address or 0), and assembly
3002 stubs which have a fast exit path but set up a frame on the slow
3005 If the LR appears to return to this function, then presume that
3006 we have an ABI compliant frame that we failed to find. */
3007 if (fdata.frameless && fdata.lr_offset == 0)
3012 saved_lr = frame_unwind_register_unsigned (next_frame,
3013 tdep->ppc_lr_regnum);
3014 if (func == 0 && saved_lr == pc)
3018 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3019 if (func == saved_func)
3025 fdata.frameless = 0;
3026 fdata.lr_offset = tdep->lr_frame_offset;
3030 if (!fdata.frameless)
3031 /* Frameless really means stackless. */
3032 cache->base = read_memory_addr (cache->base, wordsize);
3034 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3036 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3037 All fpr's from saved_fpr to fp31 are saved. */
3039 if (fdata.saved_fpr >= 0)
3042 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3044 /* If skip_prologue says floating-point registers were saved,
3045 but the current architecture has no floating-point registers,
3046 then that's strange. But we have no indices to even record
3047 the addresses under, so we just ignore it. */
3048 if (ppc_floating_point_unit_p (gdbarch))
3049 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3051 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3056 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3057 All gpr's from saved_gpr to gpr31 are saved. */
3059 if (fdata.saved_gpr >= 0)
3062 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3063 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3065 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3066 gpr_addr += wordsize;
3070 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3071 All vr's from saved_vr to vr31 are saved. */
3072 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3074 if (fdata.saved_vr >= 0)
3077 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3078 for (i = fdata.saved_vr; i < 32; i++)
3080 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3081 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3086 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3087 All vr's from saved_ev to ev31 are saved. ????? */
3088 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3090 if (fdata.saved_ev >= 0)
3093 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3094 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3096 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3097 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3098 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3103 /* If != 0, fdata.cr_offset is the offset from the frame that
3105 if (fdata.cr_offset != 0)
3106 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3108 /* If != 0, fdata.lr_offset is the offset from the frame that
3110 if (fdata.lr_offset != 0)
3111 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3112 /* The PC is found in the link register. */
3113 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3115 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3116 holds the VRSAVE. */
3117 if (fdata.vrsave_offset != 0)
3118 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3120 if (fdata.alloca_reg < 0)
3121 /* If no alloca register used, then fi->frame is the value of the
3122 %sp for this frame, and it is good enough. */
3123 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3125 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3132 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3133 struct frame_id *this_id)
3135 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3137 (*this_id) = frame_id_build (info->base,
3138 frame_func_unwind (next_frame, NORMAL_FRAME));
3142 rs6000_frame_prev_register (struct frame_info *next_frame,
3144 int regnum, int *optimizedp,
3145 enum lval_type *lvalp, CORE_ADDR *addrp,
3146 int *realnump, gdb_byte *valuep)
3148 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3150 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3151 optimizedp, lvalp, addrp, realnump, valuep);
3154 static const struct frame_unwind rs6000_frame_unwind =
3157 rs6000_frame_this_id,
3158 rs6000_frame_prev_register
3161 static const struct frame_unwind *
3162 rs6000_frame_sniffer (struct frame_info *next_frame)
3164 return &rs6000_frame_unwind;
3170 rs6000_frame_base_address (struct frame_info *next_frame,
3173 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3175 return info->initial_sp;
3178 static const struct frame_base rs6000_frame_base = {
3179 &rs6000_frame_unwind,
3180 rs6000_frame_base_address,
3181 rs6000_frame_base_address,
3182 rs6000_frame_base_address
3185 static const struct frame_base *
3186 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3188 return &rs6000_frame_base;
3191 /* Initialize the current architecture based on INFO. If possible, re-use an
3192 architecture from ARCHES, which is a list of architectures already created
3193 during this debugging session.
3195 Called e.g. at program startup, when reading a core file, and when reading
3198 static struct gdbarch *
3199 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3201 struct gdbarch *gdbarch;
3202 struct gdbarch_tdep *tdep;
3203 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3205 const struct variant *v;
3206 enum bfd_architecture arch;
3212 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3213 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3215 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3216 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3218 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3220 /* Check word size. If INFO is from a binary file, infer it from
3221 that, else choose a likely default. */
3222 if (from_xcoff_exec)
3224 if (bfd_xcoff_is_xcoff64 (info.abfd))
3229 else if (from_elf_exec)
3231 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3238 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3239 wordsize = info.bfd_arch_info->bits_per_word /
3240 info.bfd_arch_info->bits_per_byte;
3245 /* Find a candidate among extant architectures. */
3246 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3248 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3250 /* Word size in the various PowerPC bfd_arch_info structs isn't
3251 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3252 separate word size check. */
3253 tdep = gdbarch_tdep (arches->gdbarch);
3254 if (tdep && tdep->wordsize == wordsize)
3255 return arches->gdbarch;
3258 /* None found, create a new architecture from INFO, whose bfd_arch_info
3259 validity depends on the source:
3260 - executable useless
3261 - rs6000_host_arch() good
3263 - "set arch" trust blindly
3264 - GDB startup useless but harmless */
3266 if (!from_xcoff_exec)
3268 arch = info.bfd_arch_info->arch;
3269 mach = info.bfd_arch_info->mach;
3273 arch = bfd_arch_powerpc;
3274 bfd_default_set_arch_mach (&abfd, arch, 0);
3275 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3276 mach = info.bfd_arch_info->mach;
3278 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3279 tdep->wordsize = wordsize;
3281 /* For e500 executables, the apuinfo section is of help here. Such
3282 section contains the identifier and revision number of each
3283 Application-specific Processing Unit that is present on the
3284 chip. The content of the section is determined by the assembler
3285 which looks at each instruction and determines which unit (and
3286 which version of it) can execute it. In our case we just look for
3287 the existance of the section. */
3291 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3294 arch = info.bfd_arch_info->arch;
3295 mach = bfd_mach_ppc_e500;
3296 bfd_default_set_arch_mach (&abfd, arch, mach);
3297 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3301 gdbarch = gdbarch_alloc (&info, tdep);
3303 /* Initialize the number of real and pseudo registers in each variant. */
3306 /* Choose variant. */
3307 v = find_variant_by_arch (arch, mach);
3311 tdep->regs = v->regs;
3313 tdep->ppc_gp0_regnum = 0;
3314 tdep->ppc_toc_regnum = 2;
3315 tdep->ppc_ps_regnum = 65;
3316 tdep->ppc_cr_regnum = 66;
3317 tdep->ppc_lr_regnum = 67;
3318 tdep->ppc_ctr_regnum = 68;
3319 tdep->ppc_xer_regnum = 69;
3320 if (v->mach == bfd_mach_ppc_601)
3321 tdep->ppc_mq_regnum = 124;
3322 else if (arch == bfd_arch_rs6000)
3323 tdep->ppc_mq_regnum = 70;
3325 tdep->ppc_mq_regnum = -1;
3326 tdep->ppc_fp0_regnum = 32;
3327 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3328 tdep->ppc_sr0_regnum = 71;
3329 tdep->ppc_vr0_regnum = -1;
3330 tdep->ppc_vrsave_regnum = -1;
3331 tdep->ppc_ev0_upper_regnum = -1;
3332 tdep->ppc_ev0_regnum = -1;
3333 tdep->ppc_ev31_regnum = -1;
3334 tdep->ppc_acc_regnum = -1;
3335 tdep->ppc_spefscr_regnum = -1;
3337 set_gdbarch_pc_regnum (gdbarch, 64);
3338 set_gdbarch_sp_regnum (gdbarch, 1);
3339 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3340 set_gdbarch_fp0_regnum (gdbarch, 32);
3341 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3342 if (sysv_abi && wordsize == 8)
3343 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3344 else if (sysv_abi && wordsize == 4)
3345 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3347 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3349 /* Set lr_frame_offset. */
3351 tdep->lr_frame_offset = 16;
3353 tdep->lr_frame_offset = 4;
3355 tdep->lr_frame_offset = 8;
3357 if (v->arch == bfd_arch_rs6000)
3358 tdep->ppc_sr0_regnum = -1;
3359 else if (v->arch == bfd_arch_powerpc)
3363 tdep->ppc_sr0_regnum = -1;
3364 tdep->ppc_vr0_regnum = 71;
3365 tdep->ppc_vrsave_regnum = 104;
3367 case bfd_mach_ppc_7400:
3368 tdep->ppc_vr0_regnum = 119;
3369 tdep->ppc_vrsave_regnum = 152;
3371 case bfd_mach_ppc_e500:
3372 tdep->ppc_toc_regnum = -1;
3373 tdep->ppc_ev0_upper_regnum = 32;
3374 tdep->ppc_ev0_regnum = 73;
3375 tdep->ppc_ev31_regnum = 104;
3376 tdep->ppc_acc_regnum = 71;
3377 tdep->ppc_spefscr_regnum = 72;
3378 tdep->ppc_fp0_regnum = -1;
3379 tdep->ppc_fpscr_regnum = -1;
3380 tdep->ppc_sr0_regnum = -1;
3381 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3382 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3383 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3386 case bfd_mach_ppc64:
3387 case bfd_mach_ppc_620:
3388 case bfd_mach_ppc_630:
3389 case bfd_mach_ppc_a35:
3390 case bfd_mach_ppc_rs64ii:
3391 case bfd_mach_ppc_rs64iii:
3392 /* These processor's register sets don't have segment registers. */
3393 tdep->ppc_sr0_regnum = -1;
3397 internal_error (__FILE__, __LINE__,
3398 _("rs6000_gdbarch_init: "
3399 "received unexpected BFD 'arch' value"));
3401 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3403 /* Sanity check on registers. */
3404 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3406 /* Select instruction printer. */
3407 if (arch == bfd_arch_rs6000)
3408 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3410 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3412 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3414 set_gdbarch_num_regs (gdbarch, v->nregs);
3415 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3416 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3417 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3418 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3420 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3421 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3422 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3423 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3424 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3425 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3426 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3428 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3430 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3431 set_gdbarch_char_signed (gdbarch, 0);
3433 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3434 if (sysv_abi && wordsize == 8)
3436 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3437 else if (!sysv_abi && wordsize == 4)
3438 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3439 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3440 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3442 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3444 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3445 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3446 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3448 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3449 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3451 if (sysv_abi && wordsize == 4)
3452 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3453 else if (sysv_abi && wordsize == 8)
3454 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3456 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3458 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3459 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3461 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3462 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3464 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3465 for the descriptor and ".FN" for the entry-point -- a user
3466 specifying "break FN" will unexpectedly end up with a breakpoint
3467 on the descriptor and not the function. This architecture method
3468 transforms any breakpoints on descriptors into breakpoints on the
3469 corresponding entry point. */
3470 if (sysv_abi && wordsize == 8)
3471 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3473 /* Not sure on this. FIXMEmgo */
3474 set_gdbarch_frame_args_skip (gdbarch, 8);
3478 /* Handle RS/6000 function pointers (which are really function
3480 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3481 rs6000_convert_from_func_ptr_addr);
3484 /* Helpers for function argument information. */
3485 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3488 set_gdbarch_in_solib_return_trampoline
3489 (gdbarch, rs6000_in_solib_return_trampoline);
3490 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3492 /* Hook in the DWARF CFI frame unwinder. */
3493 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3494 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3496 /* Hook in ABI-specific overrides, if they have been registered. */
3497 gdbarch_init_osabi (info, gdbarch);
3501 case GDB_OSABI_LINUX:
3502 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3503 have altivec registers. If not, ptrace will fail the first time it's
3504 called to access one and will not be called again. This wart will
3505 be removed when Daniel Jacobowitz's proposal for autodetecting target
3506 registers is implemented. */
3507 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3509 tdep->ppc_vr0_regnum = 71;
3510 tdep->ppc_vrsave_regnum = 104;
3513 case GDB_OSABI_NETBSD_AOUT:
3514 case GDB_OSABI_NETBSD_ELF:
3515 case GDB_OSABI_UNKNOWN:
3516 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3517 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3518 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3519 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3522 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3524 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3525 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3526 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3527 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3530 init_sim_regno_table (gdbarch);
3536 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3538 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3543 /* FIXME: Dump gdbarch_tdep. */
3546 /* Initialization code. */
3548 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3551 _initialize_rs6000_tdep (void)
3553 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3554 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);